1//===-- llvm/CodeGen/SelectionDAG.h - InstSelection DAG ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the SelectionDAG class, and transitively defines the
11// SDNode class and subclasses.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CODEGEN_SELECTIONDAG_H
16#define LLVM_CODEGEN_SELECTIONDAG_H
17
18#include "llvm/ADT/DenseSet.h"
19#include "llvm/ADT/SetVector.h"
20#include "llvm/ADT/StringMap.h"
21#include "llvm/ADT/ilist.h"
22#include "llvm/Analysis/AliasAnalysis.h"
23#include "llvm/CodeGen/DAGCombine.h"
24#include "llvm/CodeGen/MachineFunction.h"
25#include "llvm/CodeGen/SelectionDAGNodes.h"
26#include "llvm/Support/ArrayRecycler.h"
27#include "llvm/Support/RecyclingAllocator.h"
28#include "llvm/Target/TargetMachine.h"
29#include <cassert>
30#include <map>
31#include <string>
32#include <vector>
33
34namespace llvm {
35
36class MachineConstantPoolValue;
37class MachineFunction;
38class MDNode;
39class SDDbgValue;
40class TargetLowering;
41class SelectionDAGTargetInfo;
42
43class SDVTListNode : public FoldingSetNode {
44  friend struct FoldingSetTrait<SDVTListNode>;
45  /// A reference to an Interned FoldingSetNodeID for this node.
46  /// The Allocator in SelectionDAG holds the data.
47  /// SDVTList contains all types which are frequently accessed in SelectionDAG.
48  /// The size of this list is not expected to be big so it won't introduce
49  /// a memory penalty.
50  FoldingSetNodeIDRef FastID;
51  const EVT *VTs;
52  unsigned int NumVTs;
53  /// The hash value for SDVTList is fixed, so cache it to avoid
54  /// hash calculation.
55  unsigned HashValue;
56public:
57  SDVTListNode(const FoldingSetNodeIDRef ID, const EVT *VT, unsigned int Num) :
58      FastID(ID), VTs(VT), NumVTs(Num) {
59    HashValue = ID.ComputeHash();
60  }
61  SDVTList getSDVTList() {
62    SDVTList result = {VTs, NumVTs};
63    return result;
64  }
65};
66
67/// Specialize FoldingSetTrait for SDVTListNode
68/// to avoid computing temp FoldingSetNodeID and hash value.
69template<> struct FoldingSetTrait<SDVTListNode> : DefaultFoldingSetTrait<SDVTListNode> {
70  static void Profile(const SDVTListNode &X, FoldingSetNodeID& ID) {
71    ID = X.FastID;
72  }
73  static bool Equals(const SDVTListNode &X, const FoldingSetNodeID &ID,
74                     unsigned IDHash, FoldingSetNodeID &TempID) {
75    if (X.HashValue != IDHash)
76      return false;
77    return ID == X.FastID;
78  }
79  static unsigned ComputeHash(const SDVTListNode &X, FoldingSetNodeID &TempID) {
80    return X.HashValue;
81  }
82};
83
84template<> struct ilist_traits<SDNode> : public ilist_default_traits<SDNode> {
85private:
86  mutable ilist_half_node<SDNode> Sentinel;
87public:
88  SDNode *createSentinel() const {
89    return static_cast<SDNode*>(&Sentinel);
90  }
91  static void destroySentinel(SDNode *) {}
92
93  SDNode *provideInitialHead() const { return createSentinel(); }
94  SDNode *ensureHead(SDNode*) const { return createSentinel(); }
95  static void noteHead(SDNode*, SDNode*) {}
96
97  static void deleteNode(SDNode *) {
98    llvm_unreachable("ilist_traits<SDNode> shouldn't see a deleteNode call!");
99  }
100private:
101  static void createNode(const SDNode &);
102};
103
104/// Keeps track of dbg_value information through SDISel.  We do
105/// not build SDNodes for these so as not to perturb the generated code;
106/// instead the info is kept off to the side in this structure. Each SDNode may
107/// have one or more associated dbg_value entries. This information is kept in
108/// DbgValMap.
109/// Byval parameters are handled separately because they don't use alloca's,
110/// which busts the normal mechanism.  There is good reason for handling all
111/// parameters separately:  they may not have code generated for them, they
112/// should always go at the beginning of the function regardless of other code
113/// motion, and debug info for them is potentially useful even if the parameter
114/// is unused.  Right now only byval parameters are handled separately.
115class SDDbgInfo {
116  BumpPtrAllocator Alloc;
117  SmallVector<SDDbgValue*, 32> DbgValues;
118  SmallVector<SDDbgValue*, 32> ByvalParmDbgValues;
119  typedef DenseMap<const SDNode*, SmallVector<SDDbgValue*, 2> > DbgValMapType;
120  DbgValMapType DbgValMap;
121
122  void operator=(const SDDbgInfo&) = delete;
123  SDDbgInfo(const SDDbgInfo&) = delete;
124public:
125  SDDbgInfo() {}
126
127  void add(SDDbgValue *V, const SDNode *Node, bool isParameter) {
128    if (isParameter) {
129      ByvalParmDbgValues.push_back(V);
130    } else     DbgValues.push_back(V);
131    if (Node)
132      DbgValMap[Node].push_back(V);
133  }
134
135  /// \brief Invalidate all DbgValues attached to the node and remove
136  /// it from the Node-to-DbgValues map.
137  void erase(const SDNode *Node);
138
139  void clear() {
140    DbgValMap.clear();
141    DbgValues.clear();
142    ByvalParmDbgValues.clear();
143    Alloc.Reset();
144  }
145
146  BumpPtrAllocator &getAlloc() { return Alloc; }
147
148  bool empty() const {
149    return DbgValues.empty() && ByvalParmDbgValues.empty();
150  }
151
152  ArrayRef<SDDbgValue*> getSDDbgValues(const SDNode *Node) {
153    DbgValMapType::iterator I = DbgValMap.find(Node);
154    if (I != DbgValMap.end())
155      return I->second;
156    return ArrayRef<SDDbgValue*>();
157  }
158
159  typedef SmallVectorImpl<SDDbgValue*>::iterator DbgIterator;
160  DbgIterator DbgBegin() { return DbgValues.begin(); }
161  DbgIterator DbgEnd()   { return DbgValues.end(); }
162  DbgIterator ByvalParmDbgBegin() { return ByvalParmDbgValues.begin(); }
163  DbgIterator ByvalParmDbgEnd()   { return ByvalParmDbgValues.end(); }
164};
165
166class SelectionDAG;
167void checkForCycles(const SelectionDAG *DAG, bool force = false);
168
169/// This is used to represent a portion of an LLVM function in a low-level
170/// Data Dependence DAG representation suitable for instruction selection.
171/// This DAG is constructed as the first step of instruction selection in order
172/// to allow implementation of machine specific optimizations
173/// and code simplifications.
174///
175/// The representation used by the SelectionDAG is a target-independent
176/// representation, which has some similarities to the GCC RTL representation,
177/// but is significantly more simple, powerful, and is a graph form instead of a
178/// linear form.
179///
180class SelectionDAG {
181  const TargetMachine &TM;
182  const SelectionDAGTargetInfo *TSI;
183  const TargetLowering *TLI;
184  MachineFunction *MF;
185  LLVMContext *Context;
186  CodeGenOpt::Level OptLevel;
187
188  /// The starting token.
189  SDNode EntryNode;
190
191  /// The root of the entire DAG.
192  SDValue Root;
193
194  /// A linked list of nodes in the current DAG.
195  ilist<SDNode> AllNodes;
196
197  /// The AllocatorType for allocating SDNodes. We use
198  /// pool allocation with recycling.
