Target.td revision 243a32f96b364811e2f9feadecfefb21b640321f
1//===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
2// 
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7// 
8//===----------------------------------------------------------------------===//
9//
10// This file defines the target-independent interfaces which should be
11// implemented by each target which is using a TableGen based code generator.
12//
13//===----------------------------------------------------------------------===//
14
15// Include all information about LLVM intrinsics.
16include "llvm/Intrinsics.td"
17
18//===----------------------------------------------------------------------===//
19// Register file description - These classes are used to fill in the target
20// description classes.
21
22class RegisterClass; // Forward def
23
24// Register - You should define one instance of this class for each register
25// in the target machine.  String n will become the "name" of the register.
26class Register<string n> {
27  string Namespace = "";
28  string AsmName = n;
29
30  // SpillSize - If this value is set to a non-zero value, it is the size in
31  // bits of the spill slot required to hold this register.  If this value is
32  // set to zero, the information is inferred from any register classes the
33  // register belongs to.
34  int SpillSize = 0;
35
36  // SpillAlignment - This value is used to specify the alignment required for
37  // spilling the register.  Like SpillSize, this should only be explicitly
38  // specified if the register is not in a register class.
39  int SpillAlignment = 0;
40
41  // Aliases - A list of registers that this register overlaps with.  A read or
42  // modification of this register can potentially read or modify the aliased
43  // registers.
44  list<Register> Aliases = [];
45  
46  // SubRegs - A list of registers that are parts of this register. Note these
47  // are "immediate" sub-registers and the registers within the list do not
48  // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX],
49  // not [AX, AH, AL].
50  list<Register> SubRegs = [];
51
52  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
53  // These values can be determined by locating the <target>.h file in the
54  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
55  // order of these names correspond to the enumeration used by gcc.  A value of
56  // -1 indicates that the gcc number is undefined and -2 that register number
57  // is invalid for this mode/flavour.
58  list<int> DwarfNumbers = [];
59}
60
61// RegisterWithSubRegs - This can be used to define instances of Register which
62// need to specify sub-registers.
63// List "subregs" specifies which registers are sub-registers to this one. This
64// is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc.
65// This allows the code generator to be careful not to put two values with 
66// overlapping live ranges into registers which alias.
67class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
68  let SubRegs = subregs;
69}
70
71// SubRegSet - This can be used to define a specific mapping of registers to
72// indices, for use as named subregs of a particular physical register.  Each
73// register in 'subregs' becomes an addressable subregister at index 'n' of the
74// corresponding register in 'regs'.
75class SubRegSet<int n, list<Register> regs, list<Register> subregs> {
76  int index = n;
77  
78  list<Register> From = regs;
79  list<Register> To = subregs;
80}
81
82// RegisterClass - Now that all of the registers are defined, and aliases
83// between registers are defined, specify which registers belong to which
84// register classes.  This also defines the default allocation order of
85// registers by register allocators.
86//
87class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
88                    list<Register> regList> {
89  string Namespace = namespace;
90
91  // RegType - Specify the list ValueType of the registers in this register
92  // class.  Note that all registers in a register class must have the same
93  // ValueTypes.  This is a list because some targets permit storing different 
94  // types in same register, for example vector values with 128-bit total size,
95  // but different count/size of items, like SSE on x86.
96  //
97  list<ValueType> RegTypes = regTypes;
98
99  // Size - Specify the spill size in bits of the registers.  A default value of
100  // zero lets tablgen pick an appropriate size.
101  int Size = 0;
102
103  // Alignment - Specify the alignment required of the registers when they are
104  // stored or loaded to memory.
105  //
106  int Alignment = alignment;
107
108  // CopyCost - This value is used to specify the cost of copying a value
109  // between two registers in this register class. The default value is one
110  // meaning it takes a single instruction to perform the copying. A negative
111  // value means copying is extremely expensive or impossible.
112  int CopyCost = 1;
113
114  // MemberList - Specify which registers are in this class.  If the
115  // allocation_order_* method are not specified, this also defines the order of
116  // allocation used by the register allocator.
