1//==- MachineScheduler.h - MachineInstr Scheduling Pass ----------*- C++ -*-==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides an interface for customizing the standard MachineScheduler
11// pass. Note that the entire pass may be replaced as follows:
12//
13// <Target>TargetMachine::createPassConfig(PassManagerBase &PM) {
14//   PM.substitutePass(&MachineSchedulerID, &CustomSchedulerPassID);
15//   ...}
16//
17// The MachineScheduler pass is only responsible for choosing the regions to be
18// scheduled. Targets can override the DAG builder and scheduler without
19// replacing the pass as follows:
20//
21// ScheduleDAGInstrs *<Target>PassConfig::
22// createMachineScheduler(MachineSchedContext *C) {
23//   return new CustomMachineScheduler(C);
24// }
25//
26// The default scheduler, ScheduleDAGMILive, builds the DAG and drives list
27// scheduling while updating the instruction stream, register pressure, and live
28// intervals. Most targets don't need to override the DAG builder and list
29// schedulier, but subtargets that require custom scheduling heuristics may
30// plugin an alternate MachineSchedStrategy. The strategy is responsible for
31// selecting the highest priority node from the list:
32//
33// ScheduleDAGInstrs *<Target>PassConfig::
34// createMachineScheduler(MachineSchedContext *C) {
35//   return new ScheduleDAGMI(C, CustomStrategy(C));
36// }
37//
38// The DAG builder can also be customized in a sense by adding DAG mutations
39// that will run after DAG building and before list scheduling. DAG mutations
40// can adjust dependencies based on target-specific knowledge or add weak edges
41// to aid heuristics:
42//
43// ScheduleDAGInstrs *<Target>PassConfig::
44// createMachineScheduler(MachineSchedContext *C) {
45//   ScheduleDAGMI *DAG = new ScheduleDAGMI(C, CustomStrategy(C));
46//   DAG->addMutation(new CustomDependencies(DAG->TII, DAG->TRI));
47//   return DAG;
48// }
49//
50// A target that supports alternative schedulers can use the
51// MachineSchedRegistry to allow command line selection. This can be done by
52// implementing the following boilerplate:
53//
54// static ScheduleDAGInstrs *createCustomMachineSched(MachineSchedContext *C) {
55//  return new CustomMachineScheduler(C);
56// }
57// static MachineSchedRegistry
58// SchedCustomRegistry("custom", "Run my target's custom scheduler",
59//                     createCustomMachineSched);
60//
61//
62// Finally, subtargets that don't need to implement custom heuristics but would
63// like to configure the GenericScheduler's policy for a given scheduler region,
64// including scheduling direction and register pressure tracking policy, can do
65// this:
66//
67// void <SubTarget>Subtarget::
68// overrideSchedPolicy(MachineSchedPolicy &Policy,
69//                     unsigned NumRegionInstrs) const {
70//   Policy.<Flag> = true;
71// }
72//
73//===----------------------------------------------------------------------===//
74
75#ifndef LLVM_CODEGEN_MACHINESCHEDULER_H
76#define LLVM_CODEGEN_MACHINESCHEDULER_H
77
78#include "llvm/Analysis/AliasAnalysis.h"
79#include "llvm/CodeGen/MachinePassRegistry.h"
80#include "llvm/CodeGen/RegisterPressure.h"
81#include "llvm/CodeGen/ScheduleDAGInstrs.h"
82#include "llvm/CodeGen/ScheduleDAGMutation.h"
83#include <memory>
84
85namespace llvm {
86
87extern cl::opt<bool> ForceTopDown;
88extern cl::opt<bool> ForceBottomUp;
89
90class LiveIntervals;
91class MachineDominatorTree;
92class MachineLoopInfo;
93class RegisterClassInfo;
94class ScheduleDAGInstrs;
95class SchedDFSResult;
96class ScheduleHazardRecognizer;
97
98/// MachineSchedContext provides enough context from the MachineScheduler pass
99/// for the target to instantiate a scheduler.
100struct MachineSchedContext {
101  MachineFunction *MF;
102  const MachineLoopInfo *MLI;
103  const MachineDominatorTree *MDT;
104  const TargetPassConfig *PassConfig;
105  AliasAnalysis *AA;
106  LiveIntervals *LIS;
107
108  RegisterClassInfo *RegClassInfo;
109
110  MachineSchedContext();
111  virtual ~MachineSchedContext();
112};
113
114/// MachineSchedRegistry provides a selection of available machine instruction
115/// schedulers.
116class MachineSchedRegistry : public MachinePassRegistryNode {
117public:
118  typedef ScheduleDAGInstrs *(*ScheduleDAGCtor)(MachineSchedContext *);
119
120  // RegisterPassParser requires a (misnamed) FunctionPassCtor type.
