Target.td revision f3ef5332fa3f4d5ec72c178a2b19dac363a19383
1//===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the target-independent interfaces which should be
11// implemented by each target which is using a TableGen based code generator.
12//
13//===----------------------------------------------------------------------===//
14
15// Include all information about LLVM intrinsics.
16include "llvm/IR/Intrinsics.td"
17
18//===----------------------------------------------------------------------===//
19// Register file description - These classes are used to fill in the target
20// description classes.
21
22class RegisterClass; // Forward def
23
24// SubRegIndex - Use instances of SubRegIndex to identify subregisters.
25class SubRegIndex<int size, int offset = 0> {
26  string Namespace = "";
27
28  // Size - Size (in bits) of the sub-registers represented by this index.
29  int Size = size;
30
31  // Offset - Offset of the first bit that is part of this sub-register index.
32  // Set it to -1 if the same index is used to represent sub-registers that can
33  // be at different offsets (for example when using an index to access an
34  // element in a register tuple).
35  int Offset = offset;
36
37  // ComposedOf - A list of two SubRegIndex instances, [A, B].
38  // This indicates that this SubRegIndex is the result of composing A and B.
39  // See ComposedSubRegIndex.
40  list<SubRegIndex> ComposedOf = [];
41
42  // CoveringSubRegIndices - A list of two or more sub-register indexes that
43  // cover this sub-register.
44  //
45  // This field should normally be left blank as TableGen can infer it.
46  //
47  // TableGen automatically detects sub-registers that straddle the registers
48  // in the SubRegs field of a Register definition. For example:
49  //
50  //   Q0    = dsub_0 -> D0, dsub_1 -> D1
51  //   Q1    = dsub_0 -> D2, dsub_1 -> D3
52  //   D1_D2 = dsub_0 -> D1, dsub_1 -> D2
53  //   QQ0   = qsub_0 -> Q0, qsub_1 -> Q1
54  //
55  // TableGen will infer that D1_D2 is a sub-register of QQ0. It will be given
56  // the synthetic index dsub_1_dsub_2 unless some SubRegIndex is defined with
57  // CoveringSubRegIndices = [dsub_1, dsub_2].
58  list<SubRegIndex> CoveringSubRegIndices = [];
59}
60
61// ComposedSubRegIndex - A sub-register that is the result of composing A and B.
62// Offset is set to the sum of A and B's Offsets. Size is set to B's Size.
63class ComposedSubRegIndex<SubRegIndex A, SubRegIndex B>
64  : SubRegIndex<B.Size, !if(!eq(A.Offset, -1), -1,
65                        !if(!eq(B.Offset, -1), -1,
66                            !add(A.Offset, B.Offset)))> {
67  // See SubRegIndex.
68  let ComposedOf = [A, B];
69}
70
71// RegAltNameIndex - The alternate name set to use for register operands of
72// this register class when printing.
73class RegAltNameIndex {
74  string Namespace = "";
75}
76def NoRegAltName : RegAltNameIndex;
77
78// Register - You should define one instance of this class for each register
79// in the target machine.  String n will become the "name" of the register.
80class Register<string n, list<string> altNames = []> {
81  string Namespace = "";
82  string AsmName = n;
83  list<string> AltNames = altNames;
84
85  // Aliases - A list of registers that this register overlaps with.  A read or
86  // modification of this register can potentially read or modify the aliased
87  // registers.
88  list<Register> Aliases = [];
89
90  // SubRegs - A list of registers that are parts of this register. Note these
91  // are "immediate" sub-registers and the registers within the list do not
92  // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX],
93  // not [AX, AH, AL].
94  list<Register> SubRegs = [];
95
96  // SubRegIndices - For each register in SubRegs, specify the SubRegIndex used
97  // to address it. Sub-sub-register indices are automatically inherited from
98  // SubRegs.
99  list<SubRegIndex> SubRegIndices = [];
100
101  // RegAltNameIndices - The alternate name indices which are valid for this
102  // register.
103  list<RegAltNameIndex> RegAltNameIndices = [];
104
105  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
106  // These values can be determined by locating the <target>.h file in the
107  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
108  // order of these names correspond to the enumeration used by gcc.  A value of
109  // -1 indicates that the gcc number is undefined and -2 that register number
110  // is invalid for this mode/flavour.
111  list<int> DwarfNumbers = [];
112
113  // CostPerUse - Additional cost of instructions using this register compared
114  // to other registers in its class. The register allocator will try to
115  // minimize the number of instructions using a register with a CostPerUse.
116  // This is used by the x86-64 and ARM Thumb targets where some registers
117  // require larger instruction encodings.
118  int CostPerUse = 0;
119
120  // CoveredBySubRegs - When this bit is set, the value of this register is
121  // completely determined by the value of its sub-registers.  For example, the
122  // x86 register AX is covered by its sub-registers AL and AH, but EAX is not
123  // covered by its sub-register AX.
124  bit CoveredBySubRegs = 0;
125
126  // HWEncoding - The target specific hardware encoding for this register.
127  bits<16> HWEncoding = 0;
128}
129
130// RegisterWithSubRegs - This can be used to define instances of Register which
131// need to specify sub-registers.
132// List "subregs" specifies which registers are sub-registers to this one. This
133// is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc.
134// This allows the code generator to be careful not to put two values with
135// overlapping live ranges into registers which alias.
136class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
137  let SubRegs = subregs;
138}
139
140// DAGOperand - An empty base class that unifies RegisterClass's and other forms
141// of Operand's that are legal as type qualifiers in DAG patterns.  This should
142// only ever be used for defining multiclasses that are polymorphic over both
143// RegisterClass's and other Operand's.
144class DAGOperand { }
145
146// RegisterClass - Now that all of the registers are defined, and aliases
147// between registers are defined, specify which registers belong to which
148// register classes.  This also defines the default allocation order of
149// registers by register allocators.
150//
151class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
152                    dag regList, RegAltNameIndex idx = NoRegAltName>
153  : DAGOperand {
154  string Namespace = namespace;
155
156  // RegType - Specify the list ValueType of the registers in this register
157  // class.  Note that all registers in a register class must have the same
158  // ValueTypes.  This is a list because some targets permit storing different
159  // types in same register, for example vector values with 128-bit total size,
160  // but different count/size of items, like SSE on x86.
161  //
162  list<ValueType> RegTypes = regTypes;
163
164  // Size - Specify the spill size in bits of the registers.  A default value of
165  // zero lets tablgen pick an appropriate size.
