1/*
2 *  Copyright (c) 2014 The WebM project authors. All Rights Reserved.
3 *
4 *  Use of this source code is governed by a BSD-style license
5 *  that can be found in the LICENSE file in the root of the source
6 *  tree. An additional intellectual property rights grant can be found
7 *  in the file PATENTS.  All contributing project authors may
8 *  be found in the AUTHORS file in the root of the source tree.
9 */
10
11#include <assert.h>
12#include <tmmintrin.h>  // SSSE3
13
14#include "./vp9_rtcd.h"
15#include "./vpx_config.h"
16#include "vpx_dsp/vpx_dsp_common.h"
17#include "vpx_dsp/x86/bitdepth_conversion_sse2.h"
18#include "vpx_dsp/x86/inv_txfm_sse2.h"
19#include "vpx_dsp/x86/txfm_common_sse2.h"
20
21void vp9_fdct8x8_quant_ssse3(
22    const int16_t *input, int stride, tran_low_t *coeff_ptr, intptr_t n_coeffs,
23    int skip_block, const int16_t *round_ptr, const int16_t *quant_ptr,
24    tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr,
25    uint16_t *eob_ptr, const int16_t *scan_ptr, const int16_t *iscan_ptr) {
26  __m128i zero;
27  int pass;
28
29  // Constants
30  //    When we use them, in one case, they are all the same. In all others
31  //    it's a pair of them that we need to repeat four times. This is done
32  //    by constructing the 32 bit constant corresponding to that pair.
33  const __m128i k__dual_p16_p16 = dual_set_epi16(23170, 23170);
34  const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64);
35  const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
36  const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64);
37  const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64);
38  const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64);
39  const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64);
40  const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64);
41  const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64);
42  const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
43  // Load input
44  __m128i in0 = _mm_load_si128((const __m128i *)(input + 0 * stride));
45  __m128i in1 = _mm_load_si128((const __m128i *)(input + 1 * stride));
46  __m128i in2 = _mm_load_si128((const __m128i *)(input + 2 * stride));
47  __m128i in3 = _mm_load_si128((const __m128i *)(input + 3 * stride));
48  __m128i in4 = _mm_load_si128((const __m128i *)(input + 4 * stride));
49  __m128i in5 = _mm_load_si128((const __m128i *)(input + 5 * stride));
50  __m128i in6 = _mm_load_si128((const __m128i *)(input + 6 * stride));
51  __m128i in7 = _mm_load_si128((const __m128i *)(input + 7 * stride));
52  __m128i *in[8];
53  int index = 0;
54
55  (void)scan_ptr;
56  (void)coeff_ptr;
57
58  // Pre-condition input (shift by two)
59  in0 = _mm_slli_epi16(in0, 2);
60  in1 = _mm_slli_epi16(in1, 2);
61  in2 = _mm_slli_epi16(in2, 2);
62  in3 = _mm_slli_epi16(in3, 2);
63  in4 = _mm_slli_epi16(in4, 2);
64  in5 = _mm_slli_epi16(in5, 2);
65  in6 = _mm_slli_epi16(in6, 2);
66  in7 = _mm_slli_epi16(in7, 2);
67
68  in[0] = &in0;
69  in[1] = &in1;
70  in[2] = &in2;
71  in[3] = &in3;
72  in[4] = &in4;
73  in[5] = &in5;
74  in[6] = &in6;
75  in[7] = &in7;
76
77  // We do two passes, first the columns, then the rows. The results of the
78  // first pass are transposed so that the same column code can be reused. The
79  // results of the second pass are also transposed so that the rows (processed
80  // as columns) are put back in row positions.
81  for (pass = 0; pass < 2; pass++) {
82    // To store results of each pass before the transpose.