121  typedef ScheduleDAGCtor FunctionPassCtor;
122
123  static MachinePassRegistry Registry;
124
125  MachineSchedRegistry(const char *N, const char *D, ScheduleDAGCtor C)
126    : MachinePassRegistryNode(N, D, (MachinePassCtor)C) {
127    Registry.Add(this);
128  }
129  ~MachineSchedRegistry() { Registry.Remove(this); }
130
131  // Accessors.
132  //
133  MachineSchedRegistry *getNext() const {
134    return (MachineSchedRegistry *)MachinePassRegistryNode::getNext();
135  }
136  static MachineSchedRegistry *getList() {
137    return (MachineSchedRegistry *)Registry.getList();
138  }
139  static void setListener(MachinePassRegistryListener *L) {
140    Registry.setListener(L);
141  }
142};
143
144class ScheduleDAGMI;
145
146/// Define a generic scheduling policy for targets that don't provide their own
147/// MachineSchedStrategy. This can be overriden for each scheduling region
148/// before building the DAG.
149struct MachineSchedPolicy {
150  // Allow the scheduler to disable register pressure tracking.
151  bool ShouldTrackPressure;
152  /// Track LaneMasks to allow reordering of independent subregister writes
153  /// of the same vreg. \sa MachineSchedStrategy::shouldTrackLaneMasks()
154  bool ShouldTrackLaneMasks;
155
156  // Allow the scheduler to force top-down or bottom-up scheduling. If neither
157  // is true, the scheduler runs in both directions and converges.
158  bool OnlyTopDown;
159  bool OnlyBottomUp;
160
161  // Disable heuristic that tries to fetch nodes from long dependency chains
162  // first.
163  bool DisableLatencyHeuristic;
164
165  MachineSchedPolicy(): ShouldTrackPressure(false), ShouldTrackLaneMasks(false),
166    OnlyTopDown(false), OnlyBottomUp(false), DisableLatencyHeuristic(false) {}
167};
168
169/// MachineSchedStrategy - Interface to the scheduling algorithm used by
170/// ScheduleDAGMI.
171///
172/// Initialization sequence:
173///   initPolicy -> shouldTrackPressure -> initialize(DAG) -> registerRoots
174class MachineSchedStrategy {
175  virtual void anchor();
176public:
177  virtual ~MachineSchedStrategy() {}
178
179  /// Optionally override the per-region scheduling policy.
180  virtual void initPolicy(MachineBasicBlock::iterator Begin,
181                          MachineBasicBlock::iterator End,
182                          unsigned NumRegionInstrs) {}
183
184  virtual void dumpPolicy() {}
185
186  /// Check if pressure tracking is needed before building the DAG and
187  /// initializing this strategy. Called after initPolicy.
188  virtual bool shouldTrackPressure() const { return true; }
189
190  /// Returns true if lanemasks should be tracked. LaneMask tracking is
191  /// necessary to reorder independent subregister defs for the same vreg.
192  /// This has to be enabled in combination with shouldTrackPressure().
193  virtual bool shouldTrackLaneMasks() const { return false; }
194
195  /// Initialize the strategy after building the DAG for a new region.
196  virtual void initialize(ScheduleDAGMI *DAG) = 0;
197
198  /// Notify this strategy that all roots have been released (including those
199  /// that depend on EntrySU or ExitSU).
200  virtual void registerRoots() {}
201
202  /// Pick the next node to schedule, or return NULL. Set IsTopNode to true to
203  /// schedule the node at the top of the unscheduled region. Otherwise it will
204  /// be scheduled at the bottom.
205  virtual SUnit *pickNode(bool &IsTopNode) = 0;
206
207  /// \brief Scheduler callback to notify that a new subtree is scheduled.
208  virtual void scheduleTree(unsigned SubtreeID) {}
209
210  /// Notify MachineSchedStrategy that ScheduleDAGMI has scheduled an
211  /// instruction and updated scheduled/remaining flags in the DAG nodes.
212  virtual void schedNode(SUnit *SU, bool IsTopNode) = 0;
213
214  /// When all predecessor dependencies have been resolved, free this node for
215  /// top-down scheduling.
216  virtual void releaseTopNode(SUnit *SU) = 0;
217  /// When all successor dependencies have been resolved, free this node for
218  /// bottom-up scheduling.
219  virtual void releaseBottomNode(SUnit *SU) = 0;
220};
221
222/// ScheduleDAGMI is an implementation of ScheduleDAGInstrs that simply
223/// schedules machine instructions according to the given MachineSchedStrategy
224/// without much extra book-keeping. This is the common functionality between
225/// PreRA and PostRA MachineScheduler.
226class ScheduleDAGMI : public ScheduleDAGInstrs {
227protected:
228  AliasAnalysis *AA;
229  LiveIntervals *LIS;
230  std::unique_ptr<MachineSchedStrategy> SchedImpl;
231
232  /// Topo - A topological ordering for SUnits which permits fast IsReachable
233  /// and similar queries.
