intel_bufmgr_gem.c revision 6335e1d28c422050024bcf4100c4fb3a5bac2afb
1/**************************************************************************
2 *
3 * Copyright � 2007 Red Hat Inc.
4 * Copyright � 2007-2012 Intel Corporation
5 * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * The above copyright notice and this permission notice (including the
25 * next paragraph) shall be included in all copies or substantial portions
26 * of the Software.
27 *
28 *
29 **************************************************************************/
30/*
31 * Authors: Thomas Hellstr�m <thomas-at-tungstengraphics-dot-com>
32 *          Keith Whitwell <keithw-at-tungstengraphics-dot-com>
33 *	    Eric Anholt <eric@anholt.net>
34 *	    Dave Airlie <airlied@linux.ie>
35 */
36
37#ifdef HAVE_CONFIG_H
38#include "config.h"
39#endif
40
41#include <xf86drm.h>
42#include <xf86atomic.h>
43#include <fcntl.h>
44#include <stdio.h>
45#include <stdlib.h>
46#include <string.h>
47#include <unistd.h>
48#include <assert.h>
49#include <pthread.h>
50#include <sys/ioctl.h>
51#include <sys/mman.h>
52#include <sys/stat.h>
53#include <sys/types.h>
54#include <stdbool.h>
55
56#include "errno.h"
57#ifndef ETIME
58#define ETIME ETIMEDOUT
59#endif
60#include "libdrm_lists.h"
61#include "intel_bufmgr.h"
62#include "intel_bufmgr_priv.h"
63#include "intel_chipset.h"
64#include "intel_aub.h"
65#include "string.h"
66
67#include "i915_drm.h"
68
69#ifdef HAVE_VALGRIND
70#include <valgrind.h>
71#include <memcheck.h>
72#define VG(x) x
73#else
74#define VG(x)
75#endif
76
77#define VG_CLEAR(s) VG(memset(&s, 0, sizeof(s)))
78
79#define DBG(...) do {					\
80	if (bufmgr_gem->bufmgr.debug)			\
81		fprintf(stderr, __VA_ARGS__);		\
82} while (0)
83
84#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
85
86typedef struct _drm_intel_bo_gem drm_intel_bo_gem;
87
88struct drm_intel_gem_bo_bucket {
89	drmMMListHead head;
90	unsigned long size;
91};
92
93typedef struct _drm_intel_bufmgr_gem {
94	drm_intel_bufmgr bufmgr;
95
96	int fd;
97
98	int max_relocs;
99
100	pthread_mutex_t lock;
101
102	struct drm_i915_gem_exec_object *exec_objects;
103	struct drm_i915_gem_exec_object2 *exec2_objects;
104	drm_intel_bo **exec_bos;
105	int exec_size;
106	int exec_count;
107
108	/** Array of lists of cached gem objects of power-of-two sizes */
109	struct drm_intel_gem_bo_bucket cache_bucket[14 * 4];
110	int num_buckets;
111	time_t time;
112
113	drmMMListHead named;
114	drmMMListHead vma_cache;
115	int vma_count, vma_open, vma_max;
116
117	uint64_t gtt_size;
118	int available_fences;
119	int pci_device;
120	int gen;
121	unsigned int has_bsd : 1;
122	unsigned int has_blt : 1;
123	unsigned int has_relaxed_fencing : 1;
124	unsigned int has_llc : 1;
125	unsigned int has_wait_timeout : 1;
126	unsigned int bo_reuse : 1;
127	unsigned int no_exec : 1;
128	unsigned int has_vebox : 1;
129	bool fenced_relocs;
130
131	char *aub_filename;
132	FILE *aub_file;
133	uint32_t aub_offset;
134} drm_intel_bufmgr_gem;
135
136#define DRM_INTEL_RELOC_FENCE (1<<0)
137
138typedef struct _drm_intel_reloc_target_info {
139	drm_intel_bo *bo;
140	int flags;
141} drm_intel_reloc_target;
142
143struct _drm_intel_bo_gem {
144	drm_intel_bo bo;
145
146	atomic_t refcount;
147	uint32_t gem_handle;
148	const char *name;
149
150	/**
151	 * Kenel-assigned global name for this object
152	 */
153	unsigned int global_name;
154	drmMMListHead name_list;
155
156	/**
157	 * Index of the buffer within the validation list while preparing a
158	 * batchbuffer execution.
159	 */
160	int validate_index;
161
162	/**
163	 * Current tiling mode
164	 */
165	uint32_t tiling_mode;
166	uint32_t swizzle_mode;
167	unsigned long stride;
168
169	time_t free_time;
170
171	/** Array passed to the DRM containing relocation information. */
172	struct drm_i915_gem_relocation_entry *relocs;
173	/**
174	 * Array of info structs corresponding to relocs[i].target_handle etc
175	 */
176	drm_intel_reloc_target *reloc_target_info;
177	/** Number of entries in relocs */
178	int reloc_count;
179	/** Mapped address for the buffer, saved across map/unmap cycles */
180	void *mem_virtual;
181	/** GTT virtual address for the buffer, saved across map/unmap cycles */
182	void *gtt_virtual;
183	int map_count;
184	drmMMListHead vma_list;
185
186	/** BO cache list */
187	drmMMListHead head;
188
189	/**
190	 * Boolean of whether this BO and its children have been included in
191	 * the current drm_intel_bufmgr_check_aperture_space() total.
192	 */
193	bool included_in_check_aperture;
194
195	/**
196	 * Boolean of whether this buffer has been used as a relocation
197	 * target and had its size accounted for, and thus can't have any
198	 * further relocations added to it.
199	 */
200	bool used_as_reloc_target;
201
202	/**
203	 * Boolean of whether we have encountered an error whilst building the relocation tree.
204	 */
205	bool has_error;
206
207	/**
208	 * Boolean of whether this buffer can be re-used
209	 */
210	bool reusable;
211
212	/**
213	 * Size in bytes of this buffer and its relocation descendents.
214	 *
215	 * Used to avoid costly tree walking in
216	 * drm_intel_bufmgr_check_aperture in the common case.
217	 */
218	int reloc_tree_size;
219
220	/**
221	 * Number of potential fence registers required by this buffer and its
222	 * relocations.
223	 */
224	int reloc_tree_fences;
225
226	/** Flags that we may need to do the SW_FINSIH ioctl on unmap. */
227	bool mapped_cpu_write;
228
229	uint32_t aub_offset;
230
231	drm_intel_aub_annotation *aub_annotations;
232	unsigned aub_annotation_count;
233};
234
235static unsigned int
236drm_intel_gem_estimate_batch_space(drm_intel_bo ** bo_array, int count);
237
238static unsigned int
239drm_intel_gem_compute_batch_space(drm_intel_bo ** bo_array, int count);
240
241static int
242drm_intel_gem_bo_get_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
243			    uint32_t * swizzle_mode);
244
245static int
246drm_intel_gem_bo_set_tiling_internal(drm_intel_bo *bo,
247				     uint32_t tiling_mode,
248				     uint32_t stride);
249
250static void drm_intel_gem_bo_unreference_locked_timed(drm_intel_bo *bo,
251						      time_t time);
252
253static void drm_intel_gem_bo_unreference(drm_intel_bo *bo);
254
255static void drm_intel_gem_bo_free(drm_intel_bo *bo);
256
257static unsigned long
258drm_intel_gem_bo_tile_size(drm_intel_bufmgr_gem *bufmgr_gem, unsigned long size,
259			   uint32_t *tiling_mode)
260{
261	unsigned long min_size, max_size;
262	unsigned long i;
263
264	if (*tiling_mode == I915_TILING_NONE)
265		return size;
266
267	/* 965+ just need multiples of page size for tiling */
268	if (bufmgr_gem->gen >= 4)
269		return ROUND_UP_TO(size, 4096);
270
271	/* Older chips need powers of two, of at least 512k or 1M */
272	if (bufmgr_gem->gen == 3) {
273		min_size = 1024*1024;
274		max_size = 128*1024*1024;
275	} else {
276		min_size = 512*1024;
277		max_size = 64*1024*1024;
278	}
279
280	if (size > max_size) {
281		*tiling_mode = I915_TILING_NONE;
282		return size;
283	}
284
285	/* Do we need to allocate every page for the fence? */
286	if (bufmgr_gem->has_relaxed_fencing)
287		return ROUND_UP_TO(size, 4096);
288
289	for (i = min_size; i < size; i <<= 1)
290		;
291
292	return i;
293}
294
295/*
296 * Round a given pitch up to the minimum required for X tiling on a
297 * given chip.  We use 512 as the minimum to allow for a later tiling
298 * change.
299 */
300static unsigned long
301drm_intel_gem_bo_tile_pitch(drm_intel_bufmgr_gem *bufmgr_gem,
302			    unsigned long pitch, uint32_t *tiling_mode)
303{
304	unsigned long tile_width;
305	unsigned long i;
306
307	/* If untiled, then just align it so that we can do rendering
308	 * to it with the 3D engine.
309	 */
310	if (*tiling_mode == I915_TILING_NONE)
311		return ALIGN(pitch, 64);
312
313	if (*tiling_mode == I915_TILING_X
314			|| (IS_915(bufmgr_gem->pci_device)
315			    && *tiling_mode == I915_TILING_Y))
316		tile_width = 512;
317	else
318		tile_width = 128;
319
320	/* 965 is flexible */
321	if (bufmgr_gem->gen >= 4)
322		return ROUND_UP_TO(pitch, tile_width);
323
324	/* The older hardware has a maximum pitch of 8192 with tiled
325	 * surfaces, so fallback to untiled if it's too large.
326	 */
327	if (pitch > 8192) {
328		*tiling_mode = I915_TILING_NONE;
329		return ALIGN(pitch, 64);
330	}
331
332	/* Pre-965 needs power of two tile width */
333	for (i = tile_width; i < pitch; i <<= 1)
334		;
335
336	return i;
337}
338
339static struct drm_intel_gem_bo_bucket *
340drm_intel_gem_bo_bucket_for_size(drm_intel_bufmgr_gem *bufmgr_gem,
341				 unsigned long size)
342{
343	int i;
344
345	for (i = 0; i < bufmgr_gem->num_buckets; i++) {
346		struct drm_intel_gem_bo_bucket *bucket =
347		    &bufmgr_gem->cache_bucket[i];
348		if (bucket->size >= size) {
349			return bucket;
350		}
351	}
352
353	return NULL;
354}
355
356static void
357drm_intel_gem_dump_validation_list(drm_intel_bufmgr_gem *bufmgr_gem)
358{
359	int i, j;
360
361	for (i = 0; i < bufmgr_gem->exec_count; i++) {
362		drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
363		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
364
365		if (bo_gem->relocs == NULL) {
366			DBG("%2d: %d (%s)\n", i, bo_gem->gem_handle,
367			    bo_gem->name);
368			continue;
369		}
370
371		for (j = 0; j < bo_gem->reloc_count; j++) {
372			drm_intel_bo *target_bo = bo_gem->reloc_target_info[j].bo;
373			drm_intel_bo_gem *target_gem =
374			    (drm_intel_bo_gem *) target_bo;
375
376			DBG("%2d: %d (%s)@0x%08llx -> "
377			    "%d (%s)@0x%08lx + 0x%08x\n",
378			    i,
379			    bo_gem->gem_handle, bo_gem->name,
380			    (unsigned long long)bo_gem->relocs[j].offset,
381			    target_gem->gem_handle,
382			    target_gem->name,
383			    target_bo->offset,
384			    bo_gem->relocs[j].delta);
385		}
386	}
387}
388
389static inline void
390drm_intel_gem_bo_reference(drm_intel_bo *bo)
391{
392	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
393
394	atomic_inc(&bo_gem->refcount);
395}
396
397/**
398 * Adds the given buffer to the list of buffers to be validated (moved into the
399 * appropriate memory type) with the next batch submission.
400 *
401 * If a buffer is validated multiple times in a batch submission, it ends up
402 * with the intersection of the memory type flags and the union of the
403 * access flags.
404 */
405static void
406drm_intel_add_validate_buffer(drm_intel_bo *bo)
407{
408	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
409	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
410	int index;
411
412	if (bo_gem->validate_index != -1)
413		return;
414
415	/* Extend the array of validation entries as necessary. */
416	if (bufmgr_gem->exec_count == bufmgr_gem->exec_size) {
417		int new_size = bufmgr_gem->exec_size * 2;
418
419		if (new_size == 0)
420			new_size = 5;
421
422		bufmgr_gem->exec_objects =
423		    realloc(bufmgr_gem->exec_objects,
424			    sizeof(*bufmgr_gem->exec_objects) * new_size);
425		bufmgr_gem->exec_bos =
426		    realloc(bufmgr_gem->exec_bos,
427			    sizeof(*bufmgr_gem->exec_bos) * new_size);
428		bufmgr_gem->exec_size = new_size;
429	}
430
431	index = bufmgr_gem->exec_count;
432	bo_gem->validate_index = index;
433	/* Fill in array entry */
434	bufmgr_gem->exec_objects[index].handle = bo_gem->gem_handle;
435	bufmgr_gem->exec_objects[index].relocation_count = bo_gem->reloc_count;
436	bufmgr_gem->exec_objects[index].relocs_ptr = (uintptr_t) bo_gem->relocs;
437	bufmgr_gem->exec_objects[index].alignment = 0;
438	bufmgr_gem->exec_objects[index].offset = 0;
439	bufmgr_gem->exec_bos[index] = bo;
440	bufmgr_gem->exec_count++;
441}
442
443static void
444drm_intel_add_validate_buffer2(drm_intel_bo *bo, int need_fence)
445{
446	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr;
447	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
448	int index;
449
450	if (bo_gem->validate_index != -1) {
451		if (need_fence)
452			bufmgr_gem->exec2_objects[bo_gem->validate_index].flags |=
453				EXEC_OBJECT_NEEDS_FENCE;
454		return;
455	}
456
457	/* Extend the array of validation entries as necessary. */
458	if (bufmgr_gem->exec_count == bufmgr_gem->exec_size) {
459		int new_size = bufmgr_gem->exec_size * 2;
460
461		if (new_size == 0)
462			new_size = 5;
463
464		bufmgr_gem->exec2_objects =
465			realloc(bufmgr_gem->exec2_objects,
466				sizeof(*bufmgr_gem->exec2_objects) * new_size);
467		bufmgr_gem->exec_bos =
468			realloc(bufmgr_gem->exec_bos,
469				sizeof(*bufmgr_gem->exec_bos) * new_size);
470		bufmgr_gem->exec_size = new_size;
471	}
472
473	index = bufmgr_gem->exec_count;
474	bo_gem->validate_index = index;
475	/* Fill in array entry */
476	bufmgr_gem->exec2_objects[index].handle = bo_gem->gem_handle;
477	bufmgr_gem->exec2_objects[index].relocation_count = bo_gem->reloc_count;
478	bufmgr_gem->exec2_objects[index].relocs_ptr = (uintptr_t)bo_gem->relocs;
479	bufmgr_gem->exec2_objects[index].alignment = 0;
480	bufmgr_gem->exec2_objects[index].offset = 0;
481	bufmgr_gem->exec_bos[index] = bo;
482	bufmgr_gem->exec2_objects[index].flags = 0;
483	bufmgr_gem->exec2_objects[index].rsvd1 = 0;
484	bufmgr_gem->exec2_objects[index].rsvd2 = 0;
485	if (need_fence) {
486		bufmgr_gem->exec2_objects[index].flags |=
487			EXEC_OBJECT_NEEDS_FENCE;
488	}
489	bufmgr_gem->exec_count++;
490}
491
492#define RELOC_BUF_SIZE(x) ((I915_RELOC_HEADER + x * I915_RELOC0_STRIDE) * \
493	sizeof(uint32_t))
494
495static void
496drm_intel_bo_gem_set_in_aperture_size(drm_intel_bufmgr_gem *bufmgr_gem,
497				      drm_intel_bo_gem *bo_gem)
498{
499	int size;
500
501	assert(!bo_gem->used_as_reloc_target);
502
503	/* The older chipsets are far-less flexible in terms of tiling,
504	 * and require tiled buffer to be size aligned in the aperture.
