SelectionDAG.h revision a267651b7ec4f96e01b31f541d446758bf8da8a9
1//===-- llvm/CodeGen/SelectionDAG.h - InstSelection DAG ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the SelectionDAG class, and transitively defines the
11// SDNode class and subclasses.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CODEGEN_SELECTIONDAG_H
16#define LLVM_CODEGEN_SELECTIONDAG_H
17
18#include "llvm/ADT/ilist.h"
19#include "llvm/ADT/FoldingSet.h"
20#include "llvm/ADT/StringMap.h"
21#include "llvm/CodeGen/SelectionDAGNodes.h"
22
23#include <cassert>
24#include <list>
25#include <vector>
26#include <map>
27#include <string>
28
29namespace llvm {
30
31class AliasAnalysis;
32class TargetLowering;
33class TargetMachine;
34class MachineModuleInfo;
35class MachineFunction;
36class MachineConstantPoolValue;
37class FunctionLoweringInfo;
38
39/// NodeAllocatorType - The AllocatorType for allocating SDNodes. We use
40/// pool allocation with recycling.
41///
42typedef RecyclingAllocator<BumpPtrAllocator, SDNode, sizeof(LargestSDNode),
43                           AlignOf<MostAlignedSDNode>::Alignment>
44  NodeAllocatorType;
45
46template<> class ilist_traits<SDNode> : public ilist_default_traits<SDNode> {
47  mutable SDNode Sentinel;
48public:
49  ilist_traits() : Sentinel(ISD::DELETED_NODE, SDVTList()) {}
50
51  SDNode *createSentinel() const {
52    return &Sentinel;
53  }
54  static void destroySentinel(SDNode *) {}
55
56  static void deleteNode(SDNode *) {
57    assert(0 && "ilist_traits<SDNode> shouldn't see a deleteNode call!");
58  }
59private:
60  static void createNode(const SDNode &);
61};
62
63/// SelectionDAG class - This is used to represent a portion of an LLVM function
64/// in a low-level Data Dependence DAG representation suitable for instruction
65/// selection.  This DAG is constructed as the first step of instruction
66/// selection in order to allow implementation of machine specific optimizations
67/// and code simplifications.
68///
69/// The representation used by the SelectionDAG is a target-independent
70/// representation, which has some similarities to the GCC RTL representation,
71/// but is significantly more simple, powerful, and is a graph form instead of a
72/// linear form.
73///
74class SelectionDAG {
75  TargetLowering &TLI;
76  MachineFunction &MF;
77  FunctionLoweringInfo &FLI;
78  MachineModuleInfo *MMI;
79
80  /// Root - The root of the entire DAG.  EntryNode - The starting token.
81  SDValue Root, EntryNode;
82
83  /// AllNodes - A linked list of nodes in the current DAG.
84  ilist<SDNode> AllNodes;
85
86  /// NodeAllocator - Pool allocation for nodes. The allocator isn't
87  /// allocated inside this class because we want to reuse a single
88  /// recycler across multiple SelectionDAG runs.
89  NodeAllocatorType &NodeAllocator;
90
91  /// CSEMap - This structure is used to memoize nodes, automatically performing
92  /// CSE with existing nodes with a duplicate is requested.
93  FoldingSet<SDNode> CSEMap;
94
95  /// Allocator - Pool allocation for misc. objects that are created once per
96  /// SelectionDAG.
97  BumpPtrAllocator Allocator;
98
99  /// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
100  void VerifyNode(SDNode *N);
101
102public:
103  SelectionDAG(TargetLowering &tli, MachineFunction &mf,
104               FunctionLoweringInfo &fli, MachineModuleInfo *mmi,
105               NodeAllocatorType &nodeallocator)
106  : TLI(tli), MF(mf), FLI(fli), MMI(mmi), NodeAllocator(nodeallocator) {
107    EntryNode = Root = getNode(ISD::EntryToken, MVT::Other);
108  }
109  ~SelectionDAG();
110
111  MachineFunction &getMachineFunction() const { return MF; }
112  const TargetMachine &getTarget() const;
113  TargetLowering &getTargetLoweringInfo() const { return TLI; }
114  FunctionLoweringInfo &getFunctionLoweringInfo() const { return FLI; }
115  MachineModuleInfo *getMachineModuleInfo() const { return MMI; }
116
117  /// viewGraph - Pop up a GraphViz/gv window with the DAG rendered using 'dot'.