199  typedef RecyclingAllocator<BumpPtrAllocator, SDNode, sizeof(LargestSDNode),
200                             AlignOf<MostAlignedSDNode>::Alignment>
201    NodeAllocatorType;
202
203  /// Pool allocation for nodes.
204  NodeAllocatorType NodeAllocator;
205
206  /// This structure is used to memoize nodes, automatically performing
207  /// CSE with existing nodes when a duplicate is requested.
208  FoldingSet<SDNode> CSEMap;
209
210  /// Pool allocation for machine-opcode SDNode operands.
211  BumpPtrAllocator OperandAllocator;
212  ArrayRecycler<SDUse> OperandRecycler;
213
214  /// Pool allocation for misc. objects that are created once per SelectionDAG.
215  BumpPtrAllocator Allocator;
216
217  /// Tracks dbg_value information through SDISel.
218  SDDbgInfo *DbgInfo;
219
220  uint16_t NextPersistentId = 0;
221
222public:
223  /// Clients of various APIs that cause global effects on
224  /// the DAG can optionally implement this interface.  This allows the clients
225  /// to handle the various sorts of updates that happen.
226  ///
227  /// A DAGUpdateListener automatically registers itself with DAG when it is
228  /// constructed, and removes itself when destroyed in RAII fashion.
229  struct DAGUpdateListener {
230    DAGUpdateListener *const Next;
231    SelectionDAG &DAG;
232
233    explicit DAGUpdateListener(SelectionDAG &D)
234      : Next(D.UpdateListeners), DAG(D) {
235      DAG.UpdateListeners = this;
236    }
237
238    virtual ~DAGUpdateListener() {
239      assert(DAG.UpdateListeners == this &&
240             "DAGUpdateListeners must be destroyed in LIFO order");
241      DAG.UpdateListeners = Next;
242    }
243
244    /// The node N that was deleted and, if E is not null, an
245    /// equivalent node E that replaced it.
246    virtual void NodeDeleted(SDNode *N, SDNode *E);
247
248    /// The node N that was updated.
249    virtual void NodeUpdated(SDNode *N);
250  };
251
252  struct DAGNodeDeletedListener : public DAGUpdateListener {
253    std::function<void(SDNode *, SDNode *)> Callback;
254    DAGNodeDeletedListener(SelectionDAG &DAG,
255                           std::function<void(SDNode *, SDNode *)> Callback)
256        : DAGUpdateListener(DAG), Callback(Callback) {}
257    void NodeDeleted(SDNode *N, SDNode *E) override { Callback(N, E); }
258  };
259
260  /// When true, additional steps are taken to
261  /// ensure that getConstant() and similar functions return DAG nodes that
262  /// have legal types. This is important after type legalization since
263  /// any illegally typed nodes generated after this point will not experience
264  /// type legalization.
265  bool NewNodesMustHaveLegalTypes;
266
267private:
268  /// DAGUpdateListener is a friend so it can manipulate the listener stack.
269  friend struct DAGUpdateListener;
270
271  /// Linked list of registered DAGUpdateListener instances.
272  /// This stack is maintained by DAGUpdateListener RAII.
273  DAGUpdateListener *UpdateListeners;
274
275  /// Implementation of setSubgraphColor.
276  /// Return whether we had to truncate the search.
277  bool setSubgraphColorHelper(SDNode *N, const char *Color,
278                              DenseSet<SDNode *> &visited,
279                              int level, bool &printed);
280
281  template <typename SDNodeT, typename... ArgTypes>
282  SDNodeT *newSDNode(ArgTypes &&... Args) {
283    return new (NodeAllocator.template Allocate<SDNodeT>())
284        SDNodeT(std::forward<ArgTypes>(Args)...);
285  }
286
287  void createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
288    assert(!Node->OperandList && "Node already has operands");
289    SDUse *Ops = OperandRecycler.allocate(
290        ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
291
292    for (unsigned I = 0; I != Vals.size(); ++I) {
293      Ops[I].setUser(Node);
294      Ops[I].setInitial(Vals[I]);
295    }
296    Node->NumOperands = Vals.size();
297    Node->OperandList = Ops;
298    checkForCycles(Node);
299  }
300
301  void removeOperands(SDNode *Node) {
302    if (!Node->OperandList)
303      return;
304    OperandRecycler.deallocate(
305        ArrayRecycler<SDUse>::Capacity::get(Node->NumOperands),
306        Node->OperandList);
307    Node->NumOperands = 0;
308    Node->OperandList = nullptr;
309  }
310
311  void operator=(const SelectionDAG&) = delete;
312  SelectionDAG(const SelectionDAG&) = delete;
313
314public:
315  explicit SelectionDAG(const TargetMachine &TM, llvm::CodeGenOpt::Level);
316  ~SelectionDAG();
317
318  /// Prepare this SelectionDAG to process code in the given MachineFunction.
319  void init(MachineFunction &mf);
320
321  /// Clear state and free memory necessary to make this
322  /// SelectionDAG ready to process a new block.
323  void clear();
324
325  MachineFunction &getMachineFunction() const { return *MF; }
326  const DataLayout &getDataLayout() const { return MF->getDataLayout(); }
327  const TargetMachine &getTarget() const { return TM; }
328  const TargetSubtargetInfo &getSubtarget() const { return MF->getSubtarget(); }
329  const TargetLowering &getTargetLoweringInfo() const { return *TLI; }
330  const SelectionDAGTargetInfo &getSelectionDAGInfo() const { return *TSI; }
331  LLVMContext *getContext() const {return Context; }
332
333  /// Pop up a GraphViz/gv window with the DAG rendered using 'dot'.
334  void viewGraph(const std::string &Title);
335  void viewGraph();
336
337#ifndef NDEBUG
338  std::map<const SDNode *, std::string> NodeGraphAttrs;
339#endif
340
341  /// Clear all previously defined node graph attributes.
342  /// Intended to be used from a debugging tool (eg. gdb).
343  void clearGraphAttrs();
344
345  /// Set graph attributes for a node. (eg. "color=red".)
346  void setGraphAttrs(const SDNode *N, const char *Attrs);
347
348  /// Get graph attributes for a node. (eg. "color=red".)
349  /// Used from getNodeAttributes.
350  const std::string getGraphAttrs(const SDNode *N) const;
351
352  /// Convenience for setting node color attribute.
353  void setGraphColor(const SDNode *N, const char *Color);
354
355  /// Convenience for setting subgraph color attribute.
356  void setSubgraphColor(SDNode *N, const char *Color);
357
358  typedef ilist<SDNode>::const_iterator allnodes_const_iterator;
359  allnodes_const_iterator allnodes_begin() const { return AllNodes.begin(); }
360  allnodes_const_iterator allnodes_end() const { return AllNodes.end(); }
361  typedef ilist<SDNode>::iterator allnodes_iterator;
362  allnodes_iterator allnodes_begin() { return AllNodes.begin(); }
363  allnodes_iterator allnodes_end() { return AllNodes.end(); }
364  ilist<SDNode>::size_type allnodes_size() const {
365    return AllNodes.size();
366  }
367
368  iterator_range<allnodes_iterator> allnodes() {
369    return make_range(allnodes_begin(), allnodes_end());
370  }
371  iterator_range<allnodes_const_iterator> allnodes() const {
372    return make_range(allnodes_begin(), allnodes_end());
373  }
374
375  /// Return the root tag of the SelectionDAG.
376  const SDValue &getRoot() const { return Root; }
377
378  /// Return the token chain corresponding to the entry of the function.
379  SDValue getEntryNode() const {
380    return SDValue(const_cast<SDNode *>(&EntryNode), 0);
381  }
382
383  /// Set the current root tag of the SelectionDAG.