505	 * This means that in the worst possible case we will need a hole
506	 * twice as large as the object in order for it to fit into the
507	 * aperture. Optimal packing is for wimps.
508	 */
509	size = bo_gem->bo.size;
510	if (bufmgr_gem->gen < 4 && bo_gem->tiling_mode != I915_TILING_NONE) {
511		int min_size;
512
513		if (bufmgr_gem->has_relaxed_fencing) {
514			if (bufmgr_gem->gen == 3)
515				min_size = 1024*1024;
516			else
517				min_size = 512*1024;
518
519			while (min_size < size)
520				min_size *= 2;
521		} else
522			min_size = size;
523
524		/* Account for worst-case alignment. */
525		size = 2 * min_size;
526	}
527
528	bo_gem->reloc_tree_size = size;
529}
530
531static int
532drm_intel_setup_reloc_list(drm_intel_bo *bo)
533{
534	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
535	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
536	unsigned int max_relocs = bufmgr_gem->max_relocs;
537
538	if (bo->size / 4 < max_relocs)
539		max_relocs = bo->size / 4;
540
541	bo_gem->relocs = malloc(max_relocs *
542				sizeof(struct drm_i915_gem_relocation_entry));
543	bo_gem->reloc_target_info = malloc(max_relocs *
544					   sizeof(drm_intel_reloc_target));
545	if (bo_gem->relocs == NULL || bo_gem->reloc_target_info == NULL) {
546		bo_gem->has_error = true;
547
548		free (bo_gem->relocs);
549		bo_gem->relocs = NULL;
550
551		free (bo_gem->reloc_target_info);
552		bo_gem->reloc_target_info = NULL;
553
554		return 1;
555	}
556
557	return 0;
558}
559
560static int
561drm_intel_gem_bo_busy(drm_intel_bo *bo)
562{
563	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
564	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
565	struct drm_i915_gem_busy busy;
566	int ret;
567
568	VG_CLEAR(busy);
569	busy.handle = bo_gem->gem_handle;
570
571	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_BUSY, &busy);
572
573	return (ret == 0 && busy.busy);
574}
575
576static int
577drm_intel_gem_bo_madvise_internal(drm_intel_bufmgr_gem *bufmgr_gem,
578				  drm_intel_bo_gem *bo_gem, int state)
579{
580	struct drm_i915_gem_madvise madv;
581
582	VG_CLEAR(madv);
583	madv.handle = bo_gem->gem_handle;
584	madv.madv = state;
585	madv.retained = 1;
586	drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv);
587
588	return madv.retained;
589}
590
591static int
592drm_intel_gem_bo_madvise(drm_intel_bo *bo, int madv)
593{
594	return drm_intel_gem_bo_madvise_internal
595		((drm_intel_bufmgr_gem *) bo->bufmgr,
596		 (drm_intel_bo_gem *) bo,
597		 madv);
598}
599
600/* drop the oldest entries that have been purged by the kernel */
601static void
602drm_intel_gem_bo_cache_purge_bucket(drm_intel_bufmgr_gem *bufmgr_gem,
603				    struct drm_intel_gem_bo_bucket *bucket)
604{
605	while (!DRMLISTEMPTY(&bucket->head)) {
606		drm_intel_bo_gem *bo_gem;
607
608		bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
609				      bucket->head.next, head);
610		if (drm_intel_gem_bo_madvise_internal
611		    (bufmgr_gem, bo_gem, I915_MADV_DONTNEED))
612			break;
613
614		DRMLISTDEL(&bo_gem->head);
615		drm_intel_gem_bo_free(&bo_gem->bo);
616	}
617}
618
619static drm_intel_bo *
620drm_intel_gem_bo_alloc_internal(drm_intel_bufmgr *bufmgr,
621				const char *name,
622				unsigned long size,
623				unsigned long flags,
624				uint32_t tiling_mode,
625				unsigned long stride)
626{
627	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
628	drm_intel_bo_gem *bo_gem;
629	unsigned int page_size = getpagesize();
630	int ret;
631	struct drm_intel_gem_bo_bucket *bucket;
632	bool alloc_from_cache;
633	unsigned long bo_size;
634	bool for_render = false;
635
636	if (flags & BO_ALLOC_FOR_RENDER)
637		for_render = true;
638
639	/* Round the allocated size up to a power of two number of pages. */
640	bucket = drm_intel_gem_bo_bucket_for_size(bufmgr_gem, size);
641
642	/* If we don't have caching at this size, don't actually round the
643	 * allocation up.
644	 */
645	if (bucket == NULL) {
646		bo_size = size;
647		if (bo_size < page_size)
648			bo_size = page_size;
649	} else {
650		bo_size = bucket->size;
651	}
652
653	pthread_mutex_lock(&bufmgr_gem->lock);
654	/* Get a buffer out of the cache if available */
655retry:
656	alloc_from_cache = false;
657	if (bucket != NULL && !DRMLISTEMPTY(&bucket->head)) {
658		if (for_render) {
659			/* Allocate new render-target BOs from the tail (MRU)
660			 * of the list, as it will likely be hot in the GPU
661			 * cache and in the aperture for us.
662			 */
663			bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
664					      bucket->head.prev, head);
665			DRMLISTDEL(&bo_gem->head);
666			alloc_from_cache = true;
667		} else {
668			/* For non-render-target BOs (where we're probably
669			 * going to map it first thing in order to fill it
670			 * with data), check if the last BO in the cache is
671			 * unbusy, and only reuse in that case. Otherwise,
672			 * allocating a new buffer is probably faster than
673			 * waiting for the GPU to finish.
674			 */
675			bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
676					      bucket->head.next, head);
677			if (!drm_intel_gem_bo_busy(&bo_gem->bo)) {
678				alloc_from_cache = true;
679				DRMLISTDEL(&bo_gem->head);
680			}
681		}
682
683		if (alloc_from_cache) {
684			if (!drm_intel_gem_bo_madvise_internal
685			    (bufmgr_gem, bo_gem, I915_MADV_WILLNEED)) {
686				drm_intel_gem_bo_free(&bo_gem->bo);
687				drm_intel_gem_bo_cache_purge_bucket(bufmgr_gem,
688								    bucket);
689				goto retry;
690			}
691
692			if (drm_intel_gem_bo_set_tiling_internal(&bo_gem->bo,
693								 tiling_mode,
694								 stride)) {
695				drm_intel_gem_bo_free(&bo_gem->bo);
696				goto retry;
697			}
698		}
699	}
700	pthread_mutex_unlock(&bufmgr_gem->lock);
701
702	if (!alloc_from_cache) {
703		struct drm_i915_gem_create create;
704
705		bo_gem = calloc(1, sizeof(*bo_gem));
706		if (!bo_gem)
707			return NULL;
708
709		bo_gem->bo.size = bo_size;
710
711		VG_CLEAR(create);
712		create.size = bo_size;
713
714		ret = drmIoctl(bufmgr_gem->fd,
715			       DRM_IOCTL_I915_GEM_CREATE,
716			       &create);
717		bo_gem->gem_handle = create.handle;
718		bo_gem->bo.handle = bo_gem->gem_handle;
719		if (ret != 0) {
720			free(bo_gem);
721			return NULL;
722		}
723		bo_gem->bo.bufmgr = bufmgr;
724
725		bo_gem->tiling_mode = I915_TILING_NONE;
726		bo_gem->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
727		bo_gem->stride = 0;
728
729		if (drm_intel_gem_bo_set_tiling_internal(&bo_gem->bo,
730							 tiling_mode,
731							 stride)) {
732		    drm_intel_gem_bo_free(&bo_gem->bo);
733		    return NULL;
734		}
735
736		DRMINITLISTHEAD(&bo_gem->name_list);
737		DRMINITLISTHEAD(&bo_gem->vma_list);
738	}
739
740	bo_gem->name = name;
741	atomic_set(&bo_gem->refcount, 1);
742	bo_gem->validate_index = -1;
743	bo_gem->reloc_tree_fences = 0;
744	bo_gem->used_as_reloc_target = false;
745	bo_gem->has_error = false;
746	bo_gem->reusable = true;
747	bo_gem->aub_annotations = NULL;
748	bo_gem->aub_annotation_count = 0;
749
750	drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem);
751
752	DBG("bo_create: buf %d (%s) %ldb\n",
753	    bo_gem->gem_handle, bo_gem->name, size);
754
755	return &bo_gem->bo;
756}
757
758static drm_intel_bo *
759drm_intel_gem_bo_alloc_for_render(drm_intel_bufmgr *bufmgr,
760				  const char *name,
761				  unsigned long size,
762				  unsigned int alignment)
763{
764	return drm_intel_gem_bo_alloc_internal(bufmgr, name, size,
765					       BO_ALLOC_FOR_RENDER,
766					       I915_TILING_NONE, 0);
767}
768
769static drm_intel_bo *
770drm_intel_gem_bo_alloc(drm_intel_bufmgr *bufmgr,
771		       const char *name,
772		       unsigned long size,
773		       unsigned int alignment)
774{
775	return drm_intel_gem_bo_alloc_internal(bufmgr, name, size, 0,
776					       I915_TILING_NONE, 0);
777}
778
779static drm_intel_bo *
780drm_intel_gem_bo_alloc_tiled(drm_intel_bufmgr *bufmgr, const char *name,
781			     int x, int y, int cpp, uint32_t *tiling_mode,
782			     unsigned long *pitch, unsigned long flags)
783{
784	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
785	unsigned long size, stride;
786	uint32_t tiling;
787
788	do {
789		unsigned long aligned_y, height_alignment;
790
791		tiling = *tiling_mode;
792
793		/* If we're tiled, our allocations are in 8 or 32-row blocks,
794		 * so failure to align our height means that we won't allocate
795		 * enough pages.
796		 *
797		 * If we're untiled, we still have to align to 2 rows high
798		 * because the data port accesses 2x2 blocks even if the
799		 * bottom row isn't to be rendered, so failure to align means
800		 * we could walk off the end of the GTT and fault.  This is
801		 * documented on 965, and may be the case on older chipsets
802		 * too so we try to be careful.
803		 */
804		aligned_y = y;
805		height_alignment = 2;
806
807		if ((bufmgr_gem->gen == 2) && tiling != I915_TILING_NONE)
808			height_alignment = 16;
809		else if (tiling == I915_TILING_X
810			|| (IS_915(bufmgr_gem->pci_device)
811			    && tiling == I915_TILING_Y))
812			height_alignment = 8;
813		else if (tiling == I915_TILING_Y)
814			height_alignment = 32;
815		aligned_y = ALIGN(y, height_alignment);
816
817		stride = x * cpp;
818		stride = drm_intel_gem_bo_tile_pitch(bufmgr_gem, stride, tiling_mode);
819		size = stride * aligned_y;
820		size = drm_intel_gem_bo_tile_size(bufmgr_gem, size, tiling_mode);
821	} while (*tiling_mode != tiling);
822	*pitch = stride;
823
824	if (tiling == I915_TILING_NONE)
825		stride = 0;
826
827	return drm_intel_gem_bo_alloc_internal(bufmgr, name, size, flags,
828					       tiling, stride);
829}
830
831/**
832 * Returns a drm_intel_bo wrapping the given buffer object handle.
833 *
834 * This can be used when one application needs to pass a buffer object
835 * to another.
836 */
837drm_intel_bo *
838drm_intel_bo_gem_create_from_name(drm_intel_bufmgr *bufmgr,
839				  const char *name,
840				  unsigned int handle)
841{
842	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
843	drm_intel_bo_gem *bo_gem;
844	int ret;
845	struct drm_gem_open open_arg;
846	struct drm_i915_gem_get_tiling get_tiling;
847	drmMMListHead *list;
848
849	/* At the moment most applications only have a few named bo.
850	 * For instance, in a DRI client only the render buffers passed
851	 * between X and the client are named. And since X returns the
852	 * alternating names for the front/back buffer a linear search
853	 * provides a sufficiently fast match.
