TargetLowering.h revision 0b0cd9113af42c422c829563c3b12e6e52bd2d79
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/InlineAsm.h"
26#include "llvm/CodeGen/SelectionDAGNodes.h"
27#include "llvm/CodeGen/RuntimeLibcalls.h"
28#include "llvm/ADT/APFloat.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/SmallSet.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/CodeGen/DebugLoc.h"
33#include "llvm/Target/TargetMachine.h"
34#include <climits>
35#include <map>
36#include <vector>
37
38namespace llvm {
39  class AllocaInst;
40  class CallInst;
41  class Function;
42  class FastISel;
43  class MachineBasicBlock;
44  class MachineFunction;
45  class MachineFrameInfo;
46  class MachineInstr;
47  class MachineModuleInfo;
48  class DwarfWriter;
49  class SDNode;
50  class SDValue;
51  class SelectionDAG;
52  class TargetData;
53  class TargetMachine;
54  class TargetRegisterClass;
55  class TargetSubtarget;
56  class Value;
57
58  // FIXME: should this be here?
59  namespace TLSModel {
60    enum Model {
61      GeneralDynamic,
62      LocalDynamic,
63      InitialExec,
64      LocalExec
65    };
66  }
67  TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc);
68
69
70//===----------------------------------------------------------------------===//
71/// TargetLowering - This class defines information used to lower LLVM code to
72/// legal SelectionDAG operators that the target instruction selector can accept
73/// natively.
74///
75/// This class also defines callbacks that targets must implement to lower
76/// target-specific constructs to SelectionDAG operators.
77///
78class TargetLowering {
79public:
80  /// LegalizeAction - This enum indicates whether operations are valid for a
81  /// target, and if not, what action should be used to make them valid.
82  enum LegalizeAction {
83    Legal,      // The target natively supports this operation.
84    Promote,    // This operation should be executed in a larger type.
85    Expand,     // Try to expand this to other ops, otherwise use a libcall.
86    Custom      // Use the LowerOperation hook to implement custom lowering.
87  };
88
89  enum OutOfRangeShiftAmount {
90    Undefined,  // Oversized shift amounts are undefined (default).
91    Mask,       // Shift amounts are auto masked (anded) to value size.
92    Extend      // Oversized shift pulls in zeros or sign bits.
93  };
94
95  enum BooleanContent { // How the target represents true/false values.
96    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
97    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
98    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
99  };
100
101  enum SchedPreference {
102    SchedulingForLatency,          // Scheduling for shortest total latency.
103    SchedulingForRegPressure       // Scheduling for lowest register pressure.
104  };
105
106  explicit TargetLowering(TargetMachine &TM);
107  virtual ~TargetLowering();
108
109  TargetMachine &getTargetMachine() const { return TM; }
110  const TargetData *getTargetData() const { return TD; }
111
112  bool isBigEndian() const { return !IsLittleEndian; }
113  bool isLittleEndian() const { return IsLittleEndian; }
114  MVT getPointerTy() const { return PointerTy; }
115  MVT getShiftAmountTy() const { return ShiftAmountTy; }
116  OutOfRangeShiftAmount getShiftAmountFlavor() const {return ShiftAmtHandling; }
117
118  /// usesGlobalOffsetTable - Return true if this target uses a GOT for PIC
119  /// codegen.
120  bool usesGlobalOffsetTable() const { return UsesGlobalOffsetTable; }
121
122  /// isSelectExpensive - Return true if the select operation is expensive for
123  /// this target.
124  bool isSelectExpensive() const { return SelectIsExpensive; }
125
126  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
127  /// a sequence of several shifts, adds, and multiplies for this target.
128  bool isIntDivCheap() const { return IntDivIsCheap; }
129
130  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
131  /// srl/add/sra.
132  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
133
134  /// getSetCCResultType - Return the ValueType of the result of SETCC
135  /// operations.  Also used to obtain the target's preferred type for
136  /// the condition operand of SELECT and BRCOND nodes.  In the case of
137  /// BRCOND the argument passed is MVT::Other since there are no other
138  /// operands to get a type hint from.
139  virtual MVT getSetCCResultType(MVT VT) const;
140
141  /// getBooleanContents - For targets without i1 registers, this gives the
142  /// nature of the high-bits of boolean values held in types wider than i1.
143  /// "Boolean values" are special true/false values produced by nodes like
144  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
145  /// Not to be confused with general values promoted from i1.