118  ///
119  void viewGraph(const std::string &Title);
120  void viewGraph();
121
122#ifndef NDEBUG
123  std::map<const SDNode *, std::string> NodeGraphAttrs;
124#endif
125
126  /// clearGraphAttrs - Clear all previously defined node graph attributes.
127  /// Intended to be used from a debugging tool (eg. gdb).
128  void clearGraphAttrs();
129
130  /// setGraphAttrs - Set graph attributes for a node. (eg. "color=red".)
131  ///
132  void setGraphAttrs(const SDNode *N, const char *Attrs);
133
134  /// getGraphAttrs - Get graph attributes for a node. (eg. "color=red".)
135  /// Used from getNodeAttributes.
136  const std::string getGraphAttrs(const SDNode *N) const;
137
138  /// setGraphColor - Convenience for setting node color attribute.
139  ///
140  void setGraphColor(const SDNode *N, const char *Color);
141
142  typedef ilist<SDNode>::const_iterator allnodes_const_iterator;
143  allnodes_const_iterator allnodes_begin() const { return AllNodes.begin(); }
144  allnodes_const_iterator allnodes_end() const { return AllNodes.end(); }
145  typedef ilist<SDNode>::iterator allnodes_iterator;
146  allnodes_iterator allnodes_begin() { return AllNodes.begin(); }
147  allnodes_iterator allnodes_end() { return AllNodes.end(); }
148  ilist<SDNode>::size_type allnodes_size() const {
149    return AllNodes.size();
150  }
151
152  /// getRoot - Return the root tag of the SelectionDAG.
153  ///
154  const SDValue &getRoot() const { return Root; }
155
156  /// getEntryNode - Return the token chain corresponding to the entry of the
157  /// function.
158  const SDValue &getEntryNode() const { return EntryNode; }
159
160  /// setRoot - Set the current root tag of the SelectionDAG.
161  ///
162  const SDValue &setRoot(SDValue N) {
163    assert((!N.Val || N.getValueType() == MVT::Other) &&
164           "DAG root value is not a chain!");
165    return Root = N;
166  }
167
168  /// Combine - This iterates over the nodes in the SelectionDAG, folding
169  /// certain types of nodes together, or eliminating superfluous nodes.  When
170  /// the AfterLegalize argument is set to 'true', Combine takes care not to
171  /// generate any nodes that will be illegal on the target.
172  void Combine(bool AfterLegalize, AliasAnalysis &AA, bool Fast);
173
174  /// LegalizeTypes - This transforms the SelectionDAG into a SelectionDAG that
175  /// only uses types natively supported by the target.
176  ///
177  /// Note that this is an involved process that may invalidate pointers into
178  /// the graph.
179  void LegalizeTypes();
180
181  /// Legalize - This transforms the SelectionDAG into a SelectionDAG that is
182  /// compatible with the target instruction selector, as indicated by the
183  /// TargetLowering object.
184  ///
185  /// Note that this is an involved process that may invalidate pointers into
186  /// the graph.
187  void Legalize();
188
189  /// RemoveDeadNodes - This method deletes all unreachable nodes in the
190  /// SelectionDAG.
191  void RemoveDeadNodes();
192
193  /// DeleteNode - Remove the specified node from the system.  This node must
194  /// have no referrers.
195  void DeleteNode(SDNode *N);
196
197  /// getVTList - Return an SDVTList that represents the list of values
198  /// specified.
199  SDVTList getVTList(MVT VT);
200  SDVTList getVTList(MVT VT1, MVT VT2);
201  SDVTList getVTList(MVT VT1, MVT VT2, MVT VT3);
202  SDVTList getVTList(const MVT *VTs, unsigned NumVTs);
203
204  /// getNodeValueTypes - These are obsolete, use getVTList instead.
205  const MVT *getNodeValueTypes(MVT VT) {
206    return getVTList(VT).VTs;
207  }
208  const MVT *getNodeValueTypes(MVT VT1, MVT VT2) {
209    return getVTList(VT1, VT2).VTs;
210  }
211  const MVT *getNodeValueTypes(MVT VT1, MVT VT2, MVT VT3) {
212    return getVTList(VT1, VT2, VT3).VTs;
213  }
214  const MVT *getNodeValueTypes(const std::vector<MVT> &vtList) {
215    return getVTList(&vtList[0], (unsigned)vtList.size()).VTs;
216  }
217
218
219  //===--------------------------------------------------------------------===//
220  // Node creation methods.
