ELF.h revision 4b6fbf25600a94dc41ba96b174045e50b85862cf
1//===- ELF.h - ELF object file implementation -------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the ELFObjectFile template class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_OBJECT_ELF_H
15#define LLVM_OBJECT_ELF_H
16
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/ADT/StringSwitch.h"
19#include "llvm/ADT/Triple.h"
20#include "llvm/ADT/DenseMap.h"
21#include "llvm/ADT/PointerIntPair.h"
22#include "llvm/Object/ObjectFile.h"
23#include "llvm/Support/Casting.h"
24#include "llvm/Support/ELF.h"
25#include "llvm/Support/Endian.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/MemoryBuffer.h"
28#include "llvm/Support/raw_ostream.h"
29#include <algorithm>
30#include <limits>
31#include <utility>
32
33namespace llvm {
34namespace object {
35
36// Subclasses of ELFObjectFile may need this for template instantiation
37inline std::pair<unsigned char, unsigned char>
38getElfArchType(MemoryBuffer *Object) {
39  if (Object->getBufferSize() < ELF::EI_NIDENT)
40    return std::make_pair((uint8_t)ELF::ELFCLASSNONE,(uint8_t)ELF::ELFDATANONE);
41  return std::make_pair( (uint8_t)Object->getBufferStart()[ELF::EI_CLASS]
42                       , (uint8_t)Object->getBufferStart()[ELF::EI_DATA]);
43}
44
45// Templates to choose Elf_Addr and Elf_Off depending on is64Bits.
46template<support::endianness target_endianness>
47struct ELFDataTypeTypedefHelperCommon {
48  typedef support::detail::packed_endian_specific_integral
49    <uint16_t, target_endianness, support::aligned> Elf_Half;
50  typedef support::detail::packed_endian_specific_integral
51    <uint32_t, target_endianness, support::aligned> Elf_Word;
52  typedef support::detail::packed_endian_specific_integral
53    <int32_t, target_endianness, support::aligned> Elf_Sword;
54  typedef support::detail::packed_endian_specific_integral
55    <uint64_t, target_endianness, support::aligned> Elf_Xword;
56  typedef support::detail::packed_endian_specific_integral
57    <int64_t, target_endianness, support::aligned> Elf_Sxword;
58};
59
60template<support::endianness target_endianness, bool is64Bits>
61struct ELFDataTypeTypedefHelper;
62
63/// ELF 32bit types.
64template<support::endianness target_endianness>
65struct ELFDataTypeTypedefHelper<target_endianness, false>
66  : ELFDataTypeTypedefHelperCommon<target_endianness> {
67  typedef uint32_t value_type;
68  typedef support::detail::packed_endian_specific_integral
69    <value_type, target_endianness, support::aligned> Elf_Addr;
70  typedef support::detail::packed_endian_specific_integral
71    <value_type, target_endianness, support::aligned> Elf_Off;
72};
73
74/// ELF 64bit types.
75template<support::endianness target_endianness>
76struct ELFDataTypeTypedefHelper<target_endianness, true>
77  : ELFDataTypeTypedefHelperCommon<target_endianness>{
78  typedef uint64_t value_type;
79  typedef support::detail::packed_endian_specific_integral
80    <value_type, target_endianness, support::aligned> Elf_Addr;
81  typedef support::detail::packed_endian_specific_integral
82    <value_type, target_endianness, support::aligned> Elf_Off;
83};
84
85// I really don't like doing this, but the alternative is copypasta.
86#define LLVM_ELF_IMPORT_TYPES(target_endianness, is64Bits) \
87typedef typename \
88  ELFDataTypeTypedefHelper<target_endianness, is64Bits>::Elf_Addr Elf_Addr; \
89typedef typename \
90  ELFDataTypeTypedefHelper<target_endianness, is64Bits>::Elf_Off Elf_Off; \
91typedef typename \
92  ELFDataTypeTypedefHelper<target_endianness, is64Bits>::Elf_Half Elf_Half; \
93typedef typename \
94  ELFDataTypeTypedefHelper<target_endianness, is64Bits>::Elf_Word Elf_Word; \
95typedef typename \
96  ELFDataTypeTypedefHelper<target_endianness, is64Bits>::Elf_Sword Elf_Sword; \
97typedef typename \
98  ELFDataTypeTypedefHelper<target_endianness, is64Bits>::Elf_Xword Elf_Xword; \
99typedef typename \
100  ELFDataTypeTypedefHelper<target_endianness, is64Bits>::Elf_Sxword Elf_Sxword;
101
102  // Section header.
103template<support::endianness target_endianness, bool is64Bits>
104struct Elf_Shdr_Base;
105
106template<support::endianness target_endianness>
107struct Elf_Shdr_Base<target_endianness, false> {
108  LLVM_ELF_IMPORT_TYPES(target_endianness, false)
109  Elf_Word sh_name;     // Section name (index into string table)
110  Elf_Word sh_type;     // Section type (SHT_*)
111  Elf_Word sh_flags;    // Section flags (SHF_*)
112  Elf_Addr sh_addr;     // Address where section is to be loaded
113  Elf_Off  sh_offset;   // File offset of section data, in bytes
114  Elf_Word sh_size;     // Size of section, in bytes
115  Elf_Word sh_link;     // Section type-specific header table index link
116  Elf_Word sh_info;     // Section type-specific extra information
117  Elf_Word sh_addralign;// Section address alignment
118  Elf_Word sh_entsize;  // Size of records contained within the section
119};
120
121template<support::endianness target_endianness>
122struct Elf_Shdr_Base<target_endianness, true> {
123  LLVM_ELF_IMPORT_TYPES(target_endianness, true)
124  Elf_Word  sh_name;     // Section name (index into string table)
125  Elf_Word  sh_type;     // Section type (SHT_*)
126  Elf_Xword sh_flags;    // Section flags (SHF_*)
127  Elf_Addr  sh_addr;     // Address where section is to be loaded
128  Elf_Off   sh_offset;   // File offset of section data, in bytes
129  Elf_Xword sh_size;     // Size of section, in bytes
130  Elf_Word  sh_link;     // Section type-specific header table index link
131  Elf_Word  sh_info;     // Section type-specific extra information
132  Elf_Xword sh_addralign;// Section address alignment
133  Elf_Xword sh_entsize;  // Size of records contained within the section
134};
135
136template<support::endianness target_endianness, bool is64Bits>
137struct Elf_Shdr_Impl : Elf_Shdr_Base<target_endianness, is64Bits> {
138  using Elf_Shdr_Base<target_endianness, is64Bits>::sh_entsize;
139  using Elf_Shdr_Base<target_endianness, is64Bits>::sh_size;
140
141  /// @brief Get the number of entities this section contains if it has any.
142  unsigned getEntityCount() const {
143    if (sh_entsize == 0)
144      return 0;
145    return sh_size / sh_entsize;
146  }
147};
148
149template<support::endianness target_endianness, bool is64Bits>
150struct Elf_Sym_Base;
151
152template<support::endianness target_endianness>
153struct Elf_Sym_Base<target_endianness, false> {
154  LLVM_ELF_IMPORT_TYPES(target_endianness, false)
155  Elf_Word      st_name;  // Symbol name (index into string table)
156  Elf_Addr      st_value; // Value or address associated with the symbol
157  Elf_Word      st_size;  // Size of the symbol
158  unsigned char st_info;  // Symbol's type and binding attributes
159  unsigned char st_other; // Must be zero; reserved
160  Elf_Half      st_shndx; // Which section (header table index) it's defined in
161};
162
163template<support::endianness target_endianness>
164struct Elf_Sym_Base<target_endianness, true> {
165  LLVM_ELF_IMPORT_TYPES(target_endianness, true)
166  Elf_Word      st_name;  // Symbol name (index into string table)
167  unsigned char st_info;  // Symbol's type and binding attributes
168  unsigned char st_other; // Must be zero; reserved
169  Elf_Half      st_shndx; // Which section (header table index) it's defined in
170  Elf_Addr      st_value; // Value or address associated with the symbol
171  Elf_Xword     st_size;  // Size of the symbol
172};
173
174template<support::endianness target_endianness, bool is64Bits>
175struct Elf_Sym_Impl : Elf_Sym_Base<target_endianness, is64Bits> {
176  using Elf_Sym_Base<target_endianness, is64Bits>::st_info;
177
178  // These accessors and mutators correspond to the ELF32_ST_BIND,
179  // ELF32_ST_TYPE, and ELF32_ST_INFO macros defined in the ELF specification:
180  unsigned char getBinding() const { return st_info >> 4; }
181  unsigned char getType() const { return st_info & 0x0f; }
182  void setBinding(unsigned char b) { setBindingAndType(b, getType()); }
183  void setType(unsigned char t) { setBindingAndType(getBinding(), t); }
184  void setBindingAndType(unsigned char b, unsigned char t) {
185    st_info = (b << 4) + (t & 0x0f);
186  }
187};
188
189/// Elf_Versym: This is the structure of entries in the SHT_GNU_versym section
190/// (.gnu.version). This structure is identical for ELF32 and ELF64.
191template<support::endianness target_endianness, bool is64Bits>
192struct Elf_Versym_Impl {
193  LLVM_ELF_IMPORT_TYPES(target_endianness, is64Bits)
194  Elf_Half vs_index;   // Version index with flags (e.g. VERSYM_HIDDEN)
195};
196
197template<support::endianness target_endianness, bool is64Bits>
198struct Elf_Verdaux_Impl;
199
200/// Elf_Verdef: This is the structure of entries in the SHT_GNU_verdef section
201/// (.gnu.version_d). This structure is identical for ELF32 and ELF64.
202template<support::endianness target_endianness, bool is64Bits>
203struct Elf_Verdef_Impl {
204  LLVM_ELF_IMPORT_TYPES(target_endianness, is64Bits)
205  typedef Elf_Verdaux_Impl<target_endianness, is64Bits> Elf_Verdaux;
206  Elf_Half vd_version; // Version of this structure (e.g. VER_DEF_CURRENT)
207  Elf_Half vd_flags;   // Bitwise flags (VER_DEF_*)
208  Elf_Half vd_ndx;     // Version index, used in .gnu.version entries
209  Elf_Half vd_cnt;     // Number of Verdaux entries
210  Elf_Word vd_hash;    // Hash of name
211  Elf_Word vd_aux;     // Offset to the first Verdaux entry (in bytes)
212  Elf_Word vd_next;    // Offset to the next Verdef entry (in bytes)
213
214  /// Get the first Verdaux entry for this Verdef.
215  const Elf_Verdaux *getAux() const {
216    return reinterpret_cast<const Elf_Verdaux*>((const char*)this + vd_aux);
217  }
218};
219
220/// Elf_Verdaux: This is the structure of auxiliary data in the SHT_GNU_verdef
221/// section (.gnu.version_d). This structure is identical for ELF32 and ELF64.
222template<support::endianness target_endianness, bool is64Bits>
223struct Elf_Verdaux_Impl {
224  LLVM_ELF_IMPORT_TYPES(target_endianness, is64Bits)
225  Elf_Word vda_name; // Version name (offset in string table)
226  Elf_Word vda_next; // Offset to next Verdaux entry (in bytes)
227};
228
229/// Elf_Verneed: This is the structure of entries in the SHT_GNU_verneed
230/// section (.gnu.version_r). This structure is identical for ELF32 and ELF64.
231template<support::endianness target_endianness, bool is64Bits>
232struct Elf_Verneed_Impl {
233  LLVM_ELF_IMPORT_TYPES(target_endianness, is64Bits)
234  Elf_Half vn_version; // Version of this structure (e.g. VER_NEED_CURRENT)
235  Elf_Half vn_cnt;     // Number of associated Vernaux entries
236  Elf_Word vn_file;    // Library name (string table offset)
237  Elf_Word vn_aux;     // Offset to first Vernaux entry (in bytes)
238  Elf_Word vn_next;    // Offset to next Verneed entry (in bytes)
239};
240
241/// Elf_Vernaux: This is the structure of auxiliary data in SHT_GNU_verneed
242/// section (.gnu.version_r). This structure is identical for ELF32 and ELF64.
243template<support::endianness target_endianness, bool is64Bits>
244struct Elf_Vernaux_Impl {
245  LLVM_ELF_IMPORT_TYPES(target_endianness, is64Bits)
246  Elf_Word vna_hash;  // Hash of dependency name
247  Elf_Half vna_flags; // Bitwise Flags (VER_FLAG_*)
248  Elf_Half vna_other; // Version index, used in .gnu.version entries
249  Elf_Word vna_name;  // Dependency name
250  Elf_Word vna_next;  // Offset to next Vernaux entry (in bytes)
251};
252
253/// Elf_Dyn_Base: This structure matches the form of entries in the dynamic
254///               table section (.dynamic) look like.
255template<support::endianness target_endianness, bool is64Bits>
256struct Elf_Dyn_Base;
257
258template<support::endianness target_endianness>
259struct Elf_Dyn_Base<target_endianness, false> {
260  LLVM_ELF_IMPORT_TYPES(target_endianness, false)
261  Elf_Sword d_tag;
262  union {
263    Elf_Word d_val;
264    Elf_Addr d_ptr;
265  } d_un;
266};
267
268template<support::endianness target_endianness>
269struct Elf_Dyn_Base<target_endianness, true> {
270  LLVM_ELF_IMPORT_TYPES(target_endianness, true)
271  Elf_Sxword d_tag;
272  union {
273    Elf_Xword d_val;
274    Elf_Addr d_ptr;
275  } d_un;
276};
277
278/// Elf_Dyn_Impl: This inherits from Elf_Dyn_Base, adding getters and setters.