117  //
118  list<Register> MemberList = regList;
119  
120  // SubClassList - Specify which register classes correspond to subregisters
121  // of this class. The order should be by subregister set index.
122  list<RegisterClass> SubRegClassList = [];
123
124  // MethodProtos/MethodBodies - These members can be used to insert arbitrary
125  // code into a generated register class.   The normal usage of this is to 
126  // overload virtual methods.
127  code MethodProtos = [{}];
128  code MethodBodies = [{}];
129}
130
131
132//===----------------------------------------------------------------------===//
133// DwarfRegNum - This class provides a mapping of the llvm register enumeration
134// to the register numbering used by gcc and gdb.  These values are used by a
135// debug information writer (ex. DwarfWriter) to describe where values may be
136// located during execution.
137class DwarfRegNum<list<int> Numbers> {
138  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
139  // These values can be determined by locating the <target>.h file in the
140  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
141  // order of these names correspond to the enumeration used by gcc.  A value of
142  // -1 indicates that the gcc number is undefined and -2 that register number is 
143  // invalid for this mode/flavour.
144  list<int> DwarfNumbers = Numbers;
145}
146
147//===----------------------------------------------------------------------===//
148// Pull in the common support for scheduling
149//
150include "llvm/Target/TargetSchedule.td"
151
152class Predicate; // Forward def
153
154//===----------------------------------------------------------------------===//
155// Instruction set description - These classes correspond to the C++ classes in
156// the Target/TargetInstrInfo.h file.
157//
158class Instruction {
159  string Namespace = "";
160
161  dag OutOperandList;       // An dag containing the MI def operand list.
162  dag InOperandList;        // An dag containing the MI use operand list.
163  string AsmString = "";    // The .s format to print the instruction with.
164
165  // Pattern - Set to the DAG pattern for this instruction, if we know of one,
166  // otherwise, uninitialized.
167  list<dag> Pattern;
168
169  // The follow state will eventually be inferred automatically from the
170  // instruction pattern.
171
172  list<Register> Uses = []; // Default to using no non-operand registers
173  list<Register> Defs = []; // Default to modifying no non-operand registers
174
175  // Predicates - List of predicates which will be turned into isel matching
176  // code.
177  list<Predicate> Predicates = [];
178
179  // Code size.
180  int CodeSize = 0;
181
182  // Added complexity passed onto matching pattern.
183  int AddedComplexity  = 0;
184
185  // These bits capture information about the high-level semantics of the
186  // instruction.
187  bit isReturn     = 0;     // Is this instruction a return instruction?
188  bit isBranch     = 0;     // Is this instruction a branch instruction?
189  bit isIndirectBranch = 0; // Is this instruction an indirect branch?
190  bit isBarrier    = 0;     // Can control flow fall through this instruction?
191  bit isCall       = 0;     // Is this instruction a call instruction?
192  bit canFoldAsLoad = 0;    // Can this be folded as a simple memory operand?
193  bit mayLoad      = 0;     // Is it possible for this inst to read memory?
194  bit mayStore     = 0;     // Is it possible for this inst to write memory?
195  bit isTwoAddress = 0;     // Is this a two address instruction?
196  bit isConvertibleToThreeAddress = 0;  // Can this 2-addr instruction promote?
197  bit isCommutable = 0;     // Is this 3 operand instruction commutable?
198  bit isTerminator = 0;     // Is this part of the terminator for a basic block?
199  bit isReMaterializable = 0; // Is this instruction re-materializable?
200  bit isPredicable = 0;     // Is this instruction predicable?
201  bit hasDelaySlot = 0;     // Does this instruction have an delay slot?
202  bit usesCustomInserter = 0; // Pseudo instr needing special help.
203  bit hasCtrlDep   = 0;     // Does this instruction r/w ctrl-flow chains?
204  bit isNotDuplicable = 0;  // Is it unsafe to duplicate this instruction?
205  bit isAsCheapAsAMove = 0; // As cheap (or cheaper) than a move instruction.