83    __m128i res0, res1, res2, res3, res4, res5, res6, res7;
84    // Add/subtract
85    const __m128i q0 = _mm_add_epi16(in0, in7);
86    const __m128i q1 = _mm_add_epi16(in1, in6);
87    const __m128i q2 = _mm_add_epi16(in2, in5);
88    const __m128i q3 = _mm_add_epi16(in3, in4);
89    const __m128i q4 = _mm_sub_epi16(in3, in4);
90    const __m128i q5 = _mm_sub_epi16(in2, in5);
91    const __m128i q6 = _mm_sub_epi16(in1, in6);
92    const __m128i q7 = _mm_sub_epi16(in0, in7);
93    // Work on first four results
94    {
95      // Add/subtract
96      const __m128i r0 = _mm_add_epi16(q0, q3);
97      const __m128i r1 = _mm_add_epi16(q1, q2);
98      const __m128i r2 = _mm_sub_epi16(q1, q2);
99      const __m128i r3 = _mm_sub_epi16(q0, q3);
100      // Interleave to do the multiply by constants which gets us into 32bits
101      const __m128i t0 = _mm_unpacklo_epi16(r0, r1);
102      const __m128i t1 = _mm_unpackhi_epi16(r0, r1);
103      const __m128i t2 = _mm_unpacklo_epi16(r2, r3);
104      const __m128i t3 = _mm_unpackhi_epi16(r2, r3);
105
106      const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p16_p16);
107      const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p16_p16);
108      const __m128i u2 = _mm_madd_epi16(t0, k__cospi_p16_m16);
109      const __m128i u3 = _mm_madd_epi16(t1, k__cospi_p16_m16);
110
111      const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p24_p08);
112      const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p24_p08);
113      const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m08_p24);
114      const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m08_p24);
115      // dct_const_round_shift
116
117      const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
118      const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
119      const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
120      const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
121
122      const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
123      const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
124      const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
125      const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
126
127      const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
128      const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
129      const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
130      const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
131
132      const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
133      const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
134      const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
135      const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
136      // Combine
137
138      res0 = _mm_packs_epi32(w0, w1);
139      res4 = _mm_packs_epi32(w2, w3);
140      res2 = _mm_packs_epi32(w4, w5);
141      res6 = _mm_packs_epi32(w6, w7);
142    }
143    // Work on next four results
144    {
145      // Interleave to do the multiply by constants which gets us into 32bits
146      const __m128i d0 = _mm_sub_epi16(q6, q5);
147      const __m128i d1 = _mm_add_epi16(q6, q5);
148      const __m128i r0 = _mm_mulhrs_epi16(d0, k__dual_p16_p16);
149      const __m128i r1 = _mm_mulhrs_epi16(d1, k__dual_p16_p16);
150
151      // Add/subtract
152      const __m128i x0 = _mm_add_epi16(q4, r0);
153      const __m128i x1 = _mm_sub_epi16(q4, r0);
154      const __m128i x2 = _mm_sub_epi16(q7, r1);
155      const __m128i x3 = _mm_add_epi16(q7, r1);
156      // Interleave to do the multiply by constants which gets us into 32bits
157      const __m128i t0 = _mm_unpacklo_epi16(x0, x3);
158      const __m128i t1 = _mm_unpackhi_epi16(x0, x3);
159      const __m128i t2 = _mm_unpacklo_epi16(x1, x2);
160      const __m128i t3 = _mm_unpackhi_epi16(x1, x2);
161      const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p28_p04);
162      const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p28_p04);
163      const __m128i u2 = _mm_madd_epi16(t0, k__cospi_m04_p28);
164      const __m128i u3 = _mm_madd_epi16(t1, k__cospi_m04_p28);
165      const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p12_p20);
166      const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p12_p20);
167      const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m20_p12);
168      const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m20_p12);
169      // dct_const_round_shift
170      const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
171      const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
172      const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
173      const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
174      const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
175      const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
176      const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
177      const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
178      const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
179      const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
180      const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
181      const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
182      const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
183      const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
184      const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
185      const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
186      // Combine
187      res1 = _mm_packs_epi32(w0, w1);
188      res7 = _mm_packs_epi32(w2, w3);
189      res5 = _mm_packs_epi32(w4, w5);
190      res3 = _mm_packs_epi32(w6, w7);
191    }
192    // Transpose the 8x8.