279template<support::endianness target_endianness, bool is64Bits>
280struct Elf_Dyn_Impl : Elf_Dyn_Base<target_endianness, is64Bits> {
281  using Elf_Dyn_Base<target_endianness, is64Bits>::d_tag;
282  using Elf_Dyn_Base<target_endianness, is64Bits>::d_un;
283  int64_t getTag() const { return d_tag; }
284  uint64_t getVal() const { return d_un.d_val; }
285  uint64_t getPtr() const { return d_un.ptr; }
286};
287
288template<support::endianness target_endianness, bool is64Bits>
289class ELFObjectFile;
290
291// DynRefImpl: Reference to an entry in the dynamic table
292// This is an ELF-specific interface.
293template<support::endianness target_endianness, bool is64Bits>
294class DynRefImpl {
295  typedef Elf_Dyn_Impl<target_endianness, is64Bits> Elf_Dyn;
296  typedef ELFObjectFile<target_endianness, is64Bits> OwningType;
297
298  DataRefImpl DynPimpl;
299  const OwningType *OwningObject;
300
301public:
302  DynRefImpl() : OwningObject(NULL) { }
303
304  DynRefImpl(DataRefImpl DynP, const OwningType *Owner);
305
306  bool operator==(const DynRefImpl &Other) const;
307  bool operator <(const DynRefImpl &Other) const;
308
309  error_code getNext(DynRefImpl &Result) const;
310  int64_t getTag() const;
311  uint64_t getVal() const;
312  uint64_t getPtr() const;
313
314  DataRefImpl getRawDataRefImpl() const;
315};
316
317// Elf_Rel: Elf Relocation
318template<support::endianness target_endianness, bool is64Bits, bool isRela>
319struct Elf_Rel_Base;
320
321template<support::endianness target_endianness>
322struct Elf_Rel_Base<target_endianness, false, false> {
323  LLVM_ELF_IMPORT_TYPES(target_endianness, false)
324  Elf_Addr      r_offset; // Location (file byte offset, or program virtual addr)
325  Elf_Word      r_info;  // Symbol table index and type of relocation to apply
326};
327
328template<support::endianness target_endianness>
329struct Elf_Rel_Base<target_endianness, true, false> {
330  LLVM_ELF_IMPORT_TYPES(target_endianness, true)
331  Elf_Addr      r_offset; // Location (file byte offset, or program virtual addr)
332  Elf_Xword     r_info;   // Symbol table index and type of relocation to apply
333};
334
335template<support::endianness target_endianness>
336struct Elf_Rel_Base<target_endianness, false, true> {
337  LLVM_ELF_IMPORT_TYPES(target_endianness, false)
338  Elf_Addr      r_offset; // Location (file byte offset, or program virtual addr)
339  Elf_Word      r_info;   // Symbol table index and type of relocation to apply
340  Elf_Sword     r_addend; // Compute value for relocatable field by adding this
341};
342
343template<support::endianness target_endianness>
344struct Elf_Rel_Base<target_endianness, true, true> {
345  LLVM_ELF_IMPORT_TYPES(target_endianness, true)
346  Elf_Addr      r_offset; // Location (file byte offset, or program virtual addr)
347  Elf_Xword     r_info;   // Symbol table index and type of relocation to apply
348  Elf_Sxword    r_addend; // Compute value for relocatable field by adding this.
349};
350
351template<support::endianness target_endianness, bool is64Bits, bool isRela>
352struct Elf_Rel_Impl;
353
354template<support::endianness target_endianness, bool isRela>
355struct Elf_Rel_Impl<target_endianness, true, isRela>
356       : Elf_Rel_Base<target_endianness, true, isRela> {
357  using Elf_Rel_Base<target_endianness, true, isRela>::r_info;
358  LLVM_ELF_IMPORT_TYPES(target_endianness, true)
359
360  // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
361  // and ELF64_R_INFO macros defined in the ELF specification:
362  uint64_t getSymbol() const { return (r_info >> 32); }
363  unsigned char getType() const {
364    return (unsigned char) (r_info & 0xffffffffL);
365  }
366  void setSymbol(uint64_t s) { setSymbolAndType(s, getType()); }
367  void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
368  void setSymbolAndType(uint64_t s, unsigned char t) {
369    r_info = (s << 32) + (t&0xffffffffL);
370  }
371};
372
373template<support::endianness target_endianness, bool isRela>
374struct Elf_Rel_Impl<target_endianness, false, isRela>
375       : Elf_Rel_Base<target_endianness, false, isRela> {
376  using Elf_Rel_Base<target_endianness, false, isRela>::r_info;
377  LLVM_ELF_IMPORT_TYPES(target_endianness, false)
378
379  // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
380  // and ELF32_R_INFO macros defined in the ELF specification:
381  uint32_t getSymbol() const { return (r_info >> 8); }
382  unsigned char getType() const { return (unsigned char) (r_info & 0x0ff); }
383  void setSymbol(uint32_t s) { setSymbolAndType(s, getType()); }
384  void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
385  void setSymbolAndType(uint32_t s, unsigned char t) {
386    r_info = (s << 8) + t;
387  }
388};
389
390
391template<support::endianness target_endianness, bool is64Bits>
392class ELFObjectFile : public ObjectFile {
393  LLVM_ELF_IMPORT_TYPES(target_endianness, is64Bits)
394
395  typedef Elf_Shdr_Impl<target_endianness, is64Bits> Elf_Shdr;
396  typedef Elf_Sym_Impl<target_endianness, is64Bits> Elf_Sym;
397  typedef Elf_Dyn_Impl<target_endianness, is64Bits> Elf_Dyn;
398  typedef Elf_Rel_Impl<target_endianness, is64Bits, false> Elf_Rel;
399  typedef Elf_Rel_Impl<target_endianness, is64Bits, true> Elf_Rela;
400  typedef Elf_Verdef_Impl<target_endianness, is64Bits> Elf_Verdef;
401  typedef Elf_Verdaux_Impl<target_endianness, is64Bits> Elf_Verdaux;
402  typedef Elf_Verneed_Impl<target_endianness, is64Bits> Elf_Verneed;
403  typedef Elf_Vernaux_Impl<target_endianness, is64Bits> Elf_Vernaux;
404  typedef Elf_Versym_Impl<target_endianness, is64Bits> Elf_Versym;
405  typedef DynRefImpl<target_endianness, is64Bits> DynRef;
406  typedef content_iterator<DynRef> dyn_iterator;
407
408protected:
409  struct Elf_Ehdr {
410    unsigned char e_ident[ELF::EI_NIDENT]; // ELF Identification bytes
411    Elf_Half e_type;     // Type of file (see ET_*)
412    Elf_Half e_machine;  // Required architecture for this file (see EM_*)
413    Elf_Word e_version;  // Must be equal to 1
414    Elf_Addr e_entry;    // Address to jump to in order to start program
415    Elf_Off  e_phoff;    // Program header table's file offset, in bytes
416    Elf_Off  e_shoff;    // Section header table's file offset, in bytes
417    Elf_Word e_flags;    // Processor-specific flags
418    Elf_Half e_ehsize;   // Size of ELF header, in bytes
419    Elf_Half e_phentsize;// Size of an entry in the program header table
420    Elf_Half e_phnum;    // Number of entries in the program header table
421    Elf_Half e_shentsize;// Size of an entry in the section header table
422    Elf_Half e_shnum;    // Number of entries in the section header table
423    Elf_Half e_shstrndx; // Section header table index of section name
424                                  // string table
425    bool checkMagic() const {
426      return (memcmp(e_ident, ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0;
427    }
428    unsigned char getFileClass() const { return e_ident[ELF::EI_CLASS]; }
429    unsigned char getDataEncoding() const { return e_ident[ELF::EI_DATA]; }
430  };
431  // This flag is used for classof, to distinguish ELFObjectFile from
432  // its subclass. If more subclasses will be created, this flag will
433  // have to become an enum.
434  bool isDyldELFObject;
435
436private:
437  typedef SmallVector<const Elf_Shdr*, 1> Sections_t;
438  typedef DenseMap<unsigned, unsigned> IndexMap_t;
439  typedef DenseMap<const Elf_Shdr*, SmallVector<uint32_t, 1> > RelocMap_t;
440
441  const Elf_Ehdr *Header;
442  const Elf_Shdr *SectionHeaderTable;
443  const Elf_Shdr *dot_shstrtab_sec; // Section header string table.
444  const Elf_Shdr *dot_strtab_sec;   // Symbol header string table.
445  const Elf_Shdr *dot_dynstr_sec;   // Dynamic symbol string table.
446
447  // SymbolTableSections[0] always points to the dynamic string table section
448  // header, or NULL if there is no dynamic string table.
449  Sections_t SymbolTableSections;
450  IndexMap_t SymbolTableSectionsIndexMap;
451  DenseMap<const Elf_Sym*, ELF::Elf64_Word> ExtendedSymbolTable;
452
453  const Elf_Shdr *dot_dynamic_sec;       // .dynamic
454  const Elf_Shdr *dot_gnu_version_sec;   // .gnu.version
455  const Elf_Shdr *dot_gnu_version_r_sec; // .gnu.version_r
456  const Elf_Shdr *dot_gnu_version_d_sec; // .gnu.version_d
457
458  // Pointer to SONAME entry in dynamic string table
459  // This is set the first time getLoadName is called.
460  mutable const char *dt_soname;
461
462  // Records for each version index the corresponding Verdef or Vernaux entry.
463  // This is filled the first time LoadVersionMap() is called.
464  class VersionMapEntry : public PointerIntPair<const void*, 1> {
465    public:
466    // If the integer is 0, this is an Elf_Verdef*.
467    // If the integer is 1, this is an Elf_Vernaux*.
468    VersionMapEntry() : PointerIntPair<const void*, 1>(NULL, 0) { }
469    VersionMapEntry(const Elf_Verdef *verdef)
470        : PointerIntPair<const void*, 1>(verdef, 0) { }
471    VersionMapEntry(const Elf_Vernaux *vernaux)
472        : PointerIntPair<const void*, 1>(vernaux, 1) { }
473    bool isNull() const { return getPointer() == NULL; }
474    bool isVerdef() const { return !isNull() && getInt() == 0; }
475    bool isVernaux() const { return !isNull() && getInt() == 1; }
476    const Elf_Verdef *getVerdef() const {
477      return isVerdef() ? (const Elf_Verdef*)getPointer() : NULL;
478    }
479    const Elf_Vernaux *getVernaux() const {
480      return isVernaux() ? (const Elf_Vernaux*)getPointer() : NULL;
481    }
482  };
483  mutable SmallVector<VersionMapEntry, 16> VersionMap;
484  void LoadVersionDefs(const Elf_Shdr *sec) const;
485  void LoadVersionNeeds(const Elf_Shdr *ec) const;
486  void LoadVersionMap() const;
487
488  /// @brief Map sections to an array of relocation sections that reference
489  ///        them sorted by section index.
490  RelocMap_t SectionRelocMap;
491
492  /// @brief Get the relocation section that contains \a Rel.
493  const Elf_Shdr *getRelSection(DataRefImpl Rel) const {
494    return getSection(Rel.w.b);
495  }
496
497  bool            isRelocationHasAddend(DataRefImpl Rel) const;
498  template<typename T>
499  const T        *getEntry(uint16_t Section, uint32_t Entry) const;
500  template<typename T>
501  const T        *getEntry(const Elf_Shdr *Section, uint32_t Entry) const;
502  const Elf_Shdr *getSection(DataRefImpl index) const;
503  const Elf_Shdr *getSection(uint32_t index) const;
504  const Elf_Rel  *getRel(DataRefImpl Rel) const;
505  const Elf_Rela *getRela(DataRefImpl Rela) const;
506  const char     *getString(uint32_t section, uint32_t offset) const;
507  const char     *getString(const Elf_Shdr *section, uint32_t offset) const;
508  error_code      getSymbolVersion(const Elf_Shdr *section,
509                                   const Elf_Sym *Symb,
510                                   StringRef &Version,
511                                   bool &IsDefault) const;
512  void VerifyStrTab(const Elf_Shdr *sh) const;
513
514protected:
515  const Elf_Sym  *getSymbol(DataRefImpl Symb) const; // FIXME: Should be private?