166  int Size = 0;
167
168  // Alignment - Specify the alignment required of the registers when they are
169  // stored or loaded to memory.
170  //
171  int Alignment = alignment;
172
173  // CopyCost - This value is used to specify the cost of copying a value
174  // between two registers in this register class. The default value is one
175  // meaning it takes a single instruction to perform the copying. A negative
176  // value means copying is extremely expensive or impossible.
177  int CopyCost = 1;
178
179  // MemberList - Specify which registers are in this class.  If the
180  // allocation_order_* method are not specified, this also defines the order of
181  // allocation used by the register allocator.
182  //
183  dag MemberList = regList;
184
185  // AltNameIndex - The alternate register name to use when printing operands
186  // of this register class. Every register in the register class must have
187  // a valid alternate name for the given index.
188  RegAltNameIndex altNameIndex = idx;
189
190  // isAllocatable - Specify that the register class can be used for virtual
191  // registers and register allocation.  Some register classes are only used to
192  // model instruction operand constraints, and should have isAllocatable = 0.
193  bit isAllocatable = 1;
194
195  // AltOrders - List of alternative allocation orders. The default order is
196  // MemberList itself, and that is good enough for most targets since the
197  // register allocators automatically remove reserved registers and move
198  // callee-saved registers to the end.
199  list<dag> AltOrders = [];
200
201  // AltOrderSelect - The body of a function that selects the allocation order
202  // to use in a given machine function. The code will be inserted in a
203  // function like this:
204  //
205  //   static inline unsigned f(const MachineFunction &MF) { ... }
206  //
207  // The function should return 0 to select the default order defined by
208  // MemberList, 1 to select the first AltOrders entry and so on.
209  code AltOrderSelect = [{}];
210
211  // Specify allocation priority for register allocators using a greedy
212  // heuristic. Classes with higher priority values are assigned first. This is
213  // useful as it is sometimes beneficial to assign registers to highly
214  // constrained classes first. The value has to be in the range [0,63].
215  int AllocationPriority = 0;
216}
217
218// The memberList in a RegisterClass is a dag of set operations. TableGen
219// evaluates these set operations and expand them into register lists. These
220// are the most common operation, see test/TableGen/SetTheory.td for more
221// examples of what is possible:
222//
223// (add R0, R1, R2) - Set Union. Each argument can be an individual register, a
224// register class, or a sub-expression. This is also the way to simply list
225// registers.
226//
227// (sub GPR, SP) - Set difference. Subtract the last arguments from the first.
228//
229// (and GPR, CSR) - Set intersection. All registers from the first set that are
230// also in the second set.
231//
232// (sequence "R%u", 0, 15) -> [R0, R1, ..., R15]. Generate a sequence of
233// numbered registers.  Takes an optional 4th operand which is a stride to use
234// when generating the sequence.
235//
236// (shl GPR, 4) - Remove the first N elements.
237//
238// (trunc GPR, 4) - Truncate after the first N elements.
239//
240// (rotl GPR, 1) - Rotate N places to the left.
241//
242// (rotr GPR, 1) - Rotate N places to the right.
243//
244// (decimate GPR, 2) - Pick every N'th element, starting with the first.
245//
246// (interleave A, B, ...) - Interleave the elements from each argument list.
247//
248// All of these operators work on ordered sets, not lists. That means
249// duplicates are removed from sub-expressions.
250
251// Set operators. The rest is defined in TargetSelectionDAG.td.
252def sequence;
253def decimate;
254def interleave;
255
256// RegisterTuples - Automatically generate super-registers by forming tuples of
257// sub-registers. This is useful for modeling register sequence constraints
258// with pseudo-registers that are larger than the architectural registers.
259//
260// The sub-register lists are zipped together:
261//
262//   def EvenOdd : RegisterTuples<[sube, subo], [(add R0, R2), (add R1, R3)]>;
263//
264// Generates the same registers as:
265//
266//   let SubRegIndices = [sube, subo] in {
267//     def R0_R1 : RegisterWithSubRegs<"", [R0, R1]>;
268//     def R2_R3 : RegisterWithSubRegs<"", [R2, R3]>;
269//   }
270//
271// The generated pseudo-registers inherit super-classes and fields from their
272// first sub-register. Most fields from the Register class are inferred, and
273// the AsmName and Dwarf numbers are cleared.
274//
275// RegisterTuples instances can be used in other set operations to form
276// register classes and so on. This is the only way of using the generated
277// registers.
278class RegisterTuples<list<SubRegIndex> Indices, list<dag> Regs> {
279  // SubRegs - N lists of registers to be zipped up. Super-registers are
280  // synthesized from the first element of each SubRegs list, the second
281  // element and so on.
282  list<dag> SubRegs = Regs;
283
284  // SubRegIndices - N SubRegIndex instances. This provides the names of the
285  // sub-registers in the synthesized super-registers.
286  list<SubRegIndex> SubRegIndices = Indices;
287}
288
289
290//===----------------------------------------------------------------------===//
291// DwarfRegNum - This class provides a mapping of the llvm register enumeration
292// to the register numbering used by gcc and gdb.  These values are used by a
293// debug information writer to describe where values may be located during
294// execution.
295class DwarfRegNum<list<int> Numbers> {
296  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
297  // These values can be determined by locating the <target>.h file in the
298  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
299  // order of these names correspond to the enumeration used by gcc.  A value of
300  // -1 indicates that the gcc number is undefined and -2 that register number
301  // is invalid for this mode/flavour.
302  list<int> DwarfNumbers = Numbers;
303}
304
305// DwarfRegAlias - This class declares that a given register uses the same dwarf
306// numbers as another one. This is useful for making it clear that the two
307// registers do have the same number. It also lets us build a mapping
308// from dwarf register number to llvm register.
309class DwarfRegAlias<Register reg> {
310      Register DwarfAlias = reg;
311}
312
313//===----------------------------------------------------------------------===//
314// Pull in the common support for scheduling
315//
316include "llvm/Target/TargetSchedule.td"
317
318class Predicate; // Forward def
319
320//===----------------------------------------------------------------------===//
321// Instruction set description - These classes correspond to the C++ classes in
322// the Target/TargetInstrInfo.h file.
323//
324class Instruction {
325  string Namespace = "";
326
327  dag OutOperandList;       // An dag containing the MI def operand list.
328  dag InOperandList;        // An dag containing the MI use operand list.
329  string AsmString = "";    // The .s format to print the instruction with.