221  //
222  SDValue getConstant(uint64_t Val, MVT VT, bool isTarget = false);
223  SDValue getConstant(const APInt &Val, MVT VT, bool isTarget = false);
224  SDValue getIntPtrConstant(uint64_t Val, bool isTarget = false);
225  SDValue getTargetConstant(uint64_t Val, MVT VT) {
226    return getConstant(Val, VT, true);
227  }
228  SDValue getTargetConstant(const APInt &Val, MVT VT) {
229    return getConstant(Val, VT, true);
230  }
231  SDValue getConstantFP(double Val, MVT VT, bool isTarget = false);
232  SDValue getConstantFP(const APFloat& Val, MVT VT, bool isTarget = false);
233  SDValue getTargetConstantFP(double Val, MVT VT) {
234    return getConstantFP(Val, VT, true);
235  }
236  SDValue getTargetConstantFP(const APFloat& Val, MVT VT) {
237    return getConstantFP(Val, VT, true);
238  }
239  SDValue getGlobalAddress(const GlobalValue *GV, MVT VT,
240                             int offset = 0, bool isTargetGA = false);
241  SDValue getTargetGlobalAddress(const GlobalValue *GV, MVT VT,
242                                   int offset = 0) {
243    return getGlobalAddress(GV, VT, offset, true);
244  }
245  SDValue getFrameIndex(int FI, MVT VT, bool isTarget = false);
246  SDValue getTargetFrameIndex(int FI, MVT VT) {
247    return getFrameIndex(FI, VT, true);
248  }
249  SDValue getJumpTable(int JTI, MVT VT, bool isTarget = false);
250  SDValue getTargetJumpTable(int JTI, MVT VT) {
251    return getJumpTable(JTI, VT, true);
252  }
253  SDValue getConstantPool(Constant *C, MVT VT,
254                            unsigned Align = 0, int Offs = 0, bool isT=false);
255  SDValue getTargetConstantPool(Constant *C, MVT VT,
256                                  unsigned Align = 0, int Offset = 0) {
257    return getConstantPool(C, VT, Align, Offset, true);
258  }
259  SDValue getConstantPool(MachineConstantPoolValue *C, MVT VT,
260                            unsigned Align = 0, int Offs = 0, bool isT=false);
261  SDValue getTargetConstantPool(MachineConstantPoolValue *C,
262                                  MVT VT, unsigned Align = 0,
263                                  int Offset = 0) {
264    return getConstantPool(C, VT, Align, Offset, true);
265  }
266  SDValue getBasicBlock(MachineBasicBlock *MBB);
267  SDValue getExternalSymbol(const char *Sym, MVT VT);
268  SDValue getTargetExternalSymbol(const char *Sym, MVT VT);
269  SDValue getArgFlags(ISD::ArgFlagsTy Flags);
270  SDValue getValueType(MVT);
271  SDValue getRegister(unsigned Reg, MVT VT);
272  SDValue getDbgStopPoint(SDValue Root, unsigned Line, unsigned Col,
273                            const CompileUnitDesc *CU);
274  SDValue getLabel(unsigned Opcode, SDValue Root, unsigned LabelID);
275
276  SDValue getCopyToReg(SDValue Chain, unsigned Reg, SDValue N) {
277    return getNode(ISD::CopyToReg, MVT::Other, Chain,
278                   getRegister(Reg, N.getValueType()), N);
279  }
280
281  // This version of the getCopyToReg method takes an extra operand, which
282  // indicates that there is potentially an incoming flag value (if Flag is not
283  // null) and that there should be a flag result.
284  SDValue getCopyToReg(SDValue Chain, unsigned Reg, SDValue N,
285                         SDValue Flag) {
286    const MVT *VTs = getNodeValueTypes(MVT::Other, MVT::Flag);
287    SDValue Ops[] = { Chain, getRegister(Reg, N.getValueType()), N, Flag };
288    return getNode(ISD::CopyToReg, VTs, 2, Ops, Flag.Val ? 4 : 3);
289  }
290
291  // Similar to last getCopyToReg() except parameter Reg is a SDValue
292  SDValue getCopyToReg(SDValue Chain, SDValue Reg, SDValue N,
293                         SDValue Flag) {
294    const MVT *VTs = getNodeValueTypes(MVT::Other, MVT::Flag);
295    SDValue Ops[] = { Chain, Reg, N, Flag };
296    return getNode(ISD::CopyToReg, VTs, 2, Ops, Flag.Val ? 4 : 3);
297  }
298
299  SDValue getCopyFromReg(SDValue Chain, unsigned Reg, MVT VT) {
300    const MVT *VTs = getNodeValueTypes(VT, MVT::Other);
301    SDValue Ops[] = { Chain, getRegister(Reg, VT) };
302    return getNode(ISD::CopyFromReg, VTs, 2, Ops, 2);
303  }
304
305  // This version of the getCopyFromReg method takes an extra operand, which
306  // indicates that there is potentially an incoming flag value (if Flag is not
307  // null) and that there should be a flag result.