516  void            validateSymbol(DataRefImpl Symb) const;
517
518public:
519  error_code      getSymbolName(const Elf_Shdr *section,
520                                const Elf_Sym *Symb,
521                                StringRef &Res) const;
522  error_code      getSectionName(const Elf_Shdr *section,
523                                 StringRef &Res) const;
524  const Elf_Dyn  *getDyn(DataRefImpl DynData) const;
525  error_code getSymbolVersion(SymbolRef Symb, StringRef &Version,
526                              bool &IsDefault) const;
527protected:
528  virtual error_code getSymbolNext(DataRefImpl Symb, SymbolRef &Res) const;
529  virtual error_code getSymbolName(DataRefImpl Symb, StringRef &Res) const;
530  virtual error_code getSymbolFileOffset(DataRefImpl Symb, uint64_t &Res) const;
531  virtual error_code getSymbolAddress(DataRefImpl Symb, uint64_t &Res) const;
532  virtual error_code getSymbolSize(DataRefImpl Symb, uint64_t &Res) const;
533  virtual error_code getSymbolNMTypeChar(DataRefImpl Symb, char &Res) const;
534  virtual error_code getSymbolFlags(DataRefImpl Symb, uint32_t &Res) const;
535  virtual error_code getSymbolType(DataRefImpl Symb, SymbolRef::Type &Res) const;
536  virtual error_code getSymbolSection(DataRefImpl Symb,
537                                      section_iterator &Res) const;
538
539  friend class DynRefImpl<target_endianness, is64Bits>;
540  virtual error_code getDynNext(DataRefImpl DynData, DynRef &Result) const;
541
542  virtual error_code getLibraryNext(DataRefImpl Data, LibraryRef &Result) const;
543  virtual error_code getLibraryPath(DataRefImpl Data, StringRef &Res) const;
544
545  virtual error_code getSectionNext(DataRefImpl Sec, SectionRef &Res) const;
546  virtual error_code getSectionName(DataRefImpl Sec, StringRef &Res) const;
547  virtual error_code getSectionAddress(DataRefImpl Sec, uint64_t &Res) const;
548  virtual error_code getSectionSize(DataRefImpl Sec, uint64_t &Res) const;
549  virtual error_code getSectionContents(DataRefImpl Sec, StringRef &Res) const;
550  virtual error_code getSectionAlignment(DataRefImpl Sec, uint64_t &Res) const;
551  virtual error_code isSectionText(DataRefImpl Sec, bool &Res) const;
552  virtual error_code isSectionData(DataRefImpl Sec, bool &Res) const;
553  virtual error_code isSectionBSS(DataRefImpl Sec, bool &Res) const;
554  virtual error_code isSectionRequiredForExecution(DataRefImpl Sec,
555                                                   bool &Res) const;
556  virtual error_code isSectionVirtual(DataRefImpl Sec, bool &Res) const;
557  virtual error_code isSectionZeroInit(DataRefImpl Sec, bool &Res) const;
558  virtual error_code sectionContainsSymbol(DataRefImpl Sec, DataRefImpl Symb,
559                                           bool &Result) const;
560  virtual relocation_iterator getSectionRelBegin(DataRefImpl Sec) const;
561  virtual relocation_iterator getSectionRelEnd(DataRefImpl Sec) const;
562
563  virtual error_code getRelocationNext(DataRefImpl Rel,
564                                       RelocationRef &Res) const;
565  virtual error_code getRelocationAddress(DataRefImpl Rel,
566                                          uint64_t &Res) const;
567  virtual error_code getRelocationOffset(DataRefImpl Rel,
568                                         uint64_t &Res) const;
569  virtual error_code getRelocationSymbol(DataRefImpl Rel,
570                                         SymbolRef &Res) const;
571  virtual error_code getRelocationType(DataRefImpl Rel,
572                                       uint64_t &Res) const;
573  virtual error_code getRelocationTypeName(DataRefImpl Rel,
574                                           SmallVectorImpl<char> &Result) const;
575  virtual error_code getRelocationAdditionalInfo(DataRefImpl Rel,
576                                                 int64_t &Res) const;
577  virtual error_code getRelocationValueString(DataRefImpl Rel,
578                                           SmallVectorImpl<char> &Result) const;
579
580public:
581  ELFObjectFile(MemoryBuffer *Object, error_code &ec);
582  virtual symbol_iterator begin_symbols() const;
583  virtual symbol_iterator end_symbols() const;
584
585  virtual symbol_iterator begin_dynamic_symbols() const;
586  virtual symbol_iterator end_dynamic_symbols() const;
587
588  virtual section_iterator begin_sections() const;
589  virtual section_iterator end_sections() const;
590
591  virtual library_iterator begin_libraries_needed() const;
592  virtual library_iterator end_libraries_needed() const;
593
594  virtual dyn_iterator begin_dynamic_table() const;
595  virtual dyn_iterator end_dynamic_table() const;
596
597  virtual uint8_t getBytesInAddress() const;
598  virtual StringRef getFileFormatName() const;
599  virtual StringRef getObjectType() const { return "ELF"; }
600  virtual unsigned getArch() const;
601  virtual StringRef getLoadName() const;
602  virtual error_code getSectionContents(const Elf_Shdr *sec,
603                                        StringRef &Res) const;
604
605  uint64_t getNumSections() const;
606  uint64_t getStringTableIndex() const;
607  ELF::Elf64_Word getSymbolTableIndex(const Elf_Sym *symb) const;
608  const Elf_Shdr *getSection(const Elf_Sym *symb) const;
609  const Elf_Shdr *getElfSection(section_iterator &It) const;
610  const Elf_Sym *getElfSymbol(symbol_iterator &It) const;
611
612  // Methods for type inquiry through isa, cast, and dyn_cast
613  bool isDyldType() const { return isDyldELFObject; }
614  static inline bool classof(const Binary *v) {
615    return v->getType() == getELFType(target_endianness == support::little,
616                                      is64Bits);
617  }
618  static inline bool classof(const ELFObjectFile *v) { return true; }
619};
620
621// Iterate through the version definitions, and place each Elf_Verdef
622// in the VersionMap according to its index.
623template<support::endianness target_endianness, bool is64Bits>
624void ELFObjectFile<target_endianness, is64Bits>::
625                  LoadVersionDefs(const Elf_Shdr *sec) const {
626  unsigned vd_size = sec->sh_size; // Size of section in bytes
627  unsigned vd_count = sec->sh_info; // Number of Verdef entries
628  const char *sec_start = (const char*)base() + sec->sh_offset;
629  const char *sec_end = sec_start + vd_size;
630  // The first Verdef entry is at the start of the section.
631  const char *p = sec_start;
632  for (unsigned i = 0; i < vd_count; i++) {
633    if (p + sizeof(Elf_Verdef) > sec_end)
634      report_fatal_error("Section ended unexpectedly while scanning "
635                         "version definitions.");
636    const Elf_Verdef *vd = reinterpret_cast<const Elf_Verdef *>(p);
637    if (vd->vd_version != ELF::VER_DEF_CURRENT)
638      report_fatal_error("Unexpected verdef version");
639    size_t index = vd->vd_ndx & ELF::VERSYM_VERSION;
640    if (index >= VersionMap.size())
641      VersionMap.resize(index+1);
642    VersionMap[index] = VersionMapEntry(vd);
643    p += vd->vd_next;
644  }
645}
646
647// Iterate through the versions needed section, and place each Elf_Vernaux
648// in the VersionMap according to its index.
649template<support::endianness target_endianness, bool is64Bits>
650void ELFObjectFile<target_endianness, is64Bits>::
651                  LoadVersionNeeds(const Elf_Shdr *sec) const {
652  unsigned vn_size = sec->sh_size; // Size of section in bytes
653  unsigned vn_count = sec->sh_info; // Number of Verneed entries
654  const char *sec_start = (const char*)base() + sec->sh_offset;
655  const char *sec_end = sec_start + vn_size;
656  // The first Verneed entry is at the start of the section.
657  const char *p = sec_start;
658  for (unsigned i = 0; i < vn_count; i++) {
659    if (p + sizeof(Elf_Verneed) > sec_end)
660      report_fatal_error("Section ended unexpectedly while scanning "
661                         "version needed records.");
662    const Elf_Verneed *vn = reinterpret_cast<const Elf_Verneed *>(p);
663    if (vn->vn_version != ELF::VER_NEED_CURRENT)
664      report_fatal_error("Unexpected verneed version");
665    // Iterate through the Vernaux entries
666    const char *paux = p + vn->vn_aux;
667    for (unsigned j = 0; j < vn->vn_cnt; j++) {
668      if (paux + sizeof(Elf_Vernaux) > sec_end)
669        report_fatal_error("Section ended unexpected while scanning auxiliary "
670                           "version needed records.");
671      const Elf_Vernaux *vna = reinterpret_cast<const Elf_Vernaux *>(paux);
672      size_t index = vna->vna_other & ELF::VERSYM_VERSION;
673      if (index >= VersionMap.size())
674        VersionMap.resize(index+1);
675      VersionMap[index] = VersionMapEntry(vna);
676      paux += vna->vna_next;
677    }
678    p += vn->vn_next;
679  }
680}
681
682template<support::endianness target_endianness, bool is64Bits>
683void ELFObjectFile<target_endianness, is64Bits>::LoadVersionMap() const {
684  // If there is no dynamic symtab or version table, there is nothing to do.
685  if (SymbolTableSections[0] == NULL || dot_gnu_version_sec == NULL)
686    return;
687
688  // Has the VersionMap already been loaded?
689  if (VersionMap.size() > 0)
690    return;
691
692  // The first two version indexes are reserved.
693  // Index 0 is LOCAL, index 1 is GLOBAL.
694  VersionMap.push_back(VersionMapEntry());
695  VersionMap.push_back(VersionMapEntry());
696
697  if (dot_gnu_version_d_sec)
698    LoadVersionDefs(dot_gnu_version_d_sec);
699
700  if (dot_gnu_version_r_sec)
701    LoadVersionNeeds(dot_gnu_version_r_sec);
702}
703
704template<support::endianness target_endianness, bool is64Bits>
705void ELFObjectFile<target_endianness, is64Bits>
706                  ::validateSymbol(DataRefImpl Symb) const {
707  const Elf_Sym  *symb = getSymbol(Symb);
708  const Elf_Shdr *SymbolTableSection = SymbolTableSections[Symb.d.b];
709  // FIXME: We really need to do proper error handling in the case of an invalid
710  //        input file. Because we don't use exceptions, I think we'll just pass
711  //        an error object around.
712  if (!(  symb
713        && SymbolTableSection
714        && symb >= (const Elf_Sym*)(base()
715                   + SymbolTableSection->sh_offset)
716        && symb <  (const Elf_Sym*)(base()
717                   + SymbolTableSection->sh_offset
718                   + SymbolTableSection->sh_size)))
719    // FIXME: Proper error handling.
720    report_fatal_error("Symb must point to a valid symbol!");
721}
722
723template<support::endianness target_endianness, bool is64Bits>
724error_code ELFObjectFile<target_endianness, is64Bits>
725                        ::getSymbolNext(DataRefImpl Symb,
726                                        SymbolRef &Result) const {
727  validateSymbol(Symb);
728  const Elf_Shdr *SymbolTableSection = SymbolTableSections[Symb.d.b];
729
730  ++Symb.d.a;
731  // Check to see if we are at the end of this symbol table.
732  if (Symb.d.a >= SymbolTableSection->getEntityCount()) {
733    // We are at the end. If there are other symbol tables, jump to them.
734    // If the symbol table is .dynsym, we are iterating dynamic symbols,
735    // and there is only one table of these.
736    if (Symb.d.b != 0) {
737      ++Symb.d.b;
738      Symb.d.a = 1; // The 0th symbol in ELF is fake.
739    }
740    // Otherwise return the terminator.