146  BooleanContent getBooleanContents() const { return BooleanContents;}
147
148  /// getSchedulingPreference - Return target scheduling preference.
149  SchedPreference getSchedulingPreference() const {
150    return SchedPreferenceInfo;
151  }
152
153  /// getRegClassFor - Return the register class that should be used for the
154  /// specified value type.  This may only be called on legal types.
155  TargetRegisterClass *getRegClassFor(MVT VT) const {
156    assert((unsigned)VT.getSimpleVT() < array_lengthof(RegClassForVT));
157    TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT()];
158    assert(RC && "This value type is not natively supported!");
159    return RC;
160  }
161
162  /// isTypeLegal - Return true if the target has native support for the
163  /// specified value type.  This means that it has a register that directly
164  /// holds it without promotions or expansions.
165  bool isTypeLegal(MVT VT) const {
166    assert(!VT.isSimple() ||
167           (unsigned)VT.getSimpleVT() < array_lengthof(RegClassForVT));
168    return VT.isSimple() && RegClassForVT[VT.getSimpleVT()] != 0;
169  }
170
171  class ValueTypeActionImpl {
172    /// ValueTypeActions - This is a bitvector that contains two bits for each
173    /// value type, where the two bits correspond to the LegalizeAction enum.
174    /// This can be queried with "getTypeAction(VT)".
175    uint32_t ValueTypeActions[2];
176  public:
177    ValueTypeActionImpl() {
178      ValueTypeActions[0] = ValueTypeActions[1] = 0;
179    }
180    ValueTypeActionImpl(const ValueTypeActionImpl &RHS) {
181      ValueTypeActions[0] = RHS.ValueTypeActions[0];
182      ValueTypeActions[1] = RHS.ValueTypeActions[1];
183    }
184
185    LegalizeAction getTypeAction(MVT VT) const {
186      if (VT.isExtended()) {
187        if (VT.isVector()) {
188          return VT.isPow2VectorType() ? Expand : Promote;
189        }
190        if (VT.isInteger())
191          // First promote to a power-of-two size, then expand if necessary.
192          return VT == VT.getRoundIntegerType() ? Expand : Promote;
193        assert(0 && "Unsupported extended type!");
194        return Legal;
195      }
196      unsigned I = VT.getSimpleVT();
197      assert(I<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
198      return (LegalizeAction)((ValueTypeActions[I>>4] >> ((2*I) & 31)) & 3);
199    }
200    void setTypeAction(MVT VT, LegalizeAction Action) {
201      unsigned I = VT.getSimpleVT();
202      assert(I<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
203      ValueTypeActions[I>>4] |= Action << ((I*2) & 31);
204    }
205  };
206
207  const ValueTypeActionImpl &getValueTypeActions() const {
208    return ValueTypeActions;
209  }
210
211  /// getTypeAction - Return how we should legalize values of this type, either
212  /// it is already legal (return 'Legal') or we need to promote it to a larger
213  /// type (return 'Promote'), or we need to expand it into multiple registers
214  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
215  LegalizeAction getTypeAction(MVT VT) const {
216    return ValueTypeActions.getTypeAction(VT);
217  }
218
219  /// getTypeToTransformTo - For types supported by the target, this is an
220  /// identity function.  For types that must be promoted to larger types, this
221  /// returns the larger type to promote to.  For integer types that are larger
222  /// than the largest integer register, this contains one step in the expansion
223  /// to get to the smaller register. For illegal floating point types, this
224  /// returns the integer type to transform to.
225  MVT getTypeToTransformTo(MVT VT) const {
226    if (VT.isSimple()) {
227      assert((unsigned)VT.getSimpleVT() < array_lengthof(TransformToType));
228      MVT NVT = TransformToType[VT.getSimpleVT()];
229      assert(getTypeAction(NVT) != Promote &&
230             "Promote may not follow Expand or Promote");
231      return NVT;
232    }
233
234    if (VT.isVector()) {
235      MVT NVT = VT.getPow2VectorType();
236      if (NVT == VT) {
237        // Vector length is a power of 2 - split to half the size.
238        unsigned NumElts = VT.getVectorNumElements();
239        MVT EltVT = VT.getVectorElementType();
240        return (NumElts == 1) ? EltVT : MVT::getVectorVT(EltVT, NumElts / 2);
241      }
242      // Promote to a power of two size, avoiding multi-step promotion.