308  SDValue getCopyFromReg(SDValue Chain, unsigned Reg, MVT VT,
309                           SDValue Flag) {
310    const MVT *VTs = getNodeValueTypes(VT, MVT::Other, MVT::Flag);
311    SDValue Ops[] = { Chain, getRegister(Reg, VT), Flag };
312    return getNode(ISD::CopyFromReg, VTs, 3, Ops, Flag.Val ? 3 : 2);
313  }
314
315  SDValue getCondCode(ISD::CondCode Cond);
316
317  /// getZeroExtendInReg - Return the expression required to zero extend the Op
318  /// value assuming it was the smaller SrcTy value.
319  SDValue getZeroExtendInReg(SDValue Op, MVT SrcTy);
320
321  /// getCALLSEQ_START - Return a new CALLSEQ_START node, which always must have
322  /// a flag result (to ensure it's not CSE'd).
323  SDValue getCALLSEQ_START(SDValue Chain, SDValue Op) {
324    const MVT *VTs = getNodeValueTypes(MVT::Other, MVT::Flag);
325    SDValue Ops[] = { Chain,  Op };
326    return getNode(ISD::CALLSEQ_START, VTs, 2, Ops, 2);
327  }
328
329  /// getCALLSEQ_END - Return a new CALLSEQ_END node, which always must have a
330  /// flag result (to ensure it's not CSE'd).
331  SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2,
332                           SDValue InFlag) {
333    SDVTList NodeTys = getVTList(MVT::Other, MVT::Flag);
334    SmallVector<SDValue, 4> Ops;
335    Ops.push_back(Chain);
336    Ops.push_back(Op1);
337    Ops.push_back(Op2);
338    Ops.push_back(InFlag);
339    return getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0],
340                   (unsigned)Ops.size() - (InFlag.Val == 0 ? 1 : 0));
341  }
342
343  /// getNode - Gets or creates the specified node.
344  ///
345  SDValue getNode(unsigned Opcode, MVT VT);
346  SDValue getNode(unsigned Opcode, MVT VT, SDValue N);
347  SDValue getNode(unsigned Opcode, MVT VT, SDValue N1, SDValue N2);
348  SDValue getNode(unsigned Opcode, MVT VT,
349                    SDValue N1, SDValue N2, SDValue N3);
350  SDValue getNode(unsigned Opcode, MVT VT,
351                    SDValue N1, SDValue N2, SDValue N3, SDValue N4);
352  SDValue getNode(unsigned Opcode, MVT VT,
353                    SDValue N1, SDValue N2, SDValue N3, SDValue N4,
354                    SDValue N5);
355  SDValue getNode(unsigned Opcode, MVT VT,
356                    const SDValue *Ops, unsigned NumOps);
357  SDValue getNode(unsigned Opcode, MVT VT,
358                    const SDUse *Ops, unsigned NumOps);
359  SDValue getNode(unsigned Opcode, const std::vector<MVT> &ResultTys,
360                    const SDValue *Ops, unsigned NumOps);
361  SDValue getNode(unsigned Opcode, const MVT *VTs, unsigned NumVTs,
362                    const SDValue *Ops, unsigned NumOps);
363  SDValue getNode(unsigned Opcode, SDVTList VTs);
364  SDValue getNode(unsigned Opcode, SDVTList VTs, SDValue N);
365  SDValue getNode(unsigned Opcode, SDVTList VTs, SDValue N1, SDValue N2);
366  SDValue getNode(unsigned Opcode, SDVTList VTs,
367                    SDValue N1, SDValue N2, SDValue N3);
368  SDValue getNode(unsigned Opcode, SDVTList VTs,
369                    SDValue N1, SDValue N2, SDValue N3, SDValue N4);
370  SDValue getNode(unsigned Opcode, SDVTList VTs,
371                    SDValue N1, SDValue N2, SDValue N3, SDValue N4,
372                    SDValue N5);
373  SDValue getNode(unsigned Opcode, SDVTList VTs,
374                    const SDValue *Ops, unsigned NumOps);
375
376  SDValue getMemcpy(SDValue Chain, SDValue Dst, SDValue Src,
377                      SDValue Size, unsigned Align,
378                      bool AlwaysInline,
379                      const Value *DstSV, uint64_t DstSVOff,
380                      const Value *SrcSV, uint64_t SrcSVOff);
381
382  SDValue getMemmove(SDValue Chain, SDValue Dst, SDValue Src,
383                       SDValue Size, unsigned Align,
384                       const Value *DstSV, uint64_t DstOSVff,
385                       const Value *SrcSV, uint64_t SrcSVOff);
386
387  SDValue getMemset(SDValue Chain, SDValue Dst, SDValue Src,
388                      SDValue Size, unsigned Align,
389                      const Value *DstSV, uint64_t DstSVOff);
390
391  /// getSetCC - Helper function to make it easier to build SetCC's if you just
392  /// have an ISD::CondCode instead of an SDValue.