741    if (Symb.d.b == 0 || Symb.d.b >= SymbolTableSections.size()) {
742      Symb.d.a = std::numeric_limits<uint32_t>::max();
743      Symb.d.b = std::numeric_limits<uint32_t>::max();
744    }
745  }
746
747  Result = SymbolRef(Symb, this);
748  return object_error::success;
749}
750
751template<support::endianness target_endianness, bool is64Bits>
752error_code ELFObjectFile<target_endianness, is64Bits>
753                        ::getSymbolName(DataRefImpl Symb,
754                                        StringRef &Result) const {
755  validateSymbol(Symb);
756  const Elf_Sym *symb = getSymbol(Symb);
757  return getSymbolName(SymbolTableSections[Symb.d.b], symb, Result);
758}
759
760template<support::endianness target_endianness, bool is64Bits>
761error_code ELFObjectFile<target_endianness, is64Bits>
762                        ::getSymbolVersion(SymbolRef SymRef,
763                                           StringRef &Version,
764                                           bool &IsDefault) const {
765  DataRefImpl Symb = SymRef.getRawDataRefImpl();
766  validateSymbol(Symb);
767  const Elf_Sym *symb = getSymbol(Symb);
768  return getSymbolVersion(SymbolTableSections[Symb.d.b], symb,
769                          Version, IsDefault);
770}
771
772template<support::endianness target_endianness, bool is64Bits>
773ELF::Elf64_Word ELFObjectFile<target_endianness, is64Bits>
774                      ::getSymbolTableIndex(const Elf_Sym *symb) const {
775  if (symb->st_shndx == ELF::SHN_XINDEX)
776    return ExtendedSymbolTable.lookup(symb);
777  return symb->st_shndx;
778}
779
780template<support::endianness target_endianness, bool is64Bits>
781const typename ELFObjectFile<target_endianness, is64Bits>::Elf_Shdr *
782ELFObjectFile<target_endianness, is64Bits>
783                             ::getSection(const Elf_Sym *symb) const {
784  if (symb->st_shndx == ELF::SHN_XINDEX)
785    return getSection(ExtendedSymbolTable.lookup(symb));
786  if (symb->st_shndx >= ELF::SHN_LORESERVE)
787    return 0;
788  return getSection(symb->st_shndx);
789}
790
791template<support::endianness target_endianness, bool is64Bits>
792const typename ELFObjectFile<target_endianness, is64Bits>::Elf_Shdr *
793ELFObjectFile<target_endianness, is64Bits>
794                             ::getElfSection(section_iterator &It) const {
795  llvm::object::DataRefImpl ShdrRef = It->getRawDataRefImpl();
796  return reinterpret_cast<const Elf_Shdr *>(ShdrRef.p);
797}
798
799template<support::endianness target_endianness, bool is64Bits>
800const typename ELFObjectFile<target_endianness, is64Bits>::Elf_Sym *
801ELFObjectFile<target_endianness, is64Bits>
802                             ::getElfSymbol(symbol_iterator &It) const {
803  return getSymbol(It->getRawDataRefImpl());
804}
805
806template<support::endianness target_endianness, bool is64Bits>
807error_code ELFObjectFile<target_endianness, is64Bits>
808                        ::getSymbolFileOffset(DataRefImpl Symb,
809                                          uint64_t &Result) const {
810  validateSymbol(Symb);
811  const Elf_Sym  *symb = getSymbol(Symb);
812  const Elf_Shdr *Section;
813  switch (getSymbolTableIndex(symb)) {
814  case ELF::SHN_COMMON:
815   // Unintialized symbols have no offset in the object file
816  case ELF::SHN_UNDEF:
817    Result = UnknownAddressOrSize;
818    return object_error::success;
819  case ELF::SHN_ABS:
820    Result = symb->st_value;
821    return object_error::success;
822  default: Section = getSection(symb);
823  }
824
825  switch (symb->getType()) {
826  case ELF::STT_SECTION:
827    Result = Section ? Section->sh_addr : UnknownAddressOrSize;
828    return object_error::success;
829  case ELF::STT_FUNC:
830  case ELF::STT_OBJECT:
831  case ELF::STT_NOTYPE:
832    Result = symb->st_value +
833             (Section ? Section->sh_offset : 0);
834    return object_error::success;
835  default:
836    Result = UnknownAddressOrSize;
837    return object_error::success;
838  }
839}
840
841template<support::endianness target_endianness, bool is64Bits>
842error_code ELFObjectFile<target_endianness, is64Bits>
843                        ::getSymbolAddress(DataRefImpl Symb,
844                                           uint64_t &Result) const {
845  validateSymbol(Symb);
846  const Elf_Sym  *symb = getSymbol(Symb);
847  const Elf_Shdr *Section;
848  switch (getSymbolTableIndex(symb)) {
849  case ELF::SHN_COMMON:
850  case ELF::SHN_UNDEF:
851    Result = UnknownAddressOrSize;
852    return object_error::success;
853  case ELF::SHN_ABS:
854    Result = symb->st_value;
855    return object_error::success;
856  default: Section = getSection(symb);
857  }
858
859  switch (symb->getType()) {
860  case ELF::STT_SECTION:
861    Result = Section ? Section->sh_addr : UnknownAddressOrSize;
862    return object_error::success;
863  case ELF::STT_FUNC:
864  case ELF::STT_OBJECT:
865  case ELF::STT_NOTYPE:
866    Result = symb->st_value + (Section ? Section->sh_addr : 0);
867    return object_error::success;
868  default:
869    Result = UnknownAddressOrSize;
870    return object_error::success;
871  }
872}
873
874template<support::endianness target_endianness, bool is64Bits>
875error_code ELFObjectFile<target_endianness, is64Bits>
876                        ::getSymbolSize(DataRefImpl Symb,
877                                        uint64_t &Result) const {
878  validateSymbol(Symb);
879  const Elf_Sym  *symb = getSymbol(Symb);
880  if (symb->st_size == 0)
881    Result = UnknownAddressOrSize;
882  Result = symb->st_size;
883  return object_error::success;
884}
885
886template<support::endianness target_endianness, bool is64Bits>
887error_code ELFObjectFile<target_endianness, is64Bits>
888                        ::getSymbolNMTypeChar(DataRefImpl Symb,
889                                              char &Result) const {
890  validateSymbol(Symb);
891  const Elf_Sym  *symb = getSymbol(Symb);
892  const Elf_Shdr *Section = getSection(symb);
893
894  char ret = '?';
895
896  if (Section) {
897    switch (Section->sh_type) {
898    case ELF::SHT_PROGBITS:
899    case ELF::SHT_DYNAMIC:
900      switch (Section->sh_flags) {
901      case (ELF::SHF_ALLOC | ELF::SHF_EXECINSTR):
902        ret = 't'; break;
903      case (ELF::SHF_ALLOC | ELF::SHF_WRITE):
904        ret = 'd'; break;
905      case ELF::SHF_ALLOC:
906      case (ELF::SHF_ALLOC | ELF::SHF_MERGE):
907      case (ELF::SHF_ALLOC | ELF::SHF_MERGE | ELF::SHF_STRINGS):
908        ret = 'r'; break;
909      }
910      break;
911    case ELF::SHT_NOBITS: ret = 'b';
912    }
913  }
914
915  switch (getSymbolTableIndex(symb)) {
916  case ELF::SHN_UNDEF:
917    if (ret == '?')
918      ret = 'U';
919    break;
920  case ELF::SHN_ABS: ret = 'a'; break;
921  case ELF::SHN_COMMON: ret = 'c'; break;
922  }
923
924  switch (symb->getBinding()) {
925  case ELF::STB_GLOBAL: ret = ::toupper(ret); break;
926  case ELF::STB_WEAK:
927    if (getSymbolTableIndex(symb) == ELF::SHN_UNDEF)
928      ret = 'w';
929    else
930      if (symb->getType() == ELF::STT_OBJECT)
931        ret = 'V';
932      else
933        ret = 'W';
934  }
935
936  if (ret == '?' && symb->getType() == ELF::STT_SECTION) {
937    StringRef name;
938    if (error_code ec = getSymbolName(Symb, name))
939      return ec;
940    Result = StringSwitch<char>(name)
941      .StartsWith(".debug", 'N')
942      .StartsWith(".note", 'n')
943      .Default('?');
944    return object_error::success;
945  }
946
947  Result = ret;
948  return object_error::success;
949}
950
951template<support::endianness target_endianness, bool is64Bits>
952error_code ELFObjectFile<target_endianness, is64Bits>
953                        ::getSymbolType(DataRefImpl Symb,
954                                        SymbolRef::Type &Result) const {
955  validateSymbol(Symb);
956  const Elf_Sym  *symb = getSymbol(Symb);
957
958  switch (symb->getType()) {
959  case ELF::STT_NOTYPE:
960    Result = SymbolRef::ST_Unknown;
961    break;
962  case ELF::STT_SECTION:
963    Result = SymbolRef::ST_Debug;
964    break;
965  case ELF::STT_FILE:
966    Result = SymbolRef::ST_File;
967    break;
968  case ELF::STT_FUNC:
969    Result = SymbolRef::ST_Function;
970    break;
971  case ELF::STT_OBJECT:
972  case ELF::STT_COMMON:
973  case ELF::STT_TLS:
974    Result = SymbolRef::ST_Data;
975    break;
976  default:
977    Result = SymbolRef::ST_Other;
978    break;
979  }
980  return object_error::success;
981}
982
983template<support::endianness target_endianness, bool is64Bits>
984error_code ELFObjectFile<target_endianness, is64Bits>
985                        ::getSymbolFlags(DataRefImpl Symb,
986                                         uint32_t &Result) const {
987  validateSymbol(Symb);
988  const Elf_Sym  *symb = getSymbol(Symb);
989
990  Result = SymbolRef::SF_None;
991
992  if (symb->getBinding() != ELF::STB_LOCAL)
993    Result |= SymbolRef::SF_Global;
994
995  if (symb->getBinding() == ELF::STB_WEAK)
996    Result |= SymbolRef::SF_Weak;
997
998  if (symb->st_shndx == ELF::SHN_ABS)
999    Result |= SymbolRef::SF_Absolute;
1000
1001  if (symb->getType() == ELF::STT_FILE ||
1002      symb->getType() == ELF::STT_SECTION)
1003    Result |= SymbolRef::SF_FormatSpecific;
1004
1005  if (getSymbolTableIndex(symb) == ELF::SHN_UNDEF)
1006    Result |= SymbolRef::SF_Undefined;
1007
1008  if (symb->getType() == ELF::STT_COMMON ||
1009      getSymbolTableIndex(symb) == ELF::SHN_COMMON)
1010    Result |= SymbolRef::SF_Common;
1011
1012  if (symb->getType() == ELF::STT_TLS)
1013    Result |= SymbolRef::SF_ThreadLocal;
1014
1015  return object_error::success;
1016}
1017
1018template<support::endianness target_endianness, bool is64Bits>
1019error_code ELFObjectFile<target_endianness, is64Bits>
1020                        ::getSymbolSection(DataRefImpl Symb,
1021                                           section_iterator &Res) const {
1022  validateSymbol(Symb);
1023  const Elf_Sym  *symb = getSymbol(Symb);
1024  const Elf_Shdr *sec = getSection(symb);
1025  if (!sec)
1026    Res = end_sections();
1027  else {
1028    DataRefImpl Sec;
1029    Sec.p = reinterpret_cast<intptr_t>(sec);
1030    Res = section_iterator(SectionRef(Sec, this));
1031  }
1032  return object_error::success;
1033}
1034
1035template<support::endianness target_endianness, bool is64Bits>
1036error_code ELFObjectFile<target_endianness, is64Bits>
1037                        ::getSectionNext(DataRefImpl Sec, SectionRef &Result) const {
1038  const uint8_t *sec = reinterpret_cast<const uint8_t *>(Sec.p);
1039  sec += Header->e_shentsize;
1040  Sec.p = reinterpret_cast<intptr_t>(sec);
1041  Result = SectionRef(Sec, this);
1042  return object_error::success;
1043}
1044
1045template<support::endianness target_endianness, bool is64Bits>
1046error_code ELFObjectFile<target_endianness, is64Bits>
1047                        ::getSectionName(DataRefImpl Sec,
1048                                         StringRef &Result) const {
1049  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1050  Result = StringRef(getString(dot_shstrtab_sec, sec->sh_name));
1051  return object_error::success;
1052}
1053
1054template<support::endianness target_endianness, bool is64Bits>
1055error_code ELFObjectFile<target_endianness, is64Bits>
1056                        ::getSectionAddress(DataRefImpl Sec,
1057                                            uint64_t &Result) const {
1058  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1059  Result = sec->sh_addr;
1060  return object_error::success;
1061}
1062
1063template<support::endianness target_endianness, bool is64Bits>
1064error_code ELFObjectFile<target_endianness, is64Bits>
1065                        ::getSectionSize(DataRefImpl Sec,
1066                                         uint64_t &Result) const {
1067  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1068  Result = sec->sh_size;
1069  return object_error::success;
1070}
1071
1072template<support::endianness target_endianness, bool is64Bits>
1073error_code ELFObjectFile<target_endianness, is64Bits>
1074                        ::getSectionContents(DataRefImpl Sec,
1075                                             StringRef &Result) const {
1076  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1077  const char *start = (const char*)base() + sec->sh_offset;
1078  Result = StringRef(start, sec->sh_size);
1079  return object_error::success;
1080}
1081
1082template<support::endianness target_endianness, bool is64Bits>
1083error_code ELFObjectFile<target_endianness, is64Bits>
1084                        ::getSectionContents(const Elf_Shdr *Sec,
1085                                             StringRef &Result) const {
1086  const char *start = (const char*)base() + Sec->sh_offset;
1087  Result = StringRef(start, Sec->sh_size);
1088  return object_error::success;
1089}
1090
1091template<support::endianness target_endianness, bool is64Bits>
1092error_code ELFObjectFile<target_endianness, is64Bits>
1093                        ::getSectionAlignment(DataRefImpl Sec,
1094                                              uint64_t &Result) const {
1095  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1096  Result = sec->sh_addralign;
1097  return object_error::success;
1098}
1099
1100template<support::endianness target_endianness, bool is64Bits>
1101error_code ELFObjectFile<target_endianness, is64Bits>
1102                        ::isSectionText(DataRefImpl Sec,
1103                                        bool &Result) const {
1104  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1105  if (sec->sh_flags & ELF::SHF_EXECINSTR)
1106    Result = true;
1107  else
1108    Result = false;
1109  return object_error::success;
1110}
1111
1112template<support::endianness target_endianness, bool is64Bits>
1113error_code ELFObjectFile<target_endianness, is64Bits>
1114                        ::isSectionData(DataRefImpl Sec,
1115                                        bool &Result) const {
1116  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1117  if (sec->sh_flags & (ELF::SHF_ALLOC | ELF::SHF_WRITE)
1118      && sec->sh_type == ELF::SHT_PROGBITS)
1119    Result = true;
1120  else
1121    Result = false;
1122  return object_error::success;
1123}
1124
1125template<support::endianness target_endianness, bool is64Bits>
1126error_code ELFObjectFile<target_endianness, is64Bits>
1127                        ::isSectionBSS(DataRefImpl Sec,
1128                                       bool &Result) const {
1129  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1130  if (sec->sh_flags & (ELF::SHF_ALLOC | ELF::SHF_WRITE)
1131      && sec->sh_type == ELF::SHT_NOBITS)
1132    Result = true;
1133  else
1134    Result = false;
1135  return object_error::success;
1136}
1137
1138template<support::endianness target_endianness, bool is64Bits>
1139error_code ELFObjectFile<target_endianness, is64Bits>
1140                        ::isSectionRequiredForExecution(DataRefImpl Sec,
1141                                                        bool &Result) const {
1142  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1143  if (sec->sh_flags & ELF::SHF_ALLOC)
1144    Result = true;
1145  else
1146    Result = false;
1147  return object_error::success;
1148}
1149
1150template<support::endianness target_endianness, bool is64Bits>
1151error_code ELFObjectFile<target_endianness, is64Bits>
1152                        ::isSectionVirtual(DataRefImpl Sec,
1153                                           bool &Result) const {
1154  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1155  if (sec->sh_type == ELF::SHT_NOBITS)
1156    Result = true;
1157  else
1158    Result = false;
1159  return object_error::success;
1160}
1161
1162template<support::endianness target_endianness, bool is64Bits>
1163error_code ELFObjectFile<target_endianness, is64Bits>::isSectionZeroInit(DataRefImpl Sec,
1164                                            bool &Result) const {
1165  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1166  // For ELF, all zero-init sections are virtual (that is, they occupy no space
1167  //   in the object image) and vice versa.