243      return getTypeAction(NVT) == Promote ? getTypeToTransformTo(NVT) : NVT;
244    } else if (VT.isInteger()) {
245      MVT NVT = VT.getRoundIntegerType();
246      if (NVT == VT)
247        // Size is a power of two - expand to half the size.
248        return MVT::getIntegerVT(VT.getSizeInBits() / 2);
249      else
250        // Promote to a power of two size, avoiding multi-step promotion.
251        return getTypeAction(NVT) == Promote ? getTypeToTransformTo(NVT) : NVT;
252    }
253    assert(0 && "Unsupported extended type!");
254    return MVT(); // Not reached
255  }
256
257  /// getTypeToExpandTo - For types supported by the target, this is an
258  /// identity function.  For types that must be expanded (i.e. integer types
259  /// that are larger than the largest integer register or illegal floating
260  /// point types), this returns the largest legal type it will be expanded to.
261  MVT getTypeToExpandTo(MVT VT) const {
262    assert(!VT.isVector());
263    while (true) {
264      switch (getTypeAction(VT)) {
265      case Legal:
266        return VT;
267      case Expand:
268        VT = getTypeToTransformTo(VT);
269        break;
270      default:
271        assert(false && "Type is not legal nor is it to be expanded!");
272        return VT;
273      }
274    }
275    return VT;
276  }
277
278  /// getVectorTypeBreakdown - Vector types are broken down into some number of
279  /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
280  /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
281  /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
282  ///
283  /// This method returns the number of registers needed, and the VT for each
284  /// register.  It also returns the VT and quantity of the intermediate values
285  /// before they are promoted/expanded.
286  ///
287  unsigned getVectorTypeBreakdown(MVT VT,
288                                  MVT &IntermediateVT,
289                                  unsigned &NumIntermediates,
290                                  MVT &RegisterVT) const;
291
292  /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
293  /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
294  /// this is the case, it returns true and store the intrinsic
295  /// information into the IntrinsicInfo that was passed to the function.
296  typedef struct IntrinsicInfo {
297    unsigned     opc;         // target opcode
298    MVT          memVT;       // memory VT
299    const Value* ptrVal;      // value representing memory location
300    int          offset;      // offset off of ptrVal
301    unsigned     align;       // alignment
302    bool         vol;         // is volatile?
303    bool         readMem;     // reads memory?
304    bool         writeMem;    // writes memory?
305  } IntrinisicInfo;
306
307  virtual bool getTgtMemIntrinsic(IntrinsicInfo& Info,
308                                  CallInst &I, unsigned Intrinsic) {
309    return false;
310  }
311
312  /// getWidenVectorType: given a vector type, returns the type to widen to
313  /// (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
314  /// If there is no vector type that we want to widen to, returns MVT::Other
315  /// When and were to widen is target dependent based on the cost of
316  /// scalarizing vs using the wider vector type.
317  virtual MVT getWidenVectorType(MVT VT) const;
318
319  typedef std::vector<APFloat>::const_iterator legal_fpimm_iterator;
320  legal_fpimm_iterator legal_fpimm_begin() const {
321    return LegalFPImmediates.begin();
322  }
323  legal_fpimm_iterator legal_fpimm_end() const {
324    return LegalFPImmediates.end();
325  }
326
327  /// isShuffleMaskLegal - Targets can use this to indicate that they only
328  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
329  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
330  /// are assumed to be legal.
331  virtual bool isShuffleMaskLegal(SDValue Mask, MVT VT) const {
332    return true;
333  }
334
335  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
336  /// used by Targets can use this to indicate if there is a suitable
337  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
338  /// pool entry.
339  virtual bool isVectorClearMaskLegal(const std::vector<SDValue> &BVOps,
340                                      MVT EVT,
341                                      SelectionDAG &DAG) const {
342    return false;
343  }
344
345  /// getOperationAction - Return how this operation should be treated: either
346  /// it is legal, needs to be promoted to a larger size, needs to be
347  /// expanded to some other code sequence, or the target has a custom expander
348  /// for it.
349  LegalizeAction getOperationAction(unsigned Op, MVT VT) const {
350    if (VT.isExtended()) return Expand;
351    assert(Op < array_lengthof(OpActions) &&
352           (unsigned)VT.getSimpleVT() < sizeof(OpActions[0])*4 &&
353           "Table isn't big enough!");
354    return (LegalizeAction)((OpActions[Op] >> (2*VT.getSimpleVT())) & 3);
355  }
356
357  /// isOperationLegalOrCustom - Return true if the specified operation is
358  /// legal on this target or can be made legal with custom lowering. This
359  /// is used to help guide high-level lowering decisions.