384  ///
385  const SDValue &setRoot(SDValue N) {
386    assert((!N.getNode() || N.getValueType() == MVT::Other) &&
387           "DAG root value is not a chain!");
388    if (N.getNode())
389      checkForCycles(N.getNode(), this);
390    Root = N;
391    if (N.getNode())
392      checkForCycles(this);
393    return Root;
394  }
395
396  /// This iterates over the nodes in the SelectionDAG, folding
397  /// certain types of nodes together, or eliminating superfluous nodes.  The
398  /// Level argument controls whether Combine is allowed to produce nodes and
399  /// types that are illegal on the target.
400  void Combine(CombineLevel Level, AliasAnalysis &AA,
401               CodeGenOpt::Level OptLevel);
402
403  /// This transforms the SelectionDAG into a SelectionDAG that
404  /// only uses types natively supported by the target.
405  /// Returns "true" if it made any changes.
406  ///
407  /// Note that this is an involved process that may invalidate pointers into
408  /// the graph.
409  bool LegalizeTypes();
410
411  /// This transforms the SelectionDAG into a SelectionDAG that is
412  /// compatible with the target instruction selector, as indicated by the
413  /// TargetLowering object.
414  ///
415  /// Note that this is an involved process that may invalidate pointers into
416  /// the graph.
417  void Legalize();
418
419  /// \brief Transforms a SelectionDAG node and any operands to it into a node
420  /// that is compatible with the target instruction selector, as indicated by
421  /// the TargetLowering object.
422  ///
423  /// \returns true if \c N is a valid, legal node after calling this.
424  ///
425  /// This essentially runs a single recursive walk of the \c Legalize process
426  /// over the given node (and its operands). This can be used to incrementally
427  /// legalize the DAG. All of the nodes which are directly replaced,
428  /// potentially including N, are added to the output parameter \c
429  /// UpdatedNodes so that the delta to the DAG can be understood by the
430  /// caller.
431  ///
432  /// When this returns false, N has been legalized in a way that make the
433  /// pointer passed in no longer valid. It may have even been deleted from the
434  /// DAG, and so it shouldn't be used further. When this returns true, the
435  /// N passed in is a legal node, and can be immediately processed as such.
436  /// This may still have done some work on the DAG, and will still populate
437  /// UpdatedNodes with any new nodes replacing those originally in the DAG.
438  bool LegalizeOp(SDNode *N, SmallSetVector<SDNode *, 16> &UpdatedNodes);
439
440  /// This transforms the SelectionDAG into a SelectionDAG
441  /// that only uses vector math operations supported by the target.  This is
442  /// necessary as a separate step from Legalize because unrolling a vector
443  /// operation can introduce illegal types, which requires running
444  /// LegalizeTypes again.
445  ///
446  /// This returns true if it made any changes; in that case, LegalizeTypes
447  /// is called again before Legalize.
448  ///
449  /// Note that this is an involved process that may invalidate pointers into
450  /// the graph.
451  bool LegalizeVectors();
452
453  /// This method deletes all unreachable nodes in the SelectionDAG.
454  void RemoveDeadNodes();
455
456  /// Remove the specified node from the system.  This node must
457  /// have no referrers.
458  void DeleteNode(SDNode *N);
459
460  /// Return an SDVTList that represents the list of values specified.
461  SDVTList getVTList(EVT VT);
462  SDVTList getVTList(EVT VT1, EVT VT2);
463  SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3);
464  SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4);
465  SDVTList getVTList(ArrayRef<EVT> VTs);
466
467  //===--------------------------------------------------------------------===//
468  // Node creation methods.
469  //
470
471  /// \brief Create a ConstantSDNode wrapping a constant value.
472  /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
473  ///
474  /// If only legal types can be produced, this does the necessary
475  /// transformations (e.g., if the vector element type is illegal).
476  /// @{
477  SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
478                      bool isTarget = false, bool isOpaque = false);
479  SDValue getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
480                      bool isTarget = false, bool isOpaque = false);
481  SDValue getConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT,
482                      bool isTarget = false, bool isOpaque = false);
483  SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL,
484                            bool isTarget = false);
485  SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT,
486                            bool isOpaque = false) {
487    return getConstant(Val, DL, VT, true, isOpaque);
488  }
489  SDValue getTargetConstant(const APInt &Val, const SDLoc &DL, EVT VT,
490                            bool isOpaque = false) {
491    return getConstant(Val, DL, VT, true, isOpaque);
492  }
493  SDValue getTargetConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT,
494                            bool isOpaque = false) {
495    return getConstant(Val, DL, VT, true, isOpaque);
496  }
497  /// @}
498
499  /// \brief Create a ConstantFPSDNode wrapping a constant value.
500  /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
501  ///
502  /// If only legal types can be produced, this does the necessary
503  /// transformations (e.g., if the vector element type is illegal).
504  /// The forms that take a double should only be used for simple constants
505  /// that can be exactly represented in VT.  No checks are made.
506  /// @{
507  SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT,
508                        bool isTarget = false);
509  SDValue getConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT,
510                        bool isTarget = false);
511  SDValue getConstantFP(const ConstantFP &CF, const SDLoc &DL, EVT VT,
512                        bool isTarget = false);
513  SDValue getTargetConstantFP(double Val, const SDLoc &DL, EVT VT) {
514    return getConstantFP(Val, DL, VT, true);
515  }
516  SDValue getTargetConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT) {
517    return getConstantFP(Val, DL, VT, true);
518  }
519  SDValue getTargetConstantFP(const ConstantFP &Val, const SDLoc &DL, EVT VT) {
520    return getConstantFP(Val, DL, VT, true);
521  }
522  /// @}
523
524  SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT,
525                           int64_t offset = 0, bool isTargetGA = false,
526                           unsigned char TargetFlags = 0);
527  SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT,
528                                 int64_t offset = 0,
529                                 unsigned char TargetFlags = 0) {
530    return getGlobalAddress(GV, DL, VT, offset, true, TargetFlags);
531  }
532  SDValue getFrameIndex(int FI, EVT VT, bool isTarget = false);
533  SDValue getTargetFrameIndex(int FI, EVT VT) {
534    return getFrameIndex(FI, VT, true);
535  }
536  SDValue getJumpTable(int JTI, EVT VT, bool isTarget = false,
537                       unsigned char TargetFlags = 0);
538  SDValue getTargetJumpTable(int JTI, EVT VT, unsigned char TargetFlags = 0) {
539    return getJumpTable(JTI, VT, true, TargetFlags);
540  }
541  SDValue getConstantPool(const Constant *C, EVT VT,
542                          unsigned Align = 0, int Offs = 0, bool isT=false,
543                          unsigned char TargetFlags = 0);
544  SDValue getTargetConstantPool(const Constant *C, EVT VT,
545                                unsigned Align = 0, int Offset = 0,
546                                unsigned char TargetFlags = 0) {
547    return getConstantPool(C, VT, Align, Offset, true, TargetFlags);
548  }
549  SDValue getConstantPool(MachineConstantPoolValue *C, EVT VT,
550                          unsigned Align = 0, int Offs = 0, bool isT=false,
551                          unsigned char TargetFlags = 0);
552  SDValue getTargetConstantPool(MachineConstantPoolValue *C,
553                                  EVT VT, unsigned Align = 0,
554                                  int Offset = 0, unsigned char TargetFlags=0) {
555    return getConstantPool(C, VT, Align, Offset, true, TargetFlags);
556  }
557  SDValue getTargetIndex(int Index, EVT VT, int64_t Offset = 0,
558                         unsigned char TargetFlags = 0);
559  // When generating a branch to a BB, we don't in general know enough
560  // to provide debug info for the BB at that time, so keep this one around.