1168  if (sec->sh_flags & ELF::SHT_NOBITS)
1169    Result = true;
1170  else
1171    Result = false;
1172  return object_error::success;
1173}
1174
1175template<support::endianness target_endianness, bool is64Bits>
1176error_code ELFObjectFile<target_endianness, is64Bits>
1177                          ::sectionContainsSymbol(DataRefImpl Sec,
1178                                                  DataRefImpl Symb,
1179                                                  bool &Result) const {
1180  // FIXME: Unimplemented.
1181  Result = false;
1182  return object_error::success;
1183}
1184
1185template<support::endianness target_endianness, bool is64Bits>
1186relocation_iterator ELFObjectFile<target_endianness, is64Bits>
1187                                 ::getSectionRelBegin(DataRefImpl Sec) const {
1188  DataRefImpl RelData;
1189  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1190  typename RelocMap_t::const_iterator ittr = SectionRelocMap.find(sec);
1191  if (sec != 0 && ittr != SectionRelocMap.end()) {
1192    RelData.w.a = getSection(ittr->second[0])->sh_info;
1193    RelData.w.b = ittr->second[0];
1194    RelData.w.c = 0;
1195  }
1196  return relocation_iterator(RelocationRef(RelData, this));
1197}
1198
1199template<support::endianness target_endianness, bool is64Bits>
1200relocation_iterator ELFObjectFile<target_endianness, is64Bits>
1201                                 ::getSectionRelEnd(DataRefImpl Sec) const {
1202  DataRefImpl RelData;
1203  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1204  typename RelocMap_t::const_iterator ittr = SectionRelocMap.find(sec);
1205  if (sec != 0 && ittr != SectionRelocMap.end()) {
1206    // Get the index of the last relocation section for this section.
1207    std::size_t relocsecindex = ittr->second[ittr->second.size() - 1];
1208    const Elf_Shdr *relocsec = getSection(relocsecindex);
1209    RelData.w.a = relocsec->sh_info;
1210    RelData.w.b = relocsecindex;
1211    RelData.w.c = relocsec->sh_size / relocsec->sh_entsize;
1212  }
1213  return relocation_iterator(RelocationRef(RelData, this));
1214}
1215
1216// Relocations
1217template<support::endianness target_endianness, bool is64Bits>
1218error_code ELFObjectFile<target_endianness, is64Bits>
1219                        ::getRelocationNext(DataRefImpl Rel,
1220                                            RelocationRef &Result) const {
1221  ++Rel.w.c;
1222  const Elf_Shdr *relocsec = getSection(Rel.w.b);
1223  if (Rel.w.c >= (relocsec->sh_size / relocsec->sh_entsize)) {
1224    // We have reached the end of the relocations for this section. See if there
1225    // is another relocation section.
1226    typename RelocMap_t::mapped_type relocseclist =
1227      SectionRelocMap.lookup(getSection(Rel.w.a));
1228
1229    // Do a binary search for the current reloc section index (which must be
1230    // present). Then get the next one.
1231    typename RelocMap_t::mapped_type::const_iterator loc =
1232      std::lower_bound(relocseclist.begin(), relocseclist.end(), Rel.w.b);
1233    ++loc;
1234
1235    // If there is no next one, don't do anything. The ++Rel.w.c above sets Rel
1236    // to the end iterator.
1237    if (loc != relocseclist.end()) {
1238      Rel.w.b = *loc;
1239      Rel.w.a = 0;
1240    }
1241  }
1242  Result = RelocationRef(Rel, this);
1243  return object_error::success;
1244}
1245
1246template<support::endianness target_endianness, bool is64Bits>
1247error_code ELFObjectFile<target_endianness, is64Bits>
1248                        ::getRelocationSymbol(DataRefImpl Rel,
1249                                              SymbolRef &Result) const {
1250  uint32_t symbolIdx;
1251  const Elf_Shdr *sec = getSection(Rel.w.b);
1252  switch (sec->sh_type) {
1253    default :
1254      report_fatal_error("Invalid section type in Rel!");
1255    case ELF::SHT_REL : {
1256      symbolIdx = getRel(Rel)->getSymbol();
1257      break;
1258    }
1259    case ELF::SHT_RELA : {
1260      symbolIdx = getRela(Rel)->getSymbol();
1261      break;
1262    }
1263  }
1264  DataRefImpl SymbolData;
1265  IndexMap_t::const_iterator it = SymbolTableSectionsIndexMap.find(sec->sh_link);
1266  if (it == SymbolTableSectionsIndexMap.end())
1267    report_fatal_error("Relocation symbol table not found!");
1268  SymbolData.d.a = symbolIdx;
1269  SymbolData.d.b = it->second;
1270  Result = SymbolRef(SymbolData, this);
1271  return object_error::success;
1272}
1273
1274template<support::endianness target_endianness, bool is64Bits>
1275error_code ELFObjectFile<target_endianness, is64Bits>
1276                        ::getRelocationAddress(DataRefImpl Rel,
1277                                               uint64_t &Result) const {
1278  uint64_t offset;
1279  const Elf_Shdr *sec = getSection(Rel.w.b);
1280  switch (sec->sh_type) {
1281    default :
1282      report_fatal_error("Invalid section type in Rel!");
1283    case ELF::SHT_REL : {
1284      offset = getRel(Rel)->r_offset;
1285      break;
1286    }
1287    case ELF::SHT_RELA : {
1288      offset = getRela(Rel)->r_offset;
1289      break;
1290    }
1291  }
1292
1293  Result = offset;
1294  return object_error::success;
1295}
1296
1297template<support::endianness target_endianness, bool is64Bits>
1298error_code ELFObjectFile<target_endianness, is64Bits>
1299                        ::getRelocationOffset(DataRefImpl Rel,
1300                                              uint64_t &Result) const {
1301  uint64_t offset;
1302  const Elf_Shdr *sec = getSection(Rel.w.b);
1303  switch (sec->sh_type) {
1304    default :
1305      report_fatal_error("Invalid section type in Rel!");
1306    case ELF::SHT_REL : {
1307      offset = getRel(Rel)->r_offset;
1308      break;
1309    }
1310    case ELF::SHT_RELA : {
1311      offset = getRela(Rel)->r_offset;
1312      break;
1313    }
1314  }
1315
1316  Result = offset - sec->sh_addr;
1317  return object_error::success;
1318}
1319
1320template<support::endianness target_endianness, bool is64Bits>
1321error_code ELFObjectFile<target_endianness, is64Bits>
1322                        ::getRelocationType(DataRefImpl Rel,
1323                                            uint64_t &Result) const {
1324  const Elf_Shdr *sec = getSection(Rel.w.b);
1325  switch (sec->sh_type) {
1326    default :
1327      report_fatal_error("Invalid section type in Rel!");
1328    case ELF::SHT_REL : {
1329      Result = getRel(Rel)->getType();
1330      break;
1331    }
1332    case ELF::SHT_RELA : {
1333      Result = getRela(Rel)->getType();
1334      break;
1335    }
1336  }
1337  return object_error::success;
1338}
1339
1340#define LLVM_ELF_SWITCH_RELOC_TYPE_NAME(enum) \
1341  case ELF::enum: res = #enum; break;
1342
1343template<support::endianness target_endianness, bool is64Bits>
1344error_code ELFObjectFile<target_endianness, is64Bits>
1345                        ::getRelocationTypeName(DataRefImpl Rel,
1346                                          SmallVectorImpl<char> &Result) const {
1347  const Elf_Shdr *sec = getSection(Rel.w.b);
1348  uint8_t type;
1349  StringRef res;
1350  switch (sec->sh_type) {
1351    default :
1352      return object_error::parse_failed;
1353    case ELF::SHT_REL : {
1354      type = getRel(Rel)->getType();
1355      break;
1356    }
1357    case ELF::SHT_RELA : {
1358      type = getRela(Rel)->getType();
1359      break;
1360    }
1361  }
1362  switch (Header->e_machine) {
1363  case ELF::EM_X86_64:
1364    switch (type) {
1365      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_NONE);
1366      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_64);
1367      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PC32);
1368      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOT32);
1369      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PLT32);
1370      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_COPY);
1371      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GLOB_DAT);
1372      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_JUMP_SLOT);
1373      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_RELATIVE);
1374      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTPCREL);
1375      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_32);
1376      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_32S);
1377      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_16);
1378      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PC16);
1379      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_8);
1380      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PC8);
1381      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_DTPMOD64);
1382      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_DTPOFF64);
1383      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TPOFF64);
1384      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TLSGD);
1385      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TLSLD);
1386      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_DTPOFF32);
1387      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTTPOFF);
1388      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TPOFF32);
1389      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PC64);
1390      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTOFF64);
1391      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTPC32);
1392      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_SIZE32);
1393      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_SIZE64);
1394      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTPC32_TLSDESC);
1395      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TLSDESC_CALL);
1396      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TLSDESC);
1397    default:
1398      res = "Unknown";
1399    }
1400    break;
1401  case ELF::EM_386:
1402    switch (type) {
1403      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_NONE);
1404      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_32);
1405      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_PC32);
1406      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_GOT32);
1407      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_PLT32);
1408      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_COPY);
1409      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_GLOB_DAT);
1410      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_JUMP_SLOT);
1411      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_RELATIVE);
1412      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_GOTOFF);
1413      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_GOTPC);
1414      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_32PLT);
1415      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_TPOFF);
1416      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_IE);
1417      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GOTIE);
1418      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LE);
1419      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD);
1420      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM);
1421      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_16);
1422      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_PC16);
1423      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_8);
1424      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_PC8);
1425      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD_32);
1426      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD_PUSH);
1427      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD_CALL);
1428      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD_POP);
1429      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM_32);
1430      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM_PUSH);
1431      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM_CALL);
1432      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM_POP);
1433      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDO_32);
1434      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_IE_32);
1435      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LE_32);
1436      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_DTPMOD32);
1437      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_DTPOFF32);
1438      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_TPOFF32);
1439      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GOTDESC);
1440      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_DESC_CALL);
1441      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_DESC);
1442      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_IRELATIVE);
1443    default:
1444      res = "Unknown";
1445    }
1446    break;
1447  case ELF::EM_ARM:
1448    switch (type) {
1449      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_NONE);
1450      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PC24);
1451      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS32);
1452      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_REL32);
1453      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_PC_G0);
1454      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS16);
1455      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS12);
1456      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_ABS5);
1457      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS8);
1458      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_SBREL32);
1459      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_CALL);
1460      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_PC8);
1461      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_BREL_ADJ);
1462      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_DESC);
1463      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_SWI8);
1464      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_XPC25);
1465      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_XPC22);
1466      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_DTPMOD32);
1467      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_DTPOFF32);
1468      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_TPOFF32);
1469      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_COPY);
1470      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GLOB_DAT);
1471      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_JUMP_SLOT);
1472      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_RELATIVE);
1473      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOTOFF32);
1474      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_BASE_PREL);
1475      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOT_BREL);
1476      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PLT32);
1477      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_CALL);
1478      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_JUMP24);
1479      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP24);
1480      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_BASE_ABS);
1481      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PCREL_7_0);
1482      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PCREL_15_8);
1483      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PCREL_23_15);
1484      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_SBREL_11_0_NC);
1485      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SBREL_19_12_NC);
1486      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SBREL_27_20_CK);
1487      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TARGET1);
1488      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_SBREL31);
1489      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_V4BX);
1490      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TARGET2);
1491      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PREL31);
1492      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVW_ABS_NC);
1493      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVT_ABS);
1494      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVW_PREL_NC);
1495      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVT_PREL);
1496      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVW_ABS_NC);
1497      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVT_ABS);
1498      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVW_PREL_NC);
1499      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVT_PREL);
1500      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP19);
1501      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP6);
1502      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_ALU_PREL_11_0);
1503      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_PC12);
1504      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS32_NOI);
1505      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_REL32_NOI);
1506      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G0_NC);
1507      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G0);
1508      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G1_NC);
1509      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G1);
1510      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G2);
1511      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_PC_G1);
1512      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_PC_G2);
1513      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_PC_G0);
1514      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_PC_G1);
1515      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_PC_G2);
1516      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_PC_G0);
1517      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_PC_G1);
1518      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_PC_G2);
1519      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G0_NC);
1520      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G0);
1521      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G1_NC);
1522      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G1);