193    {
194      // 00 01 02 03 04 05 06 07
195      // 10 11 12 13 14 15 16 17
196      // 20 21 22 23 24 25 26 27
197      // 30 31 32 33 34 35 36 37
198      // 40 41 42 43 44 45 46 47
199      // 50 51 52 53 54 55 56 57
200      // 60 61 62 63 64 65 66 67
201      // 70 71 72 73 74 75 76 77
202      const __m128i tr0_0 = _mm_unpacklo_epi16(res0, res1);
203      const __m128i tr0_1 = _mm_unpacklo_epi16(res2, res3);
204      const __m128i tr0_2 = _mm_unpackhi_epi16(res0, res1);
205      const __m128i tr0_3 = _mm_unpackhi_epi16(res2, res3);
206      const __m128i tr0_4 = _mm_unpacklo_epi16(res4, res5);
207      const __m128i tr0_5 = _mm_unpacklo_epi16(res6, res7);
208      const __m128i tr0_6 = _mm_unpackhi_epi16(res4, res5);
209      const __m128i tr0_7 = _mm_unpackhi_epi16(res6, res7);
210      // 00 10 01 11 02 12 03 13
211      // 20 30 21 31 22 32 23 33
212      // 04 14 05 15 06 16 07 17
213      // 24 34 25 35 26 36 27 37
214      // 40 50 41 51 42 52 43 53
215      // 60 70 61 71 62 72 63 73
216      // 54 54 55 55 56 56 57 57
217      // 64 74 65 75 66 76 67 77
218      const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1);
219      const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3);
220      const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1);
221      const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3);
222      const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_4, tr0_5);
223      const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7);
224      const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_4, tr0_5);
225      const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7);
226      // 00 10 20 30 01 11 21 31
227      // 40 50 60 70 41 51 61 71
228      // 02 12 22 32 03 13 23 33
229      // 42 52 62 72 43 53 63 73
230      // 04 14 24 34 05 15 21 36
231      // 44 54 64 74 45 55 61 76
232      // 06 16 26 36 07 17 27 37
233      // 46 56 66 76 47 57 67 77
234      in0 = _mm_unpacklo_epi64(tr1_0, tr1_4);
235      in1 = _mm_unpackhi_epi64(tr1_0, tr1_4);
236      in2 = _mm_unpacklo_epi64(tr1_2, tr1_6);
237      in3 = _mm_unpackhi_epi64(tr1_2, tr1_6);
238      in4 = _mm_unpacklo_epi64(tr1_1, tr1_5);
239      in5 = _mm_unpackhi_epi64(tr1_1, tr1_5);
240      in6 = _mm_unpacklo_epi64(tr1_3, tr1_7);
241      in7 = _mm_unpackhi_epi64(tr1_3, tr1_7);
242      // 00 10 20 30 40 50 60 70
243      // 01 11 21 31 41 51 61 71
244      // 02 12 22 32 42 52 62 72
245      // 03 13 23 33 43 53 63 73
246      // 04 14 24 34 44 54 64 74
247      // 05 15 25 35 45 55 65 75
248      // 06 16 26 36 46 56 66 76
249      // 07 17 27 37 47 57 67 77
250    }
251  }
252  // Post-condition output and store it
253  {
254    // Post-condition (division by two)
255    //    division of two 16 bits signed numbers using shifts
256    //    n / 2 = (n - (n >> 15)) >> 1
257    const __m128i sign_in0 = _mm_srai_epi16(in0, 15);
258    const __m128i sign_in1 = _mm_srai_epi16(in1, 15);
259    const __m128i sign_in2 = _mm_srai_epi16(in2, 15);
260    const __m128i sign_in3 = _mm_srai_epi16(in3, 15);
261    const __m128i sign_in4 = _mm_srai_epi16(in4, 15);
262    const __m128i sign_in5 = _mm_srai_epi16(in5, 15);
263    const __m128i sign_in6 = _mm_srai_epi16(in6, 15);
264    const __m128i sign_in7 = _mm_srai_epi16(in7, 15);
265    in0 = _mm_sub_epi16(in0, sign_in0);
266    in1 = _mm_sub_epi16(in1, sign_in1);
267    in2 = _mm_sub_epi16(in2, sign_in2);
268    in3 = _mm_sub_epi16(in3, sign_in3);
269    in4 = _mm_sub_epi16(in4, sign_in4);
270    in5 = _mm_sub_epi16(in5, sign_in5);
271    in6 = _mm_sub_epi16(in6, sign_in6);
272    in7 = _mm_sub_epi16(in7, sign_in7);
273    in0 = _mm_srai_epi16(in0, 1);
274    in1 = _mm_srai_epi16(in1, 1);