561  SDValue getBasicBlock(MachineBasicBlock *MBB);
562  SDValue getBasicBlock(MachineBasicBlock *MBB, SDLoc dl);
563  SDValue getExternalSymbol(const char *Sym, EVT VT);
564  SDValue getExternalSymbol(const char *Sym, const SDLoc &dl, EVT VT);
565  SDValue getTargetExternalSymbol(const char *Sym, EVT VT,
566                                  unsigned char TargetFlags = 0);
567  SDValue getMCSymbol(MCSymbol *Sym, EVT VT);
568
569  SDValue getValueType(EVT);
570  SDValue getRegister(unsigned Reg, EVT VT);
571  SDValue getRegisterMask(const uint32_t *RegMask);
572  SDValue getEHLabel(const SDLoc &dl, SDValue Root, MCSymbol *Label);
573  SDValue getBlockAddress(const BlockAddress *BA, EVT VT,
574                          int64_t Offset = 0, bool isTarget = false,
575                          unsigned char TargetFlags = 0);
576  SDValue getTargetBlockAddress(const BlockAddress *BA, EVT VT,
577                                int64_t Offset = 0,
578                                unsigned char TargetFlags = 0) {
579    return getBlockAddress(BA, VT, Offset, true, TargetFlags);
580  }
581
582  SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg,
583                       SDValue N) {
584    return getNode(ISD::CopyToReg, dl, MVT::Other, Chain,
585                   getRegister(Reg, N.getValueType()), N);
586  }
587
588  // This version of the getCopyToReg method takes an extra operand, which
589  // indicates that there is potentially an incoming glue value (if Glue is not
590  // null) and that there should be a glue result.
591  SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg, SDValue N,
592                       SDValue Glue) {
593    SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
594    SDValue Ops[] = { Chain, getRegister(Reg, N.getValueType()), N, Glue };
595    return getNode(ISD::CopyToReg, dl, VTs,
596                   makeArrayRef(Ops, Glue.getNode() ? 4 : 3));
597  }
598
599  // Similar to last getCopyToReg() except parameter Reg is a SDValue
600  SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, SDValue Reg, SDValue N,
601                       SDValue Glue) {
602    SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
603    SDValue Ops[] = { Chain, Reg, N, Glue };
604    return getNode(ISD::CopyToReg, dl, VTs,
605                   makeArrayRef(Ops, Glue.getNode() ? 4 : 3));
606  }
607
608  SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT) {
609    SDVTList VTs = getVTList(VT, MVT::Other);
610    SDValue Ops[] = { Chain, getRegister(Reg, VT) };
611    return getNode(ISD::CopyFromReg, dl, VTs, Ops);
612  }
613
614  // This version of the getCopyFromReg method takes an extra operand, which
615  // indicates that there is potentially an incoming glue value (if Glue is not
616  // null) and that there should be a glue result.
617  SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT,
618                         SDValue Glue) {
619    SDVTList VTs = getVTList(VT, MVT::Other, MVT::Glue);
620    SDValue Ops[] = { Chain, getRegister(Reg, VT), Glue };
621    return getNode(ISD::CopyFromReg, dl, VTs,
622                   makeArrayRef(Ops, Glue.getNode() ? 3 : 2));
623  }
624
625  SDValue getCondCode(ISD::CondCode Cond);
626
627  /// Returns the ConvertRndSat Note: Avoid using this node because it may
628  /// disappear in the future and most targets don't support it.
629  SDValue getConvertRndSat(EVT VT, const SDLoc &dl, SDValue Val, SDValue DTy,
630                           SDValue STy, SDValue Rnd, SDValue Sat,
631                           ISD::CvtCode Code);
632
633  /// Return an ISD::VECTOR_SHUFFLE node. The number of elements in VT,
634  /// which must be a vector type, must match the number of mask elements
635  /// NumElts. An integer mask element equal to -1 is treated as undefined.
636  SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2,
637                           ArrayRef<int> Mask);
638
639  /// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
640  /// which must be a vector type, must match the number of operands in Ops.
641  /// The operands must have the same type as (or, for integers, a type wider
642  /// than) VT's element type.
643  SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef<SDValue> Ops) {
644    // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
645    return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
646  }
647
648  /// Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all
649  /// elements. VT must be a vector type. Op's type must be the same as (or,
650  /// for integers, a type wider than) VT's element type.
651  SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op) {
652    // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
653    if (Op.getOpcode() == ISD::UNDEF) {
654      assert((VT.getVectorElementType() == Op.getValueType() ||
655              (VT.isInteger() &&
656               VT.getVectorElementType().bitsLE(Op.getValueType()))) &&
657             "A splatted value must have a width equal or (for integers) "
658             "greater than the vector element type!");
659      return getNode(ISD::UNDEF, SDLoc(), VT);
660    }
661
662    SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Op);
663    return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
664  }
665
666  /// Return a splat ISD::BUILD_VECTOR node, but with Op's SDLoc.
667  SDValue getSplatBuildVector(EVT VT, SDValue Op) {
668    return getSplatBuildVector(VT, SDLoc(Op), Op);
669  }
670
671  /// \brief Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to
672  /// the shuffle node in input but with swapped operands.
673  ///
674  /// Example: shuffle A, B, <0,5,2,7> -> shuffle B, A, <4,1,6,3>
675  SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV);
676
677  /// Convert Op, which must be of integer type, to the
678  /// integer type VT, by either any-extending or truncating it.
679  SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
680
681  /// Convert Op, which must be of integer type, to the
682  /// integer type VT, by either sign-extending or truncating it.
683  SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
684
685  /// Convert Op, which must be of integer type, to the
686  /// integer type VT, by either zero-extending or truncating it.
687  SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
688
689  /// Return the expression required to zero extend the Op
690  /// value assuming it was the smaller SrcTy value.
691  SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT SrcTy);
692
693  /// Return an operation which will any-extend the low lanes of the operand
694  /// into the specified vector type. For example,
695  /// this can convert a v16i8 into a v4i32 by any-extending the low four
696  /// lanes of the operand from i8 to i32.
697  SDValue getAnyExtendVectorInReg(SDValue Op, const SDLoc &DL, EVT VT);
698
699  /// Return an operation which will sign extend the low lanes of the operand
700  /// into the specified vector type. For example,
701  /// this can convert a v16i8 into a v4i32 by sign extending the low four
702  /// lanes of the operand from i8 to i32.
703  SDValue getSignExtendVectorInReg(SDValue Op, const SDLoc &DL, EVT VT);
704
705  /// Return an operation which will zero extend the low lanes of the operand
706  /// into the specified vector type. For example,
707  /// this can convert a v16i8 into a v4i32 by zero extending the low four
708  /// lanes of the operand from i8 to i32.
709  SDValue getZeroExtendVectorInReg(SDValue Op, const SDLoc &DL, EVT VT);
710
711  /// Convert Op, which must be of integer type, to the integer type VT,
712  /// by using an extension appropriate for the target's
713  /// BooleanContent for type OpVT or truncating it.
714  SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT);
715
716  /// Create a bitwise NOT operation as (XOR Val, -1).
717  SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT);
718
719  /// \brief Create a logical NOT operation as (XOR Val, BooleanOne).
720  SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT);
721
722  /// Return a new CALLSEQ_START node, which always must have a glue result
723  /// (to ensure it's not CSE'd).  CALLSEQ_START does not have a useful SDLoc.
724  SDValue getCALLSEQ_START(SDValue Chain, SDValue Op, const SDLoc &DL) {
725    SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
726    SDValue Ops[] = { Chain,  Op };
727    return getNode(ISD::CALLSEQ_START, DL, VTs, Ops);
728  }
729
730  /// Return a new CALLSEQ_END node, which always must have a
731  /// glue result (to ensure it's not CSE'd).
732  /// CALLSEQ_END does not have a useful SDLoc.
733  SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2,
734                         SDValue InGlue, const SDLoc &DL) {
735    SDVTList NodeTys = getVTList(MVT::Other, MVT::Glue);
736    SmallVector<SDValue, 4> Ops;
737    Ops.push_back(Chain);
738    Ops.push_back(Op1);
739    Ops.push_back(Op2);
740    if (InGlue.getNode())
741      Ops.push_back(InGlue);
742    return getNode(ISD::CALLSEQ_END, DL, NodeTys, Ops);
743  }
744
745  /// Return an UNDEF node. UNDEF does not have a useful SDLoc.