854	 */
855	for (list = bufmgr_gem->named.next;
856	     list != &bufmgr_gem->named;
857	     list = list->next) {
858		bo_gem = DRMLISTENTRY(drm_intel_bo_gem, list, name_list);
859		if (bo_gem->global_name == handle) {
860			drm_intel_gem_bo_reference(&bo_gem->bo);
861			return &bo_gem->bo;
862		}
863	}
864
865	bo_gem = calloc(1, sizeof(*bo_gem));
866	if (!bo_gem)
867		return NULL;
868
869	VG_CLEAR(open_arg);
870	open_arg.name = handle;
871	ret = drmIoctl(bufmgr_gem->fd,
872		       DRM_IOCTL_GEM_OPEN,
873		       &open_arg);
874	if (ret != 0) {
875		DBG("Couldn't reference %s handle 0x%08x: %s\n",
876		    name, handle, strerror(errno));
877		free(bo_gem);
878		return NULL;
879	}
880	bo_gem->bo.size = open_arg.size;
881	bo_gem->bo.offset = 0;
882	bo_gem->bo.virtual = NULL;
883	bo_gem->bo.bufmgr = bufmgr;
884	bo_gem->name = name;
885	atomic_set(&bo_gem->refcount, 1);
886	bo_gem->validate_index = -1;
887	bo_gem->gem_handle = open_arg.handle;
888	bo_gem->bo.handle = open_arg.handle;
889	bo_gem->global_name = handle;
890	bo_gem->reusable = false;
891
892	VG_CLEAR(get_tiling);
893	get_tiling.handle = bo_gem->gem_handle;
894	ret = drmIoctl(bufmgr_gem->fd,
895		       DRM_IOCTL_I915_GEM_GET_TILING,
896		       &get_tiling);
897	if (ret != 0) {
898		drm_intel_gem_bo_unreference(&bo_gem->bo);
899		return NULL;
900	}
901	bo_gem->tiling_mode = get_tiling.tiling_mode;
902	bo_gem->swizzle_mode = get_tiling.swizzle_mode;
903	/* XXX stride is unknown */
904	drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem);
905
906	DRMINITLISTHEAD(&bo_gem->vma_list);
907	DRMLISTADDTAIL(&bo_gem->name_list, &bufmgr_gem->named);
908	DBG("bo_create_from_handle: %d (%s)\n", handle, bo_gem->name);
909
910	return &bo_gem->bo;
911}
912
913static void
914drm_intel_gem_bo_free(drm_intel_bo *bo)
915{
916	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
917	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
918	struct drm_gem_close close;
919	int ret;
920
921	DRMLISTDEL(&bo_gem->vma_list);
922	if (bo_gem->mem_virtual) {
923		VG(VALGRIND_FREELIKE_BLOCK(bo_gem->mem_virtual, 0));
924		munmap(bo_gem->mem_virtual, bo_gem->bo.size);
925		bufmgr_gem->vma_count--;
926	}
927	if (bo_gem->gtt_virtual) {
928		munmap(bo_gem->gtt_virtual, bo_gem->bo.size);
929		bufmgr_gem->vma_count--;
930	}
931
932	/* Close this object */
933	VG_CLEAR(close);
934	close.handle = bo_gem->gem_handle;
935	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_CLOSE, &close);
936	if (ret != 0) {
937		DBG("DRM_IOCTL_GEM_CLOSE %d failed (%s): %s\n",
938		    bo_gem->gem_handle, bo_gem->name, strerror(errno));
939	}
940	free(bo_gem->aub_annotations);
941	free(bo);
942}
943
944static void
945drm_intel_gem_bo_mark_mmaps_incoherent(drm_intel_bo *bo)
946{
947#if HAVE_VALGRIND
948	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
949
950	if (bo_gem->mem_virtual)
951		VALGRIND_MAKE_MEM_NOACCESS(bo_gem->mem_virtual, bo->size);
952
953	if (bo_gem->gtt_virtual)
954		VALGRIND_MAKE_MEM_NOACCESS(bo_gem->gtt_virtual, bo->size);
955#endif
956}
957
958/** Frees all cached buffers significantly older than @time. */
959static void
960drm_intel_gem_cleanup_bo_cache(drm_intel_bufmgr_gem *bufmgr_gem, time_t time)
961{
962	int i;
963
964	if (bufmgr_gem->time == time)
965		return;
966
967	for (i = 0; i < bufmgr_gem->num_buckets; i++) {
968		struct drm_intel_gem_bo_bucket *bucket =
969		    &bufmgr_gem->cache_bucket[i];
970
971		while (!DRMLISTEMPTY(&bucket->head)) {
972			drm_intel_bo_gem *bo_gem;
973
974			bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
975					      bucket->head.next, head);
976			if (time - bo_gem->free_time <= 1)
977				break;
978
979			DRMLISTDEL(&bo_gem->head);
980
981			drm_intel_gem_bo_free(&bo_gem->bo);
982		}
983	}
984
985	bufmgr_gem->time = time;
986}
987
988static void drm_intel_gem_bo_purge_vma_cache(drm_intel_bufmgr_gem *bufmgr_gem)
989{
990	int limit;
991
992	DBG("%s: cached=%d, open=%d, limit=%d\n", __FUNCTION__,
993	    bufmgr_gem->vma_count, bufmgr_gem->vma_open, bufmgr_gem->vma_max);
994
995	if (bufmgr_gem->vma_max < 0)
996		return;
997
998	/* We may need to evict a few entries in order to create new mmaps */
999	limit = bufmgr_gem->vma_max - 2*bufmgr_gem->vma_open;
1000	if (limit < 0)
1001		limit = 0;
1002
1003	while (bufmgr_gem->vma_count > limit) {
1004		drm_intel_bo_gem *bo_gem;
1005
1006		bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
1007				      bufmgr_gem->vma_cache.next,
1008				      vma_list);
1009		assert(bo_gem->map_count == 0);
1010		DRMLISTDELINIT(&bo_gem->vma_list);
1011
1012		if (bo_gem->mem_virtual) {
1013			munmap(bo_gem->mem_virtual, bo_gem->bo.size);
1014			bo_gem->mem_virtual = NULL;
1015			bufmgr_gem->vma_count--;
1016		}
1017		if (bo_gem->gtt_virtual) {
1018			munmap(bo_gem->gtt_virtual, bo_gem->bo.size);
1019			bo_gem->gtt_virtual = NULL;
1020			bufmgr_gem->vma_count--;
1021		}
1022	}
1023}
1024
1025static void drm_intel_gem_bo_close_vma(drm_intel_bufmgr_gem *bufmgr_gem,
1026				       drm_intel_bo_gem *bo_gem)
1027{
1028	bufmgr_gem->vma_open--;
1029	DRMLISTADDTAIL(&bo_gem->vma_list, &bufmgr_gem->vma_cache);
1030	if (bo_gem->mem_virtual)
1031		bufmgr_gem->vma_count++;
1032	if (bo_gem->gtt_virtual)
1033		bufmgr_gem->vma_count++;
1034	drm_intel_gem_bo_purge_vma_cache(bufmgr_gem);
1035}
1036
1037static void drm_intel_gem_bo_open_vma(drm_intel_bufmgr_gem *bufmgr_gem,
1038				      drm_intel_bo_gem *bo_gem)
1039{
1040	bufmgr_gem->vma_open++;
1041	DRMLISTDEL(&bo_gem->vma_list);
1042	if (bo_gem->mem_virtual)
1043		bufmgr_gem->vma_count--;
1044	if (bo_gem->gtt_virtual)
1045		bufmgr_gem->vma_count--;
1046	drm_intel_gem_bo_purge_vma_cache(bufmgr_gem);
1047}
1048
1049static void
1050drm_intel_gem_bo_unreference_final(drm_intel_bo *bo, time_t time)
1051{
1052	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1053	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1054	struct drm_intel_gem_bo_bucket *bucket;
1055	int i;
1056
1057	/* Unreference all the target buffers */
1058	for (i = 0; i < bo_gem->reloc_count; i++) {
1059		if (bo_gem->reloc_target_info[i].bo != bo) {
1060			drm_intel_gem_bo_unreference_locked_timed(bo_gem->
1061								  reloc_target_info[i].bo,
1062								  time);
1063		}
1064	}
1065	bo_gem->reloc_count = 0;
1066	bo_gem->used_as_reloc_target = false;
1067
1068	DBG("bo_unreference final: %d (%s)\n",
1069	    bo_gem->gem_handle, bo_gem->name);
1070
1071	/* release memory associated with this object */
1072	if (bo_gem->reloc_target_info) {
1073		free(bo_gem->reloc_target_info);
1074		bo_gem->reloc_target_info = NULL;
1075	}
1076	if (bo_gem->relocs) {
1077		free(bo_gem->relocs);
1078		bo_gem->relocs = NULL;
1079	}
1080
1081	/* Clear any left-over mappings */
1082	if (bo_gem->map_count) {
1083		DBG("bo freed with non-zero map-count %d\n", bo_gem->map_count);
1084		bo_gem->map_count = 0;
1085		drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1086		drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1087	}
1088
1089	DRMLISTDEL(&bo_gem->name_list);
1090
1091	bucket = drm_intel_gem_bo_bucket_for_size(bufmgr_gem, bo->size);
1092	/* Put the buffer into our internal cache for reuse if we can. */
1093	if (bufmgr_gem->bo_reuse && bo_gem->reusable && bucket != NULL &&
1094	    drm_intel_gem_bo_madvise_internal(bufmgr_gem, bo_gem,
1095					      I915_MADV_DONTNEED)) {
1096		bo_gem->free_time = time;
1097
1098		bo_gem->name = NULL;
1099		bo_gem->validate_index = -1;
1100
1101		DRMLISTADDTAIL(&bo_gem->head, &bucket->head);
1102	} else {
1103		drm_intel_gem_bo_free(bo);
1104	}
1105}
1106
1107static void drm_intel_gem_bo_unreference_locked_timed(drm_intel_bo *bo,
1108						      time_t time)
1109{
1110	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1111
1112	assert(atomic_read(&bo_gem->refcount) > 0);
1113	if (atomic_dec_and_test(&bo_gem->refcount))
1114		drm_intel_gem_bo_unreference_final(bo, time);
1115}
1116
1117static void drm_intel_gem_bo_unreference(drm_intel_bo *bo)
1118{
1119	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1120
1121	assert(atomic_read(&bo_gem->refcount) > 0);
1122	if (atomic_dec_and_test(&bo_gem->refcount)) {
1123		drm_intel_bufmgr_gem *bufmgr_gem =
1124		    (drm_intel_bufmgr_gem *) bo->bufmgr;
1125		struct timespec time;
1126
1127		clock_gettime(CLOCK_MONOTONIC, &time);
1128
1129		pthread_mutex_lock(&bufmgr_gem->lock);
1130		drm_intel_gem_bo_unreference_final(bo, time.tv_sec);
1131		drm_intel_gem_cleanup_bo_cache(bufmgr_gem, time.tv_sec);
1132		pthread_mutex_unlock(&bufmgr_gem->lock);
1133	}
1134}
1135
1136static int drm_intel_gem_bo_map(drm_intel_bo *bo, int write_enable)
1137{
1138	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1139	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1140	struct drm_i915_gem_set_domain set_domain;
1141	int ret;
1142
1143	pthread_mutex_lock(&bufmgr_gem->lock);
1144
1145	if (bo_gem->map_count++ == 0)
1146		drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem);
1147
1148	if (!bo_gem->mem_virtual) {
1149		struct drm_i915_gem_mmap mmap_arg;
1150
1151		DBG("bo_map: %d (%s), map_count=%d\n",
1152		    bo_gem->gem_handle, bo_gem->name, bo_gem->map_count);
1153
1154		VG_CLEAR(mmap_arg);
1155		mmap_arg.handle = bo_gem->gem_handle;
1156		mmap_arg.offset = 0;
1157		mmap_arg.size = bo->size;
1158		ret = drmIoctl(bufmgr_gem->fd,
1159			       DRM_IOCTL_I915_GEM_MMAP,
1160			       &mmap_arg);
1161		if (ret != 0) {
1162			ret = -errno;
1163			DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
1164			    __FILE__, __LINE__, bo_gem->gem_handle,
1165			    bo_gem->name, strerror(errno));
1166			if (--bo_gem->map_count == 0)
1167				drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1168			pthread_mutex_unlock(&bufmgr_gem->lock);
1169			return ret;
1170		}
1171		VG(VALGRIND_MALLOCLIKE_BLOCK(mmap_arg.addr_ptr, mmap_arg.size, 0, 1));
1172		bo_gem->mem_virtual = (void *)(uintptr_t) mmap_arg.addr_ptr;
1173	}
1174	DBG("bo_map: %d (%s) -> %p\n", bo_gem->gem_handle, bo_gem->name,
1175	    bo_gem->mem_virtual);
1176	bo->virtual = bo_gem->mem_virtual;
1177
1178	VG_CLEAR(set_domain);
1179	set_domain.handle = bo_gem->gem_handle;
1180	set_domain.read_domains = I915_GEM_DOMAIN_CPU;
1181	if (write_enable)
1182		set_domain.write_domain = I915_GEM_DOMAIN_CPU;
1183	else
1184		set_domain.write_domain = 0;
1185	ret = drmIoctl(bufmgr_gem->fd,
1186		       DRM_IOCTL_I915_GEM_SET_DOMAIN,
1187		       &set_domain);
1188	if (ret != 0) {
1189		DBG("%s:%d: Error setting to CPU domain %d: %s\n",
1190		    __FILE__, __LINE__, bo_gem->gem_handle,
1191		    strerror(errno));
1192	}
1193
1194	if (write_enable)
1195		bo_gem->mapped_cpu_write = true;
1196
1197	drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1198	VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->mem_virtual, bo->size));
1199	pthread_mutex_unlock(&bufmgr_gem->lock);
1200
1201	return 0;
1202}
1203
1204static int
1205map_gtt(drm_intel_bo *bo)
1206{
1207	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1208	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1209	int ret;
1210
1211	if (bo_gem->map_count++ == 0)
1212		drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem);
1213
1214	/* Get a mapping of the buffer if we haven't before. */
1215	if (bo_gem->gtt_virtual == NULL) {
1216		struct drm_i915_gem_mmap_gtt mmap_arg;
1217
1218		DBG("bo_map_gtt: mmap %d (%s), map_count=%d\n",
1219		    bo_gem->gem_handle, bo_gem->name, bo_gem->map_count);
1220
1221		VG_CLEAR(mmap_arg);
1222		mmap_arg.handle = bo_gem->gem_handle;
1223
1224		/* Get the fake offset back... */
1225		ret = drmIoctl(bufmgr_gem->fd,
1226			       DRM_IOCTL_I915_GEM_MMAP_GTT,
1227			       &mmap_arg);
1228		if (ret != 0) {
1229			ret = -errno;
1230			DBG("%s:%d: Error preparing buffer map %d (%s): %s .\n",
1231			    __FILE__, __LINE__,
1232			    bo_gem->gem_handle, bo_gem->name,
1233			    strerror(errno));
1234			if (--bo_gem->map_count == 0)
1235				drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1236			return ret;
1237		}
1238
1239		/* and mmap it */
1240		bo_gem->gtt_virtual = mmap(0, bo->size, PROT_READ | PROT_WRITE,
1241					   MAP_SHARED, bufmgr_gem->fd,
1242					   mmap_arg.offset);
1243		if (bo_gem->gtt_virtual == MAP_FAILED) {
1244			bo_gem->gtt_virtual = NULL;
1245			ret = -errno;
1246			DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
1247			    __FILE__, __LINE__,
1248			    bo_gem->gem_handle, bo_gem->name,
1249			    strerror(errno));
1250			if (--bo_gem->map_count == 0)
1251				drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1252			return ret;
1253		}
1254	}
1255
1256	bo->virtual = bo_gem->gtt_virtual;
1257
1258	DBG("bo_map_gtt: %d (%s) -> %p\n", bo_gem->gem_handle, bo_gem->name,
1259	    bo_gem->gtt_virtual);
1260
1261	return 0;
1262}
1263
1264int drm_intel_gem_bo_map_gtt(drm_intel_bo *bo)
1265{
1266	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1267	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1268	struct drm_i915_gem_set_domain set_domain;
1269	int ret;
1270
1271	pthread_mutex_lock(&bufmgr_gem->lock);
1272
1273	ret = map_gtt(bo);
1274	if (ret) {
1275		pthread_mutex_unlock(&bufmgr_gem->lock);
1276		return ret;
1277	}
1278
1279	/* Now move it to the GTT domain so that the GPU and CPU
1280	 * caches are flushed and the GPU isn't actively using the
1281	 * buffer.
1282	 *
1283	 * The pagefault handler does this domain change for us when
1284	 * it has unbound the BO from the GTT, but it's up to us to
1285	 * tell it when we're about to use things if we had done
1286	 * rendering and it still happens to be bound to the GTT.
1287	 */
1288	VG_CLEAR(set_domain);
1289	set_domain.handle = bo_gem->gem_handle;
1290	set_domain.read_domains = I915_GEM_DOMAIN_GTT;
1291	set_domain.write_domain = I915_GEM_DOMAIN_GTT;
1292	ret = drmIoctl(bufmgr_gem->fd,
1293		       DRM_IOCTL_I915_GEM_SET_DOMAIN,
1294		       &set_domain);
1295	if (ret != 0) {
1296		DBG("%s:%d: Error setting domain %d: %s\n",
1297		    __FILE__, __LINE__, bo_gem->gem_handle,
1298		    strerror(errno));
1299	}
1300
1301	drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1302	VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->gtt_virtual, bo->size));
1303	pthread_mutex_unlock(&bufmgr_gem->lock);
1304
1305	return 0;
1306}
1307
1308/**
1309 * Performs a mapping of the buffer object like the normal GTT
1310 * mapping, but avoids waiting for the GPU to be done reading from or
1311 * rendering to the buffer.