206  bit hasExtraSrcRegAllocReq = 0; // Sources have special regalloc requirement?
207  bit hasExtraDefRegAllocReq = 0; // Defs have special regalloc requirement?
208
209  // Side effect flags - When set, the flags have these meanings:
210  //
211  //  hasSideEffects - The instruction has side effects that are not
212  //    captured by any operands of the instruction or other flags.
213  //
214  //  mayHaveSideEffects  - Some instances of the instruction can have side
215  //    effects. The virtual method "isReallySideEffectFree" is called to
216  //    determine this. Load instructions are an example of where this is
217  //    useful. In general, loads always have side effects. However, loads from
218  //    constant pools don't. Individual back ends make this determination.
219  //
220  //  neverHasSideEffects - Set on an instruction with no pattern if it has no
221  //    side effects.
222  bit hasSideEffects = 0;
223  bit mayHaveSideEffects = 0;
224  bit neverHasSideEffects = 0;
225
226  // Is this instruction a "real" instruction (with a distinct machine
227  // encoding), or is it a pseudo instruction used for codegen modeling
228  // purposes.
229  bit isCodeGenOnly = 0;
230
231  InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.
232
233  string Constraints = "";  // OperandConstraint, e.g. $src = $dst.
234  
235  /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not
236  /// be encoded into the output machineinstr.
237  string DisableEncoding = "";
238}
239
240/// Predicates - These are extra conditionals which are turned into instruction
241/// selector matching code. Currently each predicate is just a string.
242class Predicate<string cond> {
243  string CondString = cond;
244}
245
246/// NoHonorSignDependentRounding - This predicate is true if support for
247/// sign-dependent-rounding is not enabled.
248def NoHonorSignDependentRounding
249 : Predicate<"!HonorSignDependentRoundingFPMath()">;
250
251class Requires<list<Predicate> preds> {
252  list<Predicate> Predicates = preds;
253}
254
255/// ops definition - This is just a simple marker used to identify the operands
256/// list for an instruction. outs and ins are identical both syntatically and
257/// semantically, they are used to define def operands and use operands to
258/// improve readibility. This should be used like this:
259///     (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar.
260def ops;
261def outs;
262def ins;
263
264/// variable_ops definition - Mark this instruction as taking a variable number
265/// of operands.
266def variable_ops;
267
268
269/// PointerLikeRegClass - Values that are designed to have pointer width are
270/// derived from this.  TableGen treats the register class as having a symbolic
271/// type that it doesn't know, and resolves the actual regclass to use by using
272/// the TargetRegisterInfo::getPointerRegClass() hook at codegen time.
273class PointerLikeRegClass<int Kind> {
274  int RegClassKind = Kind;
275}
276
277
278/// ptr_rc definition - Mark this operand as being a pointer value whose
279/// register class is resolved dynamically via a callback to TargetInstrInfo.
280/// FIXME: We should probably change this to a class which contain a list of
281/// flags. But currently we have but one flag.
282def ptr_rc : PointerLikeRegClass<0>;
283
284/// unknown definition - Mark this operand as being of unknown type, causing
285/// it to be resolved by inference in the context it is used.
286def unknown;
287
288/// AsmOperandClass - Representation for the kinds of operands which the target
289/// specific parser can create and the assembly matcher may need to distinguish.
290///
291/// Operand classes are used to define the order in which instructions are
292/// matched, to ensure that the instruction which gets matched for any
293/// particular list of operands is deterministic.
294///
295/// The target specific parser must be able to classify a parsed operand into a
296/// unique class which does not partially overlap with any other classes. It can
297/// match a subset of some other class, in which case the super class field
298/// should be defined.
299class AsmOperandClass {
300  /// The name to use for this class, which should be usable as an enum value.
301  string Name = ?;
302
303  /// The super class of this operand.