746  SDValue getUNDEF(EVT VT) {
747    return getNode(ISD::UNDEF, SDLoc(), VT);
748  }
749
750  /// Return a GLOBAL_OFFSET_TABLE node. This does not have a useful SDLoc.
751  SDValue getGLOBAL_OFFSET_TABLE(EVT VT) {
752    return getNode(ISD::GLOBAL_OFFSET_TABLE, SDLoc(), VT);
753  }
754
755  /// Gets or creates the specified node.
756  ///
757  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
758                  ArrayRef<SDUse> Ops);
759  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
760                  ArrayRef<SDValue> Ops, const SDNodeFlags *Flags = nullptr);
761  SDValue getNode(unsigned Opcode, const SDLoc &DL, ArrayRef<EVT> ResultTys,
762                  ArrayRef<SDValue> Ops);
763  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs,
764                  ArrayRef<SDValue> Ops);
765
766  // Specialize based on number of operands.
767  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT);
768  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N);
769  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
770                  SDValue N2, const SDNodeFlags *Flags = nullptr);
771  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
772                  SDValue N2, SDValue N3);
773  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
774                  SDValue N2, SDValue N3, SDValue N4);
775  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
776                  SDValue N2, SDValue N3, SDValue N4, SDValue N5);
777
778  // Specialize again based on number of operands for nodes with a VTList
779  // rather than a single VT.
780  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs);
781  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs, SDValue N);
782  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs, SDValue N1,
783                  SDValue N2);
784  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs, SDValue N1,
785                  SDValue N2, SDValue N3);
786  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs, SDValue N1,
787                  SDValue N2, SDValue N3, SDValue N4);
788  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs, SDValue N1,
789                  SDValue N2, SDValue N3, SDValue N4, SDValue N5);
790
791  /// Compute a TokenFactor to force all the incoming stack arguments to be
792  /// loaded from the stack. This is used in tail call lowering to protect
793  /// stack arguments from being clobbered.
794  SDValue getStackArgumentTokenFactor(SDValue Chain);
795
796  SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
797                    SDValue Size, unsigned Align, bool isVol, bool AlwaysInline,
798                    bool isTailCall, MachinePointerInfo DstPtrInfo,
799                    MachinePointerInfo SrcPtrInfo);
800
801  SDValue getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
802                     SDValue Size, unsigned Align, bool isVol, bool isTailCall,
803                     MachinePointerInfo DstPtrInfo,
804                     MachinePointerInfo SrcPtrInfo);
805
806  SDValue getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
807                    SDValue Size, unsigned Align, bool isVol, bool isTailCall,
808                    MachinePointerInfo DstPtrInfo);
809
810  /// Helper function to make it easier to build SetCC's if you just
811  /// have an ISD::CondCode instead of an SDValue.
812  ///
813  SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS,
814                   ISD::CondCode Cond) {
815    assert(LHS.getValueType().isVector() == RHS.getValueType().isVector() &&
816      "Cannot compare scalars to vectors");
817    assert(LHS.getValueType().isVector() == VT.isVector() &&
818      "Cannot compare scalars to vectors");
819    assert(Cond != ISD::SETCC_INVALID &&
820        "Cannot create a setCC of an invalid node.");
821    return getNode(ISD::SETCC, DL, VT, LHS, RHS, getCondCode(Cond));
822  }
823
824  /// Helper function to make it easier to build Select's if you just
825  /// have operands and don't want to check for vector.
826  SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS,
827                    SDValue RHS) {
828    assert(LHS.getValueType() == RHS.getValueType() &&
829           "Cannot use select on differing types");
830    assert(VT.isVector() == LHS.getValueType().isVector() &&
831           "Cannot mix vectors and scalars");
832    return getNode(Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT, DL, VT,
833                   Cond, LHS, RHS);
834  }
835
836  /// Helper function to make it easier to build SelectCC's if you
837  /// just have an ISD::CondCode instead of an SDValue.
838  ///
839  SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True,
840                      SDValue False, ISD::CondCode Cond) {
841    return getNode(ISD::SELECT_CC, DL, True.getValueType(),
842                   LHS, RHS, True, False, getCondCode(Cond));
843  }
844
845  /// VAArg produces a result and token chain, and takes a pointer
846  /// and a source value as input.
847  SDValue getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
848                   SDValue SV, unsigned Align);
849
850  /// Gets a node for an atomic cmpxchg op. There are two
851  /// valid Opcodes. ISD::ATOMIC_CMO_SWAP produces the value loaded and a
852  /// chain result. ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS produces the value loaded,
853  /// a success flag (initially i1), and a chain.
854  SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT,
855                           SDVTList VTs, SDValue Chain, SDValue Ptr,
856                           SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo,
857                           unsigned Alignment, AtomicOrdering SuccessOrdering,
858                           AtomicOrdering FailureOrdering,
859                           SynchronizationScope SynchScope);
860  SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT,
861                           SDVTList VTs, SDValue Chain, SDValue Ptr,
862                           SDValue Cmp, SDValue Swp, MachineMemOperand *MMO,
863                           AtomicOrdering SuccessOrdering,
864                           AtomicOrdering FailureOrdering,
865                           SynchronizationScope SynchScope);
866
867  /// Gets a node for an atomic op, produces result (if relevant)
868  /// and chain and takes 2 operands.
869  SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain,
870                    SDValue Ptr, SDValue Val, const Value *PtrVal,
871                    unsigned Alignment, AtomicOrdering Ordering,
872                    SynchronizationScope SynchScope);
873  SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain,
874                    SDValue Ptr, SDValue Val, MachineMemOperand *MMO,
875                    AtomicOrdering Ordering, SynchronizationScope SynchScope);
876
877  /// Gets a node for an atomic op, produces result and chain and
878  /// takes 1 operand.
879  SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, EVT VT,
880                    SDValue Chain, SDValue Ptr, MachineMemOperand *MMO,
881                    AtomicOrdering Ordering, SynchronizationScope SynchScope);
882
883  /// Gets a node for an atomic op, produces result and chain and takes N
884  /// operands.
885  SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
886                    SDVTList VTList, ArrayRef<SDValue> Ops,
887                    MachineMemOperand *MMO, AtomicOrdering SuccessOrdering,
888                    AtomicOrdering FailureOrdering,
889                    SynchronizationScope SynchScope);
890  SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
891                    SDVTList VTList, ArrayRef<SDValue> Ops,
892                    MachineMemOperand *MMO, AtomicOrdering Ordering,
893                    SynchronizationScope SynchScope);
894
895  /// Creates a MemIntrinsicNode that may produce a
896  /// result and takes a list of operands. Opcode may be INTRINSIC_VOID,
897  /// INTRINSIC_W_CHAIN, or a target-specific opcode with a value not
898  /// less than FIRST_TARGET_MEMORY_OPCODE.
899  SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList,
900                              ArrayRef<SDValue> Ops, EVT MemVT,
901                              MachinePointerInfo PtrInfo, unsigned Align = 0,
902                              bool Vol = false, bool ReadMem = true,
903                              bool WriteMem = true, unsigned Size = 0);
904
905  SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList,
906                              ArrayRef<SDValue> Ops, EVT MemVT,
907                              MachineMemOperand *MMO);
908
909  /// Create a MERGE_VALUES node from the given operands.
910  SDValue getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl);
911
912  /// Loads are not normal binary operators: their result type is not
913  /// determined by their operands, and they produce a value AND a token chain.
