Target.td revision 4fda9670f0a9cd448d1905ab669421316b8864c5
1//===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
2// 
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7// 
8//===----------------------------------------------------------------------===//
9//
10// This file defines the target-independent interfaces which should be
11// implemented by each target which is using a TableGen based code generator.
12//
13//===----------------------------------------------------------------------===//
14
15// Include all information about LLVM intrinsics.
16include "llvm/Intrinsics.td"
17
18//===----------------------------------------------------------------------===//
19// Register file description - These classes are used to fill in the target
20// description classes.
21
22class RegisterClass; // Forward def
23
24// SubRegIndex - Use instances of SubRegIndex to identify subregisters.
25class SubRegIndex {
26  string Namespace = "";
27}
28
29// Register - You should define one instance of this class for each register
30// in the target machine.  String n will become the "name" of the register.
31class Register<string n> {
32  string Namespace = "";
33  string AsmName = n;
34
35  // SpillSize - If this value is set to a non-zero value, it is the size in
36  // bits of the spill slot required to hold this register.  If this value is
37  // set to zero, the information is inferred from any register classes the
38  // register belongs to.
39  int SpillSize = 0;
40
41  // SpillAlignment - This value is used to specify the alignment required for
42  // spilling the register.  Like SpillSize, this should only be explicitly
43  // specified if the register is not in a register class.
44  int SpillAlignment = 0;
45
46  // Aliases - A list of registers that this register overlaps with.  A read or
47  // modification of this register can potentially read or modify the aliased
48  // registers.
49  list<Register> Aliases = [];
50  
51  // SubRegs - A list of registers that are parts of this register. Note these
52  // are "immediate" sub-registers and the registers within the list do not
53  // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX],
54  // not [AX, AH, AL].
55  list<Register> SubRegs = [];
56
57  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
58  // These values can be determined by locating the <target>.h file in the
59  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
60  // order of these names correspond to the enumeration used by gcc.  A value of
61  // -1 indicates that the gcc number is undefined and -2 that register number
62  // is invalid for this mode/flavour.
63  list<int> DwarfNumbers = [];
64}
65
66// RegisterWithSubRegs - This can be used to define instances of Register which
67// need to specify sub-registers.
68// List "subregs" specifies which registers are sub-registers to this one. This
69// is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc.
70// This allows the code generator to be careful not to put two values with 
71// overlapping live ranges into registers which alias.
72class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
73  let SubRegs = subregs;
74}
75
76// SubRegSet - This can be used to define a specific mapping of registers to
77// indices, for use as named subregs of a particular physical register.  Each
78// register in 'subregs' becomes an addressable subregister at index 'n' of the
79// corresponding register in 'regs'.
80class SubRegSet<SubRegIndex n, list<Register> regs, list<Register> subregs> {
81  SubRegIndex Index = n;
82  
83  list<Register> From = regs;
84  list<Register> To = subregs;
85}
86
87// RegisterClass - Now that all of the registers are defined, and aliases
88// between registers are defined, specify which registers belong to which
89// register classes.  This also defines the default allocation order of
90// registers by register allocators.
91//
92class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
93                    list<Register> regList> {
94  string Namespace = namespace;
95
96  // RegType - Specify the list ValueType of the registers in this register
97  // class.  Note that all registers in a register class must have the same
98  // ValueTypes.  This is a list because some targets permit storing different 
99  // types in same register, for example vector values with 128-bit total size,
100  // but different count/size of items, like SSE on x86.
101  //
102  list<ValueType> RegTypes = regTypes;
103
104  // Size - Specify the spill size in bits of the registers.  A default value of
105  // zero lets tablgen pick an appropriate size.
106  int Size = 0;
107
108  // Alignment - Specify the alignment required of the registers when they are
109  // stored or loaded to memory.
110  //
111  int Alignment = alignment;
112
113  // CopyCost - This value is used to specify the cost of copying a value
114  // between two registers in this register class. The default value is one
115  // meaning it takes a single instruction to perform the copying. A negative
116  // value means copying is extremely expensive or impossible.