1523      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G2);
1524      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_SB_G0);
1525      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_SB_G1);
1526      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_SB_G2);
1527      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_SB_G0);
1528      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_SB_G1);
1529      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_SB_G2);
1530      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_SB_G0);
1531      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_SB_G1);
1532      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_SB_G2);
1533      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVW_BREL_NC);
1534      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVT_BREL);
1535      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVW_BREL);
1536      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVW_BREL_NC);
1537      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVT_BREL);
1538      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVW_BREL);
1539      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_GOTDESC);
1540      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_CALL);
1541      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_DESCSEQ);
1542      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_TLS_CALL);
1543      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PLT32_ABS);
1544      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOT_ABS);
1545      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOT_PREL);
1546      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOT_BREL12);
1547      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOTOFF12);
1548      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOTRELAX);
1549      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GNU_VTENTRY);
1550      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GNU_VTINHERIT);
1551      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP11);
1552      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP8);
1553      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_GD32);
1554      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LDM32);
1555      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LDO32);
1556      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_IE32);
1557      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LE32);
1558      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LDO12);
1559      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LE12);
1560      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_IE12GP);
1561      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_0);
1562      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_1);
1563      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_2);
1564      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_3);
1565      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_4);
1566      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_5);
1567      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_6);
1568      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_7);
1569      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_8);
1570      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_9);
1571      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_10);
1572      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_11);
1573      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_12);
1574      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_13);
1575      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_14);
1576      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_15);
1577      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ME_TOO);
1578      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_TLS_DESCSEQ16);
1579      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_TLS_DESCSEQ32);
1580    default:
1581      res = "Unknown";
1582    }
1583    break;
1584  case ELF::EM_HEXAGON:
1585    switch (type) {
1586      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_NONE);
1587      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B22_PCREL);
1588      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B15_PCREL);
1589      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B7_PCREL);
1590      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_LO16);
1591      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_HI16);
1592      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_32);
1593      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_16);
1594      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_8);
1595      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GPREL16_0);
1596      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GPREL16_1);
1597      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GPREL16_2);
1598      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GPREL16_3);
1599      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_HL16);
1600      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B13_PCREL);
1601      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B9_PCREL);
1602      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B32_PCREL_X);
1603      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_32_6_X);
1604      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B22_PCREL_X);
1605      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B15_PCREL_X);
1606      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B13_PCREL_X);
1607      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B9_PCREL_X);
1608      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B7_PCREL_X);
1609      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_16_X);
1610      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_12_X);
1611      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_11_X);
1612      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_10_X);
1613      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_9_X);
1614      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_8_X);
1615      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_7_X);
1616      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_6_X);
1617      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_32_PCREL);
1618      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_COPY);
1619      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GLOB_DAT);
1620      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_JMP_SLOT);
1621      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_RELATIVE);
1622      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_PLT_B22_PCREL);
1623      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_LO16);
1624      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_HI16);
1625      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_32);
1626      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_LO16);
1627      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_HI16);
1628      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_32);
1629      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_16);
1630      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPMOD_32);
1631      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_LO16);
1632      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_HI16);
1633      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_32);
1634      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_16);
1635      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_PLT_B22_PCREL);
1636      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_LO16);
1637      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_HI16);
1638      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_32);
1639      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_16);
1640      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_LO16);
1641      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_HI16);
1642      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_32);
1643      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_LO16);
1644      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_HI16);
1645      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_32);
1646      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_16);
1647      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_LO16);
1648      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_HI16);
1649      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_32);
1650      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_16);
1651      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_6_PCREL_X);
1652      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_32_6_X);
1653      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_16_X);
1654      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_11_X);
1655      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_32_6_X);
1656      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_16_X);
1657      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_11_X);
1658      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_32_6_X);
1659      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_16_X);
1660      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_11_X);
1661      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_32_6_X);
1662      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_16_X);
1663      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_11_X);
1664      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_32_6_X);
1665      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_16_X);
1666      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_32_6_X);
1667      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_16_X);
1668      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_11_X);
1669      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_32_6_X);
1670      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_16_X);
1671      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_11_X);
1672    default:
1673      res = "Unknown";
1674    }
1675    break;
1676  default:
1677    res = "Unknown";
1678  }
1679  Result.append(res.begin(), res.end());
1680  return object_error::success;
1681}
1682
1683#undef LLVM_ELF_SWITCH_RELOC_TYPE_NAME
1684
1685template<support::endianness target_endianness, bool is64Bits>
1686error_code ELFObjectFile<target_endianness, is64Bits>
1687                        ::getRelocationAdditionalInfo(DataRefImpl Rel,
1688                                                      int64_t &Result) const {
1689  const Elf_Shdr *sec = getSection(Rel.w.b);
1690  switch (sec->sh_type) {
1691    default :
1692      report_fatal_error("Invalid section type in Rel!");
1693    case ELF::SHT_REL : {
1694      Result = 0;
1695      return object_error::success;
1696    }
1697    case ELF::SHT_RELA : {
1698      Result = getRela(Rel)->r_addend;
1699      return object_error::success;
1700    }
1701  }
1702}
1703
1704template<support::endianness target_endianness, bool is64Bits>
1705error_code ELFObjectFile<target_endianness, is64Bits>
1706                        ::getRelocationValueString(DataRefImpl Rel,
1707                                          SmallVectorImpl<char> &Result) const {
1708  const Elf_Shdr *sec = getSection(Rel.w.b);
1709  uint8_t type;
1710  StringRef res;
1711  int64_t addend = 0;
1712  uint16_t symbol_index = 0;
1713  switch (sec->sh_type) {
1714    default :
1715      return object_error::parse_failed;
1716    case ELF::SHT_REL : {
1717      type = getRel(Rel)->getType();
1718      symbol_index = getRel(Rel)->getSymbol();
1719      // TODO: Read implicit addend from section data.
1720      break;
1721    }
1722    case ELF::SHT_RELA : {
1723      type = getRela(Rel)->getType();
1724      symbol_index = getRela(Rel)->getSymbol();
1725      addend = getRela(Rel)->r_addend;
1726      break;
1727    }
1728  }
1729  const Elf_Sym *symb = getEntry<Elf_Sym>(sec->sh_link, symbol_index);
1730  StringRef symname;
1731  if (error_code ec = getSymbolName(getSection(sec->sh_link), symb, symname))
1732    return ec;
1733  switch (Header->e_machine) {
1734  case ELF::EM_X86_64:
1735    switch (type) {
1736    case ELF::R_X86_64_32S:
1737      res = symname;
1738      break;
1739    case ELF::R_X86_64_PC32: {
1740        std::string fmtbuf;
1741        raw_string_ostream fmt(fmtbuf);
1742        fmt << symname << (addend < 0 ? "" : "+") << addend << "-P";
1743        fmt.flush();
1744        Result.append(fmtbuf.begin(), fmtbuf.end());
1745      }
1746      break;
1747    default:
1748      res = "Unknown";
1749    }
1750    break;
1751  case ELF::EM_ARM:
1752  case ELF::EM_HEXAGON:
1753    res = symname;
1754    break;
1755  default:
1756    res = "Unknown";
1757  }
1758  if (Result.empty())
1759    Result.append(res.begin(), res.end());
1760  return object_error::success;
1761}
1762
1763// Verify that the last byte in the string table in a null.
1764template<support::endianness target_endianness, bool is64Bits>
1765void ELFObjectFile<target_endianness, is64Bits>
1766                  ::VerifyStrTab(const Elf_Shdr *sh) const {
1767  const char *strtab = (const char*)base() + sh->sh_offset;
1768  if (strtab[sh->sh_size - 1] != 0)
1769    // FIXME: Proper error handling.
1770    report_fatal_error("String table must end with a null terminator!");
1771}
1772
1773template<support::endianness target_endianness, bool is64Bits>
1774ELFObjectFile<target_endianness, is64Bits>::ELFObjectFile(MemoryBuffer *Object
1775                                                          , error_code &ec)
1776  : ObjectFile(getELFType(target_endianness == support::little, is64Bits),
1777               Object, ec)
1778  , isDyldELFObject(false)
1779  , SectionHeaderTable(0)
1780  , dot_shstrtab_sec(0)
1781  , dot_strtab_sec(0)
1782  , dot_dynstr_sec(0)
1783  , dot_dynamic_sec(0)
1784  , dot_gnu_version_sec(0)
1785  , dot_gnu_version_r_sec(0)
1786  , dot_gnu_version_d_sec(0)
1787  , dt_soname(0)
1788 {
1789
1790  const uint64_t FileSize = Data->getBufferSize();
1791
1792  if (sizeof(Elf_Ehdr) > FileSize)
1793    // FIXME: Proper error handling.
1794    report_fatal_error("File too short!");
1795
1796  Header = reinterpret_cast<const Elf_Ehdr *>(base());
1797
1798  if (Header->e_shoff == 0)
1799    return;
1800
1801  const uint64_t SectionTableOffset = Header->e_shoff;
1802
1803  if (SectionTableOffset + sizeof(Elf_Shdr) > FileSize)
1804    // FIXME: Proper error handling.
1805    report_fatal_error("Section header table goes past end of file!");
1806
1807  // The getNumSections() call below depends on SectionHeaderTable being set.
1808  SectionHeaderTable =
1809    reinterpret_cast<const Elf_Shdr *>(base() + SectionTableOffset);
1810  const uint64_t SectionTableSize = getNumSections() * Header->e_shentsize;
1811
1812  if (SectionTableOffset + SectionTableSize > FileSize)
1813    // FIXME: Proper error handling.
1814    report_fatal_error("Section table goes past end of file!");
1815
1816  // To find the symbol tables we walk the section table to find SHT_SYMTAB.
1817  const Elf_Shdr* SymbolTableSectionHeaderIndex = 0;
1818  const Elf_Shdr* sh = SectionHeaderTable;
1819
1820  // Reserve SymbolTableSections[0] for .dynsym
1821  SymbolTableSections.push_back(NULL);
1822
1823  for (uint64_t i = 0, e = getNumSections(); i != e; ++i) {
1824    switch (sh->sh_type) {
1825    case ELF::SHT_SYMTAB_SHNDX: {
1826      if (SymbolTableSectionHeaderIndex)
1827        // FIXME: Proper error handling.
1828        report_fatal_error("More than one .symtab_shndx!");
1829      SymbolTableSectionHeaderIndex = sh;
1830      break;
1831    }
1832    case ELF::SHT_SYMTAB: {
1833      SymbolTableSectionsIndexMap[i] = SymbolTableSections.size();
1834      SymbolTableSections.push_back(sh);
1835      break;
1836    }
1837    case ELF::SHT_DYNSYM: {
1838      if (SymbolTableSections[0] != NULL)
1839        // FIXME: Proper error handling.
1840        report_fatal_error("More than one .dynsym!");
1841      SymbolTableSectionsIndexMap[i] = 0;
1842      SymbolTableSections[0] = sh;
1843      break;
1844    }
1845    case ELF::SHT_REL:
1846    case ELF::SHT_RELA: {
1847      SectionRelocMap[getSection(sh->sh_info)].push_back(i);
1848      break;
1849    }
1850    case ELF::SHT_DYNAMIC: {
1851      if (dot_dynamic_sec != NULL)
1852        // FIXME: Proper error handling.
1853        report_fatal_error("More than one .dynamic!");
1854      dot_dynamic_sec = sh;
1855      break;
1856    }
1857    case ELF::SHT_GNU_versym: {
1858      if (dot_gnu_version_sec != NULL)
1859        // FIXME: Proper error handling.
1860        report_fatal_error("More than one .gnu.version section!");
1861      dot_gnu_version_sec = sh;
1862      break;
1863    }
1864    case ELF::SHT_GNU_verdef: {
1865      if (dot_gnu_version_d_sec != NULL)
1866        // FIXME: Proper error handling.
1867        report_fatal_error("More than one .gnu.version_d section!");
1868      dot_gnu_version_d_sec = sh;
1869      break;
1870    }
1871    case ELF::SHT_GNU_verneed: {
1872      if (dot_gnu_version_r_sec != NULL)
1873        // FIXME: Proper error handling.
1874        report_fatal_error("More than one .gnu.version_r section!");
1875      dot_gnu_version_r_sec = sh;
1876      break;
1877    }
1878    }
1879    ++sh;
1880  }
1881
1882  // Sort section relocation lists by index.
1883  for (typename RelocMap_t::iterator i = SectionRelocMap.begin(),
1884                                     e = SectionRelocMap.end(); i != e; ++i) {
1885    std::sort(i->second.begin(), i->second.end());
1886  }
1887
1888  // Get string table sections.
1889  dot_shstrtab_sec = getSection(getStringTableIndex());
1890  if (dot_shstrtab_sec) {
1891    // Verify that the last byte in the string table in a null.