304  AsmOperandClass SuperClass = ?;
305
306  /// The name of the method on the target specific operand to call to test
307  /// whether the operand is an instance of this class. If not set, this will
308  /// default to "isFoo", where Foo is the AsmOperandClass name. The method
309  /// signature should be:
310  ///   bool isFoo() const;
311  string PredicateMethod = ?;
312
313  /// The name of the method on the target specific operand to call to add the
314  /// target specific operand to an MCInst. If not set, this will default to
315  /// "addFooOperands", where Foo is the AsmOperandClass name. The method
316  /// signature should be:
317  ///   void addFooOperands(MCInst &Inst, unsigned N) const;
318  string RenderMethod = ?;
319}
320
321def ImmAsmOperand : AsmOperandClass {
322  let Name = "Imm";
323}
324   
325/// Operand Types - These provide the built-in operand types that may be used
326/// by a target.  Targets can optionally provide their own operand types as
327/// needed, though this should not be needed for RISC targets.
328class Operand<ValueType ty> {
329  ValueType Type = ty;
330  string PrintMethod = "printOperand";
331  string AsmOperandLowerMethod = ?;
332  dag MIOperandInfo = (ops);
333
334  // ParserMatchClass - The "match class" that operands of this type fit
335  // in. Match classes are used to define the order in which instructions are
336  // match, to ensure that which instructions gets matched is deterministic.
337  //
338  // The target specific parser must be able to classify an parsed operand 
339  // into a unique class, which does not partially overlap with any other 
340  // classes. It can match a subset of some other class, in which case 
341  // ParserMatchSuperClass should be set to the name of that class.
342  AsmOperandClass ParserMatchClass = ImmAsmOperand;
343}
344
345def i1imm  : Operand<i1>;
346def i8imm  : Operand<i8>;
347def i16imm : Operand<i16>;
348def i32imm : Operand<i32>;
349def i64imm : Operand<i64>;
350
351def f32imm : Operand<f32>;
352def f64imm : Operand<f64>;
353
354/// zero_reg definition - Special node to stand for the zero register.
355///
356def zero_reg;
357
358/// PredicateOperand - This can be used to define a predicate operand for an
359/// instruction.  OpTypes specifies the MIOperandInfo for the operand, and
360/// AlwaysVal specifies the value of this predicate when set to "always
361/// execute".
362class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal>
363  : Operand<ty> {
364  let MIOperandInfo = OpTypes;
365  dag DefaultOps = AlwaysVal;
366}
367
368/// OptionalDefOperand - This is used to define a optional definition operand
369/// for an instruction. DefaultOps is the register the operand represents if
370/// none is supplied, e.g. zero_reg.
371class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops>
372  : Operand<ty> {
373  let MIOperandInfo = OpTypes;
374  dag DefaultOps = defaultops;
375}
376
377
378// InstrInfo - This class should only be instantiated once to provide parameters
379// which are global to the the target machine.
380//
381class InstrInfo {
382  // If the target wants to associate some target-specific information with each
383  // instruction, it should provide these two lists to indicate how to assemble
384  // the target specific information into the 32 bits available.
385  //
386  list<string> TSFlagsFields = [];
387  list<int>    TSFlagsShifts = [];
388
389  // Target can specify its instructions in either big or little-endian formats.
390  // For instance, while both Sparc and PowerPC are big-endian platforms, the
391  // Sparc manual specifies its instructions in the format [31..0] (big), while
392  // PowerPC specifies them using the format [0..31] (little).
393  bit isLittleEndianEncoding = 0;
394}
395
396// Standard Pseudo Instructions.