275    in2 = _mm_srai_epi16(in2, 1);
276    in3 = _mm_srai_epi16(in3, 1);
277    in4 = _mm_srai_epi16(in4, 1);
278    in5 = _mm_srai_epi16(in5, 1);
279    in6 = _mm_srai_epi16(in6, 1);
280    in7 = _mm_srai_epi16(in7, 1);
281  }
282
283  iscan_ptr += n_coeffs;
284  qcoeff_ptr += n_coeffs;
285  dqcoeff_ptr += n_coeffs;
286  n_coeffs = -n_coeffs;
287  zero = _mm_setzero_si128();
288
289  if (!skip_block) {
290    __m128i eob;
291    __m128i round, quant, dequant, thr;
292    int16_t nzflag;
293    {
294      __m128i coeff0, coeff1;
295
296      // Setup global values
297      {
298        round = _mm_load_si128((const __m128i *)round_ptr);
299        quant = _mm_load_si128((const __m128i *)quant_ptr);
300        dequant = _mm_load_si128((const __m128i *)dequant_ptr);
301      }
302
303      {
304        __m128i coeff0_sign, coeff1_sign;
305        __m128i qcoeff0, qcoeff1;
306        __m128i qtmp0, qtmp1;
307        // Do DC and first 15 AC
308        coeff0 = *in[0];
309        coeff1 = *in[1];
310
311        // Poor man's sign extract
312        coeff0_sign = _mm_srai_epi16(coeff0, 15);
313        coeff1_sign = _mm_srai_epi16(coeff1, 15);
314        qcoeff0 = _mm_xor_si128(coeff0, coeff0_sign);
315        qcoeff1 = _mm_xor_si128(coeff1, coeff1_sign);
316        qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
317        qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
318
319        qcoeff0 = _mm_adds_epi16(qcoeff0, round);
320        round = _mm_unpackhi_epi64(round, round);
321        qcoeff1 = _mm_adds_epi16(qcoeff1, round);
322        qtmp0 = _mm_mulhi_epi16(qcoeff0, quant);
323        quant = _mm_unpackhi_epi64(quant, quant);
324        qtmp1 = _mm_mulhi_epi16(qcoeff1, quant);
325
326        // Reinsert signs
327        qcoeff0 = _mm_xor_si128(qtmp0, coeff0_sign);
328        qcoeff1 = _mm_xor_si128(qtmp1, coeff1_sign);
329        qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
330        qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
331
332        store_tran_low(qcoeff0, qcoeff_ptr + n_coeffs);
333        store_tran_low(qcoeff1, qcoeff_ptr + n_coeffs + 8);
334
335        coeff0 = _mm_mullo_epi16(qcoeff0, dequant);
336        dequant = _mm_unpackhi_epi64(dequant, dequant);
337        coeff1 = _mm_mullo_epi16(qcoeff1, dequant);
338
339        store_tran_low(coeff0, dqcoeff_ptr + n_coeffs);
340        store_tran_low(coeff1, dqcoeff_ptr + n_coeffs + 8);
341      }
342
343      {
344        // Scan for eob
345        __m128i zero_coeff0, zero_coeff1;
346        __m128i nzero_coeff0, nzero_coeff1;
347        __m128i iscan0, iscan1;
348        __m128i eob1;
349        zero_coeff0 = _mm_cmpeq_epi16(coeff0, zero);
350        zero_coeff1 = _mm_cmpeq_epi16(coeff1, zero);
351        nzero_coeff0 = _mm_cmpeq_epi16(zero_coeff0, zero);
352        nzero_coeff1 = _mm_cmpeq_epi16(zero_coeff1, zero);
353        iscan0 = _mm_load_si128((const __m128i *)(iscan_ptr + n_coeffs));
354        iscan1 = _mm_load_si128((const __m128i *)(iscan_ptr + n_coeffs) + 1);
355        // Add one to convert from indices to counts
356        iscan0 = _mm_sub_epi16(iscan0, nzero_coeff0);
357        iscan1 = _mm_sub_epi16(iscan1, nzero_coeff1);
358        eob = _mm_and_si128(iscan0, nzero_coeff0);
359        eob1 = _mm_and_si128(iscan1, nzero_coeff1);
360        eob = _mm_max_epi16(eob, eob1);
361      }
362      n_coeffs += 8 * 2;
363    }
364
365    // AC only loop
366    index = 2;
367    thr = _mm_srai_epi16(dequant, 1);
368    while (n_coeffs < 0) {
369      __m128i coeff0, coeff1;
370      {
371        __m128i coeff0_sign, coeff1_sign;
372        __m128i qcoeff0, qcoeff1;
373        __m128i qtmp0, qtmp1;
374