393  ///
394  SDValue getSetCC(MVT VT, SDValue LHS, SDValue RHS,
395                     ISD::CondCode Cond) {
396    return getNode(ISD::SETCC, VT, LHS, RHS, getCondCode(Cond));
397  }
398
399  /// getVSetCC - Helper function to make it easier to build VSetCC's nodes
400  /// if you just have an ISD::CondCode instead of an SDValue.
401  ///
402  SDValue getVSetCC(MVT VT, SDValue LHS, SDValue RHS,
403                      ISD::CondCode Cond) {
404    return getNode(ISD::VSETCC, VT, LHS, RHS, getCondCode(Cond));
405  }
406
407  /// getSelectCC - Helper function to make it easier to build SelectCC's if you
408  /// just have an ISD::CondCode instead of an SDValue.
409  ///
410  SDValue getSelectCC(SDValue LHS, SDValue RHS,
411                        SDValue True, SDValue False, ISD::CondCode Cond) {
412    return getNode(ISD::SELECT_CC, True.getValueType(), LHS, RHS, True, False,
413                   getCondCode(Cond));
414  }
415
416  /// getVAArg - VAArg produces a result and token chain, and takes a pointer
417  /// and a source value as input.
418  SDValue getVAArg(MVT VT, SDValue Chain, SDValue Ptr,
419                     SDValue SV);
420
421  /// getAtomic - Gets a node for an atomic op, produces result and chain, takes
422  /// 3 operands
423  SDValue getAtomic(unsigned Opcode, SDValue Chain, SDValue Ptr,
424                      SDValue Cmp, SDValue Swp, const Value* PtrVal,
425                      unsigned Alignment=0);
426
427  /// getAtomic - Gets a node for an atomic op, produces result and chain, takes
428  /// 2 operands
429  SDValue getAtomic(unsigned Opcode, SDValue Chain, SDValue Ptr,
430                      SDValue Val, const Value* PtrVal,
431                      unsigned Alignment = 0);
432
433  /// getMergeValues - Create a MERGE_VALUES node from the given operands.
434  /// Allowed to return something different (and simpler) if Simplify is true.
435  SDValue getMergeValues(const SDValue *Ops, unsigned NumOps,
436                           bool Simplify = true);
437
438  /// getMergeValues - Create a MERGE_VALUES node from the given types and ops.
439  /// Allowed to return something different (and simpler) if Simplify is true.
440  /// May be faster than the above version if VTs is known and NumOps is large.
441  SDValue getMergeValues(SDVTList VTs, const SDValue *Ops, unsigned NumOps,
442                           bool Simplify = true) {
443    if (Simplify && NumOps == 1)
444      return Ops[0];
445    return getNode(ISD::MERGE_VALUES, VTs, Ops, NumOps);
446  }
447
448  /// getLoad - Loads are not normal binary operators: their result type is not
449  /// determined by their operands, and they produce a value AND a token chain.
450  ///
451  SDValue getLoad(MVT VT, SDValue Chain, SDValue Ptr,
452                    const Value *SV, int SVOffset, bool isVolatile=false,
453                    unsigned Alignment=0);
454  SDValue getExtLoad(ISD::LoadExtType ExtType, MVT VT,
455                       SDValue Chain, SDValue Ptr, const Value *SV,
456                       int SVOffset, MVT EVT, bool isVolatile=false,
457                       unsigned Alignment=0);
458  SDValue getIndexedLoad(SDValue OrigLoad, SDValue Base,
459                           SDValue Offset, ISD::MemIndexedMode AM);
460  SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
461                    MVT VT, SDValue Chain,
462                    SDValue Ptr, SDValue Offset,
463                    const Value *SV, int SVOffset, MVT EVT,
464                    bool isVolatile=false, unsigned Alignment=0);
465
466  /// getStore - Helper function to build ISD::STORE nodes.