397let isCodeGenOnly = 1 in {
398def PHI : Instruction {
399  let OutOperandList = (ops);
400  let InOperandList = (ops variable_ops);
401  let AsmString = "PHINODE";
402  let Namespace = "TargetInstrInfo";
403}
404def INLINEASM : Instruction {
405  let OutOperandList = (ops);
406  let InOperandList = (ops variable_ops);
407  let AsmString = "";
408  let Namespace = "TargetInstrInfo";
409}
410def DBG_LABEL : Instruction {
411  let OutOperandList = (ops);
412  let InOperandList = (ops i32imm:$id);
413  let AsmString = "";
414  let Namespace = "TargetInstrInfo";
415  let hasCtrlDep = 1;
416  let isNotDuplicable = 1;
417}
418def EH_LABEL : Instruction {
419  let OutOperandList = (ops);
420  let InOperandList = (ops i32imm:$id);
421  let AsmString = "";
422  let Namespace = "TargetInstrInfo";
423  let hasCtrlDep = 1;
424  let isNotDuplicable = 1;
425}
426def GC_LABEL : Instruction {
427  let OutOperandList = (ops);
428  let InOperandList = (ops i32imm:$id);
429  let AsmString = "";
430  let Namespace = "TargetInstrInfo";
431  let hasCtrlDep = 1;
432  let isNotDuplicable = 1;
433}
434def KILL : Instruction {
435  let OutOperandList = (ops);
436  let InOperandList = (ops variable_ops);
437  let AsmString = "";
438  let Namespace = "TargetInstrInfo";
439  let neverHasSideEffects = 1;
440}
441def EXTRACT_SUBREG : Instruction {
442  let OutOperandList = (ops unknown:$dst);
443  let InOperandList = (ops unknown:$supersrc, i32imm:$subidx);
444  let AsmString = "";
445  let Namespace = "TargetInstrInfo";
446  let neverHasSideEffects = 1;
447}
448def INSERT_SUBREG : Instruction {
449  let OutOperandList = (ops unknown:$dst);
450  let InOperandList = (ops unknown:$supersrc, unknown:$subsrc, i32imm:$subidx);
451  let AsmString = "";
452  let Namespace = "TargetInstrInfo";
453  let neverHasSideEffects = 1;
454  let Constraints = "$supersrc = $dst";
455}
456def IMPLICIT_DEF : Instruction {
457  let OutOperandList = (ops unknown:$dst);
458  let InOperandList = (ops);
459  let AsmString = "";
460  let Namespace = "TargetInstrInfo";
461  let neverHasSideEffects = 1;
462  let isReMaterializable = 1;
463  let isAsCheapAsAMove = 1;
464}
465def SUBREG_TO_REG : Instruction {
466  let OutOperandList = (ops unknown:$dst);
467  let InOperandList = (ops unknown:$implsrc, unknown:$subsrc, i32imm:$subidx);
468  let AsmString = "";
469  let Namespace = "TargetInstrInfo";
470  let neverHasSideEffects = 1;
471}
472def COPY_TO_REGCLASS : Instruction {
473  let OutOperandList = (ops unknown:$dst);
474  let InOperandList = (ops unknown:$src, i32imm:$regclass);
475  let AsmString = "";
476  let Namespace = "TargetInstrInfo";
477  let neverHasSideEffects = 1;
478  let isAsCheapAsAMove = 1;
479}
480def DEBUG_VALUE : Instruction {
481  let OutOperandList = (ops);
482  let InOperandList = (ops unknown:$value, i64imm:$offset, unknown:$meta);
483  let AsmString = "DEBUG_VALUE";
484  let Namespace = "TargetInstrInfo";
485  let isAsCheapAsAMove = 1;
486}
487}
488
489//===----------------------------------------------------------------------===//
490// AsmParser - This class can be implemented by targets that wish to implement 
491// .s file parsing.
492//
493// Subtargets can have multiple different assembly parsers (e.g. AT&T vs Intel 
494// syntax on X86 for example).
495//
496class AsmParser {
497  // AsmParserClassName - This specifies the suffix to use for the asmparser
498  // class.  Generated AsmParser classes are always prefixed with the target
499  // name.
500  string AsmParserClassName  = "AsmParser";
501 
502  // Variant - AsmParsers can be of multiple different variants.  Variants are
503  // used to support targets that need to parser multiple formats for the 
504  // assembly language.
505  int Variant = 0;
506
507  // CommentDelimiter - If given, the delimiter string used to recognize
508  // comments which are hard coded in the .td assembler strings for individual
509  // instructions.