1312 *
1313 * This is used in the implementation of GL_ARB_map_buffer_range: The
1314 * user asks to create a buffer, then does a mapping, fills some
1315 * space, runs a drawing command, then asks to map it again without
1316 * synchronizing because it guarantees that it won't write over the
1317 * data that the GPU is busy using (or, more specifically, that if it
1318 * does write over the data, it acknowledges that rendering is
1319 * undefined).
1320 */
1321
1322int drm_intel_gem_bo_map_unsynchronized(drm_intel_bo *bo)
1323{
1324	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1325	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1326	int ret;
1327
1328	/* If the CPU cache isn't coherent with the GTT, then use a
1329	 * regular synchronized mapping.  The problem is that we don't
1330	 * track where the buffer was last used on the CPU side in
1331	 * terms of drm_intel_bo_map vs drm_intel_gem_bo_map_gtt, so
1332	 * we would potentially corrupt the buffer even when the user
1333	 * does reasonable things.
1334	 */
1335	if (!bufmgr_gem->has_llc)
1336		return drm_intel_gem_bo_map_gtt(bo);
1337
1338	pthread_mutex_lock(&bufmgr_gem->lock);
1339
1340	ret = map_gtt(bo);
1341	if (ret == 0) {
1342		drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1343		VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->gtt_virtual, bo->size));
1344	}
1345
1346	pthread_mutex_unlock(&bufmgr_gem->lock);
1347
1348	return ret;
1349}
1350
1351static int drm_intel_gem_bo_unmap(drm_intel_bo *bo)
1352{
1353	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1354	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1355	int ret = 0;
1356
1357	if (bo == NULL)
1358		return 0;
1359
1360	pthread_mutex_lock(&bufmgr_gem->lock);
1361
1362	if (bo_gem->map_count <= 0) {
1363		DBG("attempted to unmap an unmapped bo\n");
1364		pthread_mutex_unlock(&bufmgr_gem->lock);
1365		/* Preserve the old behaviour of just treating this as a
1366		 * no-op rather than reporting the error.
1367		 */
1368		return 0;
1369	}
1370
1371	if (bo_gem->mapped_cpu_write) {
1372		struct drm_i915_gem_sw_finish sw_finish;
1373
1374		/* Cause a flush to happen if the buffer's pinned for
1375		 * scanout, so the results show up in a timely manner.
1376		 * Unlike GTT set domains, this only does work if the
1377		 * buffer should be scanout-related.
1378		 */
1379		VG_CLEAR(sw_finish);
1380		sw_finish.handle = bo_gem->gem_handle;
1381		ret = drmIoctl(bufmgr_gem->fd,
1382			       DRM_IOCTL_I915_GEM_SW_FINISH,
1383			       &sw_finish);
1384		ret = ret == -1 ? -errno : 0;
1385
1386		bo_gem->mapped_cpu_write = false;
1387	}
1388
1389	/* We need to unmap after every innovation as we cannot track
1390	 * an open vma for every bo as that will exhaasut the system
1391	 * limits and cause later failures.
1392	 */
1393	if (--bo_gem->map_count == 0) {
1394		drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1395		drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1396		bo->virtual = NULL;
1397	}
1398	pthread_mutex_unlock(&bufmgr_gem->lock);
1399
1400	return ret;
1401}
1402
1403int drm_intel_gem_bo_unmap_gtt(drm_intel_bo *bo)
1404{
1405	return drm_intel_gem_bo_unmap(bo);
1406}
1407
1408static int
1409drm_intel_gem_bo_subdata(drm_intel_bo *bo, unsigned long offset,
1410			 unsigned long size, const void *data)
1411{
1412	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1413	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1414	struct drm_i915_gem_pwrite pwrite;
1415	int ret;
1416
1417	VG_CLEAR(pwrite);
1418	pwrite.handle = bo_gem->gem_handle;
1419	pwrite.offset = offset;
1420	pwrite.size = size;
1421	pwrite.data_ptr = (uint64_t) (uintptr_t) data;
1422	ret = drmIoctl(bufmgr_gem->fd,
1423		       DRM_IOCTL_I915_GEM_PWRITE,
1424		       &pwrite);
1425	if (ret != 0) {
1426		ret = -errno;
1427		DBG("%s:%d: Error writing data to buffer %d: (%d %d) %s .\n",
1428		    __FILE__, __LINE__, bo_gem->gem_handle, (int)offset,
1429		    (int)size, strerror(errno));
1430	}
1431
1432	return ret;
1433}
1434
1435static int
1436drm_intel_gem_get_pipe_from_crtc_id(drm_intel_bufmgr *bufmgr, int crtc_id)
1437{
1438	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
1439	struct drm_i915_get_pipe_from_crtc_id get_pipe_from_crtc_id;
1440	int ret;
1441
1442	VG_CLEAR(get_pipe_from_crtc_id);
1443	get_pipe_from_crtc_id.crtc_id = crtc_id;
1444	ret = drmIoctl(bufmgr_gem->fd,
1445		       DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID,
1446		       &get_pipe_from_crtc_id);
1447	if (ret != 0) {
1448		/* We return -1 here to signal that we don't
1449		 * know which pipe is associated with this crtc.
1450		 * This lets the caller know that this information
1451		 * isn't available; using the wrong pipe for
1452		 * vblank waiting can cause the chipset to lock up
1453		 */
1454		return -1;
1455	}
1456
1457	return get_pipe_from_crtc_id.pipe;
1458}
1459
1460static int
1461drm_intel_gem_bo_get_subdata(drm_intel_bo *bo, unsigned long offset,
1462			     unsigned long size, void *data)
1463{
1464	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1465	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1466	struct drm_i915_gem_pread pread;
1467	int ret;
1468
1469	VG_CLEAR(pread);
1470	pread.handle = bo_gem->gem_handle;
1471	pread.offset = offset;
1472	pread.size = size;
1473	pread.data_ptr = (uint64_t) (uintptr_t) data;
1474	ret = drmIoctl(bufmgr_gem->fd,
1475		       DRM_IOCTL_I915_GEM_PREAD,
1476		       &pread);
1477	if (ret != 0) {
1478		ret = -errno;
1479		DBG("%s:%d: Error reading data from buffer %d: (%d %d) %s .\n",
1480		    __FILE__, __LINE__, bo_gem->gem_handle, (int)offset,
1481		    (int)size, strerror(errno));
1482	}
1483
1484	return ret;
1485}
1486
1487/** Waits for all GPU rendering with the object to have completed. */
1488static void
1489drm_intel_gem_bo_wait_rendering(drm_intel_bo *bo)
1490{
1491	drm_intel_gem_bo_start_gtt_access(bo, 1);
1492}
1493
1494/**
1495 * Waits on a BO for the given amount of time.
1496 *
1497 * @bo: buffer object to wait for
1498 * @timeout_ns: amount of time to wait in nanoseconds.
1499 *   If value is less than 0, an infinite wait will occur.
1500 *
1501 * Returns 0 if the wait was successful ie. the last batch referencing the
1502 * object has completed within the allotted time. Otherwise some negative return
1503 * value describes the error. Of particular interest is -ETIME when the wait has
1504 * failed to yield the desired result.
1505 *
1506 * Similar to drm_intel_gem_bo_wait_rendering except a timeout parameter allows
1507 * the operation to give up after a certain amount of time. Another subtle
1508 * difference is the internal locking semantics are different (this variant does
1509 * not hold the lock for the duration of the wait). This makes the wait subject
1510 * to a larger userspace race window.
1511 *
1512 * The implementation shall wait until the object is no longer actively
1513 * referenced within a batch buffer at the time of the call. The wait will
1514 * not guarantee that the buffer is re-issued via another thread, or an flinked
1515 * handle. Userspace must make sure this race does not occur if such precision
1516 * is important.
1517 */
1518int drm_intel_gem_bo_wait(drm_intel_bo *bo, int64_t timeout_ns)
1519{
1520	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1521	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1522	struct drm_i915_gem_wait wait;
1523	int ret;
1524
1525	if (!bufmgr_gem->has_wait_timeout) {
1526		DBG("%s:%d: Timed wait is not supported. Falling back to "
1527		    "infinite wait\n", __FILE__, __LINE__);
1528		if (timeout_ns) {
1529			drm_intel_gem_bo_wait_rendering(bo);
1530			return 0;
1531		} else {
1532			return drm_intel_gem_bo_busy(bo) ? -ETIME : 0;
1533		}
1534	}
1535
1536	wait.bo_handle = bo_gem->gem_handle;
1537	wait.timeout_ns = timeout_ns;
1538	wait.flags = 0;
1539	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_WAIT, &wait);
1540	if (ret == -1)
1541		return -errno;
1542
1543	return ret;
1544}
1545
1546/**
1547 * Sets the object to the GTT read and possibly write domain, used by the X
1548 * 2D driver in the absence of kernel support to do drm_intel_gem_bo_map_gtt().
1549 *
1550 * In combination with drm_intel_gem_bo_pin() and manual fence management, we
1551 * can do tiled pixmaps this way.
1552 */
1553void
1554drm_intel_gem_bo_start_gtt_access(drm_intel_bo *bo, int write_enable)
1555{
1556	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1557	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1558	struct drm_i915_gem_set_domain set_domain;
1559	int ret;
1560
1561	VG_CLEAR(set_domain);
1562	set_domain.handle = bo_gem->gem_handle;
1563	set_domain.read_domains = I915_GEM_DOMAIN_GTT;
1564	set_domain.write_domain = write_enable ? I915_GEM_DOMAIN_GTT : 0;
1565	ret = drmIoctl(bufmgr_gem->fd,
1566		       DRM_IOCTL_I915_GEM_SET_DOMAIN,
1567		       &set_domain);
1568	if (ret != 0) {
1569		DBG("%s:%d: Error setting memory domains %d (%08x %08x): %s .\n",
1570		    __FILE__, __LINE__, bo_gem->gem_handle,
1571		    set_domain.read_domains, set_domain.write_domain,
1572		    strerror(errno));
1573	}
1574}
1575
1576static void
1577drm_intel_bufmgr_gem_destroy(drm_intel_bufmgr *bufmgr)
1578{
1579	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
1580	int i;
1581
1582	free(bufmgr_gem->exec2_objects);
1583	free(bufmgr_gem->exec_objects);
1584	free(bufmgr_gem->exec_bos);
1585	free(bufmgr_gem->aub_filename);
1586
1587	pthread_mutex_destroy(&bufmgr_gem->lock);
1588
1589	/* Free any cached buffer objects we were going to reuse */
1590	for (i = 0; i < bufmgr_gem->num_buckets; i++) {
1591		struct drm_intel_gem_bo_bucket *bucket =
1592		    &bufmgr_gem->cache_bucket[i];
1593		drm_intel_bo_gem *bo_gem;
1594
1595		while (!DRMLISTEMPTY(&bucket->head)) {
1596			bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
1597					      bucket->head.next, head);
1598			DRMLISTDEL(&bo_gem->head);
1599
1600			drm_intel_gem_bo_free(&bo_gem->bo);
1601		}
1602	}
1603
1604	free(bufmgr);
1605}
1606
1607/**
1608 * Adds the target buffer to the validation list and adds the relocation
1609 * to the reloc_buffer's relocation list.
1610 *
1611 * The relocation entry at the given offset must already contain the
1612 * precomputed relocation value, because the kernel will optimize out
1613 * the relocation entry write when the buffer hasn't moved from the
1614 * last known offset in target_bo.
1615 */
1616static int
1617do_bo_emit_reloc(drm_intel_bo *bo, uint32_t offset,
1618		 drm_intel_bo *target_bo, uint32_t target_offset,
1619		 uint32_t read_domains, uint32_t write_domain,
1620		 bool need_fence)
1621{
1622	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1623	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1624	drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo;
1625	bool fenced_command;
1626
1627	if (bo_gem->has_error)
1628		return -ENOMEM;
1629
1630	if (target_bo_gem->has_error) {
1631		bo_gem->has_error = true;
1632		return -ENOMEM;
1633	}
1634
1635	/* We never use HW fences for rendering on 965+ */
1636	if (bufmgr_gem->gen >= 4)
1637		need_fence = false;
1638
1639	fenced_command = need_fence;
1640	if (target_bo_gem->tiling_mode == I915_TILING_NONE)
1641		need_fence = false;
1642
1643	/* Create a new relocation list if needed */
1644	if (bo_gem->relocs == NULL && drm_intel_setup_reloc_list(bo))
1645		return -ENOMEM;
1646
1647	/* Check overflow */
1648	assert(bo_gem->reloc_count < bufmgr_gem->max_relocs);
1649
1650	/* Check args */
1651	assert(offset <= bo->size - 4);
1652	assert((write_domain & (write_domain - 1)) == 0);
1653
1654	/* Make sure that we're not adding a reloc to something whose size has
1655	 * already been accounted for.
1656	 */
1657	assert(!bo_gem->used_as_reloc_target);
1658	if (target_bo_gem != bo_gem) {
1659		target_bo_gem->used_as_reloc_target = true;
1660		bo_gem->reloc_tree_size += target_bo_gem->reloc_tree_size;
1661	}
1662	/* An object needing a fence is a tiled buffer, so it won't have
1663	 * relocs to other buffers.
1664	 */
1665	if (need_fence)
1666		target_bo_gem->reloc_tree_fences = 1;
1667	bo_gem->reloc_tree_fences += target_bo_gem->reloc_tree_fences;
1668
1669	bo_gem->relocs[bo_gem->reloc_count].offset = offset;
1670	bo_gem->relocs[bo_gem->reloc_count].delta = target_offset;
1671	bo_gem->relocs[bo_gem->reloc_count].target_handle =
1672	    target_bo_gem->gem_handle;
1673	bo_gem->relocs[bo_gem->reloc_count].read_domains = read_domains;
1674	bo_gem->relocs[bo_gem->reloc_count].write_domain = write_domain;
1675	bo_gem->relocs[bo_gem->reloc_count].presumed_offset = target_bo->offset;
1676
1677	bo_gem->reloc_target_info[bo_gem->reloc_count].bo = target_bo;
1678	if (target_bo != bo)
1679		drm_intel_gem_bo_reference(target_bo);
1680	if (fenced_command)
1681		bo_gem->reloc_target_info[bo_gem->reloc_count].flags =
1682			DRM_INTEL_RELOC_FENCE;
1683	else
1684		bo_gem->reloc_target_info[bo_gem->reloc_count].flags = 0;
1685
1686	bo_gem->reloc_count++;
1687
1688	return 0;
1689}
1690
1691static int
1692drm_intel_gem_bo_emit_reloc(drm_intel_bo *bo, uint32_t offset,
1693			    drm_intel_bo *target_bo, uint32_t target_offset,
1694			    uint32_t read_domains, uint32_t write_domain)
1695{
1696	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr;
1697
1698	return do_bo_emit_reloc(bo, offset, target_bo, target_offset,
1699				read_domains, write_domain,
1700				!bufmgr_gem->fenced_relocs);
1701}
1702
1703static int
1704drm_intel_gem_bo_emit_reloc_fence(drm_intel_bo *bo, uint32_t offset,
1705				  drm_intel_bo *target_bo,
1706				  uint32_t target_offset,
1707				  uint32_t read_domains, uint32_t write_domain)
1708{
1709	return do_bo_emit_reloc(bo, offset, target_bo, target_offset,
1710				read_domains, write_domain, true);
1711}
1712
1713int
1714drm_intel_gem_bo_get_reloc_count(drm_intel_bo *bo)
1715{
1716	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1717
1718	return bo_gem->reloc_count;
1719}
1720
1721/**
1722 * Removes existing relocation entries in the BO after "start".