360  bool isOperationLegalOrCustom(unsigned Op, MVT VT) const {
361    return (VT == MVT::Other || isTypeLegal(VT)) &&
362      (getOperationAction(Op, VT) == Legal ||
363       getOperationAction(Op, VT) == Custom);
364  }
365
366  /// isOperationLegal - Return true if the specified operation is legal on this
367  /// target.
368  bool isOperationLegal(unsigned Op, MVT VT) const {
369    return (VT == MVT::Other || isTypeLegal(VT)) &&
370           getOperationAction(Op, VT) == Legal;
371  }
372
373  /// getLoadExtAction - Return how this load with extension should be treated:
374  /// either it is legal, needs to be promoted to a larger size, needs to be
375  /// expanded to some other code sequence, or the target has a custom expander
376  /// for it.
377  LegalizeAction getLoadExtAction(unsigned LType, MVT VT) const {
378    assert(LType < array_lengthof(LoadExtActions) &&
379           (unsigned)VT.getSimpleVT() < sizeof(LoadExtActions[0])*4 &&
380           "Table isn't big enough!");
381    return (LegalizeAction)((LoadExtActions[LType] >> (2*VT.getSimpleVT())) & 3);
382  }
383
384  /// isLoadExtLegal - Return true if the specified load with extension is legal
385  /// on this target.
386  bool isLoadExtLegal(unsigned LType, MVT VT) const {
387    return VT.isSimple() &&
388      (getLoadExtAction(LType, VT) == Legal ||
389       getLoadExtAction(LType, VT) == Custom);
390  }
391
392  /// getTruncStoreAction - Return how this store with truncation should be
393  /// treated: either it is legal, needs to be promoted to a larger size, needs
394  /// to be expanded to some other code sequence, or the target has a custom
395  /// expander for it.
396  LegalizeAction getTruncStoreAction(MVT ValVT,
397                                     MVT MemVT) const {
398    assert((unsigned)ValVT.getSimpleVT() < array_lengthof(TruncStoreActions) &&
399           (unsigned)MemVT.getSimpleVT() < sizeof(TruncStoreActions[0])*4 &&
400           "Table isn't big enough!");
401    return (LegalizeAction)((TruncStoreActions[ValVT.getSimpleVT()] >>
402                             (2*MemVT.getSimpleVT())) & 3);
403  }
404
405  /// isTruncStoreLegal - Return true if the specified store with truncation is
406  /// legal on this target.
407  bool isTruncStoreLegal(MVT ValVT, MVT MemVT) const {
408    return isTypeLegal(ValVT) && MemVT.isSimple() &&
409      (getTruncStoreAction(ValVT, MemVT) == Legal ||
410       getTruncStoreAction(ValVT, MemVT) == Custom);
411  }
412
413  /// getIndexedLoadAction - Return how the indexed load should be treated:
414  /// either it is legal, needs to be promoted to a larger size, needs to be
415  /// expanded to some other code sequence, or the target has a custom expander
416  /// for it.
417  LegalizeAction
418  getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
419    assert(IdxMode < array_lengthof(IndexedModeActions[0]) &&
420           (unsigned)VT.getSimpleVT() < sizeof(IndexedModeActions[0][0])*4 &&
421           "Table isn't big enough!");
422    return (LegalizeAction)((IndexedModeActions[0][IdxMode] >>
423                             (2*VT.getSimpleVT())) & 3);
424  }
425
426  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
427  /// on this target.
428  bool isIndexedLoadLegal(unsigned IdxMode, MVT VT) const {
429    return VT.isSimple() &&
430      (getIndexedLoadAction(IdxMode, VT) == Legal ||
431       getIndexedLoadAction(IdxMode, VT) == Custom);
432  }
433
434  /// getIndexedStoreAction - Return how the indexed store should be treated:
435  /// either it is legal, needs to be promoted to a larger size, needs to be
436  /// expanded to some other code sequence, or the target has a custom expander
437  /// for it.
438  LegalizeAction
439  getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
440    assert(IdxMode < array_lengthof(IndexedModeActions[1]) &&
441           (unsigned)VT.getSimpleVT() < sizeof(IndexedModeActions[1][0])*4 &&
442           "Table isn't big enough!");
443    return (LegalizeAction)((IndexedModeActions[1][IdxMode] >>
444                             (2*VT.getSimpleVT())) & 3);
445  }
446
447  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
448  /// on this target.
