ELF.h revision dceaf4ac8dcb2167b57853d354760fe9a8cb8273
1//===- ELF.h - ELF object file implementation -------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the ELFObjectFile template class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_OBJECT_ELF_H
15#define LLVM_OBJECT_ELF_H
16
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/PointerIntPair.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/ADT/StringSwitch.h"
21#include "llvm/ADT/Triple.h"
22#include "llvm/Object/ObjectFile.h"
23#include "llvm/Support/Casting.h"
24#include "llvm/Support/ELF.h"
25#include "llvm/Support/Endian.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/MemoryBuffer.h"
28#include "llvm/Support/raw_ostream.h"
29#include <algorithm>
30#include <limits>
31#include <utility>
32
33namespace llvm {
34namespace object {
35
36using support::endianness;
37
38template<endianness target_endianness, std::size_t max_alignment, bool is64Bits>
39struct ELFType {
40  static const endianness TargetEndianness = target_endianness;
41  static const std::size_t MaxAlignment = max_alignment;
42  static const bool Is64Bits = is64Bits;
43};
44
45template<typename T, int max_align>
46struct MaximumAlignment {
47  enum {value = AlignOf<T>::Alignment > max_align ? max_align
48                                                  : AlignOf<T>::Alignment};
49};
50
51// Subclasses of ELFObjectFile may need this for template instantiation
52inline std::pair<unsigned char, unsigned char>
53getElfArchType(MemoryBuffer *Object) {
54  if (Object->getBufferSize() < ELF::EI_NIDENT)
55    return std::make_pair((uint8_t)ELF::ELFCLASSNONE,(uint8_t)ELF::ELFDATANONE);
56  return std::make_pair( (uint8_t)Object->getBufferStart()[ELF::EI_CLASS]
57                       , (uint8_t)Object->getBufferStart()[ELF::EI_DATA]);
58}
59
60// Templates to choose Elf_Addr and Elf_Off depending on is64Bits.
61template<endianness target_endianness, std::size_t max_alignment>
62struct ELFDataTypeTypedefHelperCommon {
63  typedef support::detail::packed_endian_specific_integral
64    <uint16_t, target_endianness,
65     MaximumAlignment<uint16_t, max_alignment>::value> Elf_Half;
66  typedef support::detail::packed_endian_specific_integral
67    <uint32_t, target_endianness,
68     MaximumAlignment<uint32_t, max_alignment>::value> Elf_Word;
69  typedef support::detail::packed_endian_specific_integral
70    <int32_t, target_endianness,
71     MaximumAlignment<int32_t, max_alignment>::value> Elf_Sword;
72  typedef support::detail::packed_endian_specific_integral
73    <uint64_t, target_endianness,
74     MaximumAlignment<uint64_t, max_alignment>::value> Elf_Xword;
75  typedef support::detail::packed_endian_specific_integral
76    <int64_t, target_endianness,
77     MaximumAlignment<int64_t, max_alignment>::value> Elf_Sxword;
78};
79
80template<class ELFT>
81struct ELFDataTypeTypedefHelper;
82
83/// ELF 32bit types.
84template<template<endianness, std::size_t, bool> class ELFT,
85         endianness TargetEndianness, std::size_t MaxAlign>
86struct ELFDataTypeTypedefHelper<ELFT<TargetEndianness, MaxAlign, false> >
87  : ELFDataTypeTypedefHelperCommon<TargetEndianness, MaxAlign> {
88  typedef uint32_t value_type;
89  typedef support::detail::packed_endian_specific_integral
90    <value_type, TargetEndianness,
91     MaximumAlignment<value_type, MaxAlign>::value> Elf_Addr;
92  typedef support::detail::packed_endian_specific_integral
93    <value_type, TargetEndianness,
94     MaximumAlignment<value_type, MaxAlign>::value> Elf_Off;
95};
96
97/// ELF 64bit types.
98template<template<endianness, std::size_t, bool> class ELFT,
99         endianness TargetEndianness, std::size_t MaxAlign>
100struct ELFDataTypeTypedefHelper<ELFT<TargetEndianness, MaxAlign, true> >
101  : ELFDataTypeTypedefHelperCommon<TargetEndianness, MaxAlign> {
102  typedef uint64_t value_type;
103  typedef support::detail::packed_endian_specific_integral
104    <value_type, TargetEndianness,
105     MaximumAlignment<value_type, MaxAlign>::value> Elf_Addr;
106  typedef support::detail::packed_endian_specific_integral
107    <value_type, TargetEndianness,
108     MaximumAlignment<value_type, MaxAlign>::value> Elf_Off;
109};
110
111// I really don't like doing this, but the alternative is copypasta.
112#define LLVM_ELF_IMPORT_TYPES(ELFT) \
113typedef typename ELFDataTypeTypedefHelper <ELFT>::Elf_Addr Elf_Addr; \
114typedef typename ELFDataTypeTypedefHelper <ELFT>::Elf_Off Elf_Off; \
115typedef typename ELFDataTypeTypedefHelper <ELFT>::Elf_Half Elf_Half; \
116typedef typename ELFDataTypeTypedefHelper <ELFT>::Elf_Word Elf_Word; \
117typedef typename ELFDataTypeTypedefHelper <ELFT>::Elf_Sword Elf_Sword; \
118typedef typename ELFDataTypeTypedefHelper <ELFT>::Elf_Xword Elf_Xword; \
119typedef typename ELFDataTypeTypedefHelper <ELFT>::Elf_Sxword Elf_Sxword;
120
121// This is required to get template types into a macro :(
122#define LLVM_ELF_COMMA ,
123
124  // Section header.
125template<class ELFT>
126struct Elf_Shdr_Base;
127
128template<template<endianness, std::size_t, bool> class ELFT,
129         endianness TargetEndianness, std::size_t MaxAlign>
130struct Elf_Shdr_Base<ELFT<TargetEndianness, MaxAlign, false> > {
131  LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
132                             MaxAlign LLVM_ELF_COMMA false>)
133  Elf_Word sh_name;     // Section name (index into string table)
134  Elf_Word sh_type;     // Section type (SHT_*)
135  Elf_Word sh_flags;    // Section flags (SHF_*)
136  Elf_Addr sh_addr;     // Address where section is to be loaded
137  Elf_Off  sh_offset;   // File offset of section data, in bytes
138  Elf_Word sh_size;     // Size of section, in bytes
139  Elf_Word sh_link;     // Section type-specific header table index link
140  Elf_Word sh_info;     // Section type-specific extra information
141  Elf_Word sh_addralign;// Section address alignment
142  Elf_Word sh_entsize;  // Size of records contained within the section
143};
144
145template<template<endianness, std::size_t, bool> class ELFT,
146         endianness TargetEndianness, std::size_t MaxAlign>
147struct Elf_Shdr_Base<ELFT<TargetEndianness, MaxAlign, true> > {
148  LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
149                             MaxAlign LLVM_ELF_COMMA true>)
150  Elf_Word  sh_name;     // Section name (index into string table)
151  Elf_Word  sh_type;     // Section type (SHT_*)
152  Elf_Xword sh_flags;    // Section flags (SHF_*)
153  Elf_Addr  sh_addr;     // Address where section is to be loaded
154  Elf_Off   sh_offset;   // File offset of section data, in bytes
155  Elf_Xword sh_size;     // Size of section, in bytes
156  Elf_Word  sh_link;     // Section type-specific header table index link
157  Elf_Word  sh_info;     // Section type-specific extra information
158  Elf_Xword sh_addralign;// Section address alignment
159  Elf_Xword sh_entsize;  // Size of records contained within the section
160};
161
162template<class ELFT>
163struct Elf_Shdr_Impl : Elf_Shdr_Base<ELFT> {
164  using Elf_Shdr_Base<ELFT>::sh_entsize;
165  using Elf_Shdr_Base<ELFT>::sh_size;
166
167  /// @brief Get the number of entities this section contains if it has any.
168  unsigned getEntityCount() const {
169    if (sh_entsize == 0)
170      return 0;
171    return sh_size / sh_entsize;
172  }
173};
174
175template<class ELFT>
176struct Elf_Sym_Base;
177
178template<template<endianness, std::size_t, bool> class ELFT,
179         endianness TargetEndianness, std::size_t MaxAlign>
180struct Elf_Sym_Base<ELFT<TargetEndianness, MaxAlign, false> > {
181  LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
182                             MaxAlign LLVM_ELF_COMMA false>)
183  Elf_Word      st_name;  // Symbol name (index into string table)
184  Elf_Addr      st_value; // Value or address associated with the symbol
185  Elf_Word      st_size;  // Size of the symbol
186  unsigned char st_info;  // Symbol's type and binding attributes
187  unsigned char st_other; // Must be zero; reserved
188  Elf_Half      st_shndx; // Which section (header table index) it's defined in
189};
190
191template<template<endianness, std::size_t, bool> class ELFT,
192         endianness TargetEndianness, std::size_t MaxAlign>
193struct Elf_Sym_Base<ELFT<TargetEndianness, MaxAlign, true> > {
194  LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
195                             MaxAlign LLVM_ELF_COMMA true>)
196  Elf_Word      st_name;  // Symbol name (index into string table)
197  unsigned char st_info;  // Symbol's type and binding attributes
198  unsigned char st_other; // Must be zero; reserved
199  Elf_Half      st_shndx; // Which section (header table index) it's defined in
200  Elf_Addr      st_value; // Value or address associated with the symbol
201  Elf_Xword     st_size;  // Size of the symbol
202};
203
204template<class ELFT>
205struct Elf_Sym_Impl : Elf_Sym_Base<ELFT> {
206  using Elf_Sym_Base<ELFT>::st_info;
207
208  // These accessors and mutators correspond to the ELF32_ST_BIND,
209  // ELF32_ST_TYPE, and ELF32_ST_INFO macros defined in the ELF specification:
210  unsigned char getBinding() const { return st_info >> 4; }
211  unsigned char getType() const { return st_info & 0x0f; }
212  void setBinding(unsigned char b) { setBindingAndType(b, getType()); }
213  void setType(unsigned char t) { setBindingAndType(getBinding(), t); }
214  void setBindingAndType(unsigned char b, unsigned char t) {
215    st_info = (b << 4) + (t & 0x0f);
216  }
217};
218
219/// Elf_Versym: This is the structure of entries in the SHT_GNU_versym section
220/// (.gnu.version). This structure is identical for ELF32 and ELF64.
221template<class ELFT>
222struct Elf_Versym_Impl {
223  LLVM_ELF_IMPORT_TYPES(ELFT)
224  Elf_Half vs_index;   // Version index with flags (e.g. VERSYM_HIDDEN)
225};
226
227template<class ELFT>
228struct Elf_Verdaux_Impl;
229
230/// Elf_Verdef: This is the structure of entries in the SHT_GNU_verdef section
231/// (.gnu.version_d). This structure is identical for ELF32 and ELF64.
232template<class ELFT>
233struct Elf_Verdef_Impl {
234  LLVM_ELF_IMPORT_TYPES(ELFT)
235  typedef Elf_Verdaux_Impl<ELFT> Elf_Verdaux;
236  Elf_Half vd_version; // Version of this structure (e.g. VER_DEF_CURRENT)
237  Elf_Half vd_flags;   // Bitwise flags (VER_DEF_*)
238  Elf_Half vd_ndx;     // Version index, used in .gnu.version entries
239  Elf_Half vd_cnt;     // Number of Verdaux entries
240  Elf_Word vd_hash;    // Hash of name
241  Elf_Word vd_aux;     // Offset to the first Verdaux entry (in bytes)
242  Elf_Word vd_next;    // Offset to the next Verdef entry (in bytes)
243
244  /// Get the first Verdaux entry for this Verdef.
245  const Elf_Verdaux *getAux() const {
246    return reinterpret_cast<const Elf_Verdaux*>((const char*)this + vd_aux);
247  }
248};
249
250/// Elf_Verdaux: This is the structure of auxiliary data in the SHT_GNU_verdef
251/// section (.gnu.version_d). This structure is identical for ELF32 and ELF64.
252template<class ELFT>
253struct Elf_Verdaux_Impl {
254  LLVM_ELF_IMPORT_TYPES(ELFT)
255  Elf_Word vda_name; // Version name (offset in string table)
256  Elf_Word vda_next; // Offset to next Verdaux entry (in bytes)
257};
258
259/// Elf_Verneed: This is the structure of entries in the SHT_GNU_verneed
260/// section (.gnu.version_r). This structure is identical for ELF32 and ELF64.
261template<class ELFT>
262struct Elf_Verneed_Impl {
263  LLVM_ELF_IMPORT_TYPES(ELFT)
264  Elf_Half vn_version; // Version of this structure (e.g. VER_NEED_CURRENT)
265  Elf_Half vn_cnt;     // Number of associated Vernaux entries
266  Elf_Word vn_file;    // Library name (string table offset)
267  Elf_Word vn_aux;     // Offset to first Vernaux entry (in bytes)
268  Elf_Word vn_next;    // Offset to next Verneed entry (in bytes)
269};
270
271/// Elf_Vernaux: This is the structure of auxiliary data in SHT_GNU_verneed
272/// section (.gnu.version_r). This structure is identical for ELF32 and ELF64.
273template<class ELFT>
274struct Elf_Vernaux_Impl {
275  LLVM_ELF_IMPORT_TYPES(ELFT)
276  Elf_Word vna_hash;  // Hash of dependency name
277  Elf_Half vna_flags; // Bitwise Flags (VER_FLAG_*)
278  Elf_Half vna_other; // Version index, used in .gnu.version entries
279  Elf_Word vna_name;  // Dependency name
280  Elf_Word vna_next;  // Offset to next Vernaux entry (in bytes)
281};
282
283/// Elf_Dyn_Base: This structure matches the form of entries in the dynamic
284///               table section (.dynamic) look like.