1723 *
1724 * This allows a user to avoid a two-step process for state setup with
1725 * counting up all the buffer objects and doing a
1726 * drm_intel_bufmgr_check_aperture_space() before emitting any of the
1727 * relocations for the state setup.  Instead, save the state of the
1728 * batchbuffer including drm_intel_gem_get_reloc_count(), emit all the
1729 * state, and then check if it still fits in the aperture.
1730 *
1731 * Any further drm_intel_bufmgr_check_aperture_space() queries
1732 * involving this buffer in the tree are undefined after this call.
1733 */
1734void
1735drm_intel_gem_bo_clear_relocs(drm_intel_bo *bo, int start)
1736{
1737	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1738	int i;
1739	struct timespec time;
1740
1741	clock_gettime(CLOCK_MONOTONIC, &time);
1742
1743	assert(bo_gem->reloc_count >= start);
1744	/* Unreference the cleared target buffers */
1745	for (i = start; i < bo_gem->reloc_count; i++) {
1746		drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) bo_gem->reloc_target_info[i].bo;
1747		if (&target_bo_gem->bo != bo) {
1748			bo_gem->reloc_tree_fences -= target_bo_gem->reloc_tree_fences;
1749			drm_intel_gem_bo_unreference_locked_timed(&target_bo_gem->bo,
1750								  time.tv_sec);
1751		}
1752	}
1753	bo_gem->reloc_count = start;
1754}
1755
1756/**
1757 * Walk the tree of relocations rooted at BO and accumulate the list of
1758 * validations to be performed and update the relocation buffers with
1759 * index values into the validation list.
1760 */
1761static void
1762drm_intel_gem_bo_process_reloc(drm_intel_bo *bo)
1763{
1764	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1765	int i;
1766
1767	if (bo_gem->relocs == NULL)
1768		return;
1769
1770	for (i = 0; i < bo_gem->reloc_count; i++) {
1771		drm_intel_bo *target_bo = bo_gem->reloc_target_info[i].bo;
1772
1773		if (target_bo == bo)
1774			continue;
1775
1776		drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1777
1778		/* Continue walking the tree depth-first. */
1779		drm_intel_gem_bo_process_reloc(target_bo);
1780
1781		/* Add the target to the validate list */
1782		drm_intel_add_validate_buffer(target_bo);
1783	}
1784}
1785
1786static void
1787drm_intel_gem_bo_process_reloc2(drm_intel_bo *bo)
1788{
1789	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
1790	int i;
1791
1792	if (bo_gem->relocs == NULL)
1793		return;
1794
1795	for (i = 0; i < bo_gem->reloc_count; i++) {
1796		drm_intel_bo *target_bo = bo_gem->reloc_target_info[i].bo;
1797		int need_fence;
1798
1799		if (target_bo == bo)
1800			continue;
1801
1802		drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1803
1804		/* Continue walking the tree depth-first. */
1805		drm_intel_gem_bo_process_reloc2(target_bo);
1806
1807		need_fence = (bo_gem->reloc_target_info[i].flags &
1808			      DRM_INTEL_RELOC_FENCE);
1809
1810		/* Add the target to the validate list */
1811		drm_intel_add_validate_buffer2(target_bo, need_fence);
1812	}
1813}
1814
1815
1816static void
1817drm_intel_update_buffer_offsets(drm_intel_bufmgr_gem *bufmgr_gem)
1818{
1819	int i;
1820
1821	for (i = 0; i < bufmgr_gem->exec_count; i++) {
1822		drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
1823		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1824
1825		/* Update the buffer offset */
1826		if (bufmgr_gem->exec_objects[i].offset != bo->offset) {
1827			DBG("BO %d (%s) migrated: 0x%08lx -> 0x%08llx\n",
1828			    bo_gem->gem_handle, bo_gem->name, bo->offset,
1829			    (unsigned long long)bufmgr_gem->exec_objects[i].
1830			    offset);
1831			bo->offset = bufmgr_gem->exec_objects[i].offset;
1832		}
1833	}
1834}
1835
1836static void
1837drm_intel_update_buffer_offsets2 (drm_intel_bufmgr_gem *bufmgr_gem)
1838{
1839	int i;
1840
1841	for (i = 0; i < bufmgr_gem->exec_count; i++) {
1842		drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
1843		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
1844
1845		/* Update the buffer offset */
1846		if (bufmgr_gem->exec2_objects[i].offset != bo->offset) {
1847			DBG("BO %d (%s) migrated: 0x%08lx -> 0x%08llx\n",
1848			    bo_gem->gem_handle, bo_gem->name, bo->offset,
1849			    (unsigned long long)bufmgr_gem->exec2_objects[i].offset);
1850			bo->offset = bufmgr_gem->exec2_objects[i].offset;
1851		}
1852	}
1853}
1854
1855static void
1856aub_out(drm_intel_bufmgr_gem *bufmgr_gem, uint32_t data)
1857{
1858	fwrite(&data, 1, 4, bufmgr_gem->aub_file);
1859}
1860
1861static void
1862aub_out_data(drm_intel_bufmgr_gem *bufmgr_gem, void *data, size_t size)
1863{
1864	fwrite(data, 1, size, bufmgr_gem->aub_file);
1865}
1866
1867static void
1868aub_write_bo_data(drm_intel_bo *bo, uint32_t offset, uint32_t size)
1869{
1870	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1871	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1872	uint32_t *data;
1873	unsigned int i;
1874
1875	data = malloc(bo->size);
1876	drm_intel_bo_get_subdata(bo, offset, size, data);
1877
1878	/* Easy mode: write out bo with no relocations */
1879	if (!bo_gem->reloc_count) {
1880		aub_out_data(bufmgr_gem, data, size);
1881		free(data);
1882		return;
1883	}
1884
1885	/* Otherwise, handle the relocations while writing. */
1886	for (i = 0; i < size / 4; i++) {
1887		int r;
1888		for (r = 0; r < bo_gem->reloc_count; r++) {
1889			struct drm_i915_gem_relocation_entry *reloc;
1890			drm_intel_reloc_target *info;
1891
1892			reloc = &bo_gem->relocs[r];
1893			info = &bo_gem->reloc_target_info[r];
1894
1895			if (reloc->offset == offset + i * 4) {
1896				drm_intel_bo_gem *target_gem;
1897				uint32_t val;
1898
1899				target_gem = (drm_intel_bo_gem *)info->bo;
1900
1901				val = reloc->delta;
1902				val += target_gem->aub_offset;
1903
1904				aub_out(bufmgr_gem, val);
1905				data[i] = val;
1906				break;
1907			}
1908		}
1909		if (r == bo_gem->reloc_count) {
1910			/* no relocation, just the data */
1911			aub_out(bufmgr_gem, data[i]);
1912		}
1913	}
1914
1915	free(data);
1916}
1917
1918static void
1919aub_bo_get_address(drm_intel_bo *bo)
1920{
1921	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1922	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1923
1924	/* Give the object a graphics address in the AUB file.  We
1925	 * don't just use the GEM object address because we do AUB
1926	 * dumping before execution -- we want to successfully log
1927	 * when the hardware might hang, and we might even want to aub
1928	 * capture for a driver trying to execute on a different
1929	 * generation of hardware by disabling the actual kernel exec
1930	 * call.
1931	 */
1932	bo_gem->aub_offset = bufmgr_gem->aub_offset;
1933	bufmgr_gem->aub_offset += bo->size;
1934	/* XXX: Handle aperture overflow. */
1935	assert(bufmgr_gem->aub_offset < 256 * 1024 * 1024);
1936}
1937
1938static void
1939aub_write_trace_block(drm_intel_bo *bo, uint32_t type, uint32_t subtype,
1940		      uint32_t offset, uint32_t size)
1941{
1942	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1943	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1944
1945	aub_out(bufmgr_gem,
1946		CMD_AUB_TRACE_HEADER_BLOCK |
1947		((bufmgr_gem->gen >= 8 ? 6 : 5) - 2));
1948	aub_out(bufmgr_gem,
1949		AUB_TRACE_MEMTYPE_GTT | type | AUB_TRACE_OP_DATA_WRITE);
1950	aub_out(bufmgr_gem, subtype);
1951	aub_out(bufmgr_gem, bo_gem->aub_offset + offset);
1952	aub_out(bufmgr_gem, size);
1953	if (bufmgr_gem->gen >= 8)
1954		aub_out(bufmgr_gem, 0);
1955	aub_write_bo_data(bo, offset, size);
1956}
1957
1958/**
1959 * Break up large objects into multiple writes.  Otherwise a 128kb VBO
1960 * would overflow the 16 bits of size field in the packet header and
1961 * everything goes badly after that.
1962 */
1963static void
1964aub_write_large_trace_block(drm_intel_bo *bo, uint32_t type, uint32_t subtype,
1965			    uint32_t offset, uint32_t size)
1966{
1967	uint32_t block_size;
1968	uint32_t sub_offset;
1969
1970	for (sub_offset = 0; sub_offset < size; sub_offset += block_size) {
1971		block_size = size - sub_offset;
1972
1973		if (block_size > 8 * 4096)
1974			block_size = 8 * 4096;
1975
1976		aub_write_trace_block(bo, type, subtype, offset + sub_offset,
1977				      block_size);
1978	}
1979}
1980
1981static void
1982aub_write_bo(drm_intel_bo *bo)
1983{
1984	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1985	uint32_t offset = 0;
1986	unsigned i;
1987
1988	aub_bo_get_address(bo);
1989
1990	/* Write out each annotated section separately. */
1991	for (i = 0; i < bo_gem->aub_annotation_count; ++i) {
1992		drm_intel_aub_annotation *annotation =
1993			&bo_gem->aub_annotations[i];
1994		uint32_t ending_offset = annotation->ending_offset;
1995		if (ending_offset > bo->size)
1996			ending_offset = bo->size;
1997		if (ending_offset > offset) {
1998			aub_write_large_trace_block(bo, annotation->type,
1999						    annotation->subtype,
2000						    offset,
2001						    ending_offset - offset);
2002			offset = ending_offset;
2003		}
2004	}
2005
2006	/* Write out any remaining unannotated data */
2007	if (offset < bo->size) {
2008		aub_write_large_trace_block(bo, AUB_TRACE_TYPE_NOTYPE, 0,
2009					    offset, bo->size - offset);
2010	}
2011}
2012
2013/*
2014 * Make a ringbuffer on fly and dump it
2015 */
2016static void
2017aub_build_dump_ringbuffer(drm_intel_bufmgr_gem *bufmgr_gem,
2018			  uint32_t batch_buffer, int ring_flag)
2019{
2020	uint32_t ringbuffer[4096];
2021	int ring = AUB_TRACE_TYPE_RING_PRB0; /* The default ring */
2022	int ring_count = 0;
2023
2024	if (ring_flag == I915_EXEC_BSD)
2025		ring = AUB_TRACE_TYPE_RING_PRB1;
2026	else if (ring_flag == I915_EXEC_BLT)
2027		ring = AUB_TRACE_TYPE_RING_PRB2;
2028
2029	/* Make a ring buffer to execute our batchbuffer. */
2030	memset(ringbuffer, 0, sizeof(ringbuffer));
2031	if (bufmgr_gem->gen >= 8) {
2032		ringbuffer[ring_count++] = AUB_MI_BATCH_BUFFER_START | (3 - 2);
2033		ringbuffer[ring_count++] = batch_buffer;
2034		ringbuffer[ring_count++] = 0;
2035	} else {
2036		ringbuffer[ring_count++] = AUB_MI_BATCH_BUFFER_START;
2037		ringbuffer[ring_count++] = batch_buffer;
2038	}
2039
2040	/* Write out the ring.  This appears to trigger execution of
2041	 * the ring in the simulator.
2042	 */
2043	aub_out(bufmgr_gem,
2044		CMD_AUB_TRACE_HEADER_BLOCK |
2045		((bufmgr_gem->gen >= 8 ? 6 : 5) - 2));
2046	aub_out(bufmgr_gem,
2047		AUB_TRACE_MEMTYPE_GTT | ring | AUB_TRACE_OP_COMMAND_WRITE);
2048	aub_out(bufmgr_gem, 0); /* general/surface subtype */
2049	aub_out(bufmgr_gem, bufmgr_gem->aub_offset);
2050	aub_out(bufmgr_gem, ring_count * 4);
2051	if (bufmgr_gem->gen >= 8)
2052		aub_out(bufmgr_gem, 0);
2053
2054	/* FIXME: Need some flush operations here? */
2055	aub_out_data(bufmgr_gem, ringbuffer, ring_count * 4);
2056
2057	/* Update offset pointer */
2058	bufmgr_gem->aub_offset += 4096;
2059}
2060
2061void
2062drm_intel_gem_bo_aub_dump_bmp(drm_intel_bo *bo,
2063			      int x1, int y1, int width, int height,
2064			      enum aub_dump_bmp_format format,
2065			      int pitch, int offset)
2066{
2067	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2068	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
2069	uint32_t cpp;
2070
2071	switch (format) {
2072	case AUB_DUMP_BMP_FORMAT_8BIT:
2073		cpp = 1;
2074		break;
2075	case AUB_DUMP_BMP_FORMAT_ARGB_4444:
2076		cpp = 2;
2077		break;
2078	case AUB_DUMP_BMP_FORMAT_ARGB_0888:
2079	case AUB_DUMP_BMP_FORMAT_ARGB_8888:
2080		cpp = 4;
2081		break;
2082	default:
2083		printf("Unknown AUB dump format %d\n", format);
2084		return;
2085	}
2086
2087	if (!bufmgr_gem->aub_file)
2088		return;
2089
2090	aub_out(bufmgr_gem, CMD_AUB_DUMP_BMP | 4);
2091	aub_out(bufmgr_gem, (y1 << 16) | x1);
2092	aub_out(bufmgr_gem,
2093		(format << 24) |
2094		(cpp << 19) |
2095		pitch / 4);
2096	aub_out(bufmgr_gem, (height << 16) | width);
2097	aub_out(bufmgr_gem, bo_gem->aub_offset + offset);
2098	aub_out(bufmgr_gem,
2099		((bo_gem->tiling_mode != I915_TILING_NONE) ? (1 << 2) : 0) |
2100		((bo_gem->tiling_mode == I915_TILING_Y) ? (1 << 3) : 0));
2101}
2102
2103static void
2104aub_exec(drm_intel_bo *bo, int ring_flag, int used)
2105{
2106	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2107	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2108	int i;
2109	bool batch_buffer_needs_annotations;
2110
2111	if (!bufmgr_gem->aub_file)
2112		return;
2113
2114	/* If batch buffer is not annotated, annotate it the best we
2115	 * can.