234  ScheduleDAGTopologicalSort Topo;
235
236  /// Ordered list of DAG postprocessing steps.
237  std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations;
238
239  /// The top of the unscheduled zone.
240  MachineBasicBlock::iterator CurrentTop;
241
242  /// The bottom of the unscheduled zone.
243  MachineBasicBlock::iterator CurrentBottom;
244
245  /// Record the next node in a scheduled cluster.
246  const SUnit *NextClusterPred;
247  const SUnit *NextClusterSucc;
248
249#ifndef NDEBUG
250  /// The number of instructions scheduled so far. Used to cut off the
251  /// scheduler at the point determined by misched-cutoff.
252  unsigned NumInstrsScheduled;
253#endif
254public:
255  ScheduleDAGMI(MachineSchedContext *C, std::unique_ptr<MachineSchedStrategy> S,
256                bool RemoveKillFlags)
257      : ScheduleDAGInstrs(*C->MF, C->MLI, RemoveKillFlags), AA(C->AA),
258        LIS(C->LIS), SchedImpl(std::move(S)), Topo(SUnits, &ExitSU),
259        CurrentTop(), CurrentBottom(), NextClusterPred(nullptr),
260        NextClusterSucc(nullptr) {
261#ifndef NDEBUG
262    NumInstrsScheduled = 0;
263#endif
264  }
265
266  // Provide a vtable anchor
267  ~ScheduleDAGMI() override;
268
269  // Returns LiveIntervals instance for use in DAG mutators and such.
270  LiveIntervals *getLIS() const { return LIS; }
271
272  /// Return true if this DAG supports VReg liveness and RegPressure.
273  virtual bool hasVRegLiveness() const { return false; }
274
275  /// Add a postprocessing step to the DAG builder.
276  /// Mutations are applied in the order that they are added after normal DAG
277  /// building and before MachineSchedStrategy initialization.
278  ///
279  /// ScheduleDAGMI takes ownership of the Mutation object.
280  void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) {
281    Mutations.push_back(std::move(Mutation));
282  }
283
284  /// \brief True if an edge can be added from PredSU to SuccSU without creating
285  /// a cycle.
286  bool canAddEdge(SUnit *SuccSU, SUnit *PredSU);
287
288  /// \brief Add a DAG edge to the given SU with the given predecessor
289  /// dependence data.
290  ///
291  /// \returns true if the edge may be added without creating a cycle OR if an
292  /// equivalent edge already existed (false indicates failure).
293  bool addEdge(SUnit *SuccSU, const SDep &PredDep);
294
295  MachineBasicBlock::iterator top() const { return CurrentTop; }
296  MachineBasicBlock::iterator bottom() const { return CurrentBottom; }
297
298  /// Implement the ScheduleDAGInstrs interface for handling the next scheduling
299  /// region. This covers all instructions in a block, while schedule() may only
300  /// cover a subset.
301  void enterRegion(MachineBasicBlock *bb,
302                   MachineBasicBlock::iterator begin,
303                   MachineBasicBlock::iterator end,
304                   unsigned regioninstrs) override;
305
306  /// Implement ScheduleDAGInstrs interface for scheduling a sequence of
307  /// reorderable instructions.
308  void schedule() override;
309
310  /// Change the position of an instruction within the basic block and update
311  /// live ranges and region boundary iterators.
312  void moveInstruction(MachineInstr *MI, MachineBasicBlock::iterator InsertPos);
313
314  const SUnit *getNextClusterPred() const { return NextClusterPred; }
315
316  const SUnit *getNextClusterSucc() const { return NextClusterSucc; }
317
318  void viewGraph(const Twine &Name, const Twine &Title) override;
319  void viewGraph() override;
320
321protected:
322  // Top-Level entry points for the schedule() driver...
323
324  /// Apply each ScheduleDAGMutation step in order. This allows different
325  /// instances of ScheduleDAGMI to perform custom DAG postprocessing.
326  void postprocessDAG();
327
328  /// Release ExitSU predecessors and setup scheduler queues.
329  void initQueues(ArrayRef<SUnit*> TopRoots, ArrayRef<SUnit*> BotRoots);
330
331  /// Update scheduler DAG and queues after scheduling an instruction.
332  void updateQueues(SUnit *SU, bool IsTopNode);
333
334  /// Reinsert debug_values recorded in ScheduleDAGInstrs::DbgValues.
335  void placeDebugValues();
336
337  /// \brief dump the scheduled Sequence.
338  void dumpSchedule() const;
339
340  // Lesser helpers...
341  bool checkSchedLimit();
342
343  void findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
344                             SmallVectorImpl<SUnit*> &BotRoots);
345
346  void releaseSucc(SUnit *SU, SDep *SuccEdge);
347  void releaseSuccessors(SUnit *SU);
348  void releasePred(SUnit *SU, SDep *PredEdge);
349  void releasePredecessors(SUnit *SU);
350};
351
352/// ScheduleDAGMILive is an implementation of ScheduleDAGInstrs that schedules
353/// machine instructions while updating LiveIntervals and tracking regpressure.