330
331  // Pattern - Set to the DAG pattern for this instruction, if we know of one,
332  // otherwise, uninitialized.
333  list<dag> Pattern;
334
335  // The follow state will eventually be inferred automatically from the
336  // instruction pattern.
337
338  list<Register> Uses = []; // Default to using no non-operand registers
339  list<Register> Defs = []; // Default to modifying no non-operand registers
340
341  // Predicates - List of predicates which will be turned into isel matching
342  // code.
343  list<Predicate> Predicates = [];
344
345  // Size - Size of encoded instruction, or zero if the size cannot be determined
346  // from the opcode.
347  int Size = 0;
348
349  // DecoderNamespace - The "namespace" in which this instruction exists, on
350  // targets like ARM which multiple ISA namespaces exist.
351  string DecoderNamespace = "";
352
353  // Code size, for instruction selection.
354  // FIXME: What does this actually mean?
355  int CodeSize = 0;
356
357  // Added complexity passed onto matching pattern.
358  int AddedComplexity  = 0;
359
360  // These bits capture information about the high-level semantics of the
361  // instruction.
362  bit isReturn     = 0;     // Is this instruction a return instruction?
363  bit isBranch     = 0;     // Is this instruction a branch instruction?
364  bit isIndirectBranch = 0; // Is this instruction an indirect branch?
365  bit isCompare    = 0;     // Is this instruction a comparison instruction?
366  bit isMoveImm    = 0;     // Is this instruction a move immediate instruction?
367  bit isBitcast    = 0;     // Is this instruction a bitcast instruction?
368  bit isSelect     = 0;     // Is this instruction a select instruction?
369  bit isBarrier    = 0;     // Can control flow fall through this instruction?
370  bit isCall       = 0;     // Is this instruction a call instruction?
371  bit canFoldAsLoad = 0;    // Can this be folded as a simple memory operand?
372  bit mayLoad      = ?;     // Is it possible for this inst to read memory?
373  bit mayStore     = ?;     // Is it possible for this inst to write memory?
374  bit isConvertibleToThreeAddress = 0;  // Can this 2-addr instruction promote?
375  bit isCommutable = 0;     // Is this 3 operand instruction commutable?
376  bit isTerminator = 0;     // Is this part of the terminator for a basic block?
377  bit isReMaterializable = 0; // Is this instruction re-materializable?
378  bit isPredicable = 0;     // Is this instruction predicable?
379  bit hasDelaySlot = 0;     // Does this instruction have an delay slot?
380  bit usesCustomInserter = 0; // Pseudo instr needing special help.
381  bit hasPostISelHook = 0;  // To be *adjusted* after isel by target hook.
382  bit hasCtrlDep   = 0;     // Does this instruction r/w ctrl-flow chains?
383  bit isNotDuplicable = 0;  // Is it unsafe to duplicate this instruction?
384  bit isConvergent = 0;     // Is this instruction convergent?
385  bit isAsCheapAsAMove = 0; // As cheap (or cheaper) than a move instruction.
386  bit hasExtraSrcRegAllocReq = 0; // Sources have special regalloc requirement?
387  bit hasExtraDefRegAllocReq = 0; // Defs have special regalloc requirement?
388  bit isRegSequence = 0;    // Is this instruction a kind of reg sequence?
389                            // If so, make sure to override
390                            // TargetInstrInfo::getRegSequenceLikeInputs.
391  bit isPseudo     = 0;     // Is this instruction a pseudo-instruction?
392                            // If so, won't have encoding information for
393                            // the [MC]CodeEmitter stuff.
394  bit isExtractSubreg = 0;  // Is this instruction a kind of extract subreg?
395                             // If so, make sure to override
396                             // TargetInstrInfo::getExtractSubregLikeInputs.
397  bit isInsertSubreg = 0;   // Is this instruction a kind of insert subreg?
398                            // If so, make sure to override
399                            // TargetInstrInfo::getInsertSubregLikeInputs.
400
401  // Side effect flags - When set, the flags have these meanings:
402  //
403  //  hasSideEffects - The instruction has side effects that are not
404  //    captured by any operands of the instruction or other flags.
405  //
406  bit hasSideEffects = ?;
407
408  // Is this instruction a "real" instruction (with a distinct machine
409  // encoding), or is it a pseudo instruction used for codegen modeling
410  // purposes.
411  // FIXME: For now this is distinct from isPseudo, above, as code-gen-only
412  // instructions can (and often do) still have encoding information
413  // associated with them. Once we've migrated all of them over to true
414  // pseudo-instructions that are lowered to real instructions prior to
415  // the printer/emitter, we can remove this attribute and just use isPseudo.
416  //
417  // The intended use is:
418  // isPseudo: Does not have encoding information and should be expanded,
419  //   at the latest, during lowering to MCInst.
420  //
421  // isCodeGenOnly: Does have encoding information and can go through to the
422  //   CodeEmitter unchanged, but duplicates a canonical instruction
423  //   definition's encoding and should be ignored when constructing the
424  //   assembler match tables.
425  bit isCodeGenOnly = 0;
426
427  // Is this instruction a pseudo instruction for use by the assembler parser.
428  bit isAsmParserOnly = 0;
429
430  InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.
431
432  // Scheduling information from TargetSchedule.td.
433  list<SchedReadWrite> SchedRW;
434
435  string Constraints = "";  // OperandConstraint, e.g. $src = $dst.
436
437  /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not
438  /// be encoded into the output machineinstr.
439  string DisableEncoding = "";
440
441  string PostEncoderMethod = "";
442  string DecoderMethod = "";
443
444  // Is the instruction decoder method able to completely determine if the
445  // given instruction is valid or not. If the TableGen definition of the
446  // instruction specifies bitpattern A??B where A and B are static bits, the
447  // hasCompleteDecoder flag says whether the decoder method fully handles the
448  // ?? space, i.e. if it is a final arbiter for the instruction validity.
449  // If not then the decoder attempts to continue decoding when the decoder
450  // method fails.
451  //
452  // This allows to handle situations where the encoding is not fully
453  // orthogonal. Example:
454  // * InstA with bitpattern 0b0000????,
455  // * InstB with bitpattern 0b000000?? but the associated decoder method
456  //   DecodeInstB() returns Fail when ?? is 0b00 or 0b11.