449  bool isIndexedStoreLegal(unsigned IdxMode, MVT VT) const {
450    return VT.isSimple() &&
451      (getIndexedStoreAction(IdxMode, VT) == Legal ||
452       getIndexedStoreAction(IdxMode, VT) == Custom);
453  }
454
455  /// getConvertAction - Return how the conversion should be treated:
456  /// either it is legal, needs to be promoted to a larger size, needs to be
457  /// expanded to some other code sequence, or the target has a custom expander
458  /// for it.
459  LegalizeAction
460  getConvertAction(MVT FromVT, MVT ToVT) const {
461    assert((unsigned)FromVT.getSimpleVT() < array_lengthof(ConvertActions) &&
462           (unsigned)ToVT.getSimpleVT() < sizeof(ConvertActions[0])*4 &&
463           "Table isn't big enough!");
464    return (LegalizeAction)((ConvertActions[FromVT.getSimpleVT()] >>
465                             (2*ToVT.getSimpleVT())) & 3);
466  }
467
468  /// isConvertLegal - Return true if the specified conversion is legal
469  /// on this target.
470  bool isConvertLegal(MVT FromVT, MVT ToVT) const {
471    return isTypeLegal(FromVT) && isTypeLegal(ToVT) &&
472      (getConvertAction(FromVT, ToVT) == Legal ||
473       getConvertAction(FromVT, ToVT) == Custom);
474  }
475
476  /// getCondCodeAction - Return how the condition code should be treated:
477  /// either it is legal, needs to be expanded to some other code sequence,
478  /// or the target has a custom expander for it.
479  LegalizeAction
480  getCondCodeAction(ISD::CondCode CC, MVT VT) const {
481    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
482           (unsigned)VT.getSimpleVT() < sizeof(CondCodeActions[0])*4 &&
483           "Table isn't big enough!");
484    LegalizeAction Action = (LegalizeAction)
485      ((CondCodeActions[CC] >> (2*VT.getSimpleVT())) & 3);
486    assert(Action != Promote && "Can't promote condition code!");
487    return Action;
488  }
489
490  /// isCondCodeLegal - Return true if the specified condition code is legal
491  /// on this target.
492  bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const {
493    return getCondCodeAction(CC, VT) == Legal ||
494           getCondCodeAction(CC, VT) == Custom;
495  }
496
497
498  /// getTypeToPromoteTo - If the action for this operation is to promote, this
499  /// method returns the ValueType to promote to.
500  MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
501    assert(getOperationAction(Op, VT) == Promote &&
502           "This operation isn't promoted!");
503
504    // See if this has an explicit type specified.
505    std::map<std::pair<unsigned, MVT::SimpleValueType>,
506             MVT::SimpleValueType>::const_iterator PTTI =
507      PromoteToType.find(std::make_pair(Op, VT.getSimpleVT()));
508    if (PTTI != PromoteToType.end()) return PTTI->second;
509
510    assert((VT.isInteger() || VT.isFloatingPoint()) &&
511           "Cannot autopromote this type, add it with AddPromotedToType.");
512
513    MVT NVT = VT;
514    do {
515      NVT = (MVT::SimpleValueType)(NVT.getSimpleVT()+1);
516      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
517             "Didn't find type to promote to!");
518    } while (!isTypeLegal(NVT) ||
519              getOperationAction(Op, NVT) == Promote);
520    return NVT;
521  }
522
523  /// getValueType - Return the MVT corresponding to this LLVM type.
524  /// This is fixed by the LLVM operations except for the pointer size.  If
525  /// AllowUnknown is true, this will return MVT::Other for types with no MVT
526  /// counterpart (e.g. structs), otherwise it will assert.
527  MVT getValueType(const Type *Ty, bool AllowUnknown = false) const {
528    MVT VT = MVT::getMVT(Ty, AllowUnknown);
529    return VT == MVT::iPTR ? PointerTy : VT;
530  }
531
532  /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
533  /// function arguments in the caller parameter area.  This is the actual
534  /// alignment, not its logarithm.
535  virtual unsigned getByValTypeAlignment(const Type *Ty) const;
536
537  /// getRegisterType - Return the type of registers that this ValueType will
538  /// eventually require.