354class ScheduleDAGMILive : public ScheduleDAGMI {
355protected:
356  RegisterClassInfo *RegClassInfo;
357
358  /// Information about DAG subtrees. If DFSResult is NULL, then SchedulerTrees
359  /// will be empty.
360  SchedDFSResult *DFSResult;
361  BitVector ScheduledTrees;
362
363  MachineBasicBlock::iterator LiveRegionEnd;
364
365  // Map each SU to its summary of pressure changes. This array is updated for
366  // liveness during bottom-up scheduling. Top-down scheduling may proceed but
367  // has no affect on the pressure diffs.
368  PressureDiffs SUPressureDiffs;
369
370  /// Register pressure in this region computed by initRegPressure.
371  bool ShouldTrackPressure;
372  bool ShouldTrackLaneMasks;
373  IntervalPressure RegPressure;
374  RegPressureTracker RPTracker;
375
376  /// List of pressure sets that exceed the target's pressure limit before
377  /// scheduling, listed in increasing set ID order. Each pressure set is paired
378  /// with its max pressure in the currently scheduled regions.
379  std::vector<PressureChange> RegionCriticalPSets;
380
381  /// The top of the unscheduled zone.
382  IntervalPressure TopPressure;
383  RegPressureTracker TopRPTracker;
384
385  /// The bottom of the unscheduled zone.
386  IntervalPressure BotPressure;
387  RegPressureTracker BotRPTracker;
388
389  /// True if disconnected subregister components are already renamed.
390  /// The renaming is only done on demand if lane masks are tracked.
391  bool DisconnectedComponentsRenamed;
392
393public:
394  ScheduleDAGMILive(MachineSchedContext *C,
395                    std::unique_ptr<MachineSchedStrategy> S)
396      : ScheduleDAGMI(C, std::move(S), /*RemoveKillFlags=*/false),
397        RegClassInfo(C->RegClassInfo), DFSResult(nullptr),
398        ShouldTrackPressure(false), ShouldTrackLaneMasks(false),
399        RPTracker(RegPressure), TopRPTracker(TopPressure),
400        BotRPTracker(BotPressure), DisconnectedComponentsRenamed(false) {}
401
402  ~ScheduleDAGMILive() override;
403
404  /// Return true if this DAG supports VReg liveness and RegPressure.
405  bool hasVRegLiveness() const override { return true; }
406
407  /// \brief Return true if register pressure tracking is enabled.
408  bool isTrackingPressure() const { return ShouldTrackPressure; }
409
410  /// Get current register pressure for the top scheduled instructions.
411  const IntervalPressure &getTopPressure() const { return TopPressure; }
412  const RegPressureTracker &getTopRPTracker() const { return TopRPTracker; }
413
414  /// Get current register pressure for the bottom scheduled instructions.
415  const IntervalPressure &getBotPressure() const { return BotPressure; }
416  const RegPressureTracker &getBotRPTracker() const { return BotRPTracker; }
417
418  /// Get register pressure for the entire scheduling region before scheduling.
419  const IntervalPressure &getRegPressure() const { return RegPressure; }
420
421  const std::vector<PressureChange> &getRegionCriticalPSets() const {
422    return RegionCriticalPSets;
423  }
424
425  PressureDiff &getPressureDiff(const SUnit *SU) {
426    return SUPressureDiffs[SU->NodeNum];
427  }
428
429  /// Compute a DFSResult after DAG building is complete, and before any
430  /// queue comparisons.
431  void computeDFSResult();
432
433  /// Return a non-null DFS result if the scheduling strategy initialized it.
434  const SchedDFSResult *getDFSResult() const { return DFSResult; }
435
436  BitVector &getScheduledTrees() { return ScheduledTrees; }
437
438  /// Implement the ScheduleDAGInstrs interface for handling the next scheduling
439  /// region. This covers all instructions in a block, while schedule() may only
440  /// cover a subset.
441  void enterRegion(MachineBasicBlock *bb,
442                   MachineBasicBlock::iterator begin,
443                   MachineBasicBlock::iterator end,
444                   unsigned regioninstrs) override;
445
446  /// Implement ScheduleDAGInstrs interface for scheduling a sequence of
447  /// reorderable instructions.
448  void schedule() override;
449
450  /// Compute the cyclic critical path through the DAG.
451  unsigned computeCyclicCriticalPath();
452
453protected:
454  // Top-Level entry points for the schedule() driver...
455
456  /// Call ScheduleDAGInstrs::buildSchedGraph with register pressure tracking
457  /// enabled. This sets up three trackers. RPTracker will cover the entire DAG
458  /// region, TopTracker and BottomTracker will be initialized to the top and
459  /// bottom of the DAG region without covereing any unscheduled instruction.