285template<class ELFT>
286struct Elf_Dyn_Base;
287
288template<template<endianness, std::size_t, bool> class ELFT,
289         endianness TargetEndianness, std::size_t MaxAlign>
290struct Elf_Dyn_Base<ELFT<TargetEndianness, MaxAlign, false> > {
291  LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
292                             MaxAlign LLVM_ELF_COMMA false>)
293  Elf_Sword d_tag;
294  union {
295    Elf_Word d_val;
296    Elf_Addr d_ptr;
297  } d_un;
298};
299
300template<template<endianness, std::size_t, bool> class ELFT,
301         endianness TargetEndianness, std::size_t MaxAlign>
302struct Elf_Dyn_Base<ELFT<TargetEndianness, MaxAlign, true> > {
303  LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
304                             MaxAlign LLVM_ELF_COMMA true>)
305  Elf_Sxword d_tag;
306  union {
307    Elf_Xword d_val;
308    Elf_Addr d_ptr;
309  } d_un;
310};
311
312/// Elf_Dyn_Impl: This inherits from Elf_Dyn_Base, adding getters and setters.
313template<class ELFT>
314struct Elf_Dyn_Impl : Elf_Dyn_Base<ELFT> {
315  using Elf_Dyn_Base<ELFT>::d_tag;
316  using Elf_Dyn_Base<ELFT>::d_un;
317  int64_t getTag() const { return d_tag; }
318  uint64_t getVal() const { return d_un.d_val; }
319  uint64_t getPtr() const { return d_un.ptr; }
320};
321
322// Elf_Rel: Elf Relocation
323template<class ELFT, bool isRela>
324struct Elf_Rel_Base;
325
326template<template<endianness, std::size_t, bool> class ELFT,
327         endianness TargetEndianness, std::size_t MaxAlign>
328struct Elf_Rel_Base<ELFT<TargetEndianness, MaxAlign, false>, false> {
329  LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
330                             MaxAlign LLVM_ELF_COMMA false>)
331  Elf_Addr      r_offset; // Location (file byte offset, or program virtual addr)
332  Elf_Word      r_info;  // Symbol table index and type of relocation to apply
333};
334
335template<template<endianness, std::size_t, bool> class ELFT,
336         endianness TargetEndianness, std::size_t MaxAlign>
337struct Elf_Rel_Base<ELFT<TargetEndianness, MaxAlign, true>, false> {
338  LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
339                             MaxAlign LLVM_ELF_COMMA true>)
340  Elf_Addr      r_offset; // Location (file byte offset, or program virtual addr)
341  Elf_Xword     r_info;   // Symbol table index and type of relocation to apply
342};
343
344template<template<endianness, std::size_t, bool> class ELFT,
345         endianness TargetEndianness, std::size_t MaxAlign>
346struct Elf_Rel_Base<ELFT<TargetEndianness, MaxAlign, false>, true> {
347  LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
348                             MaxAlign LLVM_ELF_COMMA false>)
349  Elf_Addr      r_offset; // Location (file byte offset, or program virtual addr)
350  Elf_Word      r_info;   // Symbol table index and type of relocation to apply
351  Elf_Sword     r_addend; // Compute value for relocatable field by adding this
352};
353
354template<template<endianness, std::size_t, bool> class ELFT,
355         endianness TargetEndianness, std::size_t MaxAlign>
356struct Elf_Rel_Base<ELFT<TargetEndianness, MaxAlign, true>, true> {
357  LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
358                             MaxAlign LLVM_ELF_COMMA true>)
359  Elf_Addr      r_offset; // Location (file byte offset, or program virtual addr)
360  Elf_Xword     r_info;   // Symbol table index and type of relocation to apply
361  Elf_Sxword    r_addend; // Compute value for relocatable field by adding this.
362};
363
364template<class ELFT, bool isRela>
365struct Elf_Rel_Impl;
366
367template<template<endianness, std::size_t, bool> class ELFT,
368         endianness TargetEndianness, std::size_t MaxAlign, bool isRela>
369struct Elf_Rel_Impl<ELFT<TargetEndianness, MaxAlign, true>, isRela>
370       : Elf_Rel_Base<ELFT<TargetEndianness, MaxAlign, true>, isRela> {
371  using Elf_Rel_Base<ELFT<TargetEndianness, MaxAlign, true>, isRela>::r_info;
372  LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
373                             MaxAlign LLVM_ELF_COMMA true>)
374
375  // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
376  // and ELF64_R_INFO macros defined in the ELF specification:
377  uint32_t getSymbol() const { return (uint32_t) (r_info >> 32); }
378  uint32_t getType() const {
379    return (uint32_t) (r_info & 0xffffffffL);
380  }
381  void setSymbol(uint32_t s) { setSymbolAndType(s, getType()); }
382  void setType(uint32_t t) { setSymbolAndType(getSymbol(), t); }
383  void setSymbolAndType(uint32_t s, uint32_t t) {
384    r_info = ((uint64_t)s << 32) + (t&0xffffffffL);
385  }
386};
387
388template<template<endianness, std::size_t, bool> class ELFT,
389         endianness TargetEndianness, std::size_t MaxAlign, bool isRela>
390struct Elf_Rel_Impl<ELFT<TargetEndianness, MaxAlign, false>, isRela>
391       : Elf_Rel_Base<ELFT<TargetEndianness, MaxAlign, false>, isRela> {
392  using Elf_Rel_Base<ELFT<TargetEndianness, MaxAlign, false>, isRela>::r_info;
393  LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
394                             MaxAlign LLVM_ELF_COMMA false>)
395
396  // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
397  // and ELF32_R_INFO macros defined in the ELF specification:
398  uint32_t getSymbol() const { return (r_info >> 8); }
399  unsigned char getType() const { return (unsigned char) (r_info & 0x0ff); }
400  void setSymbol(uint32_t s) { setSymbolAndType(s, getType()); }
401  void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
402  void setSymbolAndType(uint32_t s, unsigned char t) {
403    r_info = (s << 8) + t;
404  }
405};
406
407template<class ELFT>
408struct Elf_Ehdr_Impl {
409  LLVM_ELF_IMPORT_TYPES(ELFT)
410  unsigned char e_ident[ELF::EI_NIDENT]; // ELF Identification bytes
411  Elf_Half e_type;     // Type of file (see ET_*)
412  Elf_Half e_machine;  // Required architecture for this file (see EM_*)
413  Elf_Word e_version;  // Must be equal to 1
414  Elf_Addr e_entry;    // Address to jump to in order to start program
415  Elf_Off  e_phoff;    // Program header table's file offset, in bytes
416  Elf_Off  e_shoff;    // Section header table's file offset, in bytes
417  Elf_Word e_flags;    // Processor-specific flags
418  Elf_Half e_ehsize;   // Size of ELF header, in bytes
419  Elf_Half e_phentsize;// Size of an entry in the program header table
420  Elf_Half e_phnum;    // Number of entries in the program header table
421  Elf_Half e_shentsize;// Size of an entry in the section header table
422  Elf_Half e_shnum;    // Number of entries in the section header table
423  Elf_Half e_shstrndx; // Section header table index of section name
424                                 // string table
425  bool checkMagic() const {
426    return (memcmp(e_ident, ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0;
427  }
428   unsigned char getFileClass() const { return e_ident[ELF::EI_CLASS]; }
429   unsigned char getDataEncoding() const { return e_ident[ELF::EI_DATA]; }
430};
431
432template<class ELFT>
433struct Elf_Phdr_Impl;
434
435template<template<endianness, std::size_t, bool> class ELFT,
436         endianness TargetEndianness, std::size_t MaxAlign>
437struct Elf_Phdr_Impl<ELFT<TargetEndianness, MaxAlign, false> > {
438  LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
439                             MaxAlign LLVM_ELF_COMMA false>)
440  Elf_Word p_type;   // Type of segment
441  Elf_Off  p_offset; // FileOffset where segment is located, in bytes
442  Elf_Addr p_vaddr;  // Virtual Address of beginning of segment
443  Elf_Addr p_paddr;  // Physical address of beginning of segment (OS-specific)
444  Elf_Word p_filesz; // Num. of bytes in file image of segment (may be zero)
445  Elf_Word p_memsz;  // Num. of bytes in mem image of segment (may be zero)
446  Elf_Word p_flags;  // Segment flags
447  Elf_Word p_align;  // Segment alignment constraint
448};
449
450template<template<endianness, std::size_t, bool> class ELFT,
451         endianness TargetEndianness, std::size_t MaxAlign>
452struct Elf_Phdr_Impl<ELFT<TargetEndianness, MaxAlign, true> > {
453  LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
454                             MaxAlign LLVM_ELF_COMMA true>)
455  Elf_Word p_type;   // Type of segment
456  Elf_Word p_flags;  // Segment flags
457  Elf_Off  p_offset; // FileOffset where segment is located, in bytes
458  Elf_Addr p_vaddr;  // Virtual Address of beginning of segment
459  Elf_Addr p_paddr;  // Physical address of beginning of segment (OS-specific)
460  Elf_Xword p_filesz; // Num. of bytes in file image of segment (may be zero)
461  Elf_Xword p_memsz;  // Num. of bytes in mem image of segment (may be zero)
462  Elf_Xword p_align;  // Segment alignment constraint
463};
464
465template<class ELFT>
466class ELFObjectFile : public ObjectFile {
467  LLVM_ELF_IMPORT_TYPES(ELFT)
468
469public:
470  /// \brief Iterate over constant sized entities.
471  template<class EntT>
472  class ELFEntityIterator {
473  public:
474    typedef ptrdiff_t difference_type;
475    typedef EntT value_type;
476    typedef std::random_access_iterator_tag iterator_category;
477    typedef value_type &reference;
478    typedef value_type *pointer;
479
480    /// \brief Default construct iterator.
481    ELFEntityIterator() : EntitySize(0), Current(0) {}
482    ELFEntityIterator(uint64_t EntSize, const char *Start)
483      : EntitySize(EntSize)
484      , Current(Start) {}
485
486    reference operator *() {
487      assert(Current && "Attempted to dereference an invalid iterator!");
488      return *reinterpret_cast<pointer>(Current);
489    }
490
491    pointer operator ->() {
492      assert(Current && "Attempted to dereference an invalid iterator!");
493      return reinterpret_cast<pointer>(Current);
494    }
495
496    bool operator ==(const ELFEntityIterator &Other) {
497      return Current == Other.Current;
498    }
499
500    bool operator !=(const ELFEntityIterator &Other) {
501      return !(*this == Other);
502    }
503
504    ELFEntityIterator &operator ++() {
505      assert(Current && "Attempted to increment an invalid iterator!");
506      Current += EntitySize;
507      return *this;
508    }
509
510    ELFEntityIterator operator ++(int) {
511      ELFEntityIterator Tmp = *this;
512      ++*this;
513      return Tmp;
514    }
515
516    ELFEntityIterator &operator =(const ELFEntityIterator &Other) {
517      EntitySize = Other.EntitySize;
518      Current = Other.Current;
519      return *this;
520    }
521
522    difference_type operator -(const ELFEntityIterator &Other) const {
523      assert(EntitySize == Other.EntitySize &&
524             "Subtracting iterators of different EntitiySize!");
525      return (Current - Other.Current) / EntitySize;
526    }
527
528    const char *get() const { return Current; }
529
530  private:
531    uint64_t EntitySize;
532    const char *Current;
533  };
534
535  typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr;
536  typedef Elf_Shdr_Impl<ELFT> Elf_Shdr;
537  typedef Elf_Sym_Impl<ELFT> Elf_Sym;
538  typedef Elf_Dyn_Impl<ELFT> Elf_Dyn;
539  typedef Elf_Phdr_Impl<ELFT> Elf_Phdr;
540  typedef Elf_Rel_Impl<ELFT, false> Elf_Rel;
541  typedef Elf_Rel_Impl<ELFT, true> Elf_Rela;
542  typedef Elf_Verdef_Impl<ELFT> Elf_Verdef;
543  typedef Elf_Verdaux_Impl<ELFT> Elf_Verdaux;
544  typedef Elf_Verneed_Impl<ELFT> Elf_Verneed;
545  typedef Elf_Vernaux_Impl<ELFT> Elf_Vernaux;
546  typedef Elf_Versym_Impl<ELFT> Elf_Versym;
547  typedef ELFEntityIterator<const Elf_Dyn> Elf_Dyn_iterator;
548  typedef ELFEntityIterator<const Elf_Sym> Elf_Sym_iterator;
549  typedef ELFEntityIterator<const Elf_Rela> Elf_Rela_Iter;
550  typedef ELFEntityIterator<const Elf_Rel> Elf_Rel_Iter;
551
552protected:
553  // This flag is used for classof, to distinguish ELFObjectFile from
554  // its subclass. If more subclasses will be created, this flag will
555  // have to become an enum.
556  bool isDyldELFObject;
557
558private:
559  typedef SmallVector<const Elf_Shdr *, 2> Sections_t;
560  typedef DenseMap<unsigned, unsigned> IndexMap_t;
561  typedef DenseMap<const Elf_Shdr*, SmallVector<uint32_t, 1> > RelocMap_t;
562
563  const Elf_Ehdr *Header;
564  const Elf_Shdr *SectionHeaderTable;
565  const Elf_Shdr *dot_shstrtab_sec; // Section header string table.
566  const Elf_Shdr *dot_strtab_sec;   // Symbol header string table.
567  const Elf_Shdr *dot_dynstr_sec;   // Dynamic symbol string table.
568
569  // SymbolTableSections[0] always points to the dynamic string table section
570  // header, or NULL if there is no dynamic string table.
571  Sections_t SymbolTableSections;
572  IndexMap_t SymbolTableSectionsIndexMap;
573  DenseMap<const Elf_Sym*, ELF::Elf64_Word> ExtendedSymbolTable;
574
575  const Elf_Shdr *dot_dynamic_sec;       // .dynamic
576  const Elf_Shdr *dot_gnu_version_sec;   // .gnu.version
577  const Elf_Shdr *dot_gnu_version_r_sec; // .gnu.version_r
578  const Elf_Shdr *dot_gnu_version_d_sec; // .gnu.version_d
579
580  // Pointer to SONAME entry in dynamic string table
581  // This is set the first time getLoadName is called.
582  mutable const char *dt_soname;
583
584private:
585  // Records for each version index the corresponding Verdef or Vernaux entry.
586  // This is filled the first time LoadVersionMap() is called.
587  class VersionMapEntry : public PointerIntPair<const void*, 1> {
588    public:
589    // If the integer is 0, this is an Elf_Verdef*.
590    // If the integer is 1, this is an Elf_Vernaux*.