914  ///
915  SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
916                  MachinePointerInfo PtrInfo, bool isVolatile,
917                  bool isNonTemporal, bool isInvariant, unsigned Alignment,
918                  const AAMDNodes &AAInfo = AAMDNodes(),
919                  const MDNode *Ranges = nullptr);
920  SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
921                  MachineMemOperand *MMO);
922  SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT,
923                     SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo,
924                     EVT MemVT, bool isVolatile, bool isNonTemporal,
925                     bool isInvariant, unsigned Alignment,
926                     const AAMDNodes &AAInfo = AAMDNodes());
927  SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT,
928                     SDValue Chain, SDValue Ptr, EVT MemVT,
929                     MachineMemOperand *MMO);
930  SDValue getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base,
931                         SDValue Offset, ISD::MemIndexedMode AM);
932  SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
933                  const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
934                  MachinePointerInfo PtrInfo, EVT MemVT, bool isVolatile,
935                  bool isNonTemporal, bool isInvariant, unsigned Alignment,
936                  const AAMDNodes &AAInfo = AAMDNodes(),
937                  const MDNode *Ranges = nullptr);
938  SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
939                  const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
940                  EVT MemVT, MachineMemOperand *MMO);
941
942  /// Helper function to build ISD::STORE nodes.
943  SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
944                   MachinePointerInfo PtrInfo, bool isVolatile,
945                   bool isNonTemporal, unsigned Alignment,
946                   const AAMDNodes &AAInfo = AAMDNodes());
947  SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
948                   MachineMemOperand *MMO);
949  SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
950                        SDValue Ptr, MachinePointerInfo PtrInfo, EVT TVT,
951                        bool isNonTemporal, bool isVolatile, unsigned Alignment,
952                        const AAMDNodes &AAInfo = AAMDNodes());
953  SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
954                        SDValue Ptr, EVT TVT, MachineMemOperand *MMO);
955  SDValue getIndexedStore(SDValue OrigStoe, const SDLoc &dl, SDValue Base,
956                          SDValue Offset, ISD::MemIndexedMode AM);
957
958  /// Returns sum of the base pointer and offset.
959  SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset, const SDLoc &DL);
960
961  SDValue getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
962                        SDValue Mask, SDValue Src0, EVT MemVT,
963                        MachineMemOperand *MMO, ISD::LoadExtType);
964  SDValue getMaskedStore(SDValue Chain, const SDLoc &dl, SDValue Val,
965                         SDValue Ptr, SDValue Mask, EVT MemVT,
966                         MachineMemOperand *MMO, bool IsTrunc);
967  SDValue getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
968                          ArrayRef<SDValue> Ops, MachineMemOperand *MMO);
969  SDValue getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
970                           ArrayRef<SDValue> Ops, MachineMemOperand *MMO);
971  /// Construct a node to track a Value* through the backend.
972  SDValue getSrcValue(const Value *v);
973
974  /// Return an MDNodeSDNode which holds an MDNode.
975  SDValue getMDNode(const MDNode *MD);
976
977  /// Return a bitcast using the SDLoc of the value operand, and casting to the
978  /// provided type. Use getNode to set a custom SDLoc.
979  SDValue getBitcast(EVT VT, SDValue V);
980
981  /// Return an AddrSpaceCastSDNode.
982  SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS,
983                           unsigned DestAS);
984
985  /// Return the specified value casted to
986  /// the target's desired shift amount type.
987  SDValue getShiftAmountOperand(EVT LHSTy, SDValue Op);
988
989  /// Expand the specified \c ISD::VAARG node as the Legalize pass would.
990  SDValue expandVAArg(SDNode *Node);
991
992  /// Expand the specified \c ISD::VACOPY node as the Legalize pass would.
993  SDValue expandVACopy(SDNode *Node);
994
995  /// *Mutate* the specified node in-place to have the
996  /// specified operands.  If the resultant node already exists in the DAG,
997  /// this does not modify the specified node, instead it returns the node that
998  /// already exists.  If the resultant node does not exist in the DAG, the
999  /// input node is returned.  As a degenerate case, if you specify the same
1000  /// input operands as the node already has, the input node is returned.
1001  SDNode *UpdateNodeOperands(SDNode *N, SDValue Op);
1002  SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2);
1003  SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
1004                               SDValue Op3);
1005  SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
1006                               SDValue Op3, SDValue Op4);
1007  SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
1008                               SDValue Op3, SDValue Op4, SDValue Op5);
1009  SDNode *UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops);
1010
1011  /// These are used for target selectors to *mutate* the
1012  /// specified node to have the specified return type, Target opcode, and
1013  /// operands.  Note that target opcodes are stored as
1014  /// ~TargetOpcode in the node opcode field.  The resultant node is returned.
1015  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT);
1016  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT, SDValue Op1);
1017  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT,
1018                       SDValue Op1, SDValue Op2);
1019  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT,
1020                       SDValue Op1, SDValue Op2, SDValue Op3);
1021  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT,
1022                       ArrayRef<SDValue> Ops);
1023  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1, EVT VT2);
1024  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1,
1025                       EVT VT2, ArrayRef<SDValue> Ops);
1026  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1,
1027                       EVT VT2, EVT VT3, ArrayRef<SDValue> Ops);
1028  SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
1029                       EVT VT2, EVT VT3, EVT VT4, ArrayRef<SDValue> Ops);
1030  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1,
1031                       EVT VT2, SDValue Op1);
1032  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1,
1033                       EVT VT2, SDValue Op1, SDValue Op2);
1034  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1,
1035                       EVT VT2, SDValue Op1, SDValue Op2, SDValue Op3);
1036  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1,
1037                       EVT VT2, EVT VT3, SDValue Op1, SDValue Op2, SDValue Op3);
1038  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, SDVTList VTs,
1039                       ArrayRef<SDValue> Ops);
1040
1041  /// This *mutates* the specified node to have the specified
1042  /// return type, opcode, and operands.
1043  SDNode *MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs,
1044                      ArrayRef<SDValue> Ops);
1045
1046  /// These are used for target selectors to create a new node
1047  /// with specified return type(s), MachineInstr opcode, and operands.
1048  ///
1049  /// Note that getMachineNode returns the resultant node.  If there is already
1050  /// a node of the specified opcode and operands, it returns that node instead
1051  /// of the current one.
1052  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT);
1053  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1054                                SDValue Op1);
1055  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1056                                SDValue Op1, SDValue Op2);
1057  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1058                                SDValue Op1, SDValue Op2, SDValue Op3);
1059  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1060                                ArrayRef<SDValue> Ops);
1061  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1062                                EVT VT2);
1063  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1064                                EVT VT2, SDValue Op1);
1065  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1066                                EVT VT2, SDValue Op1, SDValue Op2);
1067  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1068                                EVT VT2, SDValue Op1, SDValue Op2, SDValue Op3);
1069  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1070                                EVT VT2, ArrayRef<SDValue> Ops);
1071  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1072                                EVT VT2, EVT VT3, SDValue Op1, SDValue Op2);
1073  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1074                                EVT VT2, EVT VT3, SDValue Op1, SDValue Op2,
1075                                SDValue Op3);
1076  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1077                                EVT VT2, EVT VT3, ArrayRef<SDValue> Ops);
1078  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1079                                EVT VT2, EVT VT3, EVT VT4,
1080                                ArrayRef<SDValue> Ops);
1081  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl,
1082                                ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops);
1083  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, SDVTList VTs,
1084                                ArrayRef<SDValue> Ops);
1085
1086  /// A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
1087  SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
1088                                 SDValue Operand);
1089
1090  /// A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes.
1091  SDValue getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
1092                                SDValue Operand, SDValue Subreg);
1093
1094  /// Get the specified node if it's already available, or else return NULL.
1095  SDNode *getNodeIfExists(unsigned Opcode, SDVTList VTs, ArrayRef<SDValue> Ops,
1096                          const SDNodeFlags *Flags = nullptr);
1097
1098  /// Creates a SDDbgValue node.