460  void buildDAGWithRegPressure();
461
462  /// Release ExitSU predecessors and setup scheduler queues. Re-position
463  /// the Top RP tracker in case the region beginning has changed.
464  void initQueues(ArrayRef<SUnit*> TopRoots, ArrayRef<SUnit*> BotRoots);
465
466  /// Move an instruction and update register pressure.
467  void scheduleMI(SUnit *SU, bool IsTopNode);
468
469  // Lesser helpers...
470
471  void initRegPressure();
472
473  void updatePressureDiffs(ArrayRef<RegisterMaskPair> LiveUses);
474
475  void updateScheduledPressure(const SUnit *SU,
476                               const std::vector<unsigned> &NewMaxPressure);
477};
478
479//===----------------------------------------------------------------------===//
480///
481/// Helpers for implementing custom MachineSchedStrategy classes. These take
482/// care of the book-keeping associated with list scheduling heuristics.
483///
484//===----------------------------------------------------------------------===//
485
486/// ReadyQueue encapsulates vector of "ready" SUnits with basic convenience
487/// methods for pushing and removing nodes. ReadyQueue's are uniquely identified
488/// by an ID. SUnit::NodeQueueId is a mask of the ReadyQueues the SUnit is in.
489///
490/// This is a convenience class that may be used by implementations of
491/// MachineSchedStrategy.
492class ReadyQueue {
493  unsigned ID;
494  std::string Name;
495  std::vector<SUnit*> Queue;
496
497public:
498  ReadyQueue(unsigned id, const Twine &name): ID(id), Name(name.str()) {}
499
500  unsigned getID() const { return ID; }
501
502  StringRef getName() const { return Name; }
503
504  // SU is in this queue if it's NodeQueueID is a superset of this ID.
505  bool isInQueue(SUnit *SU) const { return (SU->NodeQueueId & ID); }
506
507  bool empty() const { return Queue.empty(); }
508
509  void clear() { Queue.clear(); }
510
511  unsigned size() const { return Queue.size(); }
512
513  typedef std::vector<SUnit*>::iterator iterator;
514
515  iterator begin() { return Queue.begin(); }
516
517  iterator end() { return Queue.end(); }
518
519  ArrayRef<SUnit*> elements() { return Queue; }
520
521  iterator find(SUnit *SU) {
522    return std::find(Queue.begin(), Queue.end(), SU);
523  }
524
525  void push(SUnit *SU) {
526    Queue.push_back(SU);
527    SU->NodeQueueId |= ID;
528  }
529
530  iterator remove(iterator I) {
531    (*I)->NodeQueueId &= ~ID;
532    *I = Queue.back();
533    unsigned idx = I - Queue.begin();
534    Queue.pop_back();
535    return Queue.begin() + idx;
536  }
537
538  void dump();
539};
540
541/// Summarize the unscheduled region.
542struct SchedRemainder {
543  // Critical path through the DAG in expected latency.
544  unsigned CriticalPath;
545  unsigned CyclicCritPath;
546
547  // Scaled count of micro-ops left to schedule.
548  unsigned RemIssueCount;
549
550  bool IsAcyclicLatencyLimited;
551
552  // Unscheduled resources
553  SmallVector<unsigned, 16> RemainingCounts;
554
555  void reset() {
556    CriticalPath = 0;
557    CyclicCritPath = 0;
558    RemIssueCount = 0;
559    IsAcyclicLatencyLimited = false;
560    RemainingCounts.clear();
561  }
562
563  SchedRemainder() { reset(); }
564
565  void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel);
566};
567
568/// Each Scheduling boundary is associated with ready queues. It tracks the
569/// current cycle in the direction of movement, and maintains the state
570/// of "hazards" and other interlocks at the current cycle.
571class SchedBoundary {
572public:
573  /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both)
574  enum {
575    TopQID = 1,
576    BotQID = 2,
577    LogMaxQID = 2
578  };
579
580  ScheduleDAGMI *DAG;
581  const TargetSchedModel *SchedModel;
582  SchedRemainder *Rem;
583
584  ReadyQueue Available;
585  ReadyQueue Pending;
586
587  ScheduleHazardRecognizer *HazardRec;
588
589private:
590  /// True if the pending Q should be checked/updated before scheduling another
591  /// instruction.
592  bool CheckPending;
593
594  // For heuristics, keep a list of the nodes that immediately depend on the
595  // most recently scheduled node.
596  SmallPtrSet<const SUnit*, 8> NextSUs;
597
598  /// Number of cycles it takes to issue the instructions scheduled in this
599  /// zone. It is defined as: scheduled-micro-ops / issue-width + stalls.
600  /// See getStalls().