591    VersionMapEntry() : PointerIntPair<const void*, 1>(NULL, 0) { }
592    VersionMapEntry(const Elf_Verdef *verdef)
593        : PointerIntPair<const void*, 1>(verdef, 0) { }
594    VersionMapEntry(const Elf_Vernaux *vernaux)
595        : PointerIntPair<const void*, 1>(vernaux, 1) { }
596    bool isNull() const { return getPointer() == NULL; }
597    bool isVerdef() const { return !isNull() && getInt() == 0; }
598    bool isVernaux() const { return !isNull() && getInt() == 1; }
599    const Elf_Verdef *getVerdef() const {
600      return isVerdef() ? (const Elf_Verdef*)getPointer() : NULL;
601    }
602    const Elf_Vernaux *getVernaux() const {
603      return isVernaux() ? (const Elf_Vernaux*)getPointer() : NULL;
604    }
605  };
606  mutable SmallVector<VersionMapEntry, 16> VersionMap;
607  void LoadVersionDefs(const Elf_Shdr *sec) const;
608  void LoadVersionNeeds(const Elf_Shdr *ec) const;
609  void LoadVersionMap() const;
610
611  /// @brief Map sections to an array of relocation sections that reference
612  ///        them sorted by section index.
613  RelocMap_t SectionRelocMap;
614
615  /// @brief Get the relocation section that contains \a Rel.
616  const Elf_Shdr *getRelSection(DataRefImpl Rel) const {
617    return getSection(Rel.w.b);
618  }
619
620public:
621  bool            isRelocationHasAddend(DataRefImpl Rel) const;
622  template<typename T>
623  const T        *getEntry(uint16_t Section, uint32_t Entry) const;
624  template<typename T>
625  const T        *getEntry(const Elf_Shdr *Section, uint32_t Entry) const;
626  const Elf_Shdr *getSection(DataRefImpl index) const;
627  const Elf_Shdr *getSection(uint32_t index) const;
628  const Elf_Rel  *getRel(DataRefImpl Rel) const;
629  const Elf_Rela *getRela(DataRefImpl Rela) const;
630  const char     *getString(uint32_t section, uint32_t offset) const;
631  const char     *getString(const Elf_Shdr *section, uint32_t offset) const;
632  error_code      getSymbolVersion(const Elf_Shdr *section,
633                                   const Elf_Sym *Symb,
634                                   StringRef &Version,
635                                   bool &IsDefault) const;
636  void VerifyStrTab(const Elf_Shdr *sh) const;
637
638protected:
639  const Elf_Sym  *getSymbol(DataRefImpl Symb) const; // FIXME: Should be private?
640  void            validateSymbol(DataRefImpl Symb) const;
641
642public:
643  error_code      getSymbolName(const Elf_Shdr *section,
644                                const Elf_Sym *Symb,
645                                StringRef &Res) const;
646  error_code      getSectionName(const Elf_Shdr *section,
647                                 StringRef &Res) const;
648  const Elf_Dyn  *getDyn(DataRefImpl DynData) const;
649  error_code getSymbolVersion(SymbolRef Symb, StringRef &Version,
650                              bool &IsDefault) const;
651  uint64_t getSymbolIndex(const Elf_Sym *sym) const;
652protected:
653  virtual error_code getSymbolNext(DataRefImpl Symb, SymbolRef &Res) const;
654  virtual error_code getSymbolName(DataRefImpl Symb, StringRef &Res) const;
655  virtual error_code getSymbolFileOffset(DataRefImpl Symb, uint64_t &Res) const;
656  virtual error_code getSymbolAddress(DataRefImpl Symb, uint64_t &Res) const;
657  virtual error_code getSymbolSize(DataRefImpl Symb, uint64_t &Res) const;
658  virtual error_code getSymbolNMTypeChar(DataRefImpl Symb, char &Res) const;
659  virtual error_code getSymbolFlags(DataRefImpl Symb, uint32_t &Res) const;
660  virtual error_code getSymbolType(DataRefImpl Symb, SymbolRef::Type &Res) const;
661  virtual error_code getSymbolSection(DataRefImpl Symb,
662                                      section_iterator &Res) const;
663  virtual error_code getSymbolValue(DataRefImpl Symb, uint64_t &Val) const;
664
665  virtual error_code getLibraryNext(DataRefImpl Data, LibraryRef &Result) const;
666  virtual error_code getLibraryPath(DataRefImpl Data, StringRef &Res) const;
667
668  virtual error_code getSectionNext(DataRefImpl Sec, SectionRef &Res) const;
669  virtual error_code getSectionName(DataRefImpl Sec, StringRef &Res) const;
670  virtual error_code getSectionAddress(DataRefImpl Sec, uint64_t &Res) const;
671  virtual error_code getSectionSize(DataRefImpl Sec, uint64_t &Res) const;
672  virtual error_code getSectionContents(DataRefImpl Sec, StringRef &Res) const;
673  virtual error_code getSectionAlignment(DataRefImpl Sec, uint64_t &Res) const;
674  virtual error_code isSectionText(DataRefImpl Sec, bool &Res) const;
675  virtual error_code isSectionData(DataRefImpl Sec, bool &Res) const;
676  virtual error_code isSectionBSS(DataRefImpl Sec, bool &Res) const;
677  virtual error_code isSectionRequiredForExecution(DataRefImpl Sec,
678                                                   bool &Res) const;
679  virtual error_code isSectionVirtual(DataRefImpl Sec, bool &Res) const;
680  virtual error_code isSectionZeroInit(DataRefImpl Sec, bool &Res) const;
681  virtual error_code isSectionReadOnlyData(DataRefImpl Sec, bool &Res) const;
682  virtual error_code sectionContainsSymbol(DataRefImpl Sec, DataRefImpl Symb,
683                                           bool &Result) const;
684  virtual relocation_iterator getSectionRelBegin(DataRefImpl Sec) const;
685  virtual relocation_iterator getSectionRelEnd(DataRefImpl Sec) const;
686
687  virtual error_code getRelocationNext(DataRefImpl Rel,
688                                       RelocationRef &Res) const;
689  virtual error_code getRelocationAddress(DataRefImpl Rel,
690                                          uint64_t &Res) const;
691  virtual error_code getRelocationOffset(DataRefImpl Rel,
692                                         uint64_t &Res) const;
693  virtual error_code getRelocationSymbol(DataRefImpl Rel,
694                                         SymbolRef &Res) const;
695  virtual error_code getRelocationType(DataRefImpl Rel,
696                                       uint64_t &Res) const;
697  virtual error_code getRelocationTypeName(DataRefImpl Rel,
698                                           SmallVectorImpl<char> &Result) const;
699  virtual error_code getRelocationAdditionalInfo(DataRefImpl Rel,
700                                                 int64_t &Res) const;
701  virtual error_code getRelocationValueString(DataRefImpl Rel,
702                                           SmallVectorImpl<char> &Result) const;
703
704public:
705  ELFObjectFile(MemoryBuffer *Object, error_code &ec);
706  virtual symbol_iterator begin_symbols() const;
707  virtual symbol_iterator end_symbols() const;
708
709  virtual symbol_iterator begin_dynamic_symbols() const;
710  virtual symbol_iterator end_dynamic_symbols() const;
711
712  virtual section_iterator begin_sections() const;
713  virtual section_iterator end_sections() const;
714
715  virtual library_iterator begin_libraries_needed() const;
716  virtual library_iterator end_libraries_needed() const;
717
718  const Elf_Shdr *getDynamicSymbolTableSectionHeader() const {
719    return SymbolTableSections[0];
720  }
721
722  const Elf_Shdr *getDynamicStringTableSectionHeader() const {
723    return dot_dynstr_sec;
724  }
725
726  Elf_Dyn_iterator begin_dynamic_table() const;
727  /// \param NULLEnd use one past the first DT_NULL entry as the end instead of
728  /// the section size.
729  Elf_Dyn_iterator end_dynamic_table(bool NULLEnd = false) const;
730
731  Elf_Sym_iterator begin_elf_dynamic_symbols() const {
732    const Elf_Shdr *DynSymtab = SymbolTableSections[0];
733    if (DynSymtab)
734      return Elf_Sym_iterator(DynSymtab->sh_entsize,
735                              (const char *)base() + DynSymtab->sh_offset);
736    return Elf_Sym_iterator(0, 0);
737  }
738
739  Elf_Sym_iterator end_elf_dynamic_symbols() const {
740    const Elf_Shdr *DynSymtab = SymbolTableSections[0];
741    if (DynSymtab)
742      return Elf_Sym_iterator(DynSymtab->sh_entsize, (const char *)base() +
743                              DynSymtab->sh_offset + DynSymtab->sh_size);
744    return Elf_Sym_iterator(0, 0);
745  }
746
747  Elf_Rela_Iter beginELFRela(const Elf_Shdr *sec) const {
748    return Elf_Rela_Iter(sec->sh_entsize,
749                         (const char *)(base() + sec->sh_offset));
750  }
751
752  Elf_Rela_Iter endELFRela(const Elf_Shdr *sec) const {
753    return Elf_Rela_Iter(sec->sh_entsize, (const char *)
754                         (base() + sec->sh_offset + sec->sh_size));
755  }
756
757  Elf_Rel_Iter beginELFRel(const Elf_Shdr *sec) const {
758    return Elf_Rel_Iter(sec->sh_entsize,
759                        (const char *)(base() + sec->sh_offset));
760  }
761
762  Elf_Rel_Iter endELFRel(const Elf_Shdr *sec) const {
763    return Elf_Rel_Iter(sec->sh_entsize, (const char *)
764                        (base() + sec->sh_offset + sec->sh_size));
765  }
766
767  /// \brief Iterate over program header table.
768  typedef ELFEntityIterator<const Elf_Phdr> Elf_Phdr_Iter;
769
770  Elf_Phdr_Iter begin_program_headers() const {
771    return Elf_Phdr_Iter(Header->e_phentsize,
772                         (const char*)base() + Header->e_phoff);
773  }
774
775  Elf_Phdr_Iter end_program_headers() const {
776    return Elf_Phdr_Iter(Header->e_phentsize,
777                         (const char*)base() +
778                           Header->e_phoff +
779                           (Header->e_phnum * Header->e_phentsize));
780  }
781
782  virtual uint8_t getBytesInAddress() const;
783  virtual StringRef getFileFormatName() const;
784  virtual StringRef getObjectType() const { return "ELF"; }
785  virtual unsigned getArch() const;
786  virtual StringRef getLoadName() const;
787  virtual error_code getSectionContents(const Elf_Shdr *sec,
788                                        StringRef &Res) const;
789
790  uint64_t getNumSections() const;
791  uint64_t getStringTableIndex() const;
792  ELF::Elf64_Word getSymbolTableIndex(const Elf_Sym *symb) const;
793  const Elf_Shdr *getSection(const Elf_Sym *symb) const;
794  const Elf_Shdr *getElfSection(section_iterator &It) const;
795  const Elf_Sym *getElfSymbol(symbol_iterator &It) const;
796  const Elf_Sym *getElfSymbol(uint32_t index) const;
797
798  // Methods for type inquiry through isa, cast, and dyn_cast
799  bool isDyldType() const { return isDyldELFObject; }
800  static inline bool classof(const Binary *v) {
801    return v->getType() == getELFType(ELFT::TargetEndianness == support::little,
802                                      ELFT::Is64Bits);
803  }
804};
805
806// Iterate through the version definitions, and place each Elf_Verdef
807// in the VersionMap according to its index.
808template<class ELFT>
809void ELFObjectFile<ELFT>::LoadVersionDefs(const Elf_Shdr *sec) const {
810  unsigned vd_size = sec->sh_size; // Size of section in bytes
811  unsigned vd_count = sec->sh_info; // Number of Verdef entries
812  const char *sec_start = (const char*)base() + sec->sh_offset;
813  const char *sec_end = sec_start + vd_size;
814  // The first Verdef entry is at the start of the section.
815  const char *p = sec_start;
816  for (unsigned i = 0; i < vd_count; i++) {
817    if (p + sizeof(Elf_Verdef) > sec_end)
818      report_fatal_error("Section ended unexpectedly while scanning "
819                         "version definitions.");
820    const Elf_Verdef *vd = reinterpret_cast<const Elf_Verdef *>(p);
821    if (vd->vd_version != ELF::VER_DEF_CURRENT)
822      report_fatal_error("Unexpected verdef version");
823    size_t index = vd->vd_ndx & ELF::VERSYM_VERSION;
824    if (index >= VersionMap.size())
825      VersionMap.resize(index+1);
826    VersionMap[index] = VersionMapEntry(vd);
827    p += vd->vd_next;
828  }
829}
830
831// Iterate through the versions needed section, and place each Elf_Vernaux
832// in the VersionMap according to its index.
833template<class ELFT>
834void ELFObjectFile<ELFT>::LoadVersionNeeds(const Elf_Shdr *sec) const {
835  unsigned vn_size = sec->sh_size; // Size of section in bytes
836  unsigned vn_count = sec->sh_info; // Number of Verneed entries
837  const char *sec_start = (const char*)base() + sec->sh_offset;
838  const char *sec_end = sec_start + vn_size;
839  // The first Verneed entry is at the start of the section.
840  const char *p = sec_start;
841  for (unsigned i = 0; i < vn_count; i++) {
842    if (p + sizeof(Elf_Verneed) > sec_end)
843      report_fatal_error("Section ended unexpectedly while scanning "
844                         "version needed records.");
845    const Elf_Verneed *vn = reinterpret_cast<const Elf_Verneed *>(p);
846    if (vn->vn_version != ELF::VER_NEED_CURRENT)
847      report_fatal_error("Unexpected verneed version");
848    // Iterate through the Vernaux entries
849    const char *paux = p + vn->vn_aux;
850    for (unsigned j = 0; j < vn->vn_cnt; j++) {
851      if (paux + sizeof(Elf_Vernaux) > sec_end)
852        report_fatal_error("Section ended unexpected while scanning auxiliary "
853                           "version needed records.");
854      const Elf_Vernaux *vna = reinterpret_cast<const Elf_Vernaux *>(paux);
855      size_t index = vna->vna_other & ELF::VERSYM_VERSION;
856      if (index >= VersionMap.size())
857        VersionMap.resize(index+1);
858      VersionMap[index] = VersionMapEntry(vna);
859      paux += vna->vna_next;
860    }
861    p += vn->vn_next;
862  }
863}
864
865template<class ELFT>
866void ELFObjectFile<ELFT>::LoadVersionMap() const {
867  // If there is no dynamic symtab or version table, there is nothing to do.