457  //
458  // The decoder tries to decode a bitpattern that matches both InstA and
459  // InstB bitpatterns first as InstB (because it is the most specific
460  // encoding). In the default case (hasCompleteDecoder = 1), when
461  // DecodeInstB() returns Fail the bitpattern gets rejected. By setting
462  // hasCompleteDecoder = 0 in InstB, the decoder is informed that
463  // DecodeInstB() is not able to determine if all possible values of ?? are
464  // valid or not. If DecodeInstB() returns Fail the decoder will attempt to
465  // decode the bitpattern as InstA too.
466  bit hasCompleteDecoder = 1;
467
468  /// Target-specific flags. This becomes the TSFlags field in TargetInstrDesc.
469  bits<64> TSFlags = 0;
470
471  ///@name Assembler Parser Support
472  ///@{
473
474  string AsmMatchConverter = "";
475
476  /// TwoOperandAliasConstraint - Enable TableGen to auto-generate a
477  /// two-operand matcher inst-alias for a three operand instruction.
478  /// For example, the arm instruction "add r3, r3, r5" can be written
479  /// as "add r3, r5". The constraint is of the same form as a tied-operand
480  /// constraint. For example, "$Rn = $Rd".
481  string TwoOperandAliasConstraint = "";
482
483  ///@}
484
485  /// UseNamedOperandTable - If set, the operand indices of this instruction
486  /// can be queried via the getNamedOperandIdx() function which is generated
487  /// by TableGen.
488  bit UseNamedOperandTable = 0;
489}
490
491/// PseudoInstExpansion - Expansion information for a pseudo-instruction.
492/// Which instruction it expands to and how the operands map from the
493/// pseudo.
494class PseudoInstExpansion<dag Result> {
495  dag ResultInst = Result;     // The instruction to generate.
496  bit isPseudo = 1;
497}
498
499/// Predicates - These are extra conditionals which are turned into instruction
500/// selector matching code. Currently each predicate is just a string.
501class Predicate<string cond> {
502  string CondString = cond;
503
504  /// AssemblerMatcherPredicate - If this feature can be used by the assembler
505  /// matcher, this is true.  Targets should set this by inheriting their
506  /// feature from the AssemblerPredicate class in addition to Predicate.
507  bit AssemblerMatcherPredicate = 0;
508
509  /// AssemblerCondString - Name of the subtarget feature being tested used
510  /// as alternative condition string used for assembler matcher.
511  /// e.g. "ModeThumb" is translated to "(Bits & ModeThumb) != 0".
512  ///      "!ModeThumb" is translated to "(Bits & ModeThumb) == 0".
513  /// It can also list multiple features separated by ",".
514  /// e.g. "ModeThumb,FeatureThumb2" is translated to
515  ///      "(Bits & ModeThumb) != 0 && (Bits & FeatureThumb2) != 0".
516  string AssemblerCondString = "";
517
518  /// PredicateName - User-level name to use for the predicate. Mainly for use
519  /// in diagnostics such as missing feature errors in the asm matcher.
520  string PredicateName = "";
521}
522
523/// NoHonorSignDependentRounding - This predicate is true if support for
524/// sign-dependent-rounding is not enabled.
525def NoHonorSignDependentRounding
526 : Predicate<"!TM.Options.HonorSignDependentRoundingFPMath()">;
527
528class Requires<list<Predicate> preds> {
529  list<Predicate> Predicates = preds;
530}
531
532/// ops definition - This is just a simple marker used to identify the operand
533/// list for an instruction. outs and ins are identical both syntactically and
534/// semantically; they are used to define def operands and use operands to
535/// improve readibility. This should be used like this:
536///     (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar.
537def ops;
538def outs;
539def ins;
540
541/// variable_ops definition - Mark this instruction as taking a variable number
542/// of operands.
543def variable_ops;
544
545
546/// PointerLikeRegClass - Values that are designed to have pointer width are
547/// derived from this.  TableGen treats the register class as having a symbolic
548/// type that it doesn't know, and resolves the actual regclass to use by using
549/// the TargetRegisterInfo::getPointerRegClass() hook at codegen time.
550class PointerLikeRegClass<int Kind> {
551  int RegClassKind = Kind;
552}
553
554
555/// ptr_rc definition - Mark this operand as being a pointer value whose
556/// register class is resolved dynamically via a callback to TargetInstrInfo.
557/// FIXME: We should probably change this to a class which contain a list of
558/// flags. But currently we have but one flag.
559def ptr_rc : PointerLikeRegClass<0>;
560
561/// unknown definition - Mark this operand as being of unknown type, causing
562/// it to be resolved by inference in the context it is used.
563class unknown_class;
564def unknown : unknown_class;
565
566/// AsmOperandClass - Representation for the kinds of operands which the target
567/// specific parser can create and the assembly matcher may need to distinguish.
568///
569/// Operand classes are used to define the order in which instructions are
570/// matched, to ensure that the instruction which gets matched for any
571/// particular list of operands is deterministic.
572///
573/// The target specific parser must be able to classify a parsed operand into a
574/// unique class which does not partially overlap with any other classes. It can
575/// match a subset of some other class, in which case the super class field
576/// should be defined.
577class AsmOperandClass {
578  /// The name to use for this class, which should be usable as an enum value.
579  string Name = ?;
580
581  /// The super classes of this operand.
582  list<AsmOperandClass> SuperClasses = [];
583
584  /// The name of the method on the target specific operand to call to test
585  /// whether the operand is an instance of this class. If not set, this will
586  /// default to "isFoo", where Foo is the AsmOperandClass name. The method
587  /// signature should be:
588  ///   bool isFoo() const;
589  string PredicateMethod = ?;
590
591  /// The name of the method on the target specific operand to call to add the
592  /// target specific operand to an MCInst. If not set, this will default to
593  /// "addFooOperands", where Foo is the AsmOperandClass name. The method
594  /// signature should be:
595  ///   void addFooOperands(MCInst &Inst, unsigned N) const;
596  string RenderMethod = ?;
597
598  /// The name of the method on the target specific operand to call to custom
599  /// handle the operand parsing. This is useful when the operands do not relate
600  /// to immediates or registers and are very instruction specific (as flags to
601  /// set in a processor register, coprocessor number, ...).
602  string ParserMethod = ?;
603
604  // The diagnostic type to present when referencing this operand in a
605  // match failure error message. By default, use a generic "invalid operand"
606  // diagnostic. The target AsmParser maps these codes to text.