117  int CopyCost = 1;
118
119  // MemberList - Specify which registers are in this class.  If the
120  // allocation_order_* method are not specified, this also defines the order of
121  // allocation used by the register allocator.
122  //
123  list<Register> MemberList = regList;
124  
125  // SubRegClasses - Specify the register class of subregisters as a list of
126  // dags: (RegClass SubRegIndex, SubRegindex, ...)
127  list<dag> SubRegClasses = [];
128
129  // MethodProtos/MethodBodies - These members can be used to insert arbitrary
130  // code into a generated register class.   The normal usage of this is to 
131  // overload virtual methods.
132  code MethodProtos = [{}];
133  code MethodBodies = [{}];
134}
135
136
137//===----------------------------------------------------------------------===//
138// DwarfRegNum - This class provides a mapping of the llvm register enumeration
139// to the register numbering used by gcc and gdb.  These values are used by a
140// debug information writer to describe where values may be located during
141// execution.
142class DwarfRegNum<list<int> Numbers> {
143  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
144  // These values can be determined by locating the <target>.h file in the
145  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
146  // order of these names correspond to the enumeration used by gcc.  A value of
147  // -1 indicates that the gcc number is undefined and -2 that register number is 
148  // invalid for this mode/flavour.
149  list<int> DwarfNumbers = Numbers;
150}
151
152//===----------------------------------------------------------------------===//
153// Pull in the common support for scheduling
154//
155include "llvm/Target/TargetSchedule.td"
156
157class Predicate; // Forward def
158
159//===----------------------------------------------------------------------===//
160// Instruction set description - These classes correspond to the C++ classes in
161// the Target/TargetInstrInfo.h file.
162//
163class Instruction {
164  string Namespace = "";
165
166  dag OutOperandList;       // An dag containing the MI def operand list.
167  dag InOperandList;        // An dag containing the MI use operand list.
168  string AsmString = "";    // The .s format to print the instruction with.
169
170  // Pattern - Set to the DAG pattern for this instruction, if we know of one,
171  // otherwise, uninitialized.
172  list<dag> Pattern;
173
174  // The follow state will eventually be inferred automatically from the
175  // instruction pattern.
176
177  list<Register> Uses = []; // Default to using no non-operand registers
178  list<Register> Defs = []; // Default to modifying no non-operand registers
179
180  // Predicates - List of predicates which will be turned into isel matching
181  // code.
182  list<Predicate> Predicates = [];
183
184  // Code size.
185  int CodeSize = 0;
186
187  // Added complexity passed onto matching pattern.
188  int AddedComplexity  = 0;
189
190  // These bits capture information about the high-level semantics of the
191  // instruction.
192  bit isReturn     = 0;     // Is this instruction a return instruction?
193  bit isBranch     = 0;     // Is this instruction a branch instruction?
194  bit isIndirectBranch = 0; // Is this instruction an indirect branch?
195  bit isBarrier    = 0;     // Can control flow fall through this instruction?
196  bit isCall       = 0;     // Is this instruction a call instruction?
197  bit canFoldAsLoad = 0;    // Can this be folded as a simple memory operand?
198  bit mayLoad      = 0;     // Is it possible for this inst to read memory?
199  bit mayStore     = 0;     // Is it possible for this inst to write memory?
200  bit isTwoAddress = 0;     // Is this a two address instruction?
201  bit isConvertibleToThreeAddress = 0;  // Can this 2-addr instruction promote?
202  bit isCommutable = 0;     // Is this 3 operand instruction commutable?
203  bit isTerminator = 0;     // Is this part of the terminator for a basic block?
204  bit isReMaterializable = 0; // Is this instruction re-materializable?
205  bit isPredicable = 0;     // Is this instruction predicable?
206  bit hasDelaySlot = 0;     // Does this instruction have an delay slot?
207  bit usesCustomInserter = 0; // Pseudo instr needing special help.
208  bit hasCtrlDep   = 0;     // Does this instruction r/w ctrl-flow chains?
209  bit isNotDuplicable = 0;  // Is it unsafe to duplicate this instruction?
210  bit isAsCheapAsAMove = 0; // As cheap (or cheaper) than a move instruction.