868  if (SymbolTableSections[0] == NULL || dot_gnu_version_sec == NULL)
869    return;
870
871  // Has the VersionMap already been loaded?
872  if (VersionMap.size() > 0)
873    return;
874
875  // The first two version indexes are reserved.
876  // Index 0 is LOCAL, index 1 is GLOBAL.
877  VersionMap.push_back(VersionMapEntry());
878  VersionMap.push_back(VersionMapEntry());
879
880  if (dot_gnu_version_d_sec)
881    LoadVersionDefs(dot_gnu_version_d_sec);
882
883  if (dot_gnu_version_r_sec)
884    LoadVersionNeeds(dot_gnu_version_r_sec);
885}
886
887template<class ELFT>
888void ELFObjectFile<ELFT>::validateSymbol(DataRefImpl Symb) const {
889#ifndef NDEBUG
890  const Elf_Sym  *symb = getSymbol(Symb);
891  const Elf_Shdr *SymbolTableSection = SymbolTableSections[Symb.d.b];
892  // FIXME: We really need to do proper error handling in the case of an invalid
893  //        input file. Because we don't use exceptions, I think we'll just pass
894  //        an error object around.
895  if (!(  symb
896        && SymbolTableSection
897        && symb >= (const Elf_Sym*)(base()
898                   + SymbolTableSection->sh_offset)
899        && symb <  (const Elf_Sym*)(base()
900                   + SymbolTableSection->sh_offset
901                   + SymbolTableSection->sh_size)))
902    // FIXME: Proper error handling.
903    report_fatal_error("Symb must point to a valid symbol!");
904#endif
905}
906
907template<class ELFT>
908error_code ELFObjectFile<ELFT>::getSymbolNext(DataRefImpl Symb,
909                                              SymbolRef &Result) const {
910  validateSymbol(Symb);
911  const Elf_Shdr *SymbolTableSection = SymbolTableSections[Symb.d.b];
912
913  ++Symb.d.a;
914  // Check to see if we are at the end of this symbol table.
915  if (Symb.d.a >= SymbolTableSection->getEntityCount()) {
916    // We are at the end. If there are other symbol tables, jump to them.
917    // If the symbol table is .dynsym, we are iterating dynamic symbols,
918    // and there is only one table of these.
919    if (Symb.d.b != 0) {
920      ++Symb.d.b;
921      Symb.d.a = 1; // The 0th symbol in ELF is fake.
922    }
923    // Otherwise return the terminator.
924    if (Symb.d.b == 0 || Symb.d.b >= SymbolTableSections.size()) {
925      Symb.d.a = std::numeric_limits<uint32_t>::max();
926      Symb.d.b = std::numeric_limits<uint32_t>::max();
927    }
928  }
929
930  Result = SymbolRef(Symb, this);
931  return object_error::success;
932}
933
934template<class ELFT>
935error_code ELFObjectFile<ELFT>::getSymbolName(DataRefImpl Symb,
936                                              StringRef &Result) const {
937  validateSymbol(Symb);
938  const Elf_Sym *symb = getSymbol(Symb);
939  return getSymbolName(SymbolTableSections[Symb.d.b], symb, Result);
940}
941
942template<class ELFT>
943error_code ELFObjectFile<ELFT>::getSymbolVersion(SymbolRef SymRef,
944                                                 StringRef &Version,
945                                                 bool &IsDefault) const {
946  DataRefImpl Symb = SymRef.getRawDataRefImpl();
947  validateSymbol(Symb);
948  const Elf_Sym *symb = getSymbol(Symb);
949  return getSymbolVersion(SymbolTableSections[Symb.d.b], symb,
950                          Version, IsDefault);
951}
952
953template<class ELFT>
954ELF::Elf64_Word ELFObjectFile<ELFT>
955                             ::getSymbolTableIndex(const Elf_Sym *symb) const {
956  if (symb->st_shndx == ELF::SHN_XINDEX)
957    return ExtendedSymbolTable.lookup(symb);
958  return symb->st_shndx;
959}
960
961template<class ELFT>
962const typename ELFObjectFile<ELFT>::Elf_Shdr *
963ELFObjectFile<ELFT>::getSection(const Elf_Sym *symb) const {
964  if (symb->st_shndx == ELF::SHN_XINDEX)
965    return getSection(ExtendedSymbolTable.lookup(symb));
966  if (symb->st_shndx >= ELF::SHN_LORESERVE)
967    return 0;
968  return getSection(symb->st_shndx);
969}
970
971template<class ELFT>
972const typename ELFObjectFile<ELFT>::Elf_Shdr *
973ELFObjectFile<ELFT>::getElfSection(section_iterator &It) const {
974  llvm::object::DataRefImpl ShdrRef = It->getRawDataRefImpl();
975  return reinterpret_cast<const Elf_Shdr *>(ShdrRef.p);
976}
977
978template<class ELFT>
979const typename ELFObjectFile<ELFT>::Elf_Sym *
980ELFObjectFile<ELFT>::getElfSymbol(symbol_iterator &It) const {
981  return getSymbol(It->getRawDataRefImpl());
982}
983
984template<class ELFT>
985const typename ELFObjectFile<ELFT>::Elf_Sym *
986ELFObjectFile<ELFT>::getElfSymbol(uint32_t index) const {
987  DataRefImpl SymbolData;
988  SymbolData.d.a = index;
989  SymbolData.d.b = 1;
990  return getSymbol(SymbolData);
991}
992
993template<class ELFT>
994error_code ELFObjectFile<ELFT>::getSymbolFileOffset(DataRefImpl Symb,
995                                                    uint64_t &Result) const {
996  validateSymbol(Symb);
997  const Elf_Sym  *symb = getSymbol(Symb);
998  const Elf_Shdr *Section;
999  switch (getSymbolTableIndex(symb)) {
1000  case ELF::SHN_COMMON:
1001   // Unintialized symbols have no offset in the object file
1002  case ELF::SHN_UNDEF:
1003    Result = UnknownAddressOrSize;
1004    return object_error::success;
1005  case ELF::SHN_ABS:
1006    Result = symb->st_value;
1007    return object_error::success;
1008  default: Section = getSection(symb);
1009  }
1010
1011  switch (symb->getType()) {
1012  case ELF::STT_SECTION:
1013    Result = Section ? Section->sh_offset : UnknownAddressOrSize;
1014    return object_error::success;
1015  case ELF::STT_FUNC:
1016  case ELF::STT_OBJECT:
1017  case ELF::STT_NOTYPE:
1018    Result = symb->st_value +
1019             (Section ? Section->sh_offset : 0);
1020    return object_error::success;
1021  default:
1022    Result = UnknownAddressOrSize;
1023    return object_error::success;
1024  }
1025}
1026
1027template<class ELFT>
1028error_code ELFObjectFile<ELFT>::getSymbolAddress(DataRefImpl Symb,
1029                                                 uint64_t &Result) const {
1030  validateSymbol(Symb);
1031  const Elf_Sym  *symb = getSymbol(Symb);
1032  const Elf_Shdr *Section;
1033  switch (getSymbolTableIndex(symb)) {
1034  case ELF::SHN_COMMON:
1035  case ELF::SHN_UNDEF:
1036    Result = UnknownAddressOrSize;
1037    return object_error::success;
1038  case ELF::SHN_ABS:
1039    Result = symb->st_value;
1040    return object_error::success;
1041  default: Section = getSection(symb);
1042  }
1043
1044  switch (symb->getType()) {
1045  case ELF::STT_SECTION:
1046    Result = Section ? Section->sh_addr : UnknownAddressOrSize;
1047    return object_error::success;
1048  case ELF::STT_FUNC:
1049  case ELF::STT_OBJECT:
1050  case ELF::STT_NOTYPE:
1051    bool IsRelocatable;
1052    switch(Header->e_type) {
1053    case ELF::ET_EXEC:
1054    case ELF::ET_DYN:
1055      IsRelocatable = false;
1056      break;
1057    default:
1058      IsRelocatable = true;
1059    }
1060    Result = symb->st_value;
1061    if (IsRelocatable && Section != 0)
1062      Result += Section->sh_addr;
1063    return object_error::success;
1064  default:
1065    Result = UnknownAddressOrSize;
1066    return object_error::success;
1067  }
1068}
1069
1070template<class ELFT>
1071error_code ELFObjectFile<ELFT>::getSymbolSize(DataRefImpl Symb,
1072                                              uint64_t &Result) const {
1073  validateSymbol(Symb);
1074  const Elf_Sym  *symb = getSymbol(Symb);
1075  if (symb->st_size == 0)
1076    Result = UnknownAddressOrSize;
1077  Result = symb->st_size;
1078  return object_error::success;
1079}
1080
1081template<class ELFT>
1082error_code ELFObjectFile<ELFT>::getSymbolNMTypeChar(DataRefImpl Symb,
1083                                                    char &Result) const {
1084  validateSymbol(Symb);
1085  const Elf_Sym  *symb = getSymbol(Symb);
1086  const Elf_Shdr *Section = getSection(symb);
1087
1088  char ret = '?';
1089
1090  if (Section) {
1091    switch (Section->sh_type) {
1092    case ELF::SHT_PROGBITS:
1093    case ELF::SHT_DYNAMIC:
1094      switch (Section->sh_flags) {
1095      case (ELF::SHF_ALLOC | ELF::SHF_EXECINSTR):
1096        ret = 't'; break;
1097      case (ELF::SHF_ALLOC | ELF::SHF_WRITE):
1098        ret = 'd'; break;
1099      case ELF::SHF_ALLOC:
1100      case (ELF::SHF_ALLOC | ELF::SHF_MERGE):
1101      case (ELF::SHF_ALLOC | ELF::SHF_MERGE | ELF::SHF_STRINGS):
1102        ret = 'r'; break;
1103      }
1104      break;
1105    case ELF::SHT_NOBITS: ret = 'b';
1106    }
1107  }
1108
1109  switch (getSymbolTableIndex(symb)) {
1110  case ELF::SHN_UNDEF:
1111    if (ret == '?')