2116	 */
2117	batch_buffer_needs_annotations = bo_gem->aub_annotation_count == 0;
2118	if (batch_buffer_needs_annotations) {
2119		drm_intel_aub_annotation annotations[2] = {
2120			{ AUB_TRACE_TYPE_BATCH, 0, used },
2121			{ AUB_TRACE_TYPE_NOTYPE, 0, bo->size }
2122		};
2123		drm_intel_bufmgr_gem_set_aub_annotations(bo, annotations, 2);
2124	}
2125
2126	/* Write out all buffers to AUB memory */
2127	for (i = 0; i < bufmgr_gem->exec_count; i++) {
2128		aub_write_bo(bufmgr_gem->exec_bos[i]);
2129	}
2130
2131	/* Remove any annotations we added */
2132	if (batch_buffer_needs_annotations)
2133		drm_intel_bufmgr_gem_set_aub_annotations(bo, NULL, 0);
2134
2135	/* Dump ring buffer */
2136	aub_build_dump_ringbuffer(bufmgr_gem, bo_gem->aub_offset, ring_flag);
2137
2138	fflush(bufmgr_gem->aub_file);
2139
2140	/*
2141	 * One frame has been dumped. So reset the aub_offset for the next frame.
2142	 *
2143	 * FIXME: Can we do this?
2144	 */
2145	bufmgr_gem->aub_offset = 0x10000;
2146}
2147
2148static int
2149drm_intel_gem_bo_exec(drm_intel_bo *bo, int used,
2150		      drm_clip_rect_t * cliprects, int num_cliprects, int DR4)
2151{
2152	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2153	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2154	struct drm_i915_gem_execbuffer execbuf;
2155	int ret, i;
2156
2157	if (bo_gem->has_error)
2158		return -ENOMEM;
2159
2160	pthread_mutex_lock(&bufmgr_gem->lock);
2161	/* Update indices and set up the validate list. */
2162	drm_intel_gem_bo_process_reloc(bo);
2163
2164	/* Add the batch buffer to the validation list.  There are no
2165	 * relocations pointing to it.
2166	 */
2167	drm_intel_add_validate_buffer(bo);
2168
2169	VG_CLEAR(execbuf);
2170	execbuf.buffers_ptr = (uintptr_t) bufmgr_gem->exec_objects;
2171	execbuf.buffer_count = bufmgr_gem->exec_count;
2172	execbuf.batch_start_offset = 0;
2173	execbuf.batch_len = used;
2174	execbuf.cliprects_ptr = (uintptr_t) cliprects;
2175	execbuf.num_cliprects = num_cliprects;
2176	execbuf.DR1 = 0;
2177	execbuf.DR4 = DR4;
2178
2179	ret = drmIoctl(bufmgr_gem->fd,
2180		       DRM_IOCTL_I915_GEM_EXECBUFFER,
2181		       &execbuf);
2182	if (ret != 0) {
2183		ret = -errno;
2184		if (errno == ENOSPC) {
2185			DBG("Execbuffer fails to pin. "
2186			    "Estimate: %u. Actual: %u. Available: %u\n",
2187			    drm_intel_gem_estimate_batch_space(bufmgr_gem->exec_bos,
2188							       bufmgr_gem->
2189							       exec_count),
2190			    drm_intel_gem_compute_batch_space(bufmgr_gem->exec_bos,
2191							      bufmgr_gem->
2192							      exec_count),
2193			    (unsigned int)bufmgr_gem->gtt_size);
2194		}
2195	}
2196	drm_intel_update_buffer_offsets(bufmgr_gem);
2197
2198	if (bufmgr_gem->bufmgr.debug)
2199		drm_intel_gem_dump_validation_list(bufmgr_gem);
2200
2201	for (i = 0; i < bufmgr_gem->exec_count; i++) {
2202		drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
2203		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2204
2205		/* Disconnect the buffer from the validate list */
2206		bo_gem->validate_index = -1;
2207		bufmgr_gem->exec_bos[i] = NULL;
2208	}
2209	bufmgr_gem->exec_count = 0;
2210	pthread_mutex_unlock(&bufmgr_gem->lock);
2211
2212	return ret;
2213}
2214
2215static int
2216do_exec2(drm_intel_bo *bo, int used, drm_intel_context *ctx,
2217	 drm_clip_rect_t *cliprects, int num_cliprects, int DR4,
2218	 unsigned int flags)
2219{
2220	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr;
2221	struct drm_i915_gem_execbuffer2 execbuf;
2222	int ret = 0;
2223	int i;
2224
2225	switch (flags & 0x7) {
2226	default:
2227		return -EINVAL;
2228	case I915_EXEC_BLT:
2229		if (!bufmgr_gem->has_blt)
2230			return -EINVAL;
2231		break;
2232	case I915_EXEC_BSD:
2233		if (!bufmgr_gem->has_bsd)
2234			return -EINVAL;
2235		break;
2236	case I915_EXEC_VEBOX:
2237		if (!bufmgr_gem->has_vebox)
2238			return -EINVAL;
2239		break;
2240	case I915_EXEC_RENDER:
2241	case I915_EXEC_DEFAULT:
2242		break;
2243	}
2244
2245	pthread_mutex_lock(&bufmgr_gem->lock);
2246	/* Update indices and set up the validate list. */
2247	drm_intel_gem_bo_process_reloc2(bo);
2248
2249	/* Add the batch buffer to the validation list.  There are no relocations
2250	 * pointing to it.
2251	 */
2252	drm_intel_add_validate_buffer2(bo, 0);
2253
2254	VG_CLEAR(execbuf);
2255	execbuf.buffers_ptr = (uintptr_t)bufmgr_gem->exec2_objects;
2256	execbuf.buffer_count = bufmgr_gem->exec_count;
2257	execbuf.batch_start_offset = 0;
2258	execbuf.batch_len = used;
2259	execbuf.cliprects_ptr = (uintptr_t)cliprects;
2260	execbuf.num_cliprects = num_cliprects;
2261	execbuf.DR1 = 0;
2262	execbuf.DR4 = DR4;
2263	execbuf.flags = flags;
2264	if (ctx == NULL)
2265		i915_execbuffer2_set_context_id(execbuf, 0);
2266	else
2267		i915_execbuffer2_set_context_id(execbuf, ctx->ctx_id);
2268	execbuf.rsvd2 = 0;
2269
2270	aub_exec(bo, flags, used);
2271
2272	if (bufmgr_gem->no_exec)
2273		goto skip_execution;
2274
2275	ret = drmIoctl(bufmgr_gem->fd,
2276		       DRM_IOCTL_I915_GEM_EXECBUFFER2,
2277		       &execbuf);
2278	if (ret != 0) {
2279		ret = -errno;
2280		if (ret == -ENOSPC) {
2281			DBG("Execbuffer fails to pin. "
2282			    "Estimate: %u. Actual: %u. Available: %u\n",
2283			    drm_intel_gem_estimate_batch_space(bufmgr_gem->exec_bos,
2284							       bufmgr_gem->exec_count),
2285			    drm_intel_gem_compute_batch_space(bufmgr_gem->exec_bos,
2286							      bufmgr_gem->exec_count),
2287			    (unsigned int) bufmgr_gem->gtt_size);
2288		}
2289	}
2290	drm_intel_update_buffer_offsets2(bufmgr_gem);
2291
2292skip_execution:
2293	if (bufmgr_gem->bufmgr.debug)
2294		drm_intel_gem_dump_validation_list(bufmgr_gem);
2295
2296	for (i = 0; i < bufmgr_gem->exec_count; i++) {
2297		drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
2298		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
2299
2300		/* Disconnect the buffer from the validate list */
2301		bo_gem->validate_index = -1;
2302		bufmgr_gem->exec_bos[i] = NULL;
2303	}
2304	bufmgr_gem->exec_count = 0;
2305	pthread_mutex_unlock(&bufmgr_gem->lock);
2306
2307	return ret;
2308}
2309
2310static int
2311drm_intel_gem_bo_exec2(drm_intel_bo *bo, int used,
2312		       drm_clip_rect_t *cliprects, int num_cliprects,
2313		       int DR4)
2314{
2315	return do_exec2(bo, used, NULL, cliprects, num_cliprects, DR4,
2316			I915_EXEC_RENDER);
2317}
2318
2319static int
2320drm_intel_gem_bo_mrb_exec2(drm_intel_bo *bo, int used,
2321			drm_clip_rect_t *cliprects, int num_cliprects, int DR4,
2322			unsigned int flags)
2323{
2324	return do_exec2(bo, used, NULL, cliprects, num_cliprects, DR4,
2325			flags);
2326}
2327
2328int
2329drm_intel_gem_bo_context_exec(drm_intel_bo *bo, drm_intel_context *ctx,
2330			      int used, unsigned int flags)
2331{
2332	return do_exec2(bo, used, ctx, NULL, 0, 0, flags);
2333}
2334
2335static int
2336drm_intel_gem_bo_pin(drm_intel_bo *bo, uint32_t alignment)
2337{
2338	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2339	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2340	struct drm_i915_gem_pin pin;
2341	int ret;
2342
2343	VG_CLEAR(pin);
2344	pin.handle = bo_gem->gem_handle;
2345	pin.alignment = alignment;
2346
2347	ret = drmIoctl(bufmgr_gem->fd,
2348		       DRM_IOCTL_I915_GEM_PIN,
2349		       &pin);
2350	if (ret != 0)
2351		return -errno;
2352
2353	bo->offset = pin.offset;
2354	return 0;
2355}
2356
2357static int
2358drm_intel_gem_bo_unpin(drm_intel_bo *bo)
2359{
2360	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2361	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2362	struct drm_i915_gem_unpin unpin;
2363	int ret;
2364
2365	VG_CLEAR(unpin);
2366	unpin.handle = bo_gem->gem_handle;
2367
2368	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_UNPIN, &unpin);
2369	if (ret != 0)
2370		return -errno;
2371
2372	return 0;
2373}
2374
2375static int
2376drm_intel_gem_bo_set_tiling_internal(drm_intel_bo *bo,
2377				     uint32_t tiling_mode,
2378				     uint32_t stride)
2379{
2380	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2381	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2382	struct drm_i915_gem_set_tiling set_tiling;
2383	int ret;
2384
2385	if (bo_gem->global_name == 0 &&
2386	    tiling_mode == bo_gem->tiling_mode &&
2387	    stride == bo_gem->stride)
2388		return 0;
2389
2390	memset(&set_tiling, 0, sizeof(set_tiling));
2391	do {
2392		/* set_tiling is slightly broken and overwrites the
2393		 * input on the error path, so we have to open code
2394		 * rmIoctl.
2395		 */
2396		set_tiling.handle = bo_gem->gem_handle;
2397		set_tiling.tiling_mode = tiling_mode;
2398		set_tiling.stride = stride;
2399
2400		ret = ioctl(bufmgr_gem->fd,
2401			    DRM_IOCTL_I915_GEM_SET_TILING,
2402			    &set_tiling);
2403	} while (ret == -1 && (errno == EINTR || errno == EAGAIN));
2404	if (ret == -1)
2405		return -errno;
2406
2407	bo_gem->tiling_mode = set_tiling.tiling_mode;
2408	bo_gem->swizzle_mode = set_tiling.swizzle_mode;
2409	bo_gem->stride = set_tiling.stride;
2410	return 0;
2411}
2412
2413static int
2414drm_intel_gem_bo_set_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
2415			    uint32_t stride)
2416{
2417	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2418	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2419	int ret;
2420
2421	/* Linear buffers have no stride. By ensuring that we only ever use
2422	 * stride 0 with linear buffers, we simplify our code.
2423	 */
2424	if (*tiling_mode == I915_TILING_NONE)
2425		stride = 0;
2426
2427	ret = drm_intel_gem_bo_set_tiling_internal(bo, *tiling_mode, stride);
2428	if (ret == 0)
2429		drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem);
2430
2431	*tiling_mode = bo_gem->tiling_mode;
2432	return ret;
2433}
2434
2435static int
2436drm_intel_gem_bo_get_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
2437			    uint32_t * swizzle_mode)
2438{
2439	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2440
2441	*tiling_mode = bo_gem->tiling_mode;
2442	*swizzle_mode = bo_gem->swizzle_mode;
2443	return 0;
2444}
2445
2446drm_intel_bo *
2447drm_intel_bo_gem_create_from_prime(drm_intel_bufmgr *bufmgr, int prime_fd, int size)
2448{
2449	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
2450	int ret;
2451	uint32_t handle;
2452	drm_intel_bo_gem *bo_gem;
2453	struct drm_i915_gem_get_tiling get_tiling;
2454
2455	ret = drmPrimeFDToHandle(bufmgr_gem->fd, prime_fd, &handle);
2456	if (ret) {
2457	  fprintf(stderr,"ret is %d %d\n", ret, errno);
2458		return NULL;
2459	}
2460
2461	bo_gem = calloc(1, sizeof(*bo_gem));
2462	if (!bo_gem)
2463		return NULL;
2464
2465	/* Determine size of bo.  The fd-to-handle ioctl really should
2466	 * return the size, but it doesn't.  If we have kernel 3.12 or
2467	 * later, we can lseek on the prime fd to get the size.  Older
2468	 * kernels will just fail, in which case we fall back to the
2469	 * provided (estimated or guess size). */
2470	ret = lseek(prime_fd, 0, SEEK_END);
2471	if (ret != -1)
2472		bo_gem->bo.size = ret;
2473	else
2474		bo_gem->bo.size = size;
2475
2476	bo_gem->bo.handle = handle;
2477	bo_gem->bo.bufmgr = bufmgr;
2478
2479	bo_gem->gem_handle = handle;
2480
2481	atomic_set(&bo_gem->refcount, 1);
2482
2483	bo_gem->name = "prime";
2484	bo_gem->validate_index = -1;
2485	bo_gem->reloc_tree_fences = 0;
2486	bo_gem->used_as_reloc_target = false;
2487	bo_gem->has_error = false;
2488	bo_gem->reusable = false;
2489
2490	DRMINITLISTHEAD(&bo_gem->name_list);
2491	DRMINITLISTHEAD(&bo_gem->vma_list);
2492
2493	VG_CLEAR(get_tiling);
2494	get_tiling.handle = bo_gem->gem_handle;
2495	ret = drmIoctl(bufmgr_gem->fd,
2496		       DRM_IOCTL_I915_GEM_GET_TILING,
2497		       &get_tiling);
2498	if (ret != 0) {
2499		drm_intel_gem_bo_unreference(&bo_gem->bo);
2500		return NULL;
2501	}
2502	bo_gem->tiling_mode = get_tiling.tiling_mode;
2503	bo_gem->swizzle_mode = get_tiling.swizzle_mode;
2504	/* XXX stride is unknown */
2505	drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem);
2506
2507	return &bo_gem->bo;
2508}
2509
2510int
2511drm_intel_bo_gem_export_to_prime(drm_intel_bo *bo, int *prime_fd)
2512{
2513	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2514	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2515
2516	if (drmPrimeHandleToFD(bufmgr_gem->fd, bo_gem->gem_handle,
2517			       DRM_CLOEXEC, prime_fd) != 0)
2518		return -errno;
2519
2520	bo_gem->reusable = false;
2521
2522	return 0;
2523}
2524
2525static int
2526drm_intel_gem_bo_flink(drm_intel_bo *bo, uint32_t * name)
2527{
2528	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2529	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2530	int ret;
2531
2532	if (!bo_gem->global_name) {
2533		struct drm_gem_flink flink;
2534
2535		VG_CLEAR(flink);
2536		flink.handle = bo_gem->gem_handle;
2537
2538		ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_FLINK, &flink);
2539		if (ret != 0)
2540			return -errno;
2541
2542		bo_gem->global_name = flink.name;
2543		bo_gem->reusable = false;
2544
2545		DRMLISTADDTAIL(&bo_gem->name_list, &bufmgr_gem->named);
2546	}
2547
2548	*name = bo_gem->global_name;
2549	return 0;
2550}
2551
2552/**
2553 * Enables unlimited caching of buffer objects for reuse.