211  bit hasExtraSrcRegAllocReq = 0; // Sources have special regalloc requirement?
212  bit hasExtraDefRegAllocReq = 0; // Defs have special regalloc requirement?
213
214  // Side effect flags - When set, the flags have these meanings:
215  //
216  //  hasSideEffects - The instruction has side effects that are not
217  //    captured by any operands of the instruction or other flags.
218  //
219  //  neverHasSideEffects - Set on an instruction with no pattern if it has no
220  //    side effects.
221  bit hasSideEffects = 0;
222  bit neverHasSideEffects = 0;
223
224  // Is this instruction a "real" instruction (with a distinct machine
225  // encoding), or is it a pseudo instruction used for codegen modeling
226  // purposes.
227  bit isCodeGenOnly = 0;
228
229  // Is this instruction a pseudo instruction for use by the assembler parser.
230  bit isAsmParserOnly = 0;
231
232  InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.
233
234  string Constraints = "";  // OperandConstraint, e.g. $src = $dst.
235
236  /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not
237  /// be encoded into the output machineinstr.
238  string DisableEncoding = "";
239
240  /// Target-specific flags. This becomes the TSFlags field in TargetInstrDesc.
241  bits<32> TSFlags = 0;
242}
243
244/// Predicates - These are extra conditionals which are turned into instruction
245/// selector matching code. Currently each predicate is just a string.
246class Predicate<string cond> {
247  string CondString = cond;
248}
249
250/// NoHonorSignDependentRounding - This predicate is true if support for
251/// sign-dependent-rounding is not enabled.
252def NoHonorSignDependentRounding
253 : Predicate<"!HonorSignDependentRoundingFPMath()">;
254
255class Requires<list<Predicate> preds> {
256  list<Predicate> Predicates = preds;
257}
258
259/// ops definition - This is just a simple marker used to identify the operands
260/// list for an instruction. outs and ins are identical both syntatically and
261/// semantically, they are used to define def operands and use operands to
262/// improve readibility. This should be used like this:
263///     (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar.
264def ops;
265def outs;
266def ins;
267
268/// variable_ops definition - Mark this instruction as taking a variable number
269/// of operands.
270def variable_ops;
271
272
273/// PointerLikeRegClass - Values that are designed to have pointer width are
274/// derived from this.  TableGen treats the register class as having a symbolic
275/// type that it doesn't know, and resolves the actual regclass to use by using
276/// the TargetRegisterInfo::getPointerRegClass() hook at codegen time.
277class PointerLikeRegClass<int Kind> {
278  int RegClassKind = Kind;
279}
280
281
282/// ptr_rc definition - Mark this operand as being a pointer value whose
283/// register class is resolved dynamically via a callback to TargetInstrInfo.
284/// FIXME: We should probably change this to a class which contain a list of
285/// flags. But currently we have but one flag.
286def ptr_rc : PointerLikeRegClass<0>;
287
288/// unknown definition - Mark this operand as being of unknown type, causing
289/// it to be resolved by inference in the context it is used.
290def unknown;
291
292/// AsmOperandClass - Representation for the kinds of operands which the target
293/// specific parser can create and the assembly matcher may need to distinguish.
294///
295/// Operand classes are used to define the order in which instructions are
296/// matched, to ensure that the instruction which gets matched for any
297/// particular list of operands is deterministic.
298///
299/// The target specific parser must be able to classify a parsed operand into a
300/// unique class which does not partially overlap with any other classes. It can
301/// match a subset of some other class, in which case the super class field
302/// should be defined.
303class AsmOperandClass {
304  /// The name to use for this class, which should be usable as an enum value.
305  string Name = ?;
306
307  /// The super classes of this operand.