1112      ret = 'U';
1113    break;
1114  case ELF::SHN_ABS: ret = 'a'; break;
1115  case ELF::SHN_COMMON: ret = 'c'; break;
1116  }
1117
1118  switch (symb->getBinding()) {
1119  case ELF::STB_GLOBAL: ret = ::toupper(ret); break;
1120  case ELF::STB_WEAK:
1121    if (getSymbolTableIndex(symb) == ELF::SHN_UNDEF)
1122      ret = 'w';
1123    else
1124      if (symb->getType() == ELF::STT_OBJECT)
1125        ret = 'V';
1126      else
1127        ret = 'W';
1128  }
1129
1130  if (ret == '?' && symb->getType() == ELF::STT_SECTION) {
1131    StringRef name;
1132    if (error_code ec = getSymbolName(Symb, name))
1133      return ec;
1134    Result = StringSwitch<char>(name)
1135      .StartsWith(".debug", 'N')
1136      .StartsWith(".note", 'n')
1137      .Default('?');
1138    return object_error::success;
1139  }
1140
1141  Result = ret;
1142  return object_error::success;
1143}
1144
1145template<class ELFT>
1146error_code ELFObjectFile<ELFT>::getSymbolType(DataRefImpl Symb,
1147                                              SymbolRef::Type &Result) const {
1148  validateSymbol(Symb);
1149  const Elf_Sym  *symb = getSymbol(Symb);
1150
1151  switch (symb->getType()) {
1152  case ELF::STT_NOTYPE:
1153    Result = SymbolRef::ST_Unknown;
1154    break;
1155  case ELF::STT_SECTION:
1156    Result = SymbolRef::ST_Debug;
1157    break;
1158  case ELF::STT_FILE:
1159    Result = SymbolRef::ST_File;
1160    break;
1161  case ELF::STT_FUNC:
1162    Result = SymbolRef::ST_Function;
1163    break;
1164  case ELF::STT_OBJECT:
1165  case ELF::STT_COMMON:
1166  case ELF::STT_TLS:
1167    Result = SymbolRef::ST_Data;
1168    break;
1169  default:
1170    Result = SymbolRef::ST_Other;
1171    break;
1172  }
1173  return object_error::success;
1174}
1175
1176template<class ELFT>
1177error_code ELFObjectFile<ELFT>::getSymbolFlags(DataRefImpl Symb,
1178                                               uint32_t &Result) const {
1179  validateSymbol(Symb);
1180  const Elf_Sym  *symb = getSymbol(Symb);
1181
1182  Result = SymbolRef::SF_None;
1183
1184  if (symb->getBinding() != ELF::STB_LOCAL)
1185    Result |= SymbolRef::SF_Global;
1186
1187  if (symb->getBinding() == ELF::STB_WEAK)
1188    Result |= SymbolRef::SF_Weak;
1189
1190  if (symb->st_shndx == ELF::SHN_ABS)
1191    Result |= SymbolRef::SF_Absolute;
1192
1193  if (symb->getType() == ELF::STT_FILE ||
1194      symb->getType() == ELF::STT_SECTION)
1195    Result |= SymbolRef::SF_FormatSpecific;
1196
1197  if (getSymbolTableIndex(symb) == ELF::SHN_UNDEF)
1198    Result |= SymbolRef::SF_Undefined;
1199
1200  if (symb->getType() == ELF::STT_COMMON ||
1201      getSymbolTableIndex(symb) == ELF::SHN_COMMON)
1202    Result |= SymbolRef::SF_Common;
1203
1204  if (symb->getType() == ELF::STT_TLS)
1205    Result |= SymbolRef::SF_ThreadLocal;
1206
1207  return object_error::success;
1208}
1209
1210template<class ELFT>
1211error_code ELFObjectFile<ELFT>::getSymbolSection(DataRefImpl Symb,
1212                                                 section_iterator &Res) const {
1213  validateSymbol(Symb);
1214  const Elf_Sym  *symb = getSymbol(Symb);
1215  const Elf_Shdr *sec = getSection(symb);
1216  if (!sec)
1217    Res = end_sections();
1218  else {
1219    DataRefImpl Sec;
1220    Sec.p = reinterpret_cast<intptr_t>(sec);
1221    Res = section_iterator(SectionRef(Sec, this));
1222  }
1223  return object_error::success;
1224}
1225
1226template<class ELFT>
1227error_code ELFObjectFile<ELFT>::getSymbolValue(DataRefImpl Symb,
1228                                               uint64_t &Val) const {
1229  validateSymbol(Symb);
1230  const Elf_Sym *symb = getSymbol(Symb);
1231  Val = symb->st_value;
1232  return object_error::success;
1233}
1234
1235template<class ELFT>
1236error_code ELFObjectFile<ELFT>::getSectionNext(DataRefImpl Sec,
1237                                               SectionRef &Result) const {
1238  const uint8_t *sec = reinterpret_cast<const uint8_t *>(Sec.p);
1239  sec += Header->e_shentsize;
1240  Sec.p = reinterpret_cast<intptr_t>(sec);
1241  Result = SectionRef(Sec, this);
1242  return object_error::success;
1243}
1244
1245template<class ELFT>
1246error_code ELFObjectFile<ELFT>::getSectionName(DataRefImpl Sec,
1247                                               StringRef &Result) const {
1248  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1249  Result = StringRef(getString(dot_shstrtab_sec, sec->sh_name));
1250  return object_error::success;
1251}
1252
1253template<class ELFT>
1254error_code ELFObjectFile<ELFT>::getSectionAddress(DataRefImpl Sec,
1255                                                  uint64_t &Result) const {
1256  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1257  Result = sec->sh_addr;
1258  return object_error::success;
1259}
1260
1261template<class ELFT>
1262error_code ELFObjectFile<ELFT>::getSectionSize(DataRefImpl Sec,
1263                                               uint64_t &Result) const {
1264  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1265  Result = sec->sh_size;
1266  return object_error::success;
1267}
1268
1269template<class ELFT>
1270error_code ELFObjectFile<ELFT>::getSectionContents(DataRefImpl Sec,
1271                                                   StringRef &Result) const {
1272  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1273  const char *start = (const char*)base() + sec->sh_offset;
1274  Result = StringRef(start, sec->sh_size);
1275  return object_error::success;
1276}
1277
1278template<class ELFT>
1279error_code ELFObjectFile<ELFT>::getSectionContents(const Elf_Shdr *Sec,
1280                                                   StringRef &Result) const {
1281  const char *start = (const char*)base() + Sec->sh_offset;
1282  Result = StringRef(start, Sec->sh_size);
1283  return object_error::success;
1284}
1285
1286template<class ELFT>
1287error_code ELFObjectFile<ELFT>::getSectionAlignment(DataRefImpl Sec,
1288                                                    uint64_t &Result) const {
1289  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1290  Result = sec->sh_addralign;
1291  return object_error::success;
1292}
1293
1294template<class ELFT>
1295error_code ELFObjectFile<ELFT>::isSectionText(DataRefImpl Sec,
1296                                              bool &Result) const {
1297  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1298  if (sec->sh_flags & ELF::SHF_EXECINSTR)
1299    Result = true;
1300  else
1301    Result = false;
1302  return object_error::success;
1303}
1304
1305template<class ELFT>
1306error_code ELFObjectFile<ELFT>::isSectionData(DataRefImpl Sec,
1307                                              bool &Result) const {
1308  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1309  if (sec->sh_flags & (ELF::SHF_ALLOC | ELF::SHF_WRITE)
1310      && sec->sh_type == ELF::SHT_PROGBITS)
1311    Result = true;
1312  else
1313    Result = false;
1314  return object_error::success;
1315}
1316
1317template<class ELFT>
1318error_code ELFObjectFile<ELFT>::isSectionBSS(DataRefImpl Sec,
1319                                             bool &Result) const {
1320  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1321  if (sec->sh_flags & (ELF::SHF_ALLOC | ELF::SHF_WRITE)
1322      && sec->sh_type == ELF::SHT_NOBITS)
1323    Result = true;
1324  else
1325    Result = false;
1326  return object_error::success;
1327}
1328
1329template<class ELFT>
1330error_code ELFObjectFile<ELFT>::isSectionRequiredForExecution(
1331    DataRefImpl Sec, bool &Result) const {
1332  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1333  if (sec->sh_flags & ELF::SHF_ALLOC)
1334    Result = true;
1335  else
1336    Result = false;
1337  return object_error::success;
1338}
1339
1340template<class ELFT>
1341error_code ELFObjectFile<ELFT>::isSectionVirtual(DataRefImpl Sec,
1342                                                 bool &Result) const {
1343  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1344  if (sec->sh_type == ELF::SHT_NOBITS)
1345    Result = true;
1346  else
1347    Result = false;
1348  return object_error::success;
1349}
1350
1351template<class ELFT>
1352error_code ELFObjectFile<ELFT>::isSectionZeroInit(DataRefImpl Sec,
1353                                                  bool &Result) const {
1354  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1355  // For ELF, all zero-init sections are virtual (that is, they occupy no space
1356  //   in the object image) and vice versa.
1357  Result = sec->sh_type == ELF::SHT_NOBITS;
1358  return object_error::success;
1359}
1360
1361template<class ELFT>
1362error_code ELFObjectFile<ELFT>::isSectionReadOnlyData(DataRefImpl Sec,
1363                                                      bool &Result) const {
1364  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1365  if (sec->sh_flags & ELF::SHF_WRITE || sec->sh_flags & ELF::SHF_EXECINSTR)
1366    Result = false;
1367  else
1368    Result = true;
1369  return object_error::success;
1370}
1371
1372template<class ELFT>
1373error_code ELFObjectFile<ELFT>::sectionContainsSymbol(DataRefImpl Sec,
1374                                                      DataRefImpl Symb,
1375                                                      bool &Result) const {
1376  // FIXME: Unimplemented.
1377  Result = false;
1378  return object_error::success;
1379}
1380
1381template<class ELFT>
1382relocation_iterator
1383ELFObjectFile<ELFT>::getSectionRelBegin(DataRefImpl Sec) const {
1384  DataRefImpl RelData;
1385  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1386  typename RelocMap_t::const_iterator ittr = SectionRelocMap.find(sec);
1387  if (sec != 0 && ittr != SectionRelocMap.end()) {
1388    RelData.w.a = getSection(ittr->second[0])->sh_info;
1389    RelData.w.b = ittr->second[0];
1390    RelData.w.c = 0;
1391  }
1392  return relocation_iterator(RelocationRef(RelData, this));
1393}
1394
1395template<class ELFT>
1396relocation_iterator
1397ELFObjectFile<ELFT>::getSectionRelEnd(DataRefImpl Sec) const {
1398  DataRefImpl RelData;
1399  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1400  typename RelocMap_t::const_iterator ittr = SectionRelocMap.find(sec);
1401  if (sec != 0 && ittr != SectionRelocMap.end()) {
1402    // Get the index of the last relocation section for this section.
1403    std::size_t relocsecindex = ittr->second[ittr->second.size() - 1];
1404    const Elf_Shdr *relocsec = getSection(relocsecindex);
1405    RelData.w.a = relocsec->sh_info;
1406    RelData.w.b = relocsecindex;
1407    RelData.w.c = relocsec->sh_size / relocsec->sh_entsize;
1408  }
1409  return relocation_iterator(RelocationRef(RelData, this));
1410}
1411
1412// Relocations
1413template<class ELFT>
1414error_code ELFObjectFile<ELFT>::getRelocationNext(DataRefImpl Rel,
1415                                                  RelocationRef &Result) const {
1416  ++Rel.w.c;
1417  const Elf_Shdr *relocsec = getSection(Rel.w.b);
1418  if (Rel.w.c >= (relocsec->sh_size / relocsec->sh_entsize)) {
1419    // We have reached the end of the relocations for this section. See if there
1420    // is another relocation section.
1421    typename RelocMap_t::mapped_type relocseclist =
1422      SectionRelocMap.lookup(getSection(Rel.w.a));
1423
1424    // Do a binary search for the current reloc section index (which must be
1425    // present). Then get the next one.
1426    typename RelocMap_t::mapped_type::const_iterator loc =
1427      std::lower_bound(relocseclist.begin(), relocseclist.end(), Rel.w.b);
1428    ++loc;
1429
1430    // If there is no next one, don't do anything. The ++Rel.w.c above sets Rel
1431    // to the end iterator.
1432    if (loc != relocseclist.end()) {
1433      Rel.w.b = *loc;
1434      Rel.w.a = 0;
1435    }
1436  }
1437  Result = RelocationRef(Rel, this);
1438  return object_error::success;
1439}
1440
1441template<class ELFT>
1442error_code ELFObjectFile<ELFT>::getRelocationSymbol(DataRefImpl Rel,
1443                                                    SymbolRef &Result) const {
1444  uint32_t symbolIdx;
1445  const Elf_Shdr *sec = getSection(Rel.w.b);
1446  switch (sec->sh_type) {
1447    default :
1448      report_fatal_error("Invalid section type in Rel!");
1449    case ELF::SHT_REL : {
1450      symbolIdx = getRel(Rel)->getSymbol();
1451      break;
1452    }
1453    case ELF::SHT_RELA : {
1454      symbolIdx = getRela(Rel)->getSymbol();
1455      break;
1456    }
1457  }
1458  DataRefImpl SymbolData;
1459  IndexMap_t::const_iterator it = SymbolTableSectionsIndexMap.find(sec->sh_link);
1460  if (it == SymbolTableSectionsIndexMap.end())
1461    report_fatal_error("Relocation symbol table not found!");
1462  SymbolData.d.a = symbolIdx;
1463  SymbolData.d.b = it->second;
1464  Result = SymbolRef(SymbolData, this);
1465  return object_error::success;
1466}
1467
1468template<class ELFT>
1469error_code ELFObjectFile<ELFT>::getRelocationAddress(DataRefImpl Rel,
1470                                                     uint64_t &Result) const {
1471  uint64_t offset;
1472  const Elf_Shdr *sec = getSection(Rel.w.b);
1473  switch (sec->sh_type) {
1474    default :
1475      report_fatal_error("Invalid section type in Rel!");
1476    case ELF::SHT_REL : {
1477      offset = getRel(Rel)->r_offset;
1478      break;
1479    }
1480    case ELF::SHT_RELA : {
1481      offset = getRela(Rel)->r_offset;
1482      break;
1483    }
1484  }
1485
1486  Result = offset;
1487  return object_error::success;
1488}
1489
1490template<class ELFT>
1491error_code ELFObjectFile<ELFT>::getRelocationOffset(DataRefImpl Rel,
1492                                                    uint64_t &Result) const {
1493  uint64_t offset;
1494  const Elf_Shdr *sec = getSection(Rel.w.b);
1495  switch (sec->sh_type) {
1496    default :
1497      report_fatal_error("Invalid section type in Rel!");
1498    case ELF::SHT_REL : {
1499      offset = getRel(Rel)->r_offset;
1500      break;
1501    }
1502    case ELF::SHT_RELA : {
1503      offset = getRela(Rel)->r_offset;
1504      break;
1505    }
1506  }
1507
1508  Result = offset - sec->sh_addr;
1509  return object_error::success;
1510}
1511
1512template<class ELFT>
1513error_code ELFObjectFile<ELFT>::getRelocationType(DataRefImpl Rel,
1514                                                  uint64_t &Result) const {
1515  const Elf_Shdr *sec = getSection(Rel.w.b);
1516  switch (sec->sh_type) {
1517    default :
1518      report_fatal_error("Invalid section type in Rel!");
1519    case ELF::SHT_REL : {
1520      Result = getRel(Rel)->getType();
1521      break;
1522    }
1523    case ELF::SHT_RELA : {
1524      Result = getRela(Rel)->getType();
1525      break;
1526    }
1527  }
1528  return object_error::success;
1529}
1530
1531#define LLVM_ELF_SWITCH_RELOC_TYPE_NAME(enum) \
1532  case ELF::enum: res = #enum; break;
1533
1534template<class ELFT>
1535error_code ELFObjectFile<ELFT>::getRelocationTypeName(
1536    DataRefImpl Rel, SmallVectorImpl<char> &Result) const {
1537  const Elf_Shdr *sec = getSection(Rel.w.b);
1538  uint32_t type;
1539  StringRef res;
1540  switch (sec->sh_type) {
1541    default :
1542      return object_error::parse_failed;
1543    case ELF::SHT_REL : {
1544      type = getRel(Rel)->getType();
1545      break;
1546    }
1547    case ELF::SHT_RELA : {
1548      type = getRela(Rel)->getType();
1549      break;
1550    }
1551  }
1552  switch (Header->e_machine) {
1553  case ELF::EM_X86_64:
1554    switch (type) {
1555      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_NONE);
1556      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_64);
1557      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PC32);
1558      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOT32);
1559      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PLT32);
1560      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_COPY);
1561      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GLOB_DAT);
1562      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_JUMP_SLOT);
1563      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_RELATIVE);
1564      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTPCREL);
1565      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_32);
1566      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_32S);
1567      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_16);
1568      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PC16);
1569      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_8);
1570      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PC8);
1571      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_DTPMOD64);
1572      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_DTPOFF64);
1573      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TPOFF64);
1574      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TLSGD);
1575      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TLSLD);
1576      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_DTPOFF32);
1577      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTTPOFF);
1578      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TPOFF32);
1579      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PC64);
1580      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTOFF64);
1581      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTPC32);
1582      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_SIZE32);
1583      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_SIZE64);
1584      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTPC32_TLSDESC);
1585      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TLSDESC_CALL);
1586      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TLSDESC);
1587    default:
1588      res = "Unknown";
1589    }
1590    break;
1591  case ELF::EM_386:
1592    switch (type) {
1593      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_NONE);
1594      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_32);
1595      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_PC32);
1596      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_GOT32);
1597      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_PLT32);
1598      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_COPY);
1599      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_GLOB_DAT);
1600      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_JUMP_SLOT);
1601      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_RELATIVE);
1602      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_GOTOFF);
1603      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_GOTPC);
1604      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_32PLT);
1605      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_TPOFF);
1606      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_IE);
1607      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GOTIE);
1608      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LE);
1609      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD);
1610      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM);
1611      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_16);
1612      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_PC16);
1613      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_8);
1614      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_PC8);
1615      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD_32);
1616      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD_PUSH);
1617      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD_CALL);
1618      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD_POP);
1619      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM_32);
1620      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM_PUSH);
1621      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM_CALL);
1622      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM_POP);
1623      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDO_32);
1624      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_IE_32);
1625      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LE_32);
1626      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_DTPMOD32);
1627      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_DTPOFF32);
1628      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_TPOFF32);
1629      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GOTDESC);
1630      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_DESC_CALL);
1631      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_DESC);
1632      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_IRELATIVE);
1633    default:
1634      res = "Unknown";
1635    }
1636    break;
1637  case ELF::EM_AARCH64:
1638    switch (type) {
1639      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_NONE);
1640      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ABS64);
1641      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ABS32);
1642      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ABS16);
1643      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_PREL64);
1644      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_PREL32);
1645      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_PREL16);
1646      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G0);
1647      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G0_NC);
1648      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G1);
1649      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G1_NC);
1650      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G2);
1651      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G2_NC);
1652      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G3);
1653      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_SABS_G0);
1654      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_SABS_G1);
1655      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_SABS_G2);
1656      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LD_PREL_LO19);
1657      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ADR_PREL_LO21);
1658      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ADR_PREL_PG_HI21);
1659      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ADD_ABS_LO12_NC);
1660      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LDST8_ABS_LO12_NC);
1661      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TSTBR14);
1662      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_CONDBR19);
1663      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_JUMP26);
1664      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_CALL26);
1665      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LDST16_ABS_LO12_NC);
1666      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LDST32_ABS_LO12_NC);
1667      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LDST64_ABS_LO12_NC);
1668      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LDST128_ABS_LO12_NC);
1669      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ADR_GOT_PAGE);