607  string DiagnosticType = "";
608}
609
610def ImmAsmOperand : AsmOperandClass {
611  let Name = "Imm";
612}
613
614/// Operand Types - These provide the built-in operand types that may be used
615/// by a target.  Targets can optionally provide their own operand types as
616/// needed, though this should not be needed for RISC targets.
617class Operand<ValueType ty> : DAGOperand {
618  ValueType Type = ty;
619  string PrintMethod = "printOperand";
620  string EncoderMethod = "";
621  string DecoderMethod = "";
622  bit hasCompleteDecoder = 1;
623  string OperandType = "OPERAND_UNKNOWN";
624  dag MIOperandInfo = (ops);
625
626  // MCOperandPredicate - Optionally, a code fragment operating on
627  // const MCOperand &MCOp, and returning a bool, to indicate if
628  // the value of MCOp is valid for the specific subclass of Operand
629  code MCOperandPredicate;
630
631  // ParserMatchClass - The "match class" that operands of this type fit
632  // in. Match classes are used to define the order in which instructions are
633  // match, to ensure that which instructions gets matched is deterministic.
634  //
635  // The target specific parser must be able to classify an parsed operand into
636  // a unique class, which does not partially overlap with any other classes. It
637  // can match a subset of some other class, in which case the AsmOperandClass
638  // should declare the other operand as one of its super classes.
639  AsmOperandClass ParserMatchClass = ImmAsmOperand;
640}
641
642class RegisterOperand<RegisterClass regclass, string pm = "printOperand">
643  : DAGOperand {
644  // RegClass - The register class of the operand.
645  RegisterClass RegClass = regclass;
646  // PrintMethod - The target method to call to print register operands of
647  // this type. The method normally will just use an alt-name index to look
648  // up the name to print. Default to the generic printOperand().
649  string PrintMethod = pm;
650  // ParserMatchClass - The "match class" that operands of this type fit
651  // in. Match classes are used to define the order in which instructions are
652  // match, to ensure that which instructions gets matched is deterministic.
653  //
654  // The target specific parser must be able to classify an parsed operand into
655  // a unique class, which does not partially overlap with any other classes. It
656  // can match a subset of some other class, in which case the AsmOperandClass
657  // should declare the other operand as one of its super classes.
658  AsmOperandClass ParserMatchClass;
659
660  string OperandNamespace = "MCOI";
661  string OperandType = "OPERAND_REGISTER";
662}
663
664let OperandType = "OPERAND_IMMEDIATE" in {
665def i1imm  : Operand<i1>;
666def i8imm  : Operand<i8>;
667def i16imm : Operand<i16>;
668def i32imm : Operand<i32>;
669def i64imm : Operand<i64>;
670
671def f32imm : Operand<f32>;
672def f64imm : Operand<f64>;
673}
674
675/// zero_reg definition - Special node to stand for the zero register.
676///
677def zero_reg;
678
679/// All operands which the MC layer classifies as predicates should inherit from
680/// this class in some manner. This is already handled for the most commonly
681/// used PredicateOperand, but may be useful in other circumstances.
682class PredicateOp;
683
684/// OperandWithDefaultOps - This Operand class can be used as the parent class
685/// for an Operand that needs to be initialized with a default value if
686/// no value is supplied in a pattern.  This class can be used to simplify the
687/// pattern definitions for instructions that have target specific flags
688/// encoded as immediate operands.
689class OperandWithDefaultOps<ValueType ty, dag defaultops>
690  : Operand<ty> {
691  dag DefaultOps = defaultops;
692}
693
694/// PredicateOperand - This can be used to define a predicate operand for an
695/// instruction.  OpTypes specifies the MIOperandInfo for the operand, and
696/// AlwaysVal specifies the value of this predicate when set to "always
697/// execute".
698class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal>
699  : OperandWithDefaultOps<ty, AlwaysVal>, PredicateOp {
700  let MIOperandInfo = OpTypes;
701}
702
703/// OptionalDefOperand - This is used to define a optional definition operand
704/// for an instruction. DefaultOps is the register the operand represents if
705/// none is supplied, e.g. zero_reg.
706class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops>
707  : OperandWithDefaultOps<ty, defaultops> {
708  let MIOperandInfo = OpTypes;
709}
710
711
712// InstrInfo - This class should only be instantiated once to provide parameters
713// which are global to the target machine.
714//
715class InstrInfo {
716  // Target can specify its instructions in either big or little-endian formats.
717  // For instance, while both Sparc and PowerPC are big-endian platforms, the
718  // Sparc manual specifies its instructions in the format [31..0] (big), while
719  // PowerPC specifies them using the format [0..31] (little).
720  bit isLittleEndianEncoding = 0;
721
722  // The instruction properties mayLoad, mayStore, and hasSideEffects are unset
723  // by default, and TableGen will infer their value from the instruction
724  // pattern when possible.
725  //
726  // Normally, TableGen will issue an error it it can't infer the value of a
727  // property that hasn't been set explicitly. When guessInstructionProperties
728  // is set, it will guess a safe value instead.
729  //
730  // This option is a temporary migration help. It will go away.
731  bit guessInstructionProperties = 1;
732
733  // TableGen's instruction encoder generator has support for matching operands
734  // to bit-field variables both by name and by position. While matching by
735  // name is preferred, this is currently not possible for complex operands,
736  // and some targets still reply on the positional encoding rules. When
737  // generating a decoder for such targets, the positional encoding rules must
738  // be used by the decoder generator as well.
739  //
740  // This option is temporary; it will go away once the TableGen decoder
741  // generator has better support for complex operands and targets have
742  // migrated away from using positionally encoded operands.
743  bit decodePositionallyEncodedOperands = 0;
744
745  // When set, this indicates that there will be no overlap between those
746  // operands that are matched by ordering (positional operands) and those
747  // matched by name.
748  //
749  // This option is temporary; it will go away once the TableGen decoder
750  // generator has better support for complex operands and targets have
751  // migrated away from using positionally encoded operands.
752  bit noNamedPositionallyEncodedOperands = 0;
753}
754
755// Standard Pseudo Instructions.
756// This list must match TargetOpcodes.h and CodeGenTarget.cpp.
757// Only these instructions are allowed in the TargetOpcode namespace.
758let isCodeGenOnly = 1, isPseudo = 1, Namespace = "TargetOpcode" in {
759def PHI : Instruction {
760  let OutOperandList = (outs);
761  let InOperandList = (ins variable_ops);
762  let AsmString = "PHINODE";
763}
764def INLINEASM : Instruction {
765  let OutOperandList = (outs);
766  let InOperandList = (ins variable_ops);
767  let AsmString = "";
768  let hasSideEffects = 0;  // Note side effect is encoded in an operand.