308  list<AsmOperandClass> SuperClasses = [];
309
310  /// The name of the method on the target specific operand to call to test
311  /// whether the operand is an instance of this class. If not set, this will
312  /// default to "isFoo", where Foo is the AsmOperandClass name. The method
313  /// signature should be:
314  ///   bool isFoo() const;
315  string PredicateMethod = ?;
316
317  /// The name of the method on the target specific operand to call to add the
318  /// target specific operand to an MCInst. If not set, this will default to
319  /// "addFooOperands", where Foo is the AsmOperandClass name. The method
320  /// signature should be:
321  ///   void addFooOperands(MCInst &Inst, unsigned N) const;
322  string RenderMethod = ?;
323}
324
325def ImmAsmOperand : AsmOperandClass {
326  let Name = "Imm";
327}
328   
329/// Operand Types - These provide the built-in operand types that may be used
330/// by a target.  Targets can optionally provide their own operand types as
331/// needed, though this should not be needed for RISC targets.
332class Operand<ValueType ty> {
333  ValueType Type = ty;
334  string PrintMethod = "printOperand";
335  string AsmOperandLowerMethod = ?;
336  dag MIOperandInfo = (ops);
337
338  // ParserMatchClass - The "match class" that operands of this type fit
339  // in. Match classes are used to define the order in which instructions are
340  // match, to ensure that which instructions gets matched is deterministic.
341  //
342  // The target specific parser must be able to classify an parsed operand into
343  // a unique class, which does not partially overlap with any other classes. It
344  // can match a subset of some other class, in which case the AsmOperandClass
345  // should declare the other operand as one of its super classes.
346  AsmOperandClass ParserMatchClass = ImmAsmOperand;
347}
348
349def i1imm  : Operand<i1>;
350def i8imm  : Operand<i8>;
351def i16imm : Operand<i16>;
352def i32imm : Operand<i32>;
353def i64imm : Operand<i64>;
354
355def f32imm : Operand<f32>;
356def f64imm : Operand<f64>;
357
358/// zero_reg definition - Special node to stand for the zero register.
359///
360def zero_reg;
361
362/// PredicateOperand - This can be used to define a predicate operand for an
363/// instruction.  OpTypes specifies the MIOperandInfo for the operand, and
364/// AlwaysVal specifies the value of this predicate when set to "always
365/// execute".
366class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal>
367  : Operand<ty> {
368  let MIOperandInfo = OpTypes;
369  dag DefaultOps = AlwaysVal;
370}
371
372/// OptionalDefOperand - This is used to define a optional definition operand
373/// for an instruction. DefaultOps is the register the operand represents if
374/// none is supplied, e.g. zero_reg.
375class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops>
376  : Operand<ty> {
377  let MIOperandInfo = OpTypes;
378  dag DefaultOps = defaultops;
379}
380
381
382// InstrInfo - This class should only be instantiated once to provide parameters
383// which are global to the target machine.
384//
385class InstrInfo {
386  // Target can specify its instructions in either big or little-endian formats.
387  // For instance, while both Sparc and PowerPC are big-endian platforms, the
388  // Sparc manual specifies its instructions in the format [31..0] (big), while
389  // PowerPC specifies them using the format [0..31] (little).
390  bit isLittleEndianEncoding = 0;
391}
392
393// Standard Pseudo Instructions.