467  ///
468  SDValue getStore(SDValue Chain, SDValue Val, SDValue Ptr,
469                     const Value *SV, int SVOffset, bool isVolatile=false,
470                     unsigned Alignment=0);
471  SDValue getTruncStore(SDValue Chain, SDValue Val, SDValue Ptr,
472                          const Value *SV, int SVOffset, MVT TVT,
473                          bool isVolatile=false, unsigned Alignment=0);
474  SDValue getIndexedStore(SDValue OrigStoe, SDValue Base,
475                           SDValue Offset, ISD::MemIndexedMode AM);
476
477  // getSrcValue - Construct a node to track a Value* through the backend.
478  SDValue getSrcValue(const Value *v);
479
480  // getMemOperand - Construct a node to track a memory reference
481  // through the backend.
482  SDValue getMemOperand(const MachineMemOperand &MO);
483
484  /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
485  /// specified operands.  If the resultant node already exists in the DAG,
486  /// this does not modify the specified node, instead it returns the node that
487  /// already exists.  If the resultant node does not exist in the DAG, the
488  /// input node is returned.  As a degenerate case, if you specify the same
489  /// input operands as the node already has, the input node is returned.
490  SDValue UpdateNodeOperands(SDValue N, SDValue Op);
491  SDValue UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2);
492  SDValue UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
493                               SDValue Op3);
494  SDValue UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
495                               SDValue Op3, SDValue Op4);
496  SDValue UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
497                               SDValue Op3, SDValue Op4, SDValue Op5);
498  SDValue UpdateNodeOperands(SDValue N,
499                               const SDValue *Ops, unsigned NumOps);
500
501  /// SelectNodeTo - These are used for target selectors to *mutate* the
502  /// specified node to have the specified return type, Target opcode, and
503  /// operands.  Note that target opcodes are stored as
504  /// ~TargetOpcode in the node opcode field.  The resultant node is returned.
505  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT);
506  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT, SDValue Op1);
507  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT,
508                       SDValue Op1, SDValue Op2);
509  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT,
510                       SDValue Op1, SDValue Op2, SDValue Op3);
511  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT,
512                       const SDValue *Ops, unsigned NumOps);
513  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT1, MVT VT2);
514  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT1,
515                       MVT VT2, const SDValue *Ops, unsigned NumOps);
516  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT1,
517                       MVT VT2, MVT VT3, const SDValue *Ops, unsigned NumOps);
518  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT1,
519                       MVT VT2, SDValue Op1);
520  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT1,
521                       MVT VT2, SDValue Op1, SDValue Op2);
522  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT1,
523                       MVT VT2, SDValue Op1, SDValue Op2, SDValue Op3);
524  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, SDVTList VTs,
525                       const SDValue *Ops, unsigned NumOps);
526
527  /// MorphNodeTo - These *mutate* the specified node to have the specified
528  /// return type, opcode, and operands.
529  SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT);
530  SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT, SDValue Op1);
531  SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT,
532                      SDValue Op1, SDValue Op2);
533  SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT,
534                      SDValue Op1, SDValue Op2, SDValue Op3);
535  SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT,
536                      const SDValue *Ops, unsigned NumOps);
537  SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT1, MVT VT2);
538  SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT1,
539                      MVT VT2, const SDValue *Ops, unsigned NumOps);
540  SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT1,
541                      MVT VT2, MVT VT3, const SDValue *Ops, unsigned NumOps);
542  SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT1,
543                      MVT VT2, SDValue Op1);
544  SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT1,
545                      MVT VT2, SDValue Op1, SDValue Op2);
546  SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT1,
547                      MVT VT2, SDValue Op1, SDValue Op2, SDValue Op3);
548  SDNode *MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs,
549                      const SDValue *Ops, unsigned NumOps);
550
551  /// getTargetNode - These are used for target selectors to create a new node
552  /// with specified return type(s), target opcode, and operands.
553  ///
554  /// Note that getTargetNode returns the resultant node.  If there is already a
555  /// node of the specified opcode and operands, it returns that node instead of
556  /// the current one.