769}
770def CFI_INSTRUCTION : Instruction {
771  let OutOperandList = (outs);
772  let InOperandList = (ins i32imm:$id);
773  let AsmString = "";
774  let hasCtrlDep = 1;
775  let isNotDuplicable = 1;
776}
777def EH_LABEL : Instruction {
778  let OutOperandList = (outs);
779  let InOperandList = (ins i32imm:$id);
780  let AsmString = "";
781  let hasCtrlDep = 1;
782  let isNotDuplicable = 1;
783}
784def GC_LABEL : Instruction {
785  let OutOperandList = (outs);
786  let InOperandList = (ins i32imm:$id);
787  let AsmString = "";
788  let hasCtrlDep = 1;
789  let isNotDuplicable = 1;
790}
791def KILL : Instruction {
792  let OutOperandList = (outs);
793  let InOperandList = (ins variable_ops);
794  let AsmString = "";
795  let hasSideEffects = 0;
796}
797def EXTRACT_SUBREG : Instruction {
798  let OutOperandList = (outs unknown:$dst);
799  let InOperandList = (ins unknown:$supersrc, i32imm:$subidx);
800  let AsmString = "";
801  let hasSideEffects = 0;
802}
803def INSERT_SUBREG : Instruction {
804  let OutOperandList = (outs unknown:$dst);
805  let InOperandList = (ins unknown:$supersrc, unknown:$subsrc, i32imm:$subidx);
806  let AsmString = "";
807  let hasSideEffects = 0;
808  let Constraints = "$supersrc = $dst";
809}
810def IMPLICIT_DEF : Instruction {
811  let OutOperandList = (outs unknown:$dst);
812  let InOperandList = (ins);
813  let AsmString = "";
814  let hasSideEffects = 0;
815  let isReMaterializable = 1;
816  let isAsCheapAsAMove = 1;
817}
818def SUBREG_TO_REG : Instruction {
819  let OutOperandList = (outs unknown:$dst);
820  let InOperandList = (ins unknown:$implsrc, unknown:$subsrc, i32imm:$subidx);
821  let AsmString = "";
822  let hasSideEffects = 0;
823}
824def COPY_TO_REGCLASS : Instruction {
825  let OutOperandList = (outs unknown:$dst);
826  let InOperandList = (ins unknown:$src, i32imm:$regclass);
827  let AsmString = "";
828  let hasSideEffects = 0;
829  let isAsCheapAsAMove = 1;
830}
831def DBG_VALUE : Instruction {
832  let OutOperandList = (outs);
833  let InOperandList = (ins variable_ops);
834  let AsmString = "DBG_VALUE";
835  let hasSideEffects = 0;
836}
837def REG_SEQUENCE : Instruction {
838  let OutOperandList = (outs unknown:$dst);
839  let InOperandList = (ins unknown:$supersrc, variable_ops);
840  let AsmString = "";
841  let hasSideEffects = 0;
842  let isAsCheapAsAMove = 1;
843}
844def COPY : Instruction {
845  let OutOperandList = (outs unknown:$dst);
846  let InOperandList = (ins unknown:$src);
847  let AsmString = "";
848  let hasSideEffects = 0;
849  let isAsCheapAsAMove = 1;
850}
851def BUNDLE : Instruction {
852  let OutOperandList = (outs);
853  let InOperandList = (ins variable_ops);
854  let AsmString = "BUNDLE";
855}
856def LIFETIME_START : Instruction {
857  let OutOperandList = (outs);
858  let InOperandList = (ins i32imm:$id);
859  let AsmString = "LIFETIME_START";
860  let hasSideEffects = 0;
861}
862def LIFETIME_END : Instruction {
863  let OutOperandList = (outs);
864  let InOperandList = (ins i32imm:$id);
865  let AsmString = "LIFETIME_END";
866  let hasSideEffects = 0;
867}
868def STACKMAP : Instruction {
869  let OutOperandList = (outs);
870  let InOperandList = (ins i64imm:$id, i32imm:$nbytes, variable_ops);
871  let isCall = 1;
872  let mayLoad = 1;
873  let usesCustomInserter = 1;
874}
875def PATCHPOINT : Instruction {
876  let OutOperandList = (outs unknown:$dst);
877  let InOperandList = (ins i64imm:$id, i32imm:$nbytes, unknown:$callee,
878                       i32imm:$nargs, i32imm:$cc, variable_ops);
879  let isCall = 1;
880  let mayLoad = 1;
881  let usesCustomInserter = 1;
882}
883def STATEPOINT : Instruction {
884  let OutOperandList = (outs);
885  let InOperandList = (ins variable_ops);
886  let usesCustomInserter = 1;
887  let mayLoad = 1;
888  let mayStore = 1;
889  let hasSideEffects = 1;
890  let isCall = 1;
891}
892def LOAD_STACK_GUARD : Instruction {
893  let OutOperandList = (outs ptr_rc:$dst);
894  let InOperandList = (ins);
895  let mayLoad = 1;
896  bit isReMaterializable = 1;
897  let hasSideEffects = 0;
898  bit isPseudo = 1;
899}
900def LOCAL_ESCAPE : Instruction {
901  // This instruction is really just a label. It has to be part of the chain so
902  // that it doesn't get dropped from the DAG, but it produces nothing and has
903  // no side effects.
904  let OutOperandList = (outs);
905  let InOperandList = (ins ptr_rc:$symbol, i32imm:$id);
906  let hasSideEffects = 0;
907  let hasCtrlDep = 1;
908}
909def FAULTING_LOAD_OP : Instruction {
910  let OutOperandList = (outs unknown:$dst);
911  let InOperandList = (ins variable_ops);
912  let usesCustomInserter = 1;
913  let mayLoad = 1;
914}
915}
916
917//===----------------------------------------------------------------------===//
918// AsmParser - This class can be implemented by targets that wish to implement
919// .s file parsing.
920//
921// Subtargets can have multiple different assembly parsers (e.g. AT&T vs Intel
922// syntax on X86 for example).
923//
924class AsmParser {
925  // AsmParserClassName - This specifies the suffix to use for the asmparser
926  // class.  Generated AsmParser classes are always prefixed with the target
927  // name.
928  string AsmParserClassName  = "AsmParser";
929
930  // AsmParserInstCleanup - If non-empty, this is the name of a custom member
931  // function of the AsmParser class to call on every matched instruction.