2554 *
2555 * This is potentially very memory expensive, as the cache at each bucket
2556 * size is only bounded by how many buffers of that size we've managed to have
2557 * in flight at once.
2558 */
2559void
2560drm_intel_bufmgr_gem_enable_reuse(drm_intel_bufmgr *bufmgr)
2561{
2562	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
2563
2564	bufmgr_gem->bo_reuse = true;
2565}
2566
2567/**
2568 * Enable use of fenced reloc type.
2569 *
2570 * New code should enable this to avoid unnecessary fence register
2571 * allocation.  If this option is not enabled, all relocs will have fence
2572 * register allocated.
2573 */
2574void
2575drm_intel_bufmgr_gem_enable_fenced_relocs(drm_intel_bufmgr *bufmgr)
2576{
2577	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
2578
2579	if (bufmgr_gem->bufmgr.bo_exec == drm_intel_gem_bo_exec2)
2580		bufmgr_gem->fenced_relocs = true;
2581}
2582
2583/**
2584 * Return the additional aperture space required by the tree of buffer objects
2585 * rooted at bo.
2586 */
2587static int
2588drm_intel_gem_bo_get_aperture_space(drm_intel_bo *bo)
2589{
2590	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2591	int i;
2592	int total = 0;
2593
2594	if (bo == NULL || bo_gem->included_in_check_aperture)
2595		return 0;
2596
2597	total += bo->size;
2598	bo_gem->included_in_check_aperture = true;
2599
2600	for (i = 0; i < bo_gem->reloc_count; i++)
2601		total +=
2602		    drm_intel_gem_bo_get_aperture_space(bo_gem->
2603							reloc_target_info[i].bo);
2604
2605	return total;
2606}
2607
2608/**
2609 * Count the number of buffers in this list that need a fence reg
2610 *
2611 * If the count is greater than the number of available regs, we'll have
2612 * to ask the caller to resubmit a batch with fewer tiled buffers.
2613 *
2614 * This function over-counts if the same buffer is used multiple times.
2615 */
2616static unsigned int
2617drm_intel_gem_total_fences(drm_intel_bo ** bo_array, int count)
2618{
2619	int i;
2620	unsigned int total = 0;
2621
2622	for (i = 0; i < count; i++) {
2623		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo_array[i];
2624
2625		if (bo_gem == NULL)
2626			continue;
2627
2628		total += bo_gem->reloc_tree_fences;
2629	}
2630	return total;
2631}
2632
2633/**
2634 * Clear the flag set by drm_intel_gem_bo_get_aperture_space() so we're ready
2635 * for the next drm_intel_bufmgr_check_aperture_space() call.
2636 */
2637static void
2638drm_intel_gem_bo_clear_aperture_space_flag(drm_intel_bo *bo)
2639{
2640	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2641	int i;
2642
2643	if (bo == NULL || !bo_gem->included_in_check_aperture)
2644		return;
2645
2646	bo_gem->included_in_check_aperture = false;
2647
2648	for (i = 0; i < bo_gem->reloc_count; i++)
2649		drm_intel_gem_bo_clear_aperture_space_flag(bo_gem->
2650							   reloc_target_info[i].bo);
2651}
2652
2653/**
2654 * Return a conservative estimate for the amount of aperture required
2655 * for a collection of buffers. This may double-count some buffers.
2656 */
2657static unsigned int
2658drm_intel_gem_estimate_batch_space(drm_intel_bo **bo_array, int count)
2659{
2660	int i;
2661	unsigned int total = 0;
2662
2663	for (i = 0; i < count; i++) {
2664		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo_array[i];
2665		if (bo_gem != NULL)
2666			total += bo_gem->reloc_tree_size;
2667	}
2668	return total;
2669}
2670
2671/**
2672 * Return the amount of aperture needed for a collection of buffers.
2673 * This avoids double counting any buffers, at the cost of looking
2674 * at every buffer in the set.
2675 */
2676static unsigned int
2677drm_intel_gem_compute_batch_space(drm_intel_bo **bo_array, int count)
2678{
2679	int i;
2680	unsigned int total = 0;
2681
2682	for (i = 0; i < count; i++) {
2683		total += drm_intel_gem_bo_get_aperture_space(bo_array[i]);
2684		/* For the first buffer object in the array, we get an
2685		 * accurate count back for its reloc_tree size (since nothing
2686		 * had been flagged as being counted yet).  We can save that
2687		 * value out as a more conservative reloc_tree_size that
2688		 * avoids double-counting target buffers.  Since the first
2689		 * buffer happens to usually be the batch buffer in our
2690		 * callers, this can pull us back from doing the tree
2691		 * walk on every new batch emit.
2692		 */
2693		if (i == 0) {
2694			drm_intel_bo_gem *bo_gem =
2695			    (drm_intel_bo_gem *) bo_array[i];
2696			bo_gem->reloc_tree_size = total;
2697		}
2698	}
2699
2700	for (i = 0; i < count; i++)
2701		drm_intel_gem_bo_clear_aperture_space_flag(bo_array[i]);
2702	return total;
2703}
2704
2705/**
2706 * Return -1 if the batchbuffer should be flushed before attempting to
2707 * emit rendering referencing the buffers pointed to by bo_array.
2708 *
2709 * This is required because if we try to emit a batchbuffer with relocations
2710 * to a tree of buffers that won't simultaneously fit in the aperture,
2711 * the rendering will return an error at a point where the software is not
2712 * prepared to recover from it.
2713 *
2714 * However, we also want to emit the batchbuffer significantly before we reach
2715 * the limit, as a series of batchbuffers each of which references buffers
2716 * covering almost all of the aperture means that at each emit we end up
2717 * waiting to evict a buffer from the last rendering, and we get synchronous
2718 * performance.  By emitting smaller batchbuffers, we eat some CPU overhead to
2719 * get better parallelism.
2720 */
2721static int
2722drm_intel_gem_check_aperture_space(drm_intel_bo **bo_array, int count)
2723{
2724	drm_intel_bufmgr_gem *bufmgr_gem =
2725	    (drm_intel_bufmgr_gem *) bo_array[0]->bufmgr;
2726	unsigned int total = 0;
2727	unsigned int threshold = bufmgr_gem->gtt_size * 3 / 4;
2728	int total_fences;
2729
2730	/* Check for fence reg constraints if necessary */
2731	if (bufmgr_gem->available_fences) {
2732		total_fences = drm_intel_gem_total_fences(bo_array, count);
2733		if (total_fences > bufmgr_gem->available_fences)
2734			return -ENOSPC;
2735	}
2736
2737	total = drm_intel_gem_estimate_batch_space(bo_array, count);
2738
2739	if (total > threshold)
2740		total = drm_intel_gem_compute_batch_space(bo_array, count);
2741
2742	if (total > threshold) {
2743		DBG("check_space: overflowed available aperture, "
2744		    "%dkb vs %dkb\n",
2745		    total / 1024, (int)bufmgr_gem->gtt_size / 1024);
2746		return -ENOSPC;
2747	} else {
2748		DBG("drm_check_space: total %dkb vs bufgr %dkb\n", total / 1024,
2749		    (int)bufmgr_gem->gtt_size / 1024);
2750		return 0;
2751	}
2752}
2753
2754/*
2755 * Disable buffer reuse for objects which are shared with the kernel
2756 * as scanout buffers
2757 */
2758static int
2759drm_intel_gem_bo_disable_reuse(drm_intel_bo *bo)
2760{
2761	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2762
2763	bo_gem->reusable = false;
2764	return 0;
2765}
2766
2767static int
2768drm_intel_gem_bo_is_reusable(drm_intel_bo *bo)
2769{
2770	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2771
2772	return bo_gem->reusable;
2773}
2774
2775static int
2776_drm_intel_gem_bo_references(drm_intel_bo *bo, drm_intel_bo *target_bo)
2777{
2778	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2779	int i;
2780
2781	for (i = 0; i < bo_gem->reloc_count; i++) {
2782		if (bo_gem->reloc_target_info[i].bo == target_bo)
2783			return 1;
2784		if (bo == bo_gem->reloc_target_info[i].bo)
2785			continue;
2786		if (_drm_intel_gem_bo_references(bo_gem->reloc_target_info[i].bo,
2787						target_bo))
2788			return 1;
2789	}
2790
2791	return 0;
2792}
2793
2794/** Return true if target_bo is referenced by bo's relocation tree. */
2795static int
2796drm_intel_gem_bo_references(drm_intel_bo *bo, drm_intel_bo *target_bo)
2797{
2798	drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo;
2799
2800	if (bo == NULL || target_bo == NULL)
2801		return 0;
2802	if (target_bo_gem->used_as_reloc_target)
2803		return _drm_intel_gem_bo_references(bo, target_bo);
2804	return 0;
2805}
2806
2807static void
2808add_bucket(drm_intel_bufmgr_gem *bufmgr_gem, int size)
2809{
2810	unsigned int i = bufmgr_gem->num_buckets;
2811
2812	assert(i < ARRAY_SIZE(bufmgr_gem->cache_bucket));
2813
2814	DRMINITLISTHEAD(&bufmgr_gem->cache_bucket[i].head);
2815	bufmgr_gem->cache_bucket[i].size = size;
2816	bufmgr_gem->num_buckets++;
2817}
2818
2819static void
2820init_cache_buckets(drm_intel_bufmgr_gem *bufmgr_gem)
2821{
2822	unsigned long size, cache_max_size = 64 * 1024 * 1024;
2823
2824	/* OK, so power of two buckets was too wasteful of memory.
2825	 * Give 3 other sizes between each power of two, to hopefully
2826	 * cover things accurately enough.  (The alternative is
2827	 * probably to just go for exact matching of sizes, and assume
2828	 * that for things like composited window resize the tiled
2829	 * width/height alignment and rounding of sizes to pages will
2830	 * get us useful cache hit rates anyway)
2831	 */
2832	add_bucket(bufmgr_gem, 4096);
2833	add_bucket(bufmgr_gem, 4096 * 2);
2834	add_bucket(bufmgr_gem, 4096 * 3);
2835
2836	/* Initialize the linked lists for BO reuse cache. */
2837	for (size = 4 * 4096; size <= cache_max_size; size *= 2) {
2838		add_bucket(bufmgr_gem, size);
2839
2840		add_bucket(bufmgr_gem, size + size * 1 / 4);
2841		add_bucket(bufmgr_gem, size + size * 2 / 4);
2842		add_bucket(bufmgr_gem, size + size * 3 / 4);
2843	}
2844}
2845
2846void
2847drm_intel_bufmgr_gem_set_vma_cache_size(drm_intel_bufmgr *bufmgr, int limit)
2848{
2849	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
2850
2851	bufmgr_gem->vma_max = limit;
2852
2853	drm_intel_gem_bo_purge_vma_cache(bufmgr_gem);
2854}
2855
2856/**
2857 * Get the PCI ID for the device.  This can be overridden by setting the
2858 * INTEL_DEVID_OVERRIDE environment variable to the desired ID.
2859 */
2860static int
2861get_pci_device_id(drm_intel_bufmgr_gem *bufmgr_gem)
2862{
2863	char *devid_override;
2864	int devid;
2865	int ret;
2866	drm_i915_getparam_t gp;
2867
2868	if (geteuid() == getuid()) {
2869		devid_override = getenv("INTEL_DEVID_OVERRIDE");
2870		if (devid_override) {
2871			bufmgr_gem->no_exec = true;
2872			return strtod(devid_override, NULL);
2873		}
2874	}
2875
2876	VG_CLEAR(devid);
2877	VG_CLEAR(gp);
2878	gp.param = I915_PARAM_CHIPSET_ID;
2879	gp.value = &devid;
2880	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
2881	if (ret) {
2882		fprintf(stderr, "get chip id failed: %d [%d]\n", ret, errno);
2883		fprintf(stderr, "param: %d, val: %d\n", gp.param, *gp.value);
2884	}
2885	return devid;
2886}
2887
2888int
2889drm_intel_bufmgr_gem_get_devid(drm_intel_bufmgr *bufmgr)
2890{
2891	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
2892
2893	return bufmgr_gem->pci_device;
2894}
2895
2896/**
2897 * Sets the AUB filename.
2898 *
2899 * This function has to be called before drm_intel_bufmgr_gem_set_aub_dump()
2900 * for it to have any effect.
2901 */
2902void
2903drm_intel_bufmgr_gem_set_aub_filename(drm_intel_bufmgr *bufmgr,
2904				      const char *filename)
2905{
2906	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
2907
2908	free(bufmgr_gem->aub_filename);
2909	if (filename)
2910		bufmgr_gem->aub_filename = strdup(filename);
2911}
2912
2913/**
2914 * Sets up AUB dumping.
2915 *
2916 * This is a trace file format that can be used with the simulator.
2917 * Packets are emitted in a format somewhat like GPU command packets.
2918 * You can set up a GTT and upload your objects into the referenced
2919 * space, then send off batchbuffers and get BMPs out the other end.