539  MVT getRegisterType(MVT VT) const {
540    if (VT.isSimple()) {
541      assert((unsigned)VT.getSimpleVT() < array_lengthof(RegisterTypeForVT));
542      return RegisterTypeForVT[VT.getSimpleVT()];
543    }
544    if (VT.isVector()) {
545      MVT VT1, RegisterVT;
546      unsigned NumIntermediates;
547      (void)getVectorTypeBreakdown(VT, VT1, NumIntermediates, RegisterVT);
548      return RegisterVT;
549    }
550    if (VT.isInteger()) {
551      return getRegisterType(getTypeToTransformTo(VT));
552    }
553    assert(0 && "Unsupported extended type!");
554    return MVT(); // Not reached
555  }
556
557  /// getNumRegisters - Return the number of registers that this ValueType will
558  /// eventually require.  This is one for any types promoted to live in larger
559  /// registers, but may be more than one for types (like i64) that are split
560  /// into pieces.  For types like i140, which are first promoted then expanded,
561  /// it is the number of registers needed to hold all the bits of the original
562  /// type.  For an i140 on a 32 bit machine this means 5 registers.
563  unsigned getNumRegisters(MVT VT) const {
564    if (VT.isSimple()) {
565      assert((unsigned)VT.getSimpleVT() < array_lengthof(NumRegistersForVT));
566      return NumRegistersForVT[VT.getSimpleVT()];
567    }
568    if (VT.isVector()) {
569      MVT VT1, VT2;
570      unsigned NumIntermediates;
571      return getVectorTypeBreakdown(VT, VT1, NumIntermediates, VT2);
572    }
573    if (VT.isInteger()) {
574      unsigned BitWidth = VT.getSizeInBits();
575      unsigned RegWidth = getRegisterType(VT).getSizeInBits();
576      return (BitWidth + RegWidth - 1) / RegWidth;
577    }
578    assert(0 && "Unsupported extended type!");
579    return 0; // Not reached
580  }
581
582  /// ShouldShrinkFPConstant - If true, then instruction selection should
583  /// seek to shrink the FP constant of the specified type to a smaller type
584  /// in order to save space and / or reduce runtime.
585  virtual bool ShouldShrinkFPConstant(MVT VT) const { return true; }
586
587  /// hasTargetDAGCombine - If true, the target has custom DAG combine
588  /// transformations that it can perform for the specified node.
589  bool hasTargetDAGCombine(ISD::NodeType NT) const {
590    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
591    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
592  }
593
594  /// This function returns the maximum number of store operations permitted
595  /// to replace a call to llvm.memset. The value is set by the target at the
596  /// performance threshold for such a replacement.
597  /// @brief Get maximum # of store operations permitted for llvm.memset
598  unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; }
599
600  /// This function returns the maximum number of store operations permitted
601  /// to replace a call to llvm.memcpy. The value is set by the target at the
602  /// performance threshold for such a replacement.
603  /// @brief Get maximum # of store operations permitted for llvm.memcpy
604  unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; }
605
606  /// This function returns the maximum number of store operations permitted
607  /// to replace a call to llvm.memmove. The value is set by the target at the
608  /// performance threshold for such a replacement.
609  /// @brief Get maximum # of store operations permitted for llvm.memmove
610  unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; }
611
612  /// This function returns true if the target allows unaligned memory accesses.
613  /// This is used, for example, in situations where an array copy/move/set is
614  /// converted to a sequence of store operations. It's use helps to ensure that
615  /// such replacements don't generate code that causes an alignment error
616  /// (trap) on the target machine.
617  /// @brief Determine if the target supports unaligned memory accesses.
618  bool allowsUnalignedMemoryAccesses() const {
619    return allowUnalignedMemoryAccesses;
620  }
621
622  /// getOptimalMemOpType - Returns the target specific optimal type for load
623  /// and store operations as a result of memset, memcpy, and memmove lowering.
624  /// It returns MVT::iAny if SelectionDAG should be responsible for
625  /// determining it.
626  virtual MVT getOptimalMemOpType(uint64_t Size, unsigned Align,
627                                  bool isSrcConst, bool isSrcStr) const {
628    return MVT::iAny;
629  }
630
631  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
632  /// to implement llvm.setjmp.
633  bool usesUnderscoreSetJmp() const {
634    return UseUnderscoreSetJmp;
635  }
636
637  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
638  /// to implement llvm.longjmp.
639  bool usesUnderscoreLongJmp() const {
640    return UseUnderscoreLongJmp;
641  }
642
643  /// getStackPointerRegisterToSaveRestore - If a physical register, this
644  /// specifies the register that llvm.savestack/llvm.restorestack should save
645  /// and restore.