1670      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LD64_GOT_LO12_NC);
1671      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_MOVW_DTPREL_G2);
1672      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_MOVW_DTPREL_G1);
1673      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_MOVW_DTPREL_G1_NC);
1674      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_MOVW_DTPREL_G0);
1675      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC);
1676      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_ADD_DTPREL_HI12);
1677      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_ADD_DTPREL_LO12);
1678      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC);
1679      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST8_DTPREL_LO12);
1680      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC);
1681      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST16_DTPREL_LO12);
1682      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC);
1683      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST32_DTPREL_LO12);
1684      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC);
1685      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST64_DTPREL_LO12);
1686      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC);
1687      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSIE_MOVW_GOTTPREL_G1);
1688      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC);
1689      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
1690      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
1691      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
1692      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_MOVW_TPREL_G2);
1693      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_MOVW_TPREL_G1);
1694      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_MOVW_TPREL_G1_NC);
1695      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_MOVW_TPREL_G0);
1696      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_MOVW_TPREL_G0_NC);
1697      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_ADD_TPREL_HI12);
1698      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_ADD_TPREL_LO12);
1699      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_ADD_TPREL_LO12_NC);
1700      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST8_TPREL_LO12);
1701      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC);
1702      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST16_TPREL_LO12);
1703      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC);
1704      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST32_TPREL_LO12);
1705      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC);
1706      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST64_TPREL_LO12);
1707      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC);
1708      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSDESC_ADR_PAGE);
1709      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSDESC_LD64_LO12_NC);
1710      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSDESC_ADD_LO12_NC);
1711      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSDESC_CALL);
1712
1713    default:
1714      res = "Unknown";
1715    }
1716    break;
1717  case ELF::EM_ARM:
1718    switch (type) {
1719      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_NONE);
1720      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PC24);
1721      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS32);
1722      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_REL32);
1723      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_PC_G0);
1724      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS16);
1725      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS12);
1726      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_ABS5);
1727      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS8);
1728      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_SBREL32);
1729      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_CALL);
1730      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_PC8);
1731      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_BREL_ADJ);
1732      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_DESC);
1733      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_SWI8);
1734      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_XPC25);
1735      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_XPC22);
1736      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_DTPMOD32);
1737      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_DTPOFF32);
1738      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_TPOFF32);
1739      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_COPY);
1740      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GLOB_DAT);
1741      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_JUMP_SLOT);
1742      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_RELATIVE);
1743      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOTOFF32);
1744      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_BASE_PREL);
1745      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOT_BREL);
1746      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PLT32);
1747      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_CALL);
1748      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_JUMP24);
1749      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP24);
1750      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_BASE_ABS);
1751      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PCREL_7_0);
1752      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PCREL_15_8);
1753      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PCREL_23_15);
1754      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_SBREL_11_0_NC);
1755      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SBREL_19_12_NC);
1756      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SBREL_27_20_CK);
1757      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TARGET1);
1758      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_SBREL31);
1759      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_V4BX);
1760      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TARGET2);
1761      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PREL31);
1762      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVW_ABS_NC);
1763      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVT_ABS);
1764      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVW_PREL_NC);
1765      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVT_PREL);
1766      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVW_ABS_NC);
1767      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVT_ABS);
1768      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVW_PREL_NC);
1769      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVT_PREL);
1770      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP19);
1771      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP6);
1772      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_ALU_PREL_11_0);
1773      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_PC12);
1774      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS32_NOI);
1775      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_REL32_NOI);
1776      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G0_NC);
1777      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G0);
1778      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G1_NC);
1779      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G1);
1780      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G2);
1781      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_PC_G1);
1782      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_PC_G2);
1783      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_PC_G0);
1784      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_PC_G1);
1785      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_PC_G2);
1786      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_PC_G0);
1787      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_PC_G1);
1788      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_PC_G2);
1789      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G0_NC);
1790      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G0);
1791      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G1_NC);
1792      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G1);
1793      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G2);
1794      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_SB_G0);
1795      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_SB_G1);
1796      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_SB_G2);
1797      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_SB_G0);
1798      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_SB_G1);
1799      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_SB_G2);
1800      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_SB_G0);
1801      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_SB_G1);
1802      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_SB_G2);
1803      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVW_BREL_NC);
1804      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVT_BREL);
1805      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVW_BREL);
1806      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVW_BREL_NC);
1807      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVT_BREL);
1808      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVW_BREL);
1809      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_GOTDESC);
1810      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_CALL);
1811      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_DESCSEQ);
1812      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_TLS_CALL);
1813      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PLT32_ABS);
1814      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOT_ABS);
1815      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOT_PREL);
1816      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOT_BREL12);
1817      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOTOFF12);
1818      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOTRELAX);
1819      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GNU_VTENTRY);
1820      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GNU_VTINHERIT);
1821      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP11);
1822      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP8);
1823      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_GD32);
1824      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LDM32);
1825      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LDO32);
1826      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_IE32);
1827      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LE32);
1828      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LDO12);
1829      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LE12);
1830      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_IE12GP);
1831      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_0);
1832      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_1);
1833      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_2);
1834      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_3);
1835      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_4);
1836      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_5);
1837      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_6);
1838      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_7);
1839      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_8);
1840      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_9);
1841      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_10);
1842      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_11);
1843      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_12);
1844      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_13);
1845      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_14);
1846      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_15);
1847      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ME_TOO);
1848      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_TLS_DESCSEQ16);
1849      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_TLS_DESCSEQ32);
1850    default:
1851      res = "Unknown";
1852    }
1853    break;
1854  case ELF::EM_HEXAGON:
1855    switch (type) {
1856      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_NONE);
1857      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B22_PCREL);
1858      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B15_PCREL);
1859      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B7_PCREL);
1860      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_LO16);
1861      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_HI16);
1862      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_32);
1863      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_16);
1864      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_8);
1865      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GPREL16_0);
1866      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GPREL16_1);
1867      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GPREL16_2);
1868      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GPREL16_3);
1869      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_HL16);
1870      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B13_PCREL);
1871      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B9_PCREL);
1872      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B32_PCREL_X);
1873      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_32_6_X);
1874      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B22_PCREL_X);
1875      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B15_PCREL_X);
1876      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B13_PCREL_X);
1877      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B9_PCREL_X);
1878      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B7_PCREL_X);
1879      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_16_X);
1880      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_12_X);
1881      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_11_X);
1882      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_10_X);
1883      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_9_X);
1884      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_8_X);
1885      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_7_X);
1886      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_6_X);
1887      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_32_PCREL);
1888      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_COPY);
1889      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GLOB_DAT);
1890      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_JMP_SLOT);
1891      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_RELATIVE);
1892      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_PLT_B22_PCREL);
1893      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_LO16);
1894      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_HI16);
1895      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_32);
1896      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_LO16);
1897      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_HI16);
1898      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_32);
1899      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_16);
1900      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPMOD_32);
1901      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_LO16);
1902      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_HI16);
1903      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_32);
1904      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_16);
1905      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_PLT_B22_PCREL);
1906      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_LO16);
1907      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_HI16);
1908      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_32);
1909      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_16);
1910      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_LO16);
1911      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_HI16);
1912      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_32);
1913      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_LO16);
1914      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_HI16);
1915      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_32);
1916      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_16);
1917      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_LO16);
1918      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_HI16);
1919      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_32);
1920      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_16);
1921      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_6_PCREL_X);
1922      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_32_6_X);
1923      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_16_X);
1924      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_11_X);
1925      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_32_6_X);
1926      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_16_X);
1927      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_11_X);
1928      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_32_6_X);
1929      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_16_X);
1930      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_11_X);
1931      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_32_6_X);
1932      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_16_X);
1933      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_11_X);
1934      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_32_6_X);
1935      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_16_X);
1936      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_32_6_X);
1937      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_16_X);
1938      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_11_X);
1939      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_32_6_X);
1940      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_16_X);
1941      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_11_X);
1942    default:
1943      res = "Unknown";
1944    }
1945    break;
1946  default:
1947    res = "Unknown";
1948  }
1949  Result.append(res.begin(), res.end());
1950  return object_error::success;
1951}
1952
1953#undef LLVM_ELF_SWITCH_RELOC_TYPE_NAME
1954
1955template<class ELFT>
1956error_code ELFObjectFile<ELFT>::getRelocationAdditionalInfo(
1957    DataRefImpl Rel, int64_t &Result) const {
1958  const Elf_Shdr *sec = getSection(Rel.w.b);
1959  switch (sec->sh_type) {
1960    default :
1961      report_fatal_error("Invalid section type in Rel!");
1962    case ELF::SHT_REL : {
1963      Result = 0;
1964      return object_error::success;
1965    }
1966    case ELF::SHT_RELA : {
1967      Result = getRela(Rel)->r_addend;
1968      return object_error::success;
1969    }
1970  }
1971}
1972
1973template<class ELFT>
1974error_code ELFObjectFile<ELFT>::getRelocationValueString(
1975    DataRefImpl Rel, SmallVectorImpl<char> &Result) const {
1976  const Elf_Shdr *sec = getSection(Rel.w.b);
1977  uint8_t type;
1978  StringRef res;
1979  int64_t addend = 0;
1980  uint16_t symbol_index = 0;
1981  switch (sec->sh_type) {
1982    default:
1983      return object_error::parse_failed;
1984    case ELF::SHT_REL: {
1985      type = getRel(Rel)->getType();
1986      symbol_index = getRel(Rel)->getSymbol();
1987      // TODO: Read implicit addend from section data.
1988      break;
1989    }
1990    case ELF::SHT_RELA: {
1991      type = getRela(Rel)->getType();
1992      symbol_index = getRela(Rel)->getSymbol();
1993      addend = getRela(Rel)->r_addend;
1994      break;
1995    }
1996  }
1997  const Elf_Sym *symb = getEntry<Elf_Sym>(sec->sh_link, symbol_index);
1998  StringRef symname;
1999  if (error_code ec = getSymbolName(getSection(sec->sh_link), symb, symname))
2000    return ec;
2001  switch (Header->e_machine) {
2002  case ELF::EM_X86_64:
2003    switch (type) {
2004    case ELF::R_X86_64_PC8:
2005    case ELF::R_X86_64_PC16:
2006    case ELF::R_X86_64_PC32: {
2007        std::string fmtbuf;
2008        raw_string_ostream fmt(fmtbuf);
2009        fmt << symname << (addend < 0 ? "" : "+") << addend << "-P";
2010        fmt.flush();
2011        Result.append(fmtbuf.begin(), fmtbuf.end());
2012      }
2013      break;
2014    case ELF::R_X86_64_8:
2015    case ELF::R_X86_64_16:
2016    case ELF::R_X86_64_32:
2017    case ELF::R_X86_64_32S:
2018    case ELF::R_X86_64_64: {
2019        std::string fmtbuf;
2020        raw_string_ostream fmt(fmtbuf);
2021        fmt << symname << (addend < 0 ? "" : "+") << addend;
2022        fmt.flush();
2023        Result.append(fmtbuf.begin(), fmtbuf.end());
2024      }
2025      break;
2026    default:
2027      res = "Unknown";
2028    }
2029    break;
2030  case ELF::EM_AARCH64:
2031  case ELF::EM_ARM:
2032  case ELF::EM_HEXAGON:
2033    res = symname;
2034    break;
2035  default:
2036    res = "Unknown";
2037  }
2038  if (Result.empty())
2039    Result.append(res.begin(), res.end());
2040  return object_error::success;
2041}
2042
2043// Verify that the last byte in the string table in a null.
2044template<class ELFT>
2045void ELFObjectFile<ELFT>::VerifyStrTab(const Elf_Shdr *sh) const {
2046  const char *strtab = (const char*)base() + sh->sh_offset;
2047  if (strtab[sh->sh_size - 1] != 0)
2048    // FIXME: Proper error handling.
2049    report_fatal_error("String table must end with a null terminator!");
2050}
2051
2052template<class ELFT>
2053ELFObjectFile<ELFT>::ELFObjectFile(MemoryBuffer *Object, error_code &ec)
2054  : ObjectFile(getELFType(
2055      static_cast<endianness>(ELFT::TargetEndianness) == support::little,
2056      ELFT::Is64Bits),
2057      Object,
2058      ec)
2059  , isDyldELFObject(false)
2060  , SectionHeaderTable(0)
2061  , dot_shstrtab_sec(0)
2062  , dot_strtab_sec(0)
2063  , dot_dynstr_sec(0)
2064  , dot_dynamic_sec(0)
2065  , dot_gnu_version_sec(0)
2066  , dot_gnu_version_r_sec(0)
2067  , dot_gnu_version_d_sec(0)
2068  , dt_soname(0)
2069 {
2070
2071  const uint64_t FileSize = Data->getBufferSize();
2072
2073  if (sizeof(Elf_Ehdr) > FileSize)
2074    // FIXME: Proper error handling.