394let isCodeGenOnly = 1 in {
395def PHI : Instruction {
396  let OutOperandList = (outs);
397  let InOperandList = (ins variable_ops);
398  let AsmString = "PHINODE";
399  let Namespace = "TargetOpcode";
400}
401def INLINEASM : Instruction {
402  let OutOperandList = (outs);
403  let InOperandList = (ins variable_ops);
404  let AsmString = "";
405  let Namespace = "TargetOpcode";
406}
407def DBG_LABEL : Instruction {
408  let OutOperandList = (outs);
409  let InOperandList = (ins i32imm:$id);
410  let AsmString = "";
411  let Namespace = "TargetOpcode";
412  let hasCtrlDep = 1;
413  let isNotDuplicable = 1;
414}
415def EH_LABEL : Instruction {
416  let OutOperandList = (outs);
417  let InOperandList = (ins i32imm:$id);
418  let AsmString = "";
419  let Namespace = "TargetOpcode";
420  let hasCtrlDep = 1;
421  let isNotDuplicable = 1;
422}
423def GC_LABEL : Instruction {
424  let OutOperandList = (outs);
425  let InOperandList = (ins i32imm:$id);
426  let AsmString = "";
427  let Namespace = "TargetOpcode";
428  let hasCtrlDep = 1;
429  let isNotDuplicable = 1;
430}
431def KILL : Instruction {
432  let OutOperandList = (outs);
433  let InOperandList = (ins variable_ops);
434  let AsmString = "";
435  let Namespace = "TargetOpcode";
436  let neverHasSideEffects = 1;
437}
438def EXTRACT_SUBREG : Instruction {
439  let OutOperandList = (outs unknown:$dst);
440  let InOperandList = (ins unknown:$supersrc, i32imm:$subidx);
441  let AsmString = "";
442  let Namespace = "TargetOpcode";
443  let neverHasSideEffects = 1;
444}
445def INSERT_SUBREG : Instruction {
446  let OutOperandList = (outs unknown:$dst);
447  let InOperandList = (ins unknown:$supersrc, unknown:$subsrc, i32imm:$subidx);
448  let AsmString = "";
449  let Namespace = "TargetOpcode";
450  let neverHasSideEffects = 1;
451  let Constraints = "$supersrc = $dst";
452}
453def IMPLICIT_DEF : Instruction {
454  let OutOperandList = (outs unknown:$dst);
455  let InOperandList = (ins);
456  let AsmString = "";
457  let Namespace = "TargetOpcode";
458  let neverHasSideEffects = 1;
459  let isReMaterializable = 1;
460  let isAsCheapAsAMove = 1;
461}
462def SUBREG_TO_REG : Instruction {
463  let OutOperandList = (outs unknown:$dst);
464  let InOperandList = (ins unknown:$implsrc, unknown:$subsrc, i32imm:$subidx);
465  let AsmString = "";
466  let Namespace = "TargetOpcode";
467  let neverHasSideEffects = 1;
468}
469def COPY_TO_REGCLASS : Instruction {
470  let OutOperandList = (outs unknown:$dst);
471  let InOperandList = (ins unknown:$src, i32imm:$regclass);
472  let AsmString = "";
473  let Namespace = "TargetOpcode";
474  let neverHasSideEffects = 1;
475  let isAsCheapAsAMove = 1;
476}
477def DBG_VALUE : Instruction {
478  let OutOperandList = (outs);
479  let InOperandList = (ins variable_ops);
480  let AsmString = "DBG_VALUE";
481  let Namespace = "TargetOpcode";
482  let isAsCheapAsAMove = 1;
483}
484
485def REG_SEQUENCE : Instruction {
486  let OutOperandList = (outs unknown:$dst);
487  let InOperandList = (ins variable_ops);
488  let AsmString = "";
489  let Namespace = "TargetOpcode";
490  let neverHasSideEffects = 1;
491  let isAsCheapAsAMove = 1;
492}
493}
494
495//===----------------------------------------------------------------------===//
496// AsmParser - This class can be implemented by targets that wish to implement
497// .s file parsing.
498//
499// Subtargets can have multiple different assembly parsers (e.g. AT&T vs Intel
500// syntax on X86 for example).
501//
502class AsmParser {
503  // AsmParserClassName - This specifies the suffix to use for the asmparser
504  // class.  Generated AsmParser classes are always prefixed with the target
505  // name.
506  string AsmParserClassName  = "AsmParser";
507
508  // AsmParserInstCleanup - If non-empty, this is the name of a custom function on the
509  // AsmParser class to call on every matched instruction. This can be used to
510  // perform target specific instruction post-processing.
511  string AsmParserInstCleanup  = "";
512
513  // MatchInstructionName - The name of the instruction matching function to
514  // generate.
515  string MatchInstructionName  = "MatchInstruction";
516
517  // Variant - AsmParsers can be of multiple different variants.  Variants are
518  // used to support targets that need to parser multiple formats for the
519  // assembly language.
520  int Variant = 0;
521
522  // CommentDelimiter - If given, the delimiter string used to recognize
523  // comments which are hard coded in the .td assembler strings for individual
524  // instructions.