2920 */
2921void
2922drm_intel_bufmgr_gem_set_aub_dump(drm_intel_bufmgr *bufmgr, int enable)
2923{
2924	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
2925	int entry = 0x200003;
2926	int i;
2927	int gtt_size = 0x10000;
2928	const char *filename;
2929
2930	if (!enable) {
2931		if (bufmgr_gem->aub_file) {
2932			fclose(bufmgr_gem->aub_file);
2933			bufmgr_gem->aub_file = NULL;
2934		}
2935		return;
2936	}
2937
2938	if (geteuid() != getuid())
2939		return;
2940
2941	if (bufmgr_gem->aub_filename)
2942		filename = bufmgr_gem->aub_filename;
2943	else
2944		filename = "intel.aub";
2945	bufmgr_gem->aub_file = fopen(filename, "w+");
2946	if (!bufmgr_gem->aub_file)
2947		return;
2948
2949	/* Start allocating objects from just after the GTT. */
2950	bufmgr_gem->aub_offset = gtt_size;
2951
2952	/* Start with a (required) version packet. */
2953	aub_out(bufmgr_gem, CMD_AUB_HEADER | (13 - 2));
2954	aub_out(bufmgr_gem,
2955		(4 << AUB_HEADER_MAJOR_SHIFT) |
2956		(0 << AUB_HEADER_MINOR_SHIFT));
2957	for (i = 0; i < 8; i++) {
2958		aub_out(bufmgr_gem, 0); /* app name */
2959	}
2960	aub_out(bufmgr_gem, 0); /* timestamp */
2961	aub_out(bufmgr_gem, 0); /* timestamp */
2962	aub_out(bufmgr_gem, 0); /* comment len */
2963
2964	/* Set up the GTT. The max we can handle is 256M */
2965	aub_out(bufmgr_gem, CMD_AUB_TRACE_HEADER_BLOCK | ((bufmgr_gem->gen >= 8 ? 6 : 5) - 2));
2966	aub_out(bufmgr_gem, AUB_TRACE_MEMTYPE_NONLOCAL | 0 | AUB_TRACE_OP_DATA_WRITE);
2967	aub_out(bufmgr_gem, 0); /* subtype */
2968	aub_out(bufmgr_gem, 0); /* offset */
2969	aub_out(bufmgr_gem, gtt_size); /* size */
2970	if (bufmgr_gem->gen >= 8)
2971		aub_out(bufmgr_gem, 0);
2972	for (i = 0x000; i < gtt_size; i += 4, entry += 0x1000) {
2973		aub_out(bufmgr_gem, entry);
2974	}
2975}
2976
2977drm_intel_context *
2978drm_intel_gem_context_create(drm_intel_bufmgr *bufmgr)
2979{
2980	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
2981	struct drm_i915_gem_context_create create;
2982	drm_intel_context *context = NULL;
2983	int ret;
2984
2985	VG_CLEAR(create);
2986	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE, &create);
2987	if (ret != 0) {
2988		DBG("DRM_IOCTL_I915_GEM_CONTEXT_CREATE failed: %s\n",
2989		    strerror(errno));
2990		return NULL;
2991	}
2992
2993	context = calloc(1, sizeof(*context));
2994	context->ctx_id = create.ctx_id;
2995	context->bufmgr = bufmgr;
2996
2997	return context;
2998}
2999
3000void
3001drm_intel_gem_context_destroy(drm_intel_context *ctx)
3002{
3003	drm_intel_bufmgr_gem *bufmgr_gem;
3004	struct drm_i915_gem_context_destroy destroy;
3005	int ret;
3006
3007	if (ctx == NULL)
3008		return;
3009
3010	VG_CLEAR(destroy);
3011
3012	bufmgr_gem = (drm_intel_bufmgr_gem *)ctx->bufmgr;
3013	destroy.ctx_id = ctx->ctx_id;
3014	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_CONTEXT_DESTROY,
3015		       &destroy);
3016	if (ret != 0)
3017		fprintf(stderr, "DRM_IOCTL_I915_GEM_CONTEXT_DESTROY failed: %s\n",
3018			strerror(errno));
3019
3020	free(ctx);
3021}
3022
3023int
3024drm_intel_get_reset_stats(drm_intel_context *ctx,
3025			  uint32_t *reset_count,
3026			  uint32_t *active,
3027			  uint32_t *pending)
3028{
3029	drm_intel_bufmgr_gem *bufmgr_gem;
3030	struct drm_i915_reset_stats stats;
3031	int ret;
3032
3033	if (ctx == NULL)
3034		return -EINVAL;
3035
3036	VG_CLEAR(stats);
3037
3038	bufmgr_gem = (drm_intel_bufmgr_gem *)ctx->bufmgr;
3039	stats.ctx_id = ctx->ctx_id;
3040	ret = drmIoctl(bufmgr_gem->fd,
3041		       DRM_IOCTL_I915_GET_RESET_STATS,
3042		       &stats);
3043	if (ret == 0) {
3044		if (reset_count != NULL)
3045			*reset_count = stats.reset_count;
3046
3047		if (active != NULL)
3048			*active = stats.batch_active;
3049
3050		if (pending != NULL)
3051			*pending = stats.batch_pending;
3052	}
3053
3054	return ret;
3055}
3056
3057int
3058drm_intel_reg_read(drm_intel_bufmgr *bufmgr,
3059		   uint32_t offset,
3060		   uint64_t *result)
3061{
3062	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3063	struct drm_i915_reg_read reg_read;
3064	int ret;
3065
3066	VG_CLEAR(reg_read);
3067	reg_read.offset = offset;
3068
3069	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_REG_READ, &reg_read);
3070
3071	*result = reg_read.val;
3072	return ret;
3073}
3074
3075
3076/**
3077 * Annotate the given bo for use in aub dumping.
3078 *
3079 * \param annotations is an array of drm_intel_aub_annotation objects
3080 * describing the type of data in various sections of the bo.  Each
3081 * element of the array specifies the type and subtype of a section of
3082 * the bo, and the past-the-end offset of that section.  The elements
3083 * of \c annotations must be sorted so that ending_offset is
3084 * increasing.
3085 *
3086 * \param count is the number of elements in the \c annotations array.
3087 * If \c count is zero, then \c annotations will not be dereferenced.
3088 *
3089 * Annotations are copied into a private data structure, so caller may
3090 * re-use the memory pointed to by \c annotations after the call
3091 * returns.
3092 *
3093 * Annotations are stored for the lifetime of the bo; to reset to the
3094 * default state (no annotations), call this function with a \c count
3095 * of zero.
3096 */
3097void
3098drm_intel_bufmgr_gem_set_aub_annotations(drm_intel_bo *bo,
3099					 drm_intel_aub_annotation *annotations,
3100					 unsigned count)
3101{
3102	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
3103	unsigned size = sizeof(*annotations) * count;
3104	drm_intel_aub_annotation *new_annotations =
3105		count > 0 ? realloc(bo_gem->aub_annotations, size) : NULL;
3106	if (new_annotations == NULL) {
3107		free(bo_gem->aub_annotations);
3108		bo_gem->aub_annotations = NULL;
3109		bo_gem->aub_annotation_count = 0;
3110		return;
3111	}
3112	memcpy(new_annotations, annotations, size);
3113	bo_gem->aub_annotations = new_annotations;
3114	bo_gem->aub_annotation_count = count;
3115}
3116
3117/**
3118 * Initializes the GEM buffer manager, which uses the kernel to allocate, map,
3119 * and manage map buffer objections.
3120 *
3121 * \param fd File descriptor of the opened DRM device.
3122 */
3123drm_intel_bufmgr *
3124drm_intel_bufmgr_gem_init(int fd, int batch_size)
3125{
3126	drm_intel_bufmgr_gem *bufmgr_gem;
3127	struct drm_i915_gem_get_aperture aperture;
3128	drm_i915_getparam_t gp;
3129	int ret, tmp;
3130	bool exec2 = false;
3131
3132	bufmgr_gem = calloc(1, sizeof(*bufmgr_gem));
3133	if (bufmgr_gem == NULL)
3134		return NULL;
3135
3136	bufmgr_gem->fd = fd;
3137
3138	if (pthread_mutex_init(&bufmgr_gem->lock, NULL) != 0) {
3139		free(bufmgr_gem);
3140		return NULL;
3141	}
3142
3143	ret = drmIoctl(bufmgr_gem->fd,
3144		       DRM_IOCTL_I915_GEM_GET_APERTURE,
3145		       &aperture);
3146
3147	if (ret == 0)
3148		bufmgr_gem->gtt_size = aperture.aper_available_size;
3149	else {
3150		fprintf(stderr, "DRM_IOCTL_I915_GEM_APERTURE failed: %s\n",
3151			strerror(errno));
3152		bufmgr_gem->gtt_size = 128 * 1024 * 1024;
3153		fprintf(stderr, "Assuming %dkB available aperture size.\n"
3154			"May lead to reduced performance or incorrect "
3155			"rendering.\n",
3156			(int)bufmgr_gem->gtt_size / 1024);
3157	}
3158
3159	bufmgr_gem->pci_device = get_pci_device_id(bufmgr_gem);
3160
3161	if (IS_GEN2(bufmgr_gem->pci_device))
3162		bufmgr_gem->gen = 2;
3163	else if (IS_GEN3(bufmgr_gem->pci_device))
3164		bufmgr_gem->gen = 3;
3165	else if (IS_GEN4(bufmgr_gem->pci_device))
3166		bufmgr_gem->gen = 4;
3167	else if (IS_GEN5(bufmgr_gem->pci_device))
3168		bufmgr_gem->gen = 5;
3169	else if (IS_GEN6(bufmgr_gem->pci_device))
3170		bufmgr_gem->gen = 6;
3171	else if (IS_GEN7(bufmgr_gem->pci_device))
3172		bufmgr_gem->gen = 7;
3173	else if (IS_GEN8(bufmgr_gem->pci_device))
3174		bufmgr_gem->gen = 8;
3175	else {
3176		free(bufmgr_gem);
3177		return NULL;
3178	}
3179
3180	if (IS_GEN3(bufmgr_gem->pci_device) &&
3181	    bufmgr_gem->gtt_size > 256*1024*1024) {
3182		/* The unmappable part of gtt on gen 3 (i.e. above 256MB) can't
3183		 * be used for tiled blits. To simplify the accounting, just
3184		 * substract the unmappable part (fixed to 256MB on all known
3185		 * gen3 devices) if the kernel advertises it. */
3186		bufmgr_gem->gtt_size -= 256*1024*1024;
3187	}
3188
3189	VG_CLEAR(gp);
3190	gp.value = &tmp;
3191
3192	gp.param = I915_PARAM_HAS_EXECBUF2;
3193	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3194	if (!ret)
3195		exec2 = true;
3196
3197	gp.param = I915_PARAM_HAS_BSD;
3198	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3199	bufmgr_gem->has_bsd = ret == 0;
3200
3201	gp.param = I915_PARAM_HAS_BLT;
3202	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3203	bufmgr_gem->has_blt = ret == 0;
3204
3205	gp.param = I915_PARAM_HAS_RELAXED_FENCING;
3206	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3207	bufmgr_gem->has_relaxed_fencing = ret == 0;
3208
3209	gp.param = I915_PARAM_HAS_WAIT_TIMEOUT;
3210	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3211	bufmgr_gem->has_wait_timeout = ret == 0;
3212
3213	gp.param = I915_PARAM_HAS_LLC;
3214	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3215	if (ret != 0) {
3216		/* Kernel does not supports HAS_LLC query, fallback to GPU
3217		 * generation detection and assume that we have LLC on GEN6/7
3218		 */
3219		bufmgr_gem->has_llc = (IS_GEN6(bufmgr_gem->pci_device) |
3220				IS_GEN7(bufmgr_gem->pci_device));
3221	} else
3222		bufmgr_gem->has_llc = *gp.value;
3223
3224	gp.param = I915_PARAM_HAS_VEBOX;
3225	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3226	bufmgr_gem->has_vebox = (ret == 0) & (*gp.value > 0);
3227
3228	if (bufmgr_gem->gen < 4) {
3229		gp.param = I915_PARAM_NUM_FENCES_AVAIL;
3230		gp.value = &bufmgr_gem->available_fences;
3231		ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3232		if (ret) {
3233			fprintf(stderr, "get fences failed: %d [%d]\n", ret,
3234				errno);
3235			fprintf(stderr, "param: %d, val: %d\n", gp.param,
3236				*gp.value);
3237			bufmgr_gem->available_fences = 0;
3238		} else {
3239			/* XXX The kernel reports the total number of fences,
3240			 * including any that may be pinned.
3241			 *
3242			 * We presume that there will be at least one pinned
3243			 * fence for the scanout buffer, but there may be more
3244			 * than one scanout and the user may be manually
3245			 * pinning buffers. Let's move to execbuffer2 and
3246			 * thereby forget the insanity of using fences...
3247			 */
3248			bufmgr_gem->available_fences -= 2;
3249			if (bufmgr_gem->available_fences < 0)
3250				bufmgr_gem->available_fences = 0;
3251		}
3252	}
3253
3254	/* Let's go with one relocation per every 2 dwords (but round down a bit
3255	 * since a power of two will mean an extra page allocation for the reloc
3256	 * buffer).
3257	 *
3258	 * Every 4 was too few for the blender benchmark.
3259	 */
3260	bufmgr_gem->max_relocs = batch_size / sizeof(uint32_t) / 2 - 2;
3261
3262	bufmgr_gem->bufmgr.bo_alloc = drm_intel_gem_bo_alloc;
3263	bufmgr_gem->bufmgr.bo_alloc_for_render =
3264	    drm_intel_gem_bo_alloc_for_render;
3265	bufmgr_gem->bufmgr.bo_alloc_tiled = drm_intel_gem_bo_alloc_tiled;
3266	bufmgr_gem->bufmgr.bo_reference = drm_intel_gem_bo_reference;
3267	bufmgr_gem->bufmgr.bo_unreference = drm_intel_gem_bo_unreference;
3268	bufmgr_gem->bufmgr.bo_map = drm_intel_gem_bo_map;
3269	bufmgr_gem->bufmgr.bo_unmap = drm_intel_gem_bo_unmap;
3270	bufmgr_gem->bufmgr.bo_subdata = drm_intel_gem_bo_subdata;
3271	bufmgr_gem->bufmgr.bo_get_subdata = drm_intel_gem_bo_get_subdata;
3272	bufmgr_gem->bufmgr.bo_wait_rendering = drm_intel_gem_bo_wait_rendering;
3273	bufmgr_gem->bufmgr.bo_emit_reloc = drm_intel_gem_bo_emit_reloc;
3274	bufmgr_gem->bufmgr.bo_emit_reloc_fence = drm_intel_gem_bo_emit_reloc_fence;
3275	bufmgr_gem->bufmgr.bo_pin = drm_intel_gem_bo_pin;
3276	bufmgr_gem->bufmgr.bo_unpin = drm_intel_gem_bo_unpin;
3277	bufmgr_gem->bufmgr.bo_get_tiling = drm_intel_gem_bo_get_tiling;
3278	bufmgr_gem->bufmgr.bo_set_tiling = drm_intel_gem_bo_set_tiling;
3279	bufmgr_gem->bufmgr.bo_flink = drm_intel_gem_bo_flink;
3280	/* Use the new one if available */
3281	if (exec2) {
3282		bufmgr_gem->bufmgr.bo_exec = drm_intel_gem_bo_exec2;
3283		bufmgr_gem->bufmgr.bo_mrb_exec = drm_intel_gem_bo_mrb_exec2;
3284	} else
3285		bufmgr_gem->bufmgr.bo_exec = drm_intel_gem_bo_exec;
3286	bufmgr_gem->bufmgr.bo_busy = drm_intel_gem_bo_busy;
3287	bufmgr_gem->bufmgr.bo_madvise = drm_intel_gem_bo_madvise;
3288	bufmgr_gem->bufmgr.destroy = drm_intel_bufmgr_gem_destroy;
3289	bufmgr_gem->bufmgr.debug = 0;
3290	bufmgr_gem->bufmgr.check_aperture_space =
3291	    drm_intel_gem_check_aperture_space;
3292	bufmgr_gem->bufmgr.bo_disable_reuse = drm_intel_gem_bo_disable_reuse;
3293	bufmgr_gem->bufmgr.bo_is_reusable = drm_intel_gem_bo_is_reusable;
3294	bufmgr_gem->bufmgr.get_pipe_from_crtc_id =
3295	    drm_intel_gem_get_pipe_from_crtc_id;
3296	bufmgr_gem->bufmgr.bo_references = drm_intel_gem_bo_references;
3297
3298	DRMINITLISTHEAD(&bufmgr_gem->named);
3299	init_cache_buckets(bufmgr_gem);
3300
3301	DRMINITLISTHEAD(&bufmgr_gem->vma_cache);
3302	bufmgr_gem->vma_max = -1; /* unlimited by default */
3303
3304	return &bufmgr_gem->bufmgr;
3305}
3306