1099  SDDbgValue *getDbgValue(MDNode *Var, MDNode *Expr, SDNode *N, unsigned R,
1100                          bool IsIndirect, uint64_t Off, const DebugLoc &DL,
1101                          unsigned O);
1102
1103  /// Constant
1104  SDDbgValue *getConstantDbgValue(MDNode *Var, MDNode *Expr, const Value *C,
1105                                  uint64_t Off, const DebugLoc &DL, unsigned O);
1106
1107  /// FrameIndex
1108  SDDbgValue *getFrameIndexDbgValue(MDNode *Var, MDNode *Expr, unsigned FI,
1109                                    uint64_t Off, const DebugLoc &DL,
1110                                    unsigned O);
1111
1112  /// Remove the specified node from the system. If any of its
1113  /// operands then becomes dead, remove them as well. Inform UpdateListener
1114  /// for each node deleted.
1115  void RemoveDeadNode(SDNode *N);
1116
1117  /// This method deletes the unreachable nodes in the
1118  /// given list, and any nodes that become unreachable as a result.
1119  void RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes);
1120
1121  /// Modify anything using 'From' to use 'To' instead.
1122  /// This can cause recursive merging of nodes in the DAG.  Use the first
1123  /// version if 'From' is known to have a single result, use the second
1124  /// if you have two nodes with identical results (or if 'To' has a superset
1125  /// of the results of 'From'), use the third otherwise.
1126  ///
1127  /// These methods all take an optional UpdateListener, which (if not null) is
1128  /// informed about nodes that are deleted and modified due to recursive
1129  /// changes in the dag.
1130  ///
1131  /// These functions only replace all existing uses. It's possible that as
1132  /// these replacements are being performed, CSE may cause the From node
1133  /// to be given new uses. These new uses of From are left in place, and
1134  /// not automatically transferred to To.
1135  ///
1136  void ReplaceAllUsesWith(SDValue From, SDValue Op);
1137  void ReplaceAllUsesWith(SDNode *From, SDNode *To);
1138  void ReplaceAllUsesWith(SDNode *From, const SDValue *To);
1139
1140  /// Replace any uses of From with To, leaving
1141  /// uses of other values produced by From.Val alone.
1142  void ReplaceAllUsesOfValueWith(SDValue From, SDValue To);
1143
1144  /// Like ReplaceAllUsesOfValueWith, but for multiple values at once.
1145  /// This correctly handles the case where
1146  /// there is an overlap between the From values and the To values.
1147  void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To,
1148                                  unsigned Num);
1149
1150  /// Topological-sort the AllNodes list and a
1151  /// assign a unique node id for each node in the DAG based on their
1152  /// topological order. Returns the number of nodes.
1153  unsigned AssignTopologicalOrder();
1154
1155  /// Move node N in the AllNodes list to be immediately
1156  /// before the given iterator Position. This may be used to update the
1157  /// topological ordering when the list of nodes is modified.
1158  void RepositionNode(allnodes_iterator Position, SDNode *N) {
1159    AllNodes.insert(Position, AllNodes.remove(N));
1160  }
1161
1162  /// Returns true if the opcode is a commutative binary operation.
1163  static bool isCommutativeBinOp(unsigned Opcode) {
1164    // FIXME: This should get its info from the td file, so that we can include
1165    // target info.
1166    switch (Opcode) {
1167    case ISD::ADD:
1168    case ISD::SMIN:
1169    case ISD::SMAX:
1170    case ISD::UMIN:
1171    case ISD::UMAX:
1172    case ISD::MUL:
1173    case ISD::MULHU:
1174    case ISD::MULHS:
1175    case ISD::SMUL_LOHI:
1176    case ISD::UMUL_LOHI:
1177    case ISD::FADD:
1178    case ISD::FMUL:
1179    case ISD::AND:
1180    case ISD::OR:
1181    case ISD::XOR:
1182    case ISD::SADDO:
1183    case ISD::UADDO:
1184    case ISD::ADDC:
1185    case ISD::ADDE:
1186    case ISD::FMINNUM:
1187    case ISD::FMAXNUM:
1188    case ISD::FMINNAN:
1189    case ISD::FMAXNAN:
1190      return true;
1191    default: return false;
1192    }
1193  }
1194
1195  /// Returns an APFloat semantics tag appropriate for the given type. If VT is
1196  /// a vector type, the element semantics are returned.
1197  static const fltSemantics &EVTToAPFloatSemantics(EVT VT) {
1198    switch (VT.getScalarType().getSimpleVT().SimpleTy) {
1199    default: llvm_unreachable("Unknown FP format");
1200    case MVT::f16:     return APFloat::IEEEhalf;
1201    case MVT::f32:     return APFloat::IEEEsingle;
1202    case MVT::f64:     return APFloat::IEEEdouble;
1203    case MVT::f80:     return APFloat::x87DoubleExtended;
1204    case MVT::f128:    return APFloat::IEEEquad;
1205    case MVT::ppcf128: return APFloat::PPCDoubleDouble;
1206    }
1207  }
1208
1209  /// Add a dbg_value SDNode. If SD is non-null that means the
1210  /// value is produced by SD.
1211  void AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter);
1212
1213  /// Get the debug values which reference the given SDNode.
1214  ArrayRef<SDDbgValue*> GetDbgValues(const SDNode* SD) {
1215    return DbgInfo->getSDDbgValues(SD);
1216  }
1217
1218private:
1219  /// Transfer SDDbgValues. Called via ReplaceAllUses{OfValue}?With
1220  void TransferDbgValues(SDValue From, SDValue To);
1221
1222public:
1223  /// Return true if there are any SDDbgValue nodes associated
1224  /// with this SelectionDAG.
1225  bool hasDebugValues() const { return !DbgInfo->empty(); }
1226
1227  SDDbgInfo::DbgIterator DbgBegin() { return DbgInfo->DbgBegin(); }
1228  SDDbgInfo::DbgIterator DbgEnd()   { return DbgInfo->DbgEnd(); }
1229  SDDbgInfo::DbgIterator ByvalParmDbgBegin() {
1230    return DbgInfo->ByvalParmDbgBegin();
1231  }
1232  SDDbgInfo::DbgIterator ByvalParmDbgEnd()   {
1233    return DbgInfo->ByvalParmDbgEnd();
1234  }
1235
1236  void dump() const;
1237
1238  /// Create a stack temporary, suitable for holding the specified value type.
1239  /// If minAlign is specified, the slot size will have at least that alignment.
1240  SDValue CreateStackTemporary(EVT VT, unsigned minAlign = 1);
1241
1242  /// Create a stack temporary suitable for holding either of the specified
1243  /// value types.
1244  SDValue CreateStackTemporary(EVT VT1, EVT VT2);
1245
1246  SDValue FoldSymbolOffset(unsigned Opcode, EVT VT,
1247                           const GlobalAddressSDNode *GA,
1248                           const SDNode *N2);
1249
1250  SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
1251                                 SDNode *Cst1, SDNode *Cst2);
1252
1253  SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
1254                                 const ConstantSDNode *Cst1,
1255                                 const ConstantSDNode *Cst2);
1256
1257  SDValue FoldConstantVectorArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
1258                                       ArrayRef<SDValue> Ops,
1259                                       const SDNodeFlags *Flags = nullptr);
1260
1261  /// Constant fold a setcc to true or false.
1262  SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond,
1263                    const SDLoc &dl);
1264
1265  /// Return true if the sign bit of Op is known to be zero.
1266  /// We use this predicate to simplify operations downstream.
1267  bool SignBitIsZero(SDValue Op, unsigned Depth = 0) const;
1268
1269  /// Return true if 'Op & Mask' is known to be zero.  We
1270  /// use this predicate to simplify operations downstream.  Op and Mask are
1271  /// known to be the same type.