525  string CommentDelimiter = "";
526
527  // RegisterPrefix - If given, the token prefix which indicates a register
528  // token. This is used by the matcher to automatically recognize hard coded
529  // register tokens as constrained registers, instead of tokens, for the
530  // purposes of matching.
531  string RegisterPrefix = "";
532}
533def DefaultAsmParser : AsmParser;
534
535
536//===----------------------------------------------------------------------===//
537// AsmWriter - This class can be implemented by targets that need to customize
538// the format of the .s file writer.
539//
540// Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
541// on X86 for example).
542//
543class AsmWriter {
544  // AsmWriterClassName - This specifies the suffix to use for the asmwriter
545  // class.  Generated AsmWriter classes are always prefixed with the target
546  // name.
547  string AsmWriterClassName  = "AsmPrinter";
548
549  // InstFormatName - AsmWriters can specify the name of the format string to
550  // print instructions with.
551  string InstFormatName = "AsmString";
552
553  // Variant - AsmWriters can be of multiple different variants.  Variants are
554  // used to support targets that need to emit assembly code in ways that are
555  // mostly the same for different targets, but have minor differences in
556  // syntax.  If the asmstring contains {|} characters in them, this integer
557  // will specify which alternative to use.  For example "{x|y|z}" with Variant
558  // == 1, will expand to "y".
559  int Variant = 0;
560  
561  
562  // FirstOperandColumn/OperandSpacing - If the assembler syntax uses a columnar
563  // layout, the asmwriter can actually generate output in this columns (in
564  // verbose-asm mode).  These two values indicate the width of the first column
565  // (the "opcode" area) and the width to reserve for subsequent operands.  When
566  // verbose asm mode is enabled, operands will be indented to respect this.
567  int FirstOperandColumn = -1;
568  
569  // OperandSpacing - Space between operand columns.
570  int OperandSpacing = -1;
571}
572def DefaultAsmWriter : AsmWriter;
573
574
575//===----------------------------------------------------------------------===//
576// Target - This class contains the "global" target information
577//
578class Target {
579  // InstructionSet - Instruction set description for this target.
580  InstrInfo InstructionSet;
581
582  // AssemblyParsers - The AsmParser instances available for this target.
583  list<AsmParser> AssemblyParsers = [DefaultAsmParser];
584
585  // AssemblyWriters - The AsmWriter instances available for this target.
586  list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
587}
588
589//===----------------------------------------------------------------------===//
590// SubtargetFeature - A characteristic of the chip set.
591//
592class SubtargetFeature<string n, string a,  string v, string d,
593                       list<SubtargetFeature> i = []> {
594  // Name - Feature name.  Used by command line (-mattr=) to determine the
595  // appropriate target chip.
596  //
597  string Name = n;
598  
599  // Attribute - Attribute to be set by feature.
600  //
601  string Attribute = a;
602  
603  // Value - Value the attribute to be set to by feature.
604  //
605  string Value = v;
606  
607  // Desc - Feature description.  Used by command line (-mattr=) to display help
608  // information.
609  //
610  string Desc = d;
611
612  // Implies - Features that this feature implies are present. If one of those
613  // features isn't set, then this one shouldn't be set either.
614  //
615  list<SubtargetFeature> Implies = i;
616}
617
618//===----------------------------------------------------------------------===//
619// Processor chip sets - These values represent each of the chip sets supported
620// by the scheduler.  Each Processor definition requires corresponding
621// instruction itineraries.
622//
623class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f> {
624  // Name - Chip set name.  Used by command line (-mcpu=) to determine the
625  // appropriate target chip.
626  //
627  string Name = n;
628  
629  // ProcItin - The scheduling information for the target processor.
630  //
631  ProcessorItineraries ProcItin = pi;
632  
633  // Features - list of 
634  list<SubtargetFeature> Features = f;
635}
636
637//===----------------------------------------------------------------------===//
638// Pull in the common support for calling conventions.
639//
640include "llvm/Target/TargetCallingConv.td"
641
642//===----------------------------------------------------------------------===//
643// Pull in the common support for DAG isel generation.
644//
645include "llvm/Target/TargetSelectionDAG.td"
646