932  // This can be used to perform target specific instruction post-processing.
933  string AsmParserInstCleanup  = "";
934
935  // ShouldEmitMatchRegisterName - Set to false if the target needs a hand
936  // written register name matcher
937  bit ShouldEmitMatchRegisterName = 1;
938
939  /// Does the instruction mnemonic allow '.'
940  bit MnemonicContainsDot = 0;
941}
942def DefaultAsmParser : AsmParser;
943
944//===----------------------------------------------------------------------===//
945// AsmParserVariant - Subtargets can have multiple different assembly parsers
946// (e.g. AT&T vs Intel syntax on X86 for example). This class can be
947// implemented by targets to describe such variants.
948//
949class AsmParserVariant {
950  // Variant - AsmParsers can be of multiple different variants.  Variants are
951  // used to support targets that need to parser multiple formats for the
952  // assembly language.
953  int Variant = 0;
954
955  // Name - The AsmParser variant name (e.g., AT&T vs Intel).
956  string Name = "";
957
958  // CommentDelimiter - If given, the delimiter string used to recognize
959  // comments which are hard coded in the .td assembler strings for individual
960  // instructions.
961  string CommentDelimiter = "";
962
963  // RegisterPrefix - If given, the token prefix which indicates a register
964  // token. This is used by the matcher to automatically recognize hard coded
965  // register tokens as constrained registers, instead of tokens, for the
966  // purposes of matching.
967  string RegisterPrefix = "";
968
969  // TokenizingCharacters - Characters that are standalone tokens
970  string TokenizingCharacters = "[]*!";
971
972  // SeparatorCharacters - Characters that are not tokens
973  string SeparatorCharacters = " \t,";
974
975  // BreakCharacters - Characters that start new identifiers
976  string BreakCharacters = "";
977}
978def DefaultAsmParserVariant : AsmParserVariant;
979
980/// AssemblerPredicate - This is a Predicate that can be used when the assembler
981/// matches instructions and aliases.
982class AssemblerPredicate<string cond, string name = ""> {
983  bit AssemblerMatcherPredicate = 1;
984  string AssemblerCondString = cond;
985  string PredicateName = name;
986}
987
988/// TokenAlias - This class allows targets to define assembler token
989/// operand aliases. That is, a token literal operand which is equivalent
990/// to another, canonical, token literal. For example, ARM allows:
991///   vmov.u32 s4, #0  -> vmov.i32, #0
992/// 'u32' is a more specific designator for the 32-bit integer type specifier
993/// and is legal for any instruction which accepts 'i32' as a datatype suffix.
994///   def : TokenAlias<".u32", ".i32">;
995///
996/// This works by marking the match class of 'From' as a subclass of the
997/// match class of 'To'.
998class TokenAlias<string From, string To> {
999  string FromToken = From;
1000  string ToToken = To;
1001}
1002
1003/// MnemonicAlias - This class allows targets to define assembler mnemonic
1004/// aliases.  This should be used when all forms of one mnemonic are accepted
1005/// with a different mnemonic.  For example, X86 allows:
1006///   sal %al, 1    -> shl %al, 1
1007///   sal %ax, %cl  -> shl %ax, %cl
1008///   sal %eax, %cl -> shl %eax, %cl
1009/// etc.  Though "sal" is accepted with many forms, all of them are directly
1010/// translated to a shl, so it can be handled with (in the case of X86, it
1011/// actually has one for each suffix as well):
1012///   def : MnemonicAlias<"sal", "shl">;
1013///
1014/// Mnemonic aliases are mapped before any other translation in the match phase,
1015/// and do allow Requires predicates, e.g.:
1016///
1017///  def : MnemonicAlias<"pushf", "pushfq">, Requires<[In64BitMode]>;
1018///  def : MnemonicAlias<"pushf", "pushfl">, Requires<[In32BitMode]>;
1019///
1020/// Mnemonic aliases can also be constrained to specific variants, e.g.:
1021///
1022///  def : MnemonicAlias<"pushf", "pushfq", "att">, Requires<[In64BitMode]>;
1023///
1024/// If no variant (e.g., "att" or "intel") is specified then the alias is
1025/// applied unconditionally.
1026class MnemonicAlias<string From, string To, string VariantName = ""> {
1027  string FromMnemonic = From;
1028  string ToMnemonic = To;
1029  string AsmVariantName = VariantName;
1030
1031  // Predicates - Predicates that must be true for this remapping to happen.
1032  list<Predicate> Predicates = [];
1033}
1034
1035/// InstAlias - This defines an alternate assembly syntax that is allowed to
1036/// match an instruction that has a different (more canonical) assembly
1037/// representation.
1038class InstAlias<string Asm, dag Result, int Emit = 1> {
1039  string AsmString = Asm;      // The .s format to match the instruction with.
1040  dag ResultInst = Result;     // The MCInst to generate.
1041
1042  // This determines which order the InstPrinter detects aliases for
1043  // printing. A larger value makes the alias more likely to be
1044  // emitted. The Instruction's own definition is notionally 0.5, so 0
1045  // disables printing and 1 enables it if there are no conflicting aliases.
1046  int EmitPriority = Emit;
1047
1048  // Predicates - Predicates that must be true for this to match.
1049  list<Predicate> Predicates = [];
1050
1051  // If the instruction specified in Result has defined an AsmMatchConverter
1052  // then setting this to 1 will cause the alias to use the AsmMatchConverter
1053  // function when converting the OperandVector into an MCInst instead of the
1054  // function that is generated by the dag Result.
1055  // Setting this to 0 will cause the alias to ignore the Result instruction's
1056  // defined AsmMatchConverter and instead use the function generated by the
1057  // dag Result.
1058  bit UseInstAsmMatchConverter = 1;
1059}
1060
1061//===----------------------------------------------------------------------===//
1062// AsmWriter - This class can be implemented by targets that need to customize
1063// the format of the .s file writer.
1064//
1065// Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
1066// on X86 for example).
1067//
1068class AsmWriter {
1069  // AsmWriterClassName - This specifies the suffix to use for the asmwriter
1070  // class.  Generated AsmWriter classes are always prefixed with the target
1071  // name.
1072  string AsmWriterClassName  = "InstPrinter";
1073
1074  // PassSubtarget - Determines whether MCSubtargetInfo should be passed to
1075  // the various print methods.
1076  // FIXME: Remove after all ports are updated.