557  SDNode *getTargetNode(unsigned Opcode, MVT VT);
558  SDNode *getTargetNode(unsigned Opcode, MVT VT, SDValue Op1);
559  SDNode *getTargetNode(unsigned Opcode, MVT VT, SDValue Op1, SDValue Op2);
560  SDNode *getTargetNode(unsigned Opcode, MVT VT,
561                        SDValue Op1, SDValue Op2, SDValue Op3);
562  SDNode *getTargetNode(unsigned Opcode, MVT VT,
563                        const SDValue *Ops, unsigned NumOps);
564  SDNode *getTargetNode(unsigned Opcode, MVT VT1, MVT VT2);
565  SDNode *getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, SDValue Op1);
566  SDNode *getTargetNode(unsigned Opcode, MVT VT1,
567                        MVT VT2, SDValue Op1, SDValue Op2);
568  SDNode *getTargetNode(unsigned Opcode, MVT VT1,
569                        MVT VT2, SDValue Op1, SDValue Op2, SDValue Op3);
570  SDNode *getTargetNode(unsigned Opcode, MVT VT1, MVT VT2,
571                        const SDValue *Ops, unsigned NumOps);
572  SDNode *getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
573                        SDValue Op1, SDValue Op2);
574  SDNode *getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
575                        SDValue Op1, SDValue Op2, SDValue Op3);
576  SDNode *getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
577                        const SDValue *Ops, unsigned NumOps);
578  SDNode *getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3, MVT VT4,
579                        const SDValue *Ops, unsigned NumOps);
580  SDNode *getTargetNode(unsigned Opcode, const std::vector<MVT> &ResultTys,
581                        const SDValue *Ops, unsigned NumOps);
582
583  /// getNodeIfExists - Get the specified node if it's already available, or
584  /// else return NULL.
585  SDNode *getNodeIfExists(unsigned Opcode, SDVTList VTs,
586                          const SDValue *Ops, unsigned NumOps);
587
588  /// DAGUpdateListener - Clients of various APIs that cause global effects on
589  /// the DAG can optionally implement this interface.  This allows the clients
590  /// to handle the various sorts of updates that happen.
591  class DAGUpdateListener {
592  public:
593    virtual ~DAGUpdateListener();
594
595    /// NodeDeleted - The node N that was deleted and, if E is not null, an
596    /// equivalent node E that replaced it.
597    virtual void NodeDeleted(SDNode *N, SDNode *E) = 0;
598
599    /// NodeUpdated - The node N that was updated.
600    virtual void NodeUpdated(SDNode *N) = 0;
601  };
602
603  /// RemoveDeadNode - Remove the specified node from the system. If any of its
604  /// operands then becomes dead, remove them as well. Inform UpdateListener
605  /// for each node deleted.
606  void RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener = 0);
607
608  /// RemoveDeadNodes - This method deletes the unreachable nodes in the
609  /// given list, and any nodes that become unreachable as a result.
610  void RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
611                       DAGUpdateListener *UpdateListener = 0);
612
613  /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
614  /// This can cause recursive merging of nodes in the DAG.  Use the first
615  /// version if 'From' is known to have a single result, use the second
616  /// if you have two nodes with identical results, use the third otherwise.
617  ///
618  /// These methods all take an optional UpdateListener, which (if not null) is
619  /// informed about nodes that are deleted and modified due to recursive
620  /// changes in the dag.
621  ///
622  void ReplaceAllUsesWith(SDValue From, SDValue Op,
623                          DAGUpdateListener *UpdateListener = 0);
624  void ReplaceAllUsesWith(SDNode *From, SDNode *To,
625                          DAGUpdateListener *UpdateListener = 0);
626  void ReplaceAllUsesWith(SDNode *From, const SDValue *To,
627                          DAGUpdateListener *UpdateListener = 0);
628
629  /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
630  /// uses of other values produced by From.Val alone.
631  void ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
632                                 DAGUpdateListener *UpdateListener = 0);
633
634  /// ReplaceAllUsesOfValuesWith - Like ReplaceAllUsesOfValueWith, but
635  /// for multiple values at once. This correctly handles the case where
636  /// there is an overlap between the From values and the To values.
637  void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To,
638                                  unsigned Num,
639                                  DAGUpdateListener *UpdateListener = 0);
640
641  /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
642  /// based on their topological order. It returns the maximum id and a vector
643  /// of the SDNodes* in assigned order by reference.
644  unsigned AssignTopologicalOrder(std::vector<SDNode*> &TopOrder);
645
646  /// isCommutativeBinOp - Returns true if the opcode is a commutative binary
647  /// operation.
648  static bool isCommutativeBinOp(unsigned Opcode) {
649    // FIXME: This should get its info from the td file, so that we can include
650    // target info.