375        assert(index < (int)(sizeof(in) / sizeof(in[0])) - 1);
376        coeff0 = *in[index];
377        coeff1 = *in[index + 1];
378
379        // Poor man's sign extract
380        coeff0_sign = _mm_srai_epi16(coeff0, 15);
381        coeff1_sign = _mm_srai_epi16(coeff1, 15);
382        qcoeff0 = _mm_xor_si128(coeff0, coeff0_sign);
383        qcoeff1 = _mm_xor_si128(coeff1, coeff1_sign);
384        qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
385        qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
386
387        nzflag = _mm_movemask_epi8(_mm_cmpgt_epi16(qcoeff0, thr)) |
388                 _mm_movemask_epi8(_mm_cmpgt_epi16(qcoeff1, thr));
389
390        if (nzflag) {
391          qcoeff0 = _mm_adds_epi16(qcoeff0, round);
392          qcoeff1 = _mm_adds_epi16(qcoeff1, round);
393          qtmp0 = _mm_mulhi_epi16(qcoeff0, quant);
394          qtmp1 = _mm_mulhi_epi16(qcoeff1, quant);
395
396          // Reinsert signs
397          qcoeff0 = _mm_xor_si128(qtmp0, coeff0_sign);
398          qcoeff1 = _mm_xor_si128(qtmp1, coeff1_sign);
399          qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
400          qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
401
402          store_tran_low(qcoeff0, qcoeff_ptr + n_coeffs);
403          store_tran_low(qcoeff1, qcoeff_ptr + n_coeffs + 8);
404
405          coeff0 = _mm_mullo_epi16(qcoeff0, dequant);
406          coeff1 = _mm_mullo_epi16(qcoeff1, dequant);
407
408          store_tran_low(coeff0, dqcoeff_ptr + n_coeffs);
409          store_tran_low(coeff1, dqcoeff_ptr + n_coeffs + 8);
410        } else {
411          // Maybe a more efficient way to store 0?
412          store_zero_tran_low(qcoeff_ptr + n_coeffs);
413          store_zero_tran_low(qcoeff_ptr + n_coeffs + 8);
414
415          store_zero_tran_low(dqcoeff_ptr + n_coeffs);
416          store_zero_tran_low(dqcoeff_ptr + n_coeffs + 8);
417        }
418      }
419
420      if (nzflag) {
421        // Scan for eob
422        __m128i zero_coeff0, zero_coeff1;
423        __m128i nzero_coeff0, nzero_coeff1;
424        __m128i iscan0, iscan1;
425        __m128i eob0, eob1;
426        zero_coeff0 = _mm_cmpeq_epi16(coeff0, zero);
427        zero_coeff1 = _mm_cmpeq_epi16(coeff1, zero);
428        nzero_coeff0 = _mm_cmpeq_epi16(zero_coeff0, zero);
429        nzero_coeff1 = _mm_cmpeq_epi16(zero_coeff1, zero);
430        iscan0 = _mm_load_si128((const __m128i *)(iscan_ptr + n_coeffs));
431        iscan1 = _mm_load_si128((const __m128i *)(iscan_ptr + n_coeffs) + 1);
432        // Add one to convert from indices to counts
433        iscan0 = _mm_sub_epi16(iscan0, nzero_coeff0);
434        iscan1 = _mm_sub_epi16(iscan1, nzero_coeff1);
435        eob0 = _mm_and_si128(iscan0, nzero_coeff0);
436        eob1 = _mm_and_si128(iscan1, nzero_coeff1);
437        eob0 = _mm_max_epi16(eob0, eob1);
438        eob = _mm_max_epi16(eob, eob0);
439      }
440      n_coeffs += 8 * 2;
441      index += 2;
442    }
443
444    // Accumulate EOB
445    {
446      __m128i eob_shuffled;
447      eob_shuffled = _mm_shuffle_epi32(eob, 0xe);
448      eob = _mm_max_epi16(eob, eob_shuffled);
449      eob_shuffled = _mm_shufflelo_epi16(eob, 0xe);
450      eob = _mm_max_epi16(eob, eob_shuffled);
451      eob_shuffled = _mm_shufflelo_epi16(eob, 0x1);
452      eob = _mm_max_epi16(eob, eob_shuffled);
453      *eob_ptr = _mm_extract_epi16(eob, 1);
454    }
455  } else {
456    do {
457      store_zero_tran_low(dqcoeff_ptr + n_coeffs);
458      store_zero_tran_low(dqcoeff_ptr + n_coeffs + 8);
459      store_zero_tran_low(qcoeff_ptr + n_coeffs);
460      store_zero_tran_low(qcoeff_ptr + n_coeffs + 8);
461      n_coeffs += 8 * 2;
462    } while (n_coeffs < 0);
463    *eob_ptr = 0;
464  }
465}
466