601  unsigned CurrCycle;
602
603  /// Micro-ops issued in the current cycle
604  unsigned CurrMOps;
605
606  /// MinReadyCycle - Cycle of the soonest available instruction.
607  unsigned MinReadyCycle;
608
609  // The expected latency of the critical path in this scheduled zone.
610  unsigned ExpectedLatency;
611
612  // The latency of dependence chains leading into this zone.
613  // For each node scheduled bottom-up: DLat = max DLat, N.Depth.
614  // For each cycle scheduled: DLat -= 1.
615  unsigned DependentLatency;
616
617  /// Count the scheduled (issued) micro-ops that can be retired by
618  /// time=CurrCycle assuming the first scheduled instr is retired at time=0.
619  unsigned RetiredMOps;
620
621  // Count scheduled resources that have been executed. Resources are
622  // considered executed if they become ready in the time that it takes to
623  // saturate any resource including the one in question. Counts are scaled
624  // for direct comparison with other resources. Counts can be compared with
625  // MOps * getMicroOpFactor and Latency * getLatencyFactor.
626  SmallVector<unsigned, 16> ExecutedResCounts;
627
628  /// Cache the max count for a single resource.
629  unsigned MaxExecutedResCount;
630
631  // Cache the critical resources ID in this scheduled zone.
632  unsigned ZoneCritResIdx;
633
634  // Is the scheduled region resource limited vs. latency limited.
635  bool IsResourceLimited;
636
637  // Record the highest cycle at which each resource has been reserved by a
638  // scheduled instruction.
639  SmallVector<unsigned, 16> ReservedCycles;
640
641#ifndef NDEBUG
642  // Remember the greatest possible stall as an upper bound on the number of
643  // times we should retry the pending queue because of a hazard.
644  unsigned MaxObservedStall;
645#endif
646
647public:
648  /// Pending queues extend the ready queues with the same ID and the
649  /// PendingFlag set.
650  SchedBoundary(unsigned ID, const Twine &Name):
651    DAG(nullptr), SchedModel(nullptr), Rem(nullptr), Available(ID, Name+".A"),
652    Pending(ID << LogMaxQID, Name+".P"),
653    HazardRec(nullptr) {
654    reset();
655  }
656
657  ~SchedBoundary();
658
659  void reset();
660
661  void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel,
662            SchedRemainder *rem);
663
664  bool isTop() const {
665    return Available.getID() == TopQID;
666  }
667
668  /// Number of cycles to issue the instructions scheduled in this zone.
669  unsigned getCurrCycle() const { return CurrCycle; }
670
671  /// Micro-ops issued in the current cycle
672  unsigned getCurrMOps() const { return CurrMOps; }
673
674  /// Return true if the given SU is used by the most recently scheduled
675  /// instruction.
676  bool isNextSU(const SUnit *SU) const { return NextSUs.count(SU); }
677
678  // The latency of dependence chains leading into this zone.
679  unsigned getDependentLatency() const { return DependentLatency; }
680
681  /// Get the number of latency cycles "covered" by the scheduled
682  /// instructions. This is the larger of the critical path within the zone
683  /// and the number of cycles required to issue the instructions.
684  unsigned getScheduledLatency() const {
685    return std::max(ExpectedLatency, CurrCycle);
686  }
687
688  unsigned getUnscheduledLatency(SUnit *SU) const {
689    return isTop() ? SU->getHeight() : SU->getDepth();
690  }
691
692  unsigned getResourceCount(unsigned ResIdx) const {
693    return ExecutedResCounts[ResIdx];
694  }
695
696  /// Get the scaled count of scheduled micro-ops and resources, including
697  /// executed resources.
698  unsigned getCriticalCount() const {
699    if (!ZoneCritResIdx)
700      return RetiredMOps * SchedModel->getMicroOpFactor();
701    return getResourceCount(ZoneCritResIdx);
702  }
703
704  /// Get a scaled count for the minimum execution time of the scheduled
705  /// micro-ops that are ready to execute by getExecutedCount. Notice the
706  /// feedback loop.
707  unsigned getExecutedCount() const {
708    return std::max(CurrCycle * SchedModel->getLatencyFactor(),
709                    MaxExecutedResCount);
710  }
711
712  unsigned getZoneCritResIdx() const { return ZoneCritResIdx; }
713
714  // Is the scheduled region resource limited vs. latency limited.
715  bool isResourceLimited() const { return IsResourceLimited; }
716
717  /// Get the difference between the given SUnit's ready time and the current
718  /// cycle.