646  unsigned getStackPointerRegisterToSaveRestore() const {
647    return StackPointerRegisterToSaveRestore;
648  }
649
650  /// getExceptionAddressRegister - If a physical register, this returns
651  /// the register that receives the exception address on entry to a landing
652  /// pad.
653  unsigned getExceptionAddressRegister() const {
654    return ExceptionPointerRegister;
655  }
656
657  /// getExceptionSelectorRegister - If a physical register, this returns
658  /// the register that receives the exception typeid on entry to a landing
659  /// pad.
660  unsigned getExceptionSelectorRegister() const {
661    return ExceptionSelectorRegister;
662  }
663
664  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
665  /// set, the default is 200)
666  unsigned getJumpBufSize() const {
667    return JumpBufSize;
668  }
669
670  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
671  /// (if never set, the default is 0)
672  unsigned getJumpBufAlignment() const {
673    return JumpBufAlignment;
674  }
675
676  /// getIfCvtBlockLimit - returns the target specific if-conversion block size
677  /// limit. Any block whose size is greater should not be predicated.
678  unsigned getIfCvtBlockSizeLimit() const {
679    return IfCvtBlockSizeLimit;
680  }
681
682  /// getIfCvtDupBlockLimit - returns the target specific size limit for a
683  /// block to be considered for duplication. Any block whose size is greater
684  /// should not be duplicated to facilitate its predication.
685  unsigned getIfCvtDupBlockSizeLimit() const {
686    return IfCvtDupBlockSizeLimit;
687  }
688
689  /// getPrefLoopAlignment - return the preferred loop alignment.
690  ///
691  unsigned getPrefLoopAlignment() const {
692    return PrefLoopAlignment;
693  }
694
695  /// getPreIndexedAddressParts - returns true by value, base pointer and
696  /// offset pointer and addressing mode by reference if the node's address
697  /// can be legally represented as pre-indexed load / store address.
698  virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
699                                         SDValue &Offset,
700                                         ISD::MemIndexedMode &AM,
701                                         SelectionDAG &DAG) const {
702    return false;
703  }
704
705  /// getPostIndexedAddressParts - returns true by value, base pointer and
706  /// offset pointer and addressing mode by reference if this node can be
707  /// combined with a load / store to form a post-indexed load / store.
708  virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
709                                          SDValue &Base, SDValue &Offset,
710                                          ISD::MemIndexedMode &AM,
711                                          SelectionDAG &DAG) const {
712    return false;
713  }
714
715  /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
716  /// jumptable.
717  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
718                                             SelectionDAG &DAG) const;
719
720  /// isOffsetFoldingLegal - Return true if folding a constant offset
721  /// with the given GlobalAddress is legal.  It is frequently not legal in
722  /// PIC relocation models.
723  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
724
725  //===--------------------------------------------------------------------===//
726  // TargetLowering Optimization Methods
727  //
728
729  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
730  /// SDValues for returning information from TargetLowering to its clients
731  /// that want to combine
732  struct TargetLoweringOpt {
733    SelectionDAG &DAG;
734    SDValue Old;
735    SDValue New;
736
737    explicit TargetLoweringOpt(SelectionDAG &InDAG) : DAG(InDAG) {}
738
739    bool CombineTo(SDValue O, SDValue N) {
740      Old = O;
741      New = N;
742      return true;
743    }
744
745    /// ShrinkDemandedConstant - Check to see if the specified operand of the
746    /// specified instruction is a constant integer.  If so, check to see if
747    /// there are any bits set in the constant that are not demanded.  If so,
748    /// shrink the constant and return true.
749    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
750  };
751
752  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
753  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
754  /// use this information to simplify Op, create a new simplified DAG node and
755  /// return true, returning the original and new nodes in Old and New.
756  /// Otherwise, analyze the expression and return a mask of KnownOne and
757  /// KnownZero bits for the expression (used to simplify the caller).
758  /// The KnownZero/One bits may only be accurate for those bits in the
759  /// DemandedMask.
760  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
761                            APInt &KnownZero, APInt &KnownOne,
762                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
763
764  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
765  /// Mask are known to be either zero or one and return them in the
766  /// KnownZero/KnownOne bitsets.
767  virtual void computeMaskedBitsForTargetNode(const SDValue Op,
768                                              const APInt &Mask,
769                                              APInt &KnownZero,
770                                              APInt &KnownOne,
771                                              const SelectionDAG &DAG,
772                                              unsigned Depth = 0) const;
773
774  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
775  /// targets that want to expose additional information about sign bits to the
776  /// DAG Combiner.