2075    report_fatal_error("File too short!");
2076
2077  Header = reinterpret_cast<const Elf_Ehdr *>(base());
2078
2079  if (Header->e_shoff == 0)
2080    return;
2081
2082  const uint64_t SectionTableOffset = Header->e_shoff;
2083
2084  if (SectionTableOffset + sizeof(Elf_Shdr) > FileSize)
2085    // FIXME: Proper error handling.
2086    report_fatal_error("Section header table goes past end of file!");
2087
2088  // The getNumSections() call below depends on SectionHeaderTable being set.
2089  SectionHeaderTable =
2090    reinterpret_cast<const Elf_Shdr *>(base() + SectionTableOffset);
2091  const uint64_t SectionTableSize = getNumSections() * Header->e_shentsize;
2092
2093  if (SectionTableOffset + SectionTableSize > FileSize)
2094    // FIXME: Proper error handling.
2095    report_fatal_error("Section table goes past end of file!");
2096
2097  // To find the symbol tables we walk the section table to find SHT_SYMTAB.
2098  const Elf_Shdr* SymbolTableSectionHeaderIndex = 0;
2099  const Elf_Shdr* sh = SectionHeaderTable;
2100
2101  // Reserve SymbolTableSections[0] for .dynsym
2102  SymbolTableSections.push_back(NULL);
2103
2104  for (uint64_t i = 0, e = getNumSections(); i != e; ++i) {
2105    switch (sh->sh_type) {
2106    case ELF::SHT_SYMTAB_SHNDX: {
2107      if (SymbolTableSectionHeaderIndex)
2108        // FIXME: Proper error handling.
2109        report_fatal_error("More than one .symtab_shndx!");
2110      SymbolTableSectionHeaderIndex = sh;
2111      break;
2112    }
2113    case ELF::SHT_SYMTAB: {
2114      SymbolTableSectionsIndexMap[i] = SymbolTableSections.size();
2115      SymbolTableSections.push_back(sh);
2116      break;
2117    }
2118    case ELF::SHT_DYNSYM: {
2119      if (SymbolTableSections[0] != NULL)
2120        // FIXME: Proper error handling.
2121        report_fatal_error("More than one .dynsym!");
2122      SymbolTableSectionsIndexMap[i] = 0;
2123      SymbolTableSections[0] = sh;
2124      break;
2125    }
2126    case ELF::SHT_REL:
2127    case ELF::SHT_RELA: {
2128      SectionRelocMap[getSection(sh->sh_info)].push_back(i);
2129      break;
2130    }
2131    case ELF::SHT_DYNAMIC: {
2132      if (dot_dynamic_sec != NULL)
2133        // FIXME: Proper error handling.
2134        report_fatal_error("More than one .dynamic!");
2135      dot_dynamic_sec = sh;
2136      break;
2137    }
2138    case ELF::SHT_GNU_versym: {
2139      if (dot_gnu_version_sec != NULL)
2140        // FIXME: Proper error handling.
2141        report_fatal_error("More than one .gnu.version section!");
2142      dot_gnu_version_sec = sh;
2143      break;
2144    }
2145    case ELF::SHT_GNU_verdef: {
2146      if (dot_gnu_version_d_sec != NULL)
2147        // FIXME: Proper error handling.
2148        report_fatal_error("More than one .gnu.version_d section!");
2149      dot_gnu_version_d_sec = sh;
2150      break;
2151    }
2152    case ELF::SHT_GNU_verneed: {
2153      if (dot_gnu_version_r_sec != NULL)
2154        // FIXME: Proper error handling.
2155        report_fatal_error("More than one .gnu.version_r section!");
2156      dot_gnu_version_r_sec = sh;
2157      break;
2158    }
2159    }
2160    ++sh;
2161  }
2162
2163  // Sort section relocation lists by index.
2164  for (typename RelocMap_t::iterator i = SectionRelocMap.begin(),
2165                                     e = SectionRelocMap.end(); i != e; ++i) {
2166    std::sort(i->second.begin(), i->second.end());
2167  }
2168
2169  // Get string table sections.
2170  dot_shstrtab_sec = getSection(getStringTableIndex());
2171  if (dot_shstrtab_sec) {
2172    // Verify that the last byte in the string table in a null.
2173    VerifyStrTab(dot_shstrtab_sec);
2174  }
2175
2176  // Merge this into the above loop.
2177  for (const char *i = reinterpret_cast<const char *>(SectionHeaderTable),
2178                  *e = i + getNumSections() * Header->e_shentsize;
2179                   i != e; i += Header->e_shentsize) {
2180    const Elf_Shdr *sh = reinterpret_cast<const Elf_Shdr*>(i);
2181    if (sh->sh_type == ELF::SHT_STRTAB) {
2182      StringRef SectionName(getString(dot_shstrtab_sec, sh->sh_name));
2183      if (SectionName == ".strtab") {
2184        if (dot_strtab_sec != 0)
2185          // FIXME: Proper error handling.
2186          report_fatal_error("Already found section named .strtab!");
2187        dot_strtab_sec = sh;
2188        VerifyStrTab(dot_strtab_sec);
2189      } else if (SectionName == ".dynstr") {
2190        if (dot_dynstr_sec != 0)
2191          // FIXME: Proper error handling.
2192          report_fatal_error("Already found section named .dynstr!");
2193        dot_dynstr_sec = sh;
2194        VerifyStrTab(dot_dynstr_sec);
2195      }
2196    }
2197  }
2198
2199  // Build symbol name side-mapping if there is one.
2200  if (SymbolTableSectionHeaderIndex) {
2201    const Elf_Word *ShndxTable = reinterpret_cast<const Elf_Word*>(base() +
2202                                      SymbolTableSectionHeaderIndex->sh_offset);
2203    error_code ec;
2204    for (symbol_iterator si = begin_symbols(),
2205                         se = end_symbols(); si != se; si.increment(ec)) {
2206      if (ec)
2207        report_fatal_error("Fewer extended symbol table entries than symbols!");
2208      if (*ShndxTable != ELF::SHN_UNDEF)
2209        ExtendedSymbolTable[getSymbol(si->getRawDataRefImpl())] = *ShndxTable;
2210      ++ShndxTable;
2211    }
2212  }
2213}
2214
2215// Get the symbol table index in the symtab section given a symbol
2216template<class ELFT>
2217uint64_t ELFObjectFile<ELFT>::getSymbolIndex(const Elf_Sym *Sym) const {
2218  assert(SymbolTableSections.size() == 1 && "Only one symbol table supported!");
2219  const Elf_Shdr *SymTab = *SymbolTableSections.begin();
2220  uintptr_t SymLoc = uintptr_t(Sym);
2221  uintptr_t SymTabLoc = uintptr_t(base() + SymTab->sh_offset);
2222  assert(SymLoc > SymTabLoc && "Symbol not in symbol table!");
2223  uint64_t SymOffset = SymLoc - SymTabLoc;
2224  assert(SymOffset % SymTab->sh_entsize == 0 &&
2225         "Symbol not multiple of symbol size!");
2226  return SymOffset / SymTab->sh_entsize;
2227}
2228
2229template<class ELFT>
2230symbol_iterator ELFObjectFile<ELFT>::begin_symbols() const {
2231  DataRefImpl SymbolData;
2232  if (SymbolTableSections.size() <= 1) {
2233    SymbolData.d.a = std::numeric_limits<uint32_t>::max();
2234    SymbolData.d.b = std::numeric_limits<uint32_t>::max();
2235  } else {
2236    SymbolData.d.a = 1; // The 0th symbol in ELF is fake.
2237    SymbolData.d.b = 1; // The 0th table is .dynsym
2238  }
2239  return symbol_iterator(SymbolRef(SymbolData, this));
2240}
2241
2242template<class ELFT>
2243symbol_iterator ELFObjectFile<ELFT>::end_symbols() const {
2244  DataRefImpl SymbolData;
2245  SymbolData.d.a = std::numeric_limits<uint32_t>::max();
2246  SymbolData.d.b = std::numeric_limits<uint32_t>::max();
2247  return symbol_iterator(SymbolRef(SymbolData, this));
2248}
2249
2250template<class ELFT>
2251symbol_iterator ELFObjectFile<ELFT>::begin_dynamic_symbols() const {
2252  DataRefImpl SymbolData;
2253  if (SymbolTableSections[0] == NULL) {
2254    SymbolData.d.a = std::numeric_limits<uint32_t>::max();
2255    SymbolData.d.b = std::numeric_limits<uint32_t>::max();
2256  } else {
2257    SymbolData.d.a = 1; // The 0th symbol in ELF is fake.
2258    SymbolData.d.b = 0; // The 0th table is .dynsym
2259  }
2260  return symbol_iterator(SymbolRef(SymbolData, this));
2261}
2262
2263template<class ELFT>
2264symbol_iterator ELFObjectFile<ELFT>::end_dynamic_symbols() const {
2265  DataRefImpl SymbolData;
2266  SymbolData.d.a = std::numeric_limits<uint32_t>::max();
2267  SymbolData.d.b = std::numeric_limits<uint32_t>::max();
2268  return symbol_iterator(SymbolRef(SymbolData, this));
2269}
2270
2271template<class ELFT>
2272section_iterator ELFObjectFile<ELFT>::begin_sections() const {
2273  DataRefImpl ret;
2274  ret.p = reinterpret_cast<intptr_t>(base() + Header->e_shoff);
2275  return section_iterator(SectionRef(ret, this));
2276}
2277
2278template<class ELFT>
2279section_iterator ELFObjectFile<ELFT>::end_sections() const {
2280  DataRefImpl ret;
2281  ret.p = reinterpret_cast<intptr_t>(base()
2282                                     + Header->e_shoff
2283                                     + (Header->e_shentsize*getNumSections()));
2284  return section_iterator(SectionRef(ret, this));
2285}
2286
2287template<class ELFT>
2288typename ELFObjectFile<ELFT>::Elf_Dyn_iterator
2289ELFObjectFile<ELFT>::begin_dynamic_table() const {
2290  if (dot_dynamic_sec)
2291    return Elf_Dyn_iterator(dot_dynamic_sec->sh_entsize,
2292                            (const char *)base() + dot_dynamic_sec->sh_offset);
2293  return Elf_Dyn_iterator(0, 0);
2294}
2295
2296template<class ELFT>
2297typename ELFObjectFile<ELFT>::Elf_Dyn_iterator
2298ELFObjectFile<ELFT>::end_dynamic_table(bool NULLEnd) const {
2299  if (dot_dynamic_sec) {
2300    Elf_Dyn_iterator Ret(dot_dynamic_sec->sh_entsize,
2301                         (const char *)base() + dot_dynamic_sec->sh_offset +
2302                         dot_dynamic_sec->sh_size);
2303
2304    if (NULLEnd) {
2305      Elf_Dyn_iterator Start = begin_dynamic_table();
2306      for (; Start != Ret && Start->getTag() != ELF::DT_NULL; ++Start)
2307        ;
2308      // Include the DT_NULL.
2309      if (Start != Ret)
2310        ++Start;
2311      Ret = Start;
2312    }
2313    return Ret;
2314  }
2315  return Elf_Dyn_iterator(0, 0);
2316}
2317
2318template<class ELFT>
2319StringRef ELFObjectFile<ELFT>::getLoadName() const {
2320  if (!dt_soname) {
2321    // Find the DT_SONAME entry
2322    Elf_Dyn_iterator it = begin_dynamic_table();
2323    Elf_Dyn_iterator ie = end_dynamic_table();
2324    for (; it != ie; ++it) {
2325      if (it->getTag() == ELF::DT_SONAME)
2326        break;
2327    }
2328    if (it != ie) {
2329      if (dot_dynstr_sec == NULL)
2330        report_fatal_error("Dynamic string table is missing");
2331      dt_soname = getString(dot_dynstr_sec, it->getVal());
2332    } else {
2333      dt_soname = "";
2334    }
2335  }
2336  return dt_soname;
2337}
2338
2339template<class ELFT>
2340library_iterator ELFObjectFile<ELFT>::begin_libraries_needed() const {
2341  // Find the first DT_NEEDED entry
2342  Elf_Dyn_iterator i = begin_dynamic_table();
2343  Elf_Dyn_iterator e = end_dynamic_table();
2344  for (; i != e; ++i) {
2345    if (i->getTag() == ELF::DT_NEEDED)
2346      break;
2347  }
2348
2349  DataRefImpl DRI;
2350  DRI.p = reinterpret_cast<uintptr_t>(i.get());
2351  return library_iterator(LibraryRef(DRI, this));
2352}
2353
2354template<class ELFT>
2355error_code ELFObjectFile<ELFT>::getLibraryNext(DataRefImpl Data,
2356                                               LibraryRef &Result) const {
2357  // Use the same DataRefImpl format as DynRef.
2358  Elf_Dyn_iterator i = Elf_Dyn_iterator(dot_dynamic_sec->sh_entsize,
2359                                        reinterpret_cast<const char *>(Data.p));
2360  Elf_Dyn_iterator e = end_dynamic_table();
2361
2362  // Skip the current dynamic table entry.
2363  ++i;
2364
2365  // Find the next DT_NEEDED entry.
2366  for (; i != e && i->getTag() != ELF::DT_NEEDED; ++i);
2367
2368  DataRefImpl DRI;
2369  DRI.p = reinterpret_cast<uintptr_t>(i.get());
2370  Result = LibraryRef(DRI, this);
2371  return object_error::success;
2372}
2373
2374template<class ELFT>
2375error_code ELFObjectFile<ELFT>::getLibraryPath(DataRefImpl Data,
2376                                               StringRef &Res) const {
2377  Elf_Dyn_iterator i = Elf_Dyn_iterator(dot_dynamic_sec->sh_entsize,
2378                                        reinterpret_cast<const char *>(Data.p));
2379  if (i == end_dynamic_table())
2380    report_fatal_error("getLibraryPath() called on iterator end");
2381
2382  if (i->getTag() != ELF::DT_NEEDED)
2383    report_fatal_error("Invalid library_iterator");
2384
2385  // This uses .dynstr to lookup the name of the DT_NEEDED entry.