1892    VerifyStrTab(dot_shstrtab_sec);
1893  }
1894
1895  // Merge this into the above loop.
1896  for (const char *i = reinterpret_cast<const char *>(SectionHeaderTable),
1897                  *e = i + getNumSections() * Header->e_shentsize;
1898                   i != e; i += Header->e_shentsize) {
1899    const Elf_Shdr *sh = reinterpret_cast<const Elf_Shdr*>(i);
1900    if (sh->sh_type == ELF::SHT_STRTAB) {
1901      StringRef SectionName(getString(dot_shstrtab_sec, sh->sh_name));
1902      if (SectionName == ".strtab") {
1903        if (dot_strtab_sec != 0)
1904          // FIXME: Proper error handling.
1905          report_fatal_error("Already found section named .strtab!");
1906        dot_strtab_sec = sh;
1907        VerifyStrTab(dot_strtab_sec);
1908      } else if (SectionName == ".dynstr") {
1909        if (dot_dynstr_sec != 0)
1910          // FIXME: Proper error handling.
1911          report_fatal_error("Already found section named .dynstr!");
1912        dot_dynstr_sec = sh;
1913        VerifyStrTab(dot_dynstr_sec);
1914      }
1915    }
1916  }
1917
1918  // Build symbol name side-mapping if there is one.
1919  if (SymbolTableSectionHeaderIndex) {
1920    const Elf_Word *ShndxTable = reinterpret_cast<const Elf_Word*>(base() +
1921                                      SymbolTableSectionHeaderIndex->sh_offset);
1922    error_code ec;
1923    for (symbol_iterator si = begin_symbols(),
1924                         se = end_symbols(); si != se; si.increment(ec)) {
1925      if (ec)
1926        report_fatal_error("Fewer extended symbol table entries than symbols!");
1927      if (*ShndxTable != ELF::SHN_UNDEF)
1928        ExtendedSymbolTable[getSymbol(si->getRawDataRefImpl())] = *ShndxTable;
1929      ++ShndxTable;
1930    }
1931  }
1932}
1933
1934template<support::endianness target_endianness, bool is64Bits>
1935symbol_iterator ELFObjectFile<target_endianness, is64Bits>
1936                             ::begin_symbols() const {
1937  DataRefImpl SymbolData;
1938  if (SymbolTableSections.size() <= 1) {
1939    SymbolData.d.a = std::numeric_limits<uint32_t>::max();
1940    SymbolData.d.b = std::numeric_limits<uint32_t>::max();
1941  } else {
1942    SymbolData.d.a = 1; // The 0th symbol in ELF is fake.
1943    SymbolData.d.b = 1; // The 0th table is .dynsym
1944  }
1945  return symbol_iterator(SymbolRef(SymbolData, this));
1946}
1947
1948template<support::endianness target_endianness, bool is64Bits>
1949symbol_iterator ELFObjectFile<target_endianness, is64Bits>
1950                             ::end_symbols() const {
1951  DataRefImpl SymbolData;
1952  SymbolData.d.a = std::numeric_limits<uint32_t>::max();
1953  SymbolData.d.b = std::numeric_limits<uint32_t>::max();
1954  return symbol_iterator(SymbolRef(SymbolData, this));
1955}
1956
1957template<support::endianness target_endianness, bool is64Bits>
1958symbol_iterator ELFObjectFile<target_endianness, is64Bits>
1959                             ::begin_dynamic_symbols() const {
1960  DataRefImpl SymbolData;
1961  if (SymbolTableSections[0] == NULL) {
1962    SymbolData.d.a = std::numeric_limits<uint32_t>::max();
1963    SymbolData.d.b = std::numeric_limits<uint32_t>::max();
1964  } else {
1965    SymbolData.d.a = 1; // The 0th symbol in ELF is fake.
1966    SymbolData.d.b = 0; // The 0th table is .dynsym
1967  }
1968  return symbol_iterator(SymbolRef(SymbolData, this));
1969}
1970
1971template<support::endianness target_endianness, bool is64Bits>
1972symbol_iterator ELFObjectFile<target_endianness, is64Bits>
1973                             ::end_dynamic_symbols() const {
1974  DataRefImpl SymbolData;
1975  SymbolData.d.a = std::numeric_limits<uint32_t>::max();
1976  SymbolData.d.b = std::numeric_limits<uint32_t>::max();
1977  return symbol_iterator(SymbolRef(SymbolData, this));
1978}
1979
1980template<support::endianness target_endianness, bool is64Bits>
1981section_iterator ELFObjectFile<target_endianness, is64Bits>
1982                              ::begin_sections() const {
1983  DataRefImpl ret;
1984  ret.p = reinterpret_cast<intptr_t>(base() + Header->e_shoff);
1985  return section_iterator(SectionRef(ret, this));
1986}
1987
1988template<support::endianness target_endianness, bool is64Bits>
1989section_iterator ELFObjectFile<target_endianness, is64Bits>
1990                              ::end_sections() const {
1991  DataRefImpl ret;
1992  ret.p = reinterpret_cast<intptr_t>(base()
1993                                     + Header->e_shoff
1994                                     + (Header->e_shentsize*getNumSections()));
1995  return section_iterator(SectionRef(ret, this));
1996}
1997
1998template<support::endianness target_endianness, bool is64Bits>
1999typename ELFObjectFile<target_endianness, is64Bits>::dyn_iterator
2000ELFObjectFile<target_endianness, is64Bits>::begin_dynamic_table() const {
2001  DataRefImpl DynData;
2002  if (dot_dynamic_sec == NULL || dot_dynamic_sec->sh_size == 0) {
2003    DynData.d.a = std::numeric_limits<uint32_t>::max();
2004  } else {
2005    DynData.d.a = 0;
2006  }
2007  return dyn_iterator(DynRef(DynData, this));
2008}
2009
2010template<support::endianness target_endianness, bool is64Bits>
2011typename ELFObjectFile<target_endianness, is64Bits>::dyn_iterator
2012ELFObjectFile<target_endianness, is64Bits>
2013                          ::end_dynamic_table() const {
2014  DataRefImpl DynData;
2015  DynData.d.a = std::numeric_limits<uint32_t>::max();
2016  return dyn_iterator(DynRef(DynData, this));
2017}
2018
2019template<support::endianness target_endianness, bool is64Bits>
2020error_code ELFObjectFile<target_endianness, is64Bits>
2021                        ::getDynNext(DataRefImpl DynData,
2022                                     DynRef &Result) const {
2023  ++DynData.d.a;
2024
2025  // Check to see if we are at the end of .dynamic
2026  if (DynData.d.a >= dot_dynamic_sec->getEntityCount()) {
2027    // We are at the end. Return the terminator.
2028    DynData.d.a = std::numeric_limits<uint32_t>::max();
2029  }
2030
2031  Result = DynRef(DynData, this);
2032  return object_error::success;
2033}
2034
2035template<support::endianness target_endianness, bool is64Bits>
2036StringRef
2037ELFObjectFile<target_endianness, is64Bits>::getLoadName() const {
2038  if (!dt_soname) {
2039    // Find the DT_SONAME entry
2040    dyn_iterator it = begin_dynamic_table();
2041    dyn_iterator ie = end_dynamic_table();
2042    error_code ec;
2043    while (it != ie) {
2044      if (it->getTag() == ELF::DT_SONAME)
2045        break;
2046      it.increment(ec);
2047      if (ec)
2048        report_fatal_error("dynamic table iteration failed");
2049    }
2050    if (it != ie) {
2051      if (dot_dynstr_sec == NULL)
2052        report_fatal_error("Dynamic string table is missing");
2053      dt_soname = getString(dot_dynstr_sec, it->getVal());
2054    } else {
2055      dt_soname = "";
2056    }
2057  }
2058  return dt_soname;
2059}
2060
2061template<support::endianness target_endianness, bool is64Bits>
2062library_iterator ELFObjectFile<target_endianness, is64Bits>
2063                             ::begin_libraries_needed() const {
2064  // Find the first DT_NEEDED entry
2065  dyn_iterator i = begin_dynamic_table();
2066  dyn_iterator e = end_dynamic_table();
2067  error_code ec;
2068  while (i != e) {
2069    if (i->getTag() == ELF::DT_NEEDED)
2070      break;
2071    i.increment(ec);
2072    if (ec)
2073      report_fatal_error("dynamic table iteration failed");
2074  }
2075  // Use the same DataRefImpl format as DynRef.
2076  return library_iterator(LibraryRef(i->getRawDataRefImpl(), this));
2077}
2078
2079template<support::endianness target_endianness, bool is64Bits>
2080error_code ELFObjectFile<target_endianness, is64Bits>
2081                        ::getLibraryNext(DataRefImpl Data,
2082                                         LibraryRef &Result) const {
2083  // Use the same DataRefImpl format as DynRef.
2084  dyn_iterator i = dyn_iterator(DynRef(Data, this));
2085  dyn_iterator e = end_dynamic_table();
2086
2087  // Skip the current dynamic table entry.
2088  error_code ec;
2089  if (i != e) {
2090    i.increment(ec);
2091    // TODO: proper error handling
2092    if (ec)
2093      report_fatal_error("dynamic table iteration failed");
2094  }
2095
2096  // Find the next DT_NEEDED entry.
2097  while (i != e) {
2098    if (i->getTag() == ELF::DT_NEEDED)
2099      break;
2100    i.increment(ec);
2101    if (ec)
2102      report_fatal_error("dynamic table iteration failed");
2103  }
2104  Result = LibraryRef(i->getRawDataRefImpl(), this);
2105  return object_error::success;
2106}
2107
2108template<support::endianness target_endianness, bool is64Bits>
2109error_code ELFObjectFile<target_endianness, is64Bits>
2110         ::getLibraryPath(DataRefImpl Data, StringRef &Res) const {
2111  dyn_iterator i = dyn_iterator(DynRef(Data, this));
2112  if (i == end_dynamic_table())
2113    report_fatal_error("getLibraryPath() called on iterator end");
2114
2115  if (i->getTag() != ELF::DT_NEEDED)
2116    report_fatal_error("Invalid library_iterator");
2117
2118  // This uses .dynstr to lookup the name of the DT_NEEDED entry.
2119  // THis works as long as DT_STRTAB == .dynstr. This is true most of
2120  // the time, but the specification allows exceptions.
2121  // TODO: This should really use DT_STRTAB instead. Doing this requires
2122  // reading the program headers.
2123  if (dot_dynstr_sec == NULL)
2124    report_fatal_error("Dynamic string table is missing");
2125  Res = getString(dot_dynstr_sec, i->getVal());
2126  return object_error::success;
2127}
2128
2129template<support::endianness target_endianness, bool is64Bits>
2130library_iterator ELFObjectFile<target_endianness, is64Bits>
2131                             ::end_libraries_needed() const {
2132  dyn_iterator e = end_dynamic_table();
2133  // Use the same DataRefImpl format as DynRef.
2134  return library_iterator(LibraryRef(e->getRawDataRefImpl(), this));
2135}
2136
2137template<support::endianness target_endianness, bool is64Bits>
2138uint8_t ELFObjectFile<target_endianness, is64Bits>::getBytesInAddress() const {
2139  return is64Bits ? 8 : 4;
2140}
2141
2142template<support::endianness target_endianness, bool is64Bits>
2143StringRef ELFObjectFile<target_endianness, is64Bits>
2144                       ::getFileFormatName() const {
2145  switch(Header->e_ident[ELF::EI_CLASS]) {
2146  case ELF::ELFCLASS32:
2147    switch(Header->e_machine) {
2148    case ELF::EM_386:
2149      return "ELF32-i386";
2150    case ELF::EM_X86_64:
2151      return "ELF32-x86-64";
2152    case ELF::EM_ARM:
2153      return "ELF32-arm";
2154    case ELF::EM_HEXAGON:
2155      return "ELF32-hexagon";
2156    default:
2157      return "ELF32-unknown";
2158    }
2159  case ELF::ELFCLASS64:
2160    switch(Header->e_machine) {
2161    case ELF::EM_386:
2162      return "ELF64-i386";
2163    case ELF::EM_X86_64:
2164      return "ELF64-x86-64";
2165    default:
2166      return "ELF64-unknown";
2167    }
2168  default:
2169    // FIXME: Proper error handling.
2170    report_fatal_error("Invalid ELFCLASS!");
2171  }
2172}
2173
2174template<support::endianness target_endianness, bool is64Bits>
2175unsigned ELFObjectFile<target_endianness, is64Bits>::getArch() const {
2176  switch(Header->e_machine) {
2177  case ELF::EM_386:
2178    return Triple::x86;
2179  case ELF::EM_X86_64:
2180    return Triple::x86_64;
2181  case ELF::EM_ARM:
2182    return Triple::arm;
2183  case ELF::EM_HEXAGON:
2184    return Triple::hexagon;
2185  case ELF::EM_MIPS:
2186    return (target_endianness == support::little) ?