777  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
778                                                   unsigned Depth = 0) const;
779
780  struct DAGCombinerInfo {
781    void *DC;  // The DAG Combiner object.
782    bool BeforeLegalize;
783    bool CalledByLegalizer;
784  public:
785    SelectionDAG &DAG;
786
787    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool cl, void *dc)
788      : DC(dc), BeforeLegalize(bl), CalledByLegalizer(cl), DAG(dag) {}
789
790    bool isBeforeLegalize() const { return BeforeLegalize; }
791    bool isCalledByLegalizer() const { return CalledByLegalizer; }
792
793    void AddToWorklist(SDNode *N);
794    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
795                      bool AddTo = true);
796    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
797    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
798
799    void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
800  };
801
802  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
803  /// and cc. If it is unable to simplify it, return a null SDValue.
804  SDValue SimplifySetCC(MVT VT, SDValue N0, SDValue N1,
805                          ISD::CondCode Cond, bool foldBooleans,
806                          DAGCombinerInfo &DCI, DebugLoc dl) const;
807
808  /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
809  /// node is a GlobalAddress + offset.
810  virtual bool
811  isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) const;
812
813  /// isConsecutiveLoad - Return true if LD (which must be a LoadSDNode) is
814  /// loading 'Bytes' bytes from a location that is 'Dist' units away from the
815  /// location that the 'Base' load is loading from.
816  bool isConsecutiveLoad(SDNode *LD, SDNode *Base, unsigned Bytes, int Dist,
817                         const MachineFrameInfo *MFI) const;
818
819  /// PerformDAGCombine - This method will be invoked for all target nodes and
820  /// for any target-independent nodes that the target has registered with
821  /// invoke it for.
822  ///
823  /// The semantics are as follows:
824  /// Return Value:
825  ///   SDValue.Val == 0   - No change was made
826  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
827  ///   otherwise          - N should be replaced by the returned Operand.
828  ///
829  /// In addition, methods provided by DAGCombinerInfo may be used to perform
830  /// more complex transformations.
831  ///
832  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
833
834  //===--------------------------------------------------------------------===//
835  // TargetLowering Configuration Methods - These methods should be invoked by
836  // the derived class constructor to configure this object for the target.
837  //
838
839protected:
840  /// setUsesGlobalOffsetTable - Specify that this target does or doesn't use a
841  /// GOT for PC-relative code.
842  void setUsesGlobalOffsetTable(bool V) { UsesGlobalOffsetTable = V; }
843
844  /// setShiftAmountType - Describe the type that should be used for shift
845  /// amounts.  This type defaults to the pointer type.
846  void setShiftAmountType(MVT VT) { ShiftAmountTy = VT; }
847
848  /// setBooleanContents - Specify how the target extends the result of a
849  /// boolean value from i1 to a wider type.  See getBooleanContents.
850  void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
851
852  /// setSchedulingPreference - Specify the target scheduling preference.
853  void setSchedulingPreference(SchedPreference Pref) {
854    SchedPreferenceInfo = Pref;
855  }
856
857  /// setShiftAmountFlavor - Describe how the target handles out of range shift
858  /// amounts.
859  void setShiftAmountFlavor(OutOfRangeShiftAmount OORSA) {
860    ShiftAmtHandling = OORSA;
861  }
862
863  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
864  /// use _setjmp to implement llvm.setjmp or the non _ version.
865  /// Defaults to false.
866  void setUseUnderscoreSetJmp(bool Val) {
867    UseUnderscoreSetJmp = Val;
868  }
869
870  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
871  /// use _longjmp to implement llvm.longjmp or the non _ version.
872  /// Defaults to false.
873  void setUseUnderscoreLongJmp(bool Val) {
874    UseUnderscoreLongJmp = Val;
875  }
876
877  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
878  /// specifies the register that llvm.savestack/llvm.restorestack should save
879  /// and restore.
880  void setStackPointerRegisterToSaveRestore(unsigned R) {
881    StackPointerRegisterToSaveRestore = R;
882  }
883
884  /// setExceptionPointerRegister - If set to a physical register, this sets
885  /// the register that receives the exception address on entry to a landing
886  /// pad.
887  void setExceptionPointerRegister(unsigned R) {
888    ExceptionPointerRegister = R;
889  }
890
891  /// setExceptionSelectorRegister - If set to a physical register, this sets
892  /// the register that receives the exception typeid on entry to a landing