2386  // THis works as long as DT_STRTAB == .dynstr. This is true most of
2387  // the time, but the specification allows exceptions.
2388  // TODO: This should really use DT_STRTAB instead. Doing this requires
2389  // reading the program headers.
2390  if (dot_dynstr_sec == NULL)
2391    report_fatal_error("Dynamic string table is missing");
2392  Res = getString(dot_dynstr_sec, i->getVal());
2393  return object_error::success;
2394}
2395
2396template<class ELFT>
2397library_iterator ELFObjectFile<ELFT>::end_libraries_needed() const {
2398  Elf_Dyn_iterator e = end_dynamic_table();
2399  DataRefImpl DRI;
2400  DRI.p = reinterpret_cast<uintptr_t>(e.get());
2401  return library_iterator(LibraryRef(DRI, this));
2402}
2403
2404template<class ELFT>
2405uint8_t ELFObjectFile<ELFT>::getBytesInAddress() const {
2406  return ELFT::Is64Bits ? 8 : 4;
2407}
2408
2409template<class ELFT>
2410StringRef ELFObjectFile<ELFT>::getFileFormatName() const {
2411  switch(Header->e_ident[ELF::EI_CLASS]) {
2412  case ELF::ELFCLASS32:
2413    switch(Header->e_machine) {
2414    case ELF::EM_386:
2415      return "ELF32-i386";
2416    case ELF::EM_X86_64:
2417      return "ELF32-x86-64";
2418    case ELF::EM_ARM:
2419      return "ELF32-arm";
2420    case ELF::EM_HEXAGON:
2421      return "ELF32-hexagon";
2422    case ELF::EM_MIPS:
2423      return "ELF32-mips";
2424    default:
2425      return "ELF32-unknown";
2426    }
2427  case ELF::ELFCLASS64:
2428    switch(Header->e_machine) {
2429    case ELF::EM_386:
2430      return "ELF64-i386";
2431    case ELF::EM_X86_64:
2432      return "ELF64-x86-64";
2433    case ELF::EM_AARCH64:
2434      return "ELF64-aarch64";
2435    case ELF::EM_PPC64:
2436      return "ELF64-ppc64";
2437    default:
2438      return "ELF64-unknown";
2439    }
2440  default:
2441    // FIXME: Proper error handling.
2442    report_fatal_error("Invalid ELFCLASS!");
2443  }
2444}
2445
2446template<class ELFT>
2447unsigned ELFObjectFile<ELFT>::getArch() const {
2448  switch(Header->e_machine) {
2449  case ELF::EM_386:
2450    return Triple::x86;
2451  case ELF::EM_X86_64:
2452    return Triple::x86_64;
2453  case ELF::EM_AARCH64:
2454    return Triple::aarch64;
2455  case ELF::EM_ARM:
2456    return Triple::arm;
2457  case ELF::EM_HEXAGON:
2458    return Triple::hexagon;
2459  case ELF::EM_MIPS:
2460    return (ELFT::TargetEndianness == support::little) ?
2461           Triple::mipsel : Triple::mips;
2462  case ELF::EM_PPC64:
2463    return Triple::ppc64;
2464  default:
2465    return Triple::UnknownArch;
2466  }
2467}
2468
2469template<class ELFT>
2470uint64_t ELFObjectFile<ELFT>::getNumSections() const {
2471  assert(Header && "Header not initialized!");
2472  if (Header->e_shnum == ELF::SHN_UNDEF) {
2473    assert(SectionHeaderTable && "SectionHeaderTable not initialized!");
2474    return SectionHeaderTable->sh_size;
2475  }
2476  return Header->e_shnum;
2477}
2478
2479template<class ELFT>
2480uint64_t
2481ELFObjectFile<ELFT>::getStringTableIndex() const {
2482  if (Header->e_shnum == ELF::SHN_UNDEF) {
2483    if (Header->e_shstrndx == ELF::SHN_HIRESERVE)
2484      return SectionHeaderTable->sh_link;
2485    if (Header->e_shstrndx >= getNumSections())
2486      return 0;
2487  }
2488  return Header->e_shstrndx;
2489}
2490
2491template<class ELFT>
2492template<typename T>
2493inline const T *
2494ELFObjectFile<ELFT>::getEntry(uint16_t Section, uint32_t Entry) const {
2495  return getEntry<T>(getSection(Section), Entry);
2496}
2497
2498template<class ELFT>
2499template<typename T>
2500inline const T *
2501ELFObjectFile<ELFT>::getEntry(const Elf_Shdr * Section, uint32_t Entry) const {
2502  return reinterpret_cast<const T *>(
2503           base()
2504           + Section->sh_offset
2505           + (Entry * Section->sh_entsize));
2506}
2507
2508template<class ELFT>
2509const typename ELFObjectFile<ELFT>::Elf_Sym *
2510ELFObjectFile<ELFT>::getSymbol(DataRefImpl Symb) const {
2511  return getEntry<Elf_Sym>(SymbolTableSections[Symb.d.b], Symb.d.a);
2512}
2513
2514template<class ELFT>
2515const typename ELFObjectFile<ELFT>::Elf_Rel *
2516ELFObjectFile<ELFT>::getRel(DataRefImpl Rel) const {
2517  return getEntry<Elf_Rel>(Rel.w.b, Rel.w.c);
2518}
2519
2520template<class ELFT>
2521const typename ELFObjectFile<ELFT>::Elf_Rela *
2522ELFObjectFile<ELFT>::getRela(DataRefImpl Rela) const {
2523  return getEntry<Elf_Rela>(Rela.w.b, Rela.w.c);
2524}
2525
2526template<class ELFT>
2527const typename ELFObjectFile<ELFT>::Elf_Shdr *
2528ELFObjectFile<ELFT>::getSection(DataRefImpl Symb) const {
2529  const Elf_Shdr *sec = getSection(Symb.d.b);
2530  if (sec->sh_type != ELF::SHT_SYMTAB || sec->sh_type != ELF::SHT_DYNSYM)
2531    // FIXME: Proper error handling.
2532    report_fatal_error("Invalid symbol table section!");
2533  return sec;
2534}
2535
2536template<class ELFT>
2537const typename ELFObjectFile<ELFT>::Elf_Shdr *
2538ELFObjectFile<ELFT>::getSection(uint32_t index) const {
2539  if (index == 0)
2540    return 0;
2541  if (!SectionHeaderTable || index >= getNumSections())
2542    // FIXME: Proper error handling.
2543    report_fatal_error("Invalid section index!");
2544
2545  return reinterpret_cast<const Elf_Shdr *>(
2546         reinterpret_cast<const char *>(SectionHeaderTable)
2547         + (index * Header->e_shentsize));
2548}
2549
2550template<class ELFT>
2551const char *ELFObjectFile<ELFT>::getString(uint32_t section,
2552                                           ELF::Elf32_Word offset) const {
2553  return getString(getSection(section), offset);
2554}
2555
2556template<class ELFT>
2557const char *ELFObjectFile<ELFT>::getString(const Elf_Shdr *section,
2558                                           ELF::Elf32_Word offset) const {
2559  assert(section && section->sh_type == ELF::SHT_STRTAB && "Invalid section!");
2560  if (offset >= section->sh_size)
2561    // FIXME: Proper error handling.
2562    report_fatal_error("Symbol name offset outside of string table!");
2563  return (const char *)base() + section->sh_offset + offset;
2564}
2565
2566template<class ELFT>
2567error_code ELFObjectFile<ELFT>::getSymbolName(const Elf_Shdr *section,
2568                                              const Elf_Sym *symb,
2569                                              StringRef &Result) const {
2570  if (symb->st_name == 0) {
2571    const Elf_Shdr *section = getSection(symb);
2572    if (!section)
2573      Result = "";
2574    else
2575      Result = getString(dot_shstrtab_sec, section->sh_name);
2576    return object_error::success;
2577  }
2578
2579  if (section == SymbolTableSections[0]) {
2580    // Symbol is in .dynsym, use .dynstr string table
2581    Result = getString(dot_dynstr_sec, symb->st_name);
2582  } else {
2583    // Use the default symbol table name section.
2584    Result = getString(dot_strtab_sec, symb->st_name);
2585  }
2586  return object_error::success;
2587}
2588
2589template<class ELFT>
2590error_code ELFObjectFile<ELFT>::getSectionName(const Elf_Shdr *section,
2591                                               StringRef &Result) const {
2592  Result = StringRef(getString(dot_shstrtab_sec, section->sh_name));
2593  return object_error::success;
2594}
2595
2596template<class ELFT>
2597error_code ELFObjectFile<ELFT>::getSymbolVersion(const Elf_Shdr *section,
2598                                                 const Elf_Sym *symb,
2599                                                 StringRef &Version,
2600                                                 bool &IsDefault) const {
2601  // Handle non-dynamic symbols.
2602  if (section != SymbolTableSections[0]) {
2603    // Non-dynamic symbols can have versions in their names
2604    // A name of the form 'foo@V1' indicates version 'V1', non-default.
2605    // A name of the form 'foo@@V2' indicates version 'V2', default version.
2606    StringRef Name;
2607    error_code ec = getSymbolName(section, symb, Name);
2608    if (ec != object_error::success)
2609      return ec;
2610    size_t atpos = Name.find('@');
2611    if (atpos == StringRef::npos) {
2612      Version = "";
2613      IsDefault = false;
2614      return object_error::success;
2615    }
2616    ++atpos;
2617    if (atpos < Name.size() && Name[atpos] == '@') {
2618      IsDefault = true;
2619      ++atpos;
2620    } else {
2621      IsDefault = false;
2622    }
2623    Version = Name.substr(atpos);
2624    return object_error::success;
2625  }
2626
2627  // This is a dynamic symbol. Look in the GNU symbol version table.
2628  if (dot_gnu_version_sec == NULL) {
2629    // No version table.
2630    Version = "";
2631    IsDefault = false;
2632    return object_error::success;
2633  }
2634
2635  // Determine the position in the symbol table of this entry.
2636  const char *sec_start = (const char*)base() + section->sh_offset;
2637  size_t entry_index = ((const char*)symb - sec_start)/section->sh_entsize;
2638
2639  // Get the corresponding version index entry
2640  const Elf_Versym *vs = getEntry<Elf_Versym>(dot_gnu_version_sec, entry_index);
2641  size_t version_index = vs->vs_index & ELF::VERSYM_VERSION;
2642
2643  // Special markers for unversioned symbols.
2644  if (version_index == ELF::VER_NDX_LOCAL ||
2645      version_index == ELF::VER_NDX_GLOBAL) {
2646    Version = "";
2647    IsDefault = false;
2648    return object_error::success;
2649  }
2650
2651  // Lookup this symbol in the version table
2652  LoadVersionMap();
2653  if (version_index >= VersionMap.size() || VersionMap[version_index].isNull())
2654    report_fatal_error("Symbol has version index without corresponding "
2655                       "define or reference entry");
2656  const VersionMapEntry &entry = VersionMap[version_index];
2657
2658  // Get the version name string
2659  size_t name_offset;
2660  if (entry.isVerdef()) {
2661    // The first Verdaux entry holds the name.
2662    name_offset = entry.getVerdef()->getAux()->vda_name;
2663  } else {
2664    name_offset = entry.getVernaux()->vna_name;
2665  }
2666  Version = getString(dot_dynstr_sec, name_offset);
2667
2668  // Set IsDefault
2669  if (entry.isVerdef()) {
2670    IsDefault = !(vs->vs_index & ELF::VERSYM_HIDDEN);
2671  } else {
2672    IsDefault = false;
2673  }
2674
2675  return object_error::success;
2676}
2677
2678/// This is a generic interface for retrieving GNU symbol version
2679/// information from an ELFObjectFile.
2680static inline error_code GetELFSymbolVersion(const ObjectFile *Obj,
2681                                             const SymbolRef &Sym,
2682                                             StringRef &Version,
2683                                             bool &IsDefault) {
2684  // Little-endian 32-bit
2685  if (const ELFObjectFile<ELFType<support::little, 4, false> > *ELFObj =
2686          dyn_cast<ELFObjectFile<ELFType<support::little, 4, false> > >(Obj))
2687    return ELFObj->getSymbolVersion(Sym, Version, IsDefault);
2688
2689  // Big-endian 32-bit
2690  if (const ELFObjectFile<ELFType<support::big, 4, false> > *ELFObj =
2691          dyn_cast<ELFObjectFile<ELFType<support::big, 4, false> > >(Obj))
2692    return ELFObj->getSymbolVersion(Sym, Version, IsDefault);
2693
2694  // Little-endian 64-bit
2695  if (const ELFObjectFile<ELFType<support::little, 8, true> > *ELFObj =
2696          dyn_cast<ELFObjectFile<ELFType<support::little, 8, true> > >(Obj))
2697    return ELFObj->getSymbolVersion(Sym, Version, IsDefault);
2698
2699  // Big-endian 64-bit
2700  if (const ELFObjectFile<ELFType<support::big, 8, true> > *ELFObj =
2701          dyn_cast<ELFObjectFile<ELFType<support::big, 8, true> > >(Obj))
2702    return ELFObj->getSymbolVersion(Sym, Version, IsDefault);
2703
2704  llvm_unreachable("Object passed to GetELFSymbolVersion() is not ELF");
2705}
2706
2707/// This function returns the hash value for a symbol in the .dynsym section
2708/// Name of the API remains consistent as specified in the libelf
2709/// REF : http://www.sco.com/developers/gabi/latest/ch5.dynamic.html#hash
2710static inline unsigned elf_hash(StringRef &symbolName) {
2711  unsigned h = 0, g;
2712  for (unsigned i = 0, j = symbolName.size(); i < j; i++) {
2713    h = (h << 4) + symbolName[i];
2714    g = h & 0xf0000000L;
2715    if (g != 0)
2716      h ^= g >> 24;
2717    h &= ~g;
2718  }
2719  return h;
2720}
2721
2722}
2723}
2724
2725#endif
2726