1272  bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth = 0)
1273    const;
1274
1275  /// Determine which bits of Op are known to be either zero or one and return
1276  /// them in the KnownZero/KnownOne bitsets.  Targets can implement the
1277  /// computeKnownBitsForTargetNode method in the TargetLowering class to allow
1278  /// target nodes to be understood.
1279  void computeKnownBits(SDValue Op, APInt &KnownZero, APInt &KnownOne,
1280                        unsigned Depth = 0) const;
1281
1282  /// Test if the given value is known to have exactly one bit set. This differs
1283  /// from computeKnownBits in that it doesn't necessarily determine which bit
1284  /// is set.
1285  bool isKnownToBeAPowerOfTwo(SDValue Val) const;
1286
1287  /// Return the number of times the sign bit of the register is replicated into
1288  /// the other bits. We know that at least 1 bit is always equal to the sign
1289  /// bit (itself), but other cases can give us information. For example,
1290  /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
1291  /// to each other, so we return 3. Targets can implement the
1292  /// ComputeNumSignBitsForTarget method in the TargetLowering class to allow
1293  /// target nodes to be understood.
1294  unsigned ComputeNumSignBits(SDValue Op, unsigned Depth = 0) const;
1295
1296  /// Return true if the specified operand is an ISD::ADD with a ConstantSDNode
1297  /// on the right-hand side, or if it is an ISD::OR with a ConstantSDNode that
1298  /// is guaranteed to have the same semantics as an ADD. This handles the
1299  /// equivalence:
1300  ///     X|Cst == X+Cst iff X&Cst = 0.
1301  bool isBaseWithConstantOffset(SDValue Op) const;
1302
1303  /// Test whether the given SDValue is known to never be NaN.
1304  bool isKnownNeverNaN(SDValue Op) const;
1305
1306  /// Test whether the given SDValue is known to never be positive or negative
1307  /// zero.
1308  bool isKnownNeverZero(SDValue Op) const;
1309
1310  /// Test whether two SDValues are known to compare equal. This
1311  /// is true if they are the same value, or if one is negative zero and the
1312  /// other positive zero.
1313  bool isEqualTo(SDValue A, SDValue B) const;
1314
1315  /// Return true if A and B have no common bits set. As an example, this can
1316  /// allow an 'add' to be transformed into an 'or'.
1317  bool haveNoCommonBitsSet(SDValue A, SDValue B) const;
1318
1319  /// Utility function used by legalize and lowering to
1320  /// "unroll" a vector operation by splitting out the scalars and operating
1321  /// on each element individually.  If the ResNE is 0, fully unroll the vector
1322  /// op. If ResNE is less than the width of the vector op, unroll up to ResNE.
1323  /// If the  ResNE is greater than the width of the vector op, unroll the
1324  /// vector op and fill the end of the resulting vector with UNDEFS.
1325  SDValue UnrollVectorOp(SDNode *N, unsigned ResNE = 0);
1326
1327  /// Return true if loads are next to each other and can be
1328  /// merged. Check that both are nonvolatile and if LD is loading
1329  /// 'Bytes' bytes from a location that is 'Dist' units away from the
1330  /// location that the 'Base' load is loading from.
1331  bool areNonVolatileConsecutiveLoads(LoadSDNode *LD, LoadSDNode *Base,
1332                                      unsigned Bytes, int Dist) const;
1333
1334  /// Infer alignment of a load / store address. Return 0 if
1335  /// it cannot be inferred.
1336  unsigned InferPtrAlignment(SDValue Ptr) const;
1337
1338  /// Compute the VTs needed for the low/hi parts of a type
1339  /// which is split (or expanded) into two not necessarily identical pieces.
1340  std::pair<EVT, EVT> GetSplitDestVTs(const EVT &VT) const;
1341
1342  /// Split the vector with EXTRACT_SUBVECTOR using the provides
1343  /// VTs and return the low/high part.
1344  std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL,
1345                                          const EVT &LoVT, const EVT &HiVT);
1346
1347  /// Split the vector with EXTRACT_SUBVECTOR and return the low/high part.
1348  std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL) {
1349    EVT LoVT, HiVT;
1350    std::tie(LoVT, HiVT) = GetSplitDestVTs(N.getValueType());
1351    return SplitVector(N, DL, LoVT, HiVT);
1352  }
1353
1354  /// Split the node's operand with EXTRACT_SUBVECTOR and
1355  /// return the low/high part.
1356  std::pair<SDValue, SDValue> SplitVectorOperand(const SDNode *N, unsigned OpNo)
1357  {
1358    return SplitVector(N->getOperand(OpNo), SDLoc(N));
1359  }
1360
1361  /// Append the extracted elements from Start to Count out of the vector Op
1362  /// in Args. If Count is 0, all of the elements will be extracted.
1363  void ExtractVectorElements(SDValue Op, SmallVectorImpl<SDValue> &Args,
1364                             unsigned Start = 0, unsigned Count = 0);
1365
1366  /// Compute the default alignment value for the given type.
1367  unsigned getEVTAlignment(EVT MemoryVT) const;
1368
1369  /// Test whether the given value is a constant int or similar node.
1370  SDNode *isConstantIntBuildVectorOrConstantInt(SDValue N);
1371
1372private:
1373  void InsertNode(SDNode *N);
1374  bool RemoveNodeFromCSEMaps(SDNode *N);
1375  void AddModifiedNodeToCSEMaps(SDNode *N);
1376  SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op, void *&InsertPos);
1377  SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op1, SDValue Op2,
1378                               void *&InsertPos);
1379  SDNode *FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1380                               void *&InsertPos);
1381  SDNode *UpdadeSDLocOnMergedSDNode(SDNode *N, const SDLoc &loc);
1382
1383  void DeleteNodeNotInCSEMaps(SDNode *N);
1384  void DeallocateNode(SDNode *N);
1385
1386  void allnodes_clear();
1387
1388  SDNode *GetBinarySDNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs,
1389                          SDValue N1, SDValue N2,
1390                          const SDNodeFlags *Flags = nullptr);
1391
1392  /// Look up the node specified by ID in CSEMap.  If it exists, return it.  If
1393  /// not, return the insertion token that will make insertion faster.  This
1394  /// overload is for nodes other than Constant or ConstantFP, use the other one
1395  /// for those.
1396  SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos);
1397
1398  /// Look up the node specified by ID in CSEMap.  If it exists, return it.  If
1399  /// not, return the insertion token that will make insertion faster.  Performs
1400  /// additional processing for constant nodes.
1401  SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, const SDLoc &DL,
1402                              void *&InsertPos);
1403
1404  /// List of non-single value types.
1405  FoldingSet<SDVTListNode> VTListMap;
1406
1407  /// Maps to auto-CSE operations.
1408  std::vector<CondCodeSDNode*> CondCodeNodes;
1409
1410  std::vector<SDNode*> ValueTypeNodes;
1411  std::map<EVT, SDNode*, EVT::compareRawBits> ExtendedValueTypeNodes;
1412  StringMap<SDNode*> ExternalSymbols;
1413
1414  std::map<std::pair<std::string, unsigned char>,SDNode*> TargetExternalSymbols;
1415  DenseMap<MCSymbol *, SDNode *> MCSymbols;
1416};
1417
1418template <> struct GraphTraits<SelectionDAG*> : public GraphTraits<SDNode*> {
1419  typedef SelectionDAG::allnodes_iterator nodes_iterator;
1420  static nodes_iterator nodes_begin(SelectionDAG *G) {
1421    return G->allnodes_begin();
1422  }
1423  static nodes_iterator nodes_end(SelectionDAG *G) {
1424    return G->allnodes_end();
1425  }
1426};
1427
1428}  // end namespace llvm
1429
1430#endif
1431