719  unsigned getLatencyStallCycles(SUnit *SU);
720
721  unsigned getNextResourceCycle(unsigned PIdx, unsigned Cycles);
722
723  bool checkHazard(SUnit *SU);
724
725  unsigned findMaxLatency(ArrayRef<SUnit*> ReadySUs);
726
727  unsigned getOtherResourceCount(unsigned &OtherCritIdx);
728
729  void releaseNode(SUnit *SU, unsigned ReadyCycle);
730
731  void releaseTopNode(SUnit *SU);
732
733  void releaseBottomNode(SUnit *SU);
734
735  void bumpCycle(unsigned NextCycle);
736
737  void incExecutedResources(unsigned PIdx, unsigned Count);
738
739  unsigned countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle);
740
741  void bumpNode(SUnit *SU);
742
743  void releasePending();
744
745  void removeReady(SUnit *SU);
746
747  /// Call this before applying any other heuristics to the Available queue.
748  /// Updates the Available/Pending Q's if necessary and returns the single
749  /// available instruction, or NULL if there are multiple candidates.
750  SUnit *pickOnlyChoice();
751
752#ifndef NDEBUG
753  void dumpScheduledState();
754#endif
755};
756
757/// Base class for GenericScheduler. This class maintains information about
758/// scheduling candidates based on TargetSchedModel making it easy to implement
759/// heuristics for either preRA or postRA scheduling.
760class GenericSchedulerBase : public MachineSchedStrategy {
761public:
762  /// Represent the type of SchedCandidate found within a single queue.
763  /// pickNodeBidirectional depends on these listed by decreasing priority.
764  enum CandReason : uint8_t {
765    NoCand, Only1, PhysRegCopy, RegExcess, RegCritical, Stall, Cluster, Weak,
766    RegMax, ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce,
767    TopDepthReduce, TopPathReduce, NextDefUse, NodeOrder};
768
769#ifndef NDEBUG
770  static const char *getReasonStr(GenericSchedulerBase::CandReason Reason);
771#endif
772
773  /// Policy for scheduling the next instruction in the candidate's zone.
774  struct CandPolicy {
775    bool ReduceLatency;
776    unsigned ReduceResIdx;
777    unsigned DemandResIdx;
778
779    CandPolicy(): ReduceLatency(false), ReduceResIdx(0), DemandResIdx(0) {}
780
781    bool operator==(const CandPolicy &RHS) const {
782      return ReduceLatency == RHS.ReduceLatency &&
783             ReduceResIdx == RHS.ReduceResIdx &&
784             DemandResIdx == RHS.DemandResIdx;
785    }
786    bool operator!=(const CandPolicy &RHS) const {
787      return !(*this == RHS);
788    }
789  };
790
791  /// Status of an instruction's critical resource consumption.
792  struct SchedResourceDelta {
793    // Count critical resources in the scheduled region required by SU.
794    unsigned CritResources;
795
796    // Count critical resources from another region consumed by SU.
797    unsigned DemandedResources;
798
799    SchedResourceDelta(): CritResources(0), DemandedResources(0) {}
800
801    bool operator==(const SchedResourceDelta &RHS) const {
802      return CritResources == RHS.CritResources
803        && DemandedResources == RHS.DemandedResources;
804    }
805    bool operator!=(const SchedResourceDelta &RHS) const {
806      return !operator==(RHS);
807    }
808  };
809
810  /// Store the state used by GenericScheduler heuristics, required for the
811  /// lifetime of one invocation of pickNode().
812  struct SchedCandidate {
813    CandPolicy Policy;
814
815    // The best SUnit candidate.
816    SUnit *SU;
817
818    // The reason for this candidate.
819    CandReason Reason;
820
821    // Whether this candidate should be scheduled at top/bottom.
822    bool AtTop;
823
824    // Register pressure values for the best candidate.
825    RegPressureDelta RPDelta;
826
827    // Critical resource consumption of the best candidate.
828    SchedResourceDelta ResDelta;
829
830    SchedCandidate() { reset(CandPolicy()); }
831    SchedCandidate(const CandPolicy &Policy) { reset(Policy); }
832
833    void reset(const CandPolicy &NewPolicy) {
834      Policy = NewPolicy;
835      SU = nullptr;
836      Reason = NoCand;
837      AtTop = false;
838      RPDelta = RegPressureDelta();
839      ResDelta = SchedResourceDelta();
840    }
841
842    bool isValid() const { return SU; }
843
844    // Copy the status of another candidate without changing policy.
845    void setBest(SchedCandidate &Best) {
846      assert(Best.Reason != NoCand && "uninitialized Sched candidate");
847      SU = Best.SU;
848      Reason = Best.Reason;
849      AtTop = Best.AtTop;
850      RPDelta = Best.RPDelta;
851      ResDelta = Best.ResDelta;
852    }
853
854    void initResourceDelta(const ScheduleDAGMI *DAG,
855                           const TargetSchedModel *SchedModel);
856  };
857
858protected:
859  const MachineSchedContext *Context;
860  const TargetSchedModel *SchedModel;
861  const TargetRegisterInfo *TRI;
862
863  SchedRemainder Rem;
864protected:
865  GenericSchedulerBase(const MachineSchedContext *C):
866    Context(C), SchedModel(nullptr), TRI(nullptr) {}
867
868  void setPolicy(CandPolicy &Policy, bool IsPostRA, SchedBoundary &CurrZone,
869                 SchedBoundary *OtherZone);
870
871#ifndef NDEBUG
872  void traceCandidate(const SchedCandidate &Cand);
873#endif
874};
875
876/// GenericScheduler shrinks the unscheduled zone using heuristics to balance
877/// the schedule.