2187           Triple::mipsel : Triple::mips;
2188  default:
2189    return Triple::UnknownArch;
2190  }
2191}
2192
2193template<support::endianness target_endianness, bool is64Bits>
2194uint64_t ELFObjectFile<target_endianness, is64Bits>::getNumSections() const {
2195  assert(Header && "Header not initialized!");
2196  if (Header->e_shnum == ELF::SHN_UNDEF) {
2197    assert(SectionHeaderTable && "SectionHeaderTable not initialized!");
2198    return SectionHeaderTable->sh_size;
2199  }
2200  return Header->e_shnum;
2201}
2202
2203template<support::endianness target_endianness, bool is64Bits>
2204uint64_t
2205ELFObjectFile<target_endianness, is64Bits>::getStringTableIndex() const {
2206  if (Header->e_shnum == ELF::SHN_UNDEF) {
2207    if (Header->e_shstrndx == ELF::SHN_HIRESERVE)
2208      return SectionHeaderTable->sh_link;
2209    if (Header->e_shstrndx >= getNumSections())
2210      return 0;
2211  }
2212  return Header->e_shstrndx;
2213}
2214
2215
2216template<support::endianness target_endianness, bool is64Bits>
2217template<typename T>
2218inline const T *
2219ELFObjectFile<target_endianness, is64Bits>::getEntry(uint16_t Section,
2220                                                     uint32_t Entry) const {
2221  return getEntry<T>(getSection(Section), Entry);
2222}
2223
2224template<support::endianness target_endianness, bool is64Bits>
2225template<typename T>
2226inline const T *
2227ELFObjectFile<target_endianness, is64Bits>::getEntry(const Elf_Shdr * Section,
2228                                                     uint32_t Entry) const {
2229  return reinterpret_cast<const T *>(
2230           base()
2231           + Section->sh_offset
2232           + (Entry * Section->sh_entsize));
2233}
2234
2235template<support::endianness target_endianness, bool is64Bits>
2236const typename ELFObjectFile<target_endianness, is64Bits>::Elf_Sym *
2237ELFObjectFile<target_endianness, is64Bits>::getSymbol(DataRefImpl Symb) const {
2238  return getEntry<Elf_Sym>(SymbolTableSections[Symb.d.b], Symb.d.a);
2239}
2240
2241template<support::endianness target_endianness, bool is64Bits>
2242const typename ELFObjectFile<target_endianness, is64Bits>::Elf_Dyn *
2243ELFObjectFile<target_endianness, is64Bits>::getDyn(DataRefImpl DynData) const {
2244  return getEntry<Elf_Dyn>(dot_dynamic_sec, DynData.d.a);
2245}
2246
2247template<support::endianness target_endianness, bool is64Bits>
2248const typename ELFObjectFile<target_endianness, is64Bits>::Elf_Rel *
2249ELFObjectFile<target_endianness, is64Bits>::getRel(DataRefImpl Rel) const {
2250  return getEntry<Elf_Rel>(Rel.w.b, Rel.w.c);
2251}
2252
2253template<support::endianness target_endianness, bool is64Bits>
2254const typename ELFObjectFile<target_endianness, is64Bits>::Elf_Rela *
2255ELFObjectFile<target_endianness, is64Bits>::getRela(DataRefImpl Rela) const {
2256  return getEntry<Elf_Rela>(Rela.w.b, Rela.w.c);
2257}
2258
2259template<support::endianness target_endianness, bool is64Bits>
2260const typename ELFObjectFile<target_endianness, is64Bits>::Elf_Shdr *
2261ELFObjectFile<target_endianness, is64Bits>::getSection(DataRefImpl Symb) const {
2262  const Elf_Shdr *sec = getSection(Symb.d.b);
2263  if (sec->sh_type != ELF::SHT_SYMTAB || sec->sh_type != ELF::SHT_DYNSYM)
2264    // FIXME: Proper error handling.
2265    report_fatal_error("Invalid symbol table section!");
2266  return sec;
2267}
2268
2269template<support::endianness target_endianness, bool is64Bits>
2270const typename ELFObjectFile<target_endianness, is64Bits>::Elf_Shdr *
2271ELFObjectFile<target_endianness, is64Bits>::getSection(uint32_t index) const {
2272  if (index == 0)
2273    return 0;
2274  if (!SectionHeaderTable || index >= getNumSections())
2275    // FIXME: Proper error handling.
2276    report_fatal_error("Invalid section index!");
2277
2278  return reinterpret_cast<const Elf_Shdr *>(
2279         reinterpret_cast<const char *>(SectionHeaderTable)
2280         + (index * Header->e_shentsize));
2281}
2282
2283template<support::endianness target_endianness, bool is64Bits>
2284const char *ELFObjectFile<target_endianness, is64Bits>
2285                         ::getString(uint32_t section,
2286                                     ELF::Elf32_Word offset) const {
2287  return getString(getSection(section), offset);
2288}
2289
2290template<support::endianness target_endianness, bool is64Bits>
2291const char *ELFObjectFile<target_endianness, is64Bits>
2292                         ::getString(const Elf_Shdr *section,
2293                                     ELF::Elf32_Word offset) const {
2294  assert(section && section->sh_type == ELF::SHT_STRTAB && "Invalid section!");
2295  if (offset >= section->sh_size)
2296    // FIXME: Proper error handling.
2297    report_fatal_error("Symbol name offset outside of string table!");
2298  return (const char *)base() + section->sh_offset + offset;
2299}
2300
2301template<support::endianness target_endianness, bool is64Bits>
2302error_code ELFObjectFile<target_endianness, is64Bits>
2303                        ::getSymbolName(const Elf_Shdr *section,
2304                                        const Elf_Sym *symb,
2305                                        StringRef &Result) const {
2306  if (symb->st_name == 0) {
2307    const Elf_Shdr *section = getSection(symb);
2308    if (!section)
2309      Result = "";
2310    else
2311      Result = getString(dot_shstrtab_sec, section->sh_name);
2312    return object_error::success;
2313  }
2314
2315  if (section == SymbolTableSections[0]) {
2316    // Symbol is in .dynsym, use .dynstr string table
2317    Result = getString(dot_dynstr_sec, symb->st_name);
2318  } else {
2319    // Use the default symbol table name section.
2320    Result = getString(dot_strtab_sec, symb->st_name);
2321  }
2322  return object_error::success;
2323}
2324
2325template<support::endianness target_endianness, bool is64Bits>
2326error_code ELFObjectFile<target_endianness, is64Bits>
2327                        ::getSectionName(const Elf_Shdr *section,
2328                                        StringRef &Result) const {
2329  Result = StringRef(getString(dot_shstrtab_sec, section->sh_name));
2330  return object_error::success;
2331}
2332
2333template<support::endianness target_endianness, bool is64Bits>
2334error_code ELFObjectFile<target_endianness, is64Bits>
2335                        ::getSymbolVersion(const Elf_Shdr *section,
2336                                           const Elf_Sym *symb,
2337                                           StringRef &Version,
2338                                           bool &IsDefault) const {
2339  // Handle non-dynamic symbols.
2340  if (section != SymbolTableSections[0]) {
2341    // Non-dynamic symbols can have versions in their names
2342    // A name of the form 'foo@V1' indicates version 'V1', non-default.
2343    // A name of the form 'foo@@V2' indicates version 'V2', default version.
2344    StringRef Name;
2345    error_code ec = getSymbolName(section, symb, Name);
2346    if (ec != object_error::success)
2347      return ec;
2348    size_t atpos = Name.find('@');
2349    if (atpos == StringRef::npos) {
2350      Version = "";
2351      IsDefault = false;
2352      return object_error::success;
2353    }
2354    ++atpos;
2355    if (atpos < Name.size() && Name[atpos] == '@') {
2356      IsDefault = true;
2357      ++atpos;
2358    } else {
2359      IsDefault = false;
2360    }
2361    Version = Name.substr(atpos);
2362    return object_error::success;
2363  }
2364
2365  // This is a dynamic symbol. Look in the GNU symbol version table.
2366  if (dot_gnu_version_sec == NULL) {
2367    // No version table.
2368    Version = "";
2369    IsDefault = false;
2370    return object_error::success;
2371  }
2372
2373  // Determine the position in the symbol table of this entry.
2374  const char *sec_start = (const char*)base() + section->sh_offset;
2375  size_t entry_index = ((const char*)symb - sec_start)/section->sh_entsize;
2376
2377  // Get the corresponding version index entry
2378  const Elf_Versym *vs = getEntry<Elf_Versym>(dot_gnu_version_sec, entry_index);
2379  size_t version_index = vs->vs_index & ELF::VERSYM_VERSION;
2380
2381  // Special markers for unversioned symbols.
2382  if (version_index == ELF::VER_NDX_LOCAL ||
2383      version_index == ELF::VER_NDX_GLOBAL) {
2384    Version = "";
2385    IsDefault = false;
2386    return object_error::success;
2387  }
2388
2389  // Lookup this symbol in the version table
2390  LoadVersionMap();
2391  if (version_index >= VersionMap.size() || VersionMap[version_index].isNull())
2392    report_fatal_error("Symbol has version index without corresponding "
2393                       "define or reference entry");
2394  const VersionMapEntry &entry = VersionMap[version_index];
2395
2396  // Get the version name string
2397  size_t name_offset;
2398  if (entry.isVerdef()) {
2399    // The first Verdaux entry holds the name.
2400    name_offset = entry.getVerdef()->getAux()->vda_name;
2401  } else {
2402    name_offset = entry.getVernaux()->vna_name;
2403  }
2404  Version = getString(dot_dynstr_sec, name_offset);
2405
2406  // Set IsDefault
2407  if (entry.isVerdef()) {
2408    IsDefault = !(vs->vs_index & ELF::VERSYM_HIDDEN);
2409  } else {
2410    IsDefault = false;
2411  }
2412
2413  return object_error::success;
2414}
2415
2416template<support::endianness target_endianness, bool is64Bits>
2417inline DynRefImpl<target_endianness, is64Bits>
2418                 ::DynRefImpl(DataRefImpl DynP, const OwningType *Owner)
2419  : DynPimpl(DynP)
2420  , OwningObject(Owner) {}
2421
2422template<support::endianness target_endianness, bool is64Bits>
2423inline bool DynRefImpl<target_endianness, is64Bits>
2424                      ::operator==(const DynRefImpl &Other) const {
2425  return DynPimpl == Other.DynPimpl;
2426}
2427
2428template<support::endianness target_endianness, bool is64Bits>
2429inline bool DynRefImpl<target_endianness, is64Bits>
2430                      ::operator <(const DynRefImpl &Other) const {
2431  return DynPimpl < Other.DynPimpl;
2432}
2433
2434template<support::endianness target_endianness, bool is64Bits>
2435inline error_code DynRefImpl<target_endianness, is64Bits>
2436                            ::getNext(DynRefImpl &Result) const {
2437  return OwningObject->getDynNext(DynPimpl, Result);
2438}
2439
2440template<support::endianness target_endianness, bool is64Bits>
2441inline int64_t DynRefImpl<target_endianness, is64Bits>
2442                            ::getTag() const {
2443  return OwningObject->getDyn(DynPimpl)->d_tag;
2444}
2445
2446template<support::endianness target_endianness, bool is64Bits>
2447inline uint64_t DynRefImpl<target_endianness, is64Bits>
2448                            ::getVal() const {
2449  return OwningObject->getDyn(DynPimpl)->d_un.d_val;
2450}
2451
2452template<support::endianness target_endianness, bool is64Bits>
2453inline uint64_t DynRefImpl<target_endianness, is64Bits>
2454                            ::getPtr() const {
2455  return OwningObject->getDyn(DynPimpl)->d_un.d_ptr;
2456}
2457
2458template<support::endianness target_endianness, bool is64Bits>
2459inline DataRefImpl DynRefImpl<target_endianness, is64Bits>
2460                             ::getRawDataRefImpl() const {
2461  return DynPimpl;
2462}
2463
2464/// This is a generic interface for retrieving GNU symbol version
2465/// information from an ELFObjectFile.
2466static inline error_code GetELFSymbolVersion(const ObjectFile *Obj,
2467                                             const SymbolRef &Sym,
2468                                             StringRef &Version,
2469                                             bool &IsDefault) {
2470  // Little-endian 32-bit
2471  if (const ELFObjectFile<support::little, false> *ELFObj =
2472          dyn_cast<ELFObjectFile<support::little, false> >(Obj))
2473    return ELFObj->getSymbolVersion(Sym, Version, IsDefault);
2474
2475  // Big-endian 32-bit
2476  if (const ELFObjectFile<support::big, false> *ELFObj =
2477          dyn_cast<ELFObjectFile<support::big, false> >(Obj))
2478    return ELFObj->getSymbolVersion(Sym, Version, IsDefault);
2479
2480  // Little-endian 64-bit
2481  if (const ELFObjectFile<support::little, true> *ELFObj =
2482          dyn_cast<ELFObjectFile<support::little, true> >(Obj))
2483    return ELFObj->getSymbolVersion(Sym, Version, IsDefault);
2484
2485  // Big-endian 64-bit
2486  if (const ELFObjectFile<support::big, true> *ELFObj =
2487          dyn_cast<ELFObjectFile<support::big, true> >(Obj))
2488    return ELFObj->getSymbolVersion(Sym, Version, IsDefault);
2489
2490  llvm_unreachable("Object passed to GetELFSymbolVersion() is not ELF");
2491}
2492
2493}
2494}
2495
2496#endif
2497