1077  int PassSubtarget = 0;
1078
1079  // Variant - AsmWriters can be of multiple different variants.  Variants are
1080  // used to support targets that need to emit assembly code in ways that are
1081  // mostly the same for different targets, but have minor differences in
1082  // syntax.  If the asmstring contains {|} characters in them, this integer
1083  // will specify which alternative to use.  For example "{x|y|z}" with Variant
1084  // == 1, will expand to "y".
1085  int Variant = 0;
1086}
1087def DefaultAsmWriter : AsmWriter;
1088
1089
1090//===----------------------------------------------------------------------===//
1091// Target - This class contains the "global" target information
1092//
1093class Target {
1094  // InstructionSet - Instruction set description for this target.
1095  InstrInfo InstructionSet;
1096
1097  // AssemblyParsers - The AsmParser instances available for this target.
1098  list<AsmParser> AssemblyParsers = [DefaultAsmParser];
1099
1100  /// AssemblyParserVariants - The AsmParserVariant instances available for
1101  /// this target.
1102  list<AsmParserVariant> AssemblyParserVariants = [DefaultAsmParserVariant];
1103
1104  // AssemblyWriters - The AsmWriter instances available for this target.
1105  list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
1106}
1107
1108//===----------------------------------------------------------------------===//
1109// SubtargetFeature - A characteristic of the chip set.
1110//
1111class SubtargetFeature<string n, string a,  string v, string d,
1112                       list<SubtargetFeature> i = []> {
1113  // Name - Feature name.  Used by command line (-mattr=) to determine the
1114  // appropriate target chip.
1115  //
1116  string Name = n;
1117
1118  // Attribute - Attribute to be set by feature.
1119  //
1120  string Attribute = a;
1121
1122  // Value - Value the attribute to be set to by feature.
1123  //
1124  string Value = v;
1125
1126  // Desc - Feature description.  Used by command line (-mattr=) to display help
1127  // information.
1128  //
1129  string Desc = d;
1130
1131  // Implies - Features that this feature implies are present. If one of those
1132  // features isn't set, then this one shouldn't be set either.
1133  //
1134  list<SubtargetFeature> Implies = i;
1135}
1136
1137/// Specifies a Subtarget feature that this instruction is deprecated on.
1138class Deprecated<SubtargetFeature dep> {
1139  SubtargetFeature DeprecatedFeatureMask = dep;
1140}
1141
1142/// A custom predicate used to determine if an instruction is
1143/// deprecated or not.
1144class ComplexDeprecationPredicate<string dep> {
1145  string ComplexDeprecationPredicate = dep;
1146}
1147
1148//===----------------------------------------------------------------------===//
1149// Processor chip sets - These values represent each of the chip sets supported
1150// by the scheduler.  Each Processor definition requires corresponding
1151// instruction itineraries.
1152//
1153class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f> {
1154  // Name - Chip set name.  Used by command line (-mcpu=) to determine the
1155  // appropriate target chip.
1156  //
1157  string Name = n;
1158
1159  // SchedModel - The machine model for scheduling and instruction cost.
1160  //
1161  SchedMachineModel SchedModel = NoSchedModel;
1162
1163  // ProcItin - The scheduling information for the target processor.
1164  //
1165  ProcessorItineraries ProcItin = pi;
1166
1167  // Features - list of
1168  list<SubtargetFeature> Features = f;
1169}
1170
1171// ProcessorModel allows subtargets to specify the more general
1172// SchedMachineModel instead if a ProcessorItinerary. Subtargets will
1173// gradually move to this newer form.
1174//
1175// Although this class always passes NoItineraries to the Processor
1176// class, the SchedMachineModel may still define valid Itineraries.
1177class ProcessorModel<string n, SchedMachineModel m, list<SubtargetFeature> f>
1178  : Processor<n, NoItineraries, f> {
1179  let SchedModel = m;
1180}
1181
1182//===----------------------------------------------------------------------===//
1183// InstrMapping - This class is used to create mapping tables to relate
1184// instructions with each other based on the values specified in RowFields,
1185// ColFields, KeyCol and ValueCols.
1186//
1187class InstrMapping {
1188  // FilterClass - Used to limit search space only to the instructions that
1189  // define the relationship modeled by this InstrMapping record.
1190  string FilterClass;
1191
1192  // RowFields - List of fields/attributes that should be same for all the
1193  // instructions in a row of the relation table. Think of this as a set of
1194  // properties shared by all the instructions related by this relationship
1195  // model and is used to categorize instructions into subgroups. For instance,
1196  // if we want to define a relation that maps 'Add' instruction to its
1197  // predicated forms, we can define RowFields like this:
1198  //
1199  // let RowFields = BaseOp
1200  // All add instruction predicated/non-predicated will have to set their BaseOp
1201  // to the same value.
1202  //
1203  // def Add: { let BaseOp = 'ADD'; let predSense = 'nopred' }
1204  // def Add_predtrue: { let BaseOp = 'ADD'; let predSense = 'true' }
1205  // def Add_predfalse: { let BaseOp = 'ADD'; let predSense = 'false'  }
1206  list<string> RowFields = [];
1207
1208  // List of fields/attributes that are same for all the instructions
1209  // in a column of the relation table.
1210  // Ex: let ColFields = 'predSense' -- It means that the columns are arranged
1211  // based on the 'predSense' values. All the instruction in a specific
1212  // column have the same value and it is fixed for the column according
1213  // to the values set in 'ValueCols'.
1214  list<string> ColFields = [];
1215
1216  // Values for the fields/attributes listed in 'ColFields'.
1217  // Ex: let KeyCol = 'nopred' -- It means that the key instruction (instruction
1218  // that models this relation) should be non-predicated.
1219  // In the example above, 'Add' is the key instruction.
1220  list<string> KeyCol = [];
1221
1222  // List of values for the fields/attributes listed in 'ColFields', one for
1223  // each column in the relation table.
1224  //
1225  // Ex: let ValueCols = [['true'],['false']] -- It adds two columns in the
1226  // table. First column requires all the instructions to have predSense
1227  // set to 'true' and second column requires it to be 'false'.
1228  list<list<string> > ValueCols = [];
1229}
1230
1231//===----------------------------------------------------------------------===//
1232// Pull in the common support for calling conventions.
1233//
1234include "llvm/Target/TargetCallingConv.td"
1235
1236//===----------------------------------------------------------------------===//
1237// Pull in the common support for DAG isel generation.
1238//
1239include "llvm/Target/TargetSelectionDAG.td"
1240