651    switch (Opcode) {
652    case ISD::ADD:
653    case ISD::MUL:
654    case ISD::MULHU:
655    case ISD::MULHS:
656    case ISD::SMUL_LOHI:
657    case ISD::UMUL_LOHI:
658    case ISD::FADD:
659    case ISD::FMUL:
660    case ISD::AND:
661    case ISD::OR:
662    case ISD::XOR:
663    case ISD::ADDC:
664    case ISD::ADDE: return true;
665    default: return false;
666    }
667  }
668
669  void dump() const;
670
671  /// CreateStackTemporary - Create a stack temporary, suitable for holding the
672  /// specified value type.  If minAlign is specified, the slot size will have
673  /// at least that alignment.
674  SDValue CreateStackTemporary(MVT VT, unsigned minAlign = 1);
675
676  /// FoldSetCC - Constant fold a setcc to true or false.
677  SDValue FoldSetCC(MVT VT, SDValue N1,
678                      SDValue N2, ISD::CondCode Cond);
679
680  /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
681  /// use this predicate to simplify operations downstream.
682  bool SignBitIsZero(SDValue Op, unsigned Depth = 0) const;
683
684  /// MaskedValueIsZero - Return true if 'Op & Mask' is known to be zero.  We
685  /// use this predicate to simplify operations downstream.  Op and Mask are
686  /// known to be the same type.
687  bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth = 0)
688    const;
689
690  /// ComputeMaskedBits - Determine which of the bits specified in Mask are
691  /// known to be either zero or one and return them in the KnownZero/KnownOne
692  /// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
693  /// processing.  Targets can implement the computeMaskedBitsForTargetNode
694  /// method in the TargetLowering class to allow target nodes to be understood.
695  void ComputeMaskedBits(SDValue Op, const APInt &Mask, APInt &KnownZero,
696                         APInt &KnownOne, unsigned Depth = 0) const;
697
698  /// ComputeNumSignBits - Return the number of times the sign bit of the
699  /// register is replicated into the other bits.  We know that at least 1 bit
700  /// is always equal to the sign bit (itself), but other cases can give us
701  /// information.  For example, immediately after an "SRA X, 2", we know that
702  /// the top 3 bits are all equal to each other, so we return 3.  Targets can
703  /// implement the ComputeNumSignBitsForTarget method in the TargetLowering
704  /// class to allow target nodes to be understood.
705  unsigned ComputeNumSignBits(SDValue Op, unsigned Depth = 0) const;
706
707  /// isVerifiedDebugInfoDesc - Returns true if the specified SDValue has
708  /// been verified as a debug information descriptor.
709  bool isVerifiedDebugInfoDesc(SDValue Op) const;
710
711  /// getShuffleScalarElt - Returns the scalar element that will make up the ith
712  /// element of the result of the vector shuffle.
713  SDValue getShuffleScalarElt(const SDNode *N, unsigned Idx);
714
715private:
716  void RemoveNodeFromCSEMaps(SDNode *N);
717  SDNode *AddNonLeafNodeToCSEMaps(SDNode *N);
718  SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op, void *&InsertPos);
719  SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op1, SDValue Op2,
720                               void *&InsertPos);
721  SDNode *FindModifiedNodeSlot(SDNode *N, const SDValue *Ops, unsigned NumOps,
722                               void *&InsertPos);
723
724  void DeleteNodeNotInCSEMaps(SDNode *N);
725
726  unsigned getMVTAlignment(MVT MemoryVT) const;
727
728  // List of non-single value types.
729  std::vector<SDVTList> VTList;
730
731  // Maps to auto-CSE operations.
732  std::vector<CondCodeSDNode*> CondCodeNodes;
733
734  std::vector<SDNode*> ValueTypeNodes;
735  std::map<MVT, SDNode*, MVT::compareRawBits> ExtendedValueTypeNodes;
736  StringMap<SDNode*> ExternalSymbols;
737  StringMap<SDNode*> TargetExternalSymbols;
738};
739
740template <> struct GraphTraits<SelectionDAG*> : public GraphTraits<SDNode*> {
741  typedef SelectionDAG::allnodes_iterator nodes_iterator;
742  static nodes_iterator nodes_begin(SelectionDAG *G) {
743    return G->allnodes_begin();
744  }
745  static nodes_iterator nodes_end(SelectionDAG *G) {
746    return G->allnodes_end();
747  }
748};
749
750}  // end namespace llvm
751
752#endif
753