510  string CommentDelimiter = "";
511
512  // RegisterPrefix - If given, the token prefix which indicates a register
513  // token. This is used by the matcher to automatically recognize hard coded
514  // register tokens as constrained registers, instead of tokens, for the
515  // purposes of matching.
516  string RegisterPrefix = "";
517}
518def DefaultAsmParser : AsmParser;
519
520
521//===----------------------------------------------------------------------===//
522// AsmWriter - This class can be implemented by targets that need to customize
523// the format of the .s file writer.
524//
525// Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
526// on X86 for example).
527//
528class AsmWriter {
529  // AsmWriterClassName - This specifies the suffix to use for the asmwriter
530  // class.  Generated AsmWriter classes are always prefixed with the target
531  // name.
532  string AsmWriterClassName  = "AsmPrinter";
533
534  // InstFormatName - AsmWriters can specify the name of the format string to
535  // print instructions with.
536  string InstFormatName = "AsmString";
537
538  // Variant - AsmWriters can be of multiple different variants.  Variants are
539  // used to support targets that need to emit assembly code in ways that are
540  // mostly the same for different targets, but have minor differences in
541  // syntax.  If the asmstring contains {|} characters in them, this integer
542  // will specify which alternative to use.  For example "{x|y|z}" with Variant
543  // == 1, will expand to "y".
544  int Variant = 0;
545  
546  
547  // FirstOperandColumn/OperandSpacing - If the assembler syntax uses a columnar
548  // layout, the asmwriter can actually generate output in this columns (in
549  // verbose-asm mode).  These two values indicate the width of the first column
550  // (the "opcode" area) and the width to reserve for subsequent operands.  When
551  // verbose asm mode is enabled, operands will be indented to respect this.
552  int FirstOperandColumn = -1;
553  
554  // OperandSpacing - Space between operand columns.
555  int OperandSpacing = -1;
556}
557def DefaultAsmWriter : AsmWriter;
558
559
560//===----------------------------------------------------------------------===//
561// Target - This class contains the "global" target information
562//
563class Target {
564  // InstructionSet - Instruction set description for this target.
565  InstrInfo InstructionSet;
566
567  // AssemblyParsers - The AsmParser instances available for this target.
568  list<AsmParser> AssemblyParsers = [DefaultAsmParser];
569
570  // AssemblyWriters - The AsmWriter instances available for this target.
571  list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
572}
573
574//===----------------------------------------------------------------------===//
575// SubtargetFeature - A characteristic of the chip set.
576//
577class SubtargetFeature<string n, string a,  string v, string d,
578                       list<SubtargetFeature> i = []> {
579  // Name - Feature name.  Used by command line (-mattr=) to determine the
580  // appropriate target chip.
581  //
582  string Name = n;
583  
584  // Attribute - Attribute to be set by feature.
585  //
586  string Attribute = a;
587  
588  // Value - Value the attribute to be set to by feature.
589  //
590  string Value = v;
591  
592  // Desc - Feature description.  Used by command line (-mattr=) to display help
593  // information.
594  //
595  string Desc = d;
596
597  // Implies - Features that this feature implies are present. If one of those
598  // features isn't set, then this one shouldn't be set either.
599  //
600  list<SubtargetFeature> Implies = i;
601}
602
603//===----------------------------------------------------------------------===//
604// Processor chip sets - These values represent each of the chip sets supported
605// by the scheduler.  Each Processor definition requires corresponding
606// instruction itineraries.
607//
608class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f> {
609  // Name - Chip set name.  Used by command line (-mcpu=) to determine the
610  // appropriate target chip.
611  //
612  string Name = n;
613  
614  // ProcItin - The scheduling information for the target processor.
615  //
616  ProcessorItineraries ProcItin = pi;
617  
618  // Features - list of 
619  list<SubtargetFeature> Features = f;
620}
621
622//===----------------------------------------------------------------------===//
623// Pull in the common support for calling conventions.
624//
625include "llvm/Target/TargetCallingConv.td"
626
627//===----------------------------------------------------------------------===//
628// Pull in the common support for DAG isel generation.
629//
630include "llvm/Target/TargetSelectionDAG.td"
631