878class GenericScheduler : public GenericSchedulerBase {
879  ScheduleDAGMILive *DAG;
880
881  // State of the top and bottom scheduled instruction boundaries.
882  SchedBoundary Top;
883  SchedBoundary Bot;
884
885  /// Candidate last picked from Top boundary.
886  SchedCandidate TopCand;
887  /// Candidate last picked from Bot boundary.
888  SchedCandidate BotCand;
889
890  MachineSchedPolicy RegionPolicy;
891public:
892  GenericScheduler(const MachineSchedContext *C):
893    GenericSchedulerBase(C), DAG(nullptr), Top(SchedBoundary::TopQID, "TopQ"),
894    Bot(SchedBoundary::BotQID, "BotQ") {}
895
896  void initPolicy(MachineBasicBlock::iterator Begin,
897                  MachineBasicBlock::iterator End,
898                  unsigned NumRegionInstrs) override;
899
900  void dumpPolicy() override;
901
902  bool shouldTrackPressure() const override {
903    return RegionPolicy.ShouldTrackPressure;
904  }
905
906  bool shouldTrackLaneMasks() const override {
907    return RegionPolicy.ShouldTrackLaneMasks;
908  }
909
910  void initialize(ScheduleDAGMI *dag) override;
911
912  SUnit *pickNode(bool &IsTopNode) override;
913
914  void schedNode(SUnit *SU, bool IsTopNode) override;
915
916  void releaseTopNode(SUnit *SU) override {
917    Top.releaseTopNode(SU);
918    TopCand.SU = nullptr;
919  }
920
921  void releaseBottomNode(SUnit *SU) override {
922    Bot.releaseBottomNode(SU);
923    BotCand.SU = nullptr;
924  }
925
926  void registerRoots() override;
927
928protected:
929  void checkAcyclicLatency();
930
931  void initCandidate(SchedCandidate &Cand, SUnit *SU, bool AtTop,
932                     const RegPressureTracker &RPTracker,
933                     RegPressureTracker &TempTracker);
934
935  void tryCandidate(SchedCandidate &Cand,
936                    SchedCandidate &TryCand,
937                    SchedBoundary *Zone);
938
939  SUnit *pickNodeBidirectional(bool &IsTopNode);
940
941  void pickNodeFromQueue(SchedBoundary &Zone,
942                         const CandPolicy &ZonePolicy,
943                         const RegPressureTracker &RPTracker,
944                         SchedCandidate &Candidate);
945
946  void reschedulePhysRegCopies(SUnit *SU, bool isTop);
947};
948
949/// PostGenericScheduler - Interface to the scheduling algorithm used by
950/// ScheduleDAGMI.
951///
952/// Callbacks from ScheduleDAGMI:
953///   initPolicy -> initialize(DAG) -> registerRoots -> pickNode ...
954class PostGenericScheduler : public GenericSchedulerBase {
955  ScheduleDAGMI *DAG;
956  SchedBoundary Top;
957  SmallVector<SUnit*, 8> BotRoots;
958public:
959  PostGenericScheduler(const MachineSchedContext *C):
960    GenericSchedulerBase(C), Top(SchedBoundary::TopQID, "TopQ") {}
961
962  ~PostGenericScheduler() override {}
963
964  void initPolicy(MachineBasicBlock::iterator Begin,
965                  MachineBasicBlock::iterator End,
966                  unsigned NumRegionInstrs) override {
967    /* no configurable policy */
968  }
969
970  /// PostRA scheduling does not track pressure.
971  bool shouldTrackPressure() const override { return false; }
972
973  void initialize(ScheduleDAGMI *Dag) override;
974
975  void registerRoots() override;
976
977  SUnit *pickNode(bool &IsTopNode) override;
978
979  void scheduleTree(unsigned SubtreeID) override {
980    llvm_unreachable("PostRA scheduler does not support subtree analysis.");
981  }
982
983  void schedNode(SUnit *SU, bool IsTopNode) override;
984
985  void releaseTopNode(SUnit *SU) override {
986    Top.releaseTopNode(SU);
987  }
988
989  // Only called for roots.
990  void releaseBottomNode(SUnit *SU) override {
991    BotRoots.push_back(SU);
992  }
993
994protected:
995  void tryCandidate(SchedCandidate &Cand, SchedCandidate &TryCand);
996
997  void pickNodeFromQueue(SchedCandidate &Cand);
998};
999
1000} // namespace llvm
1001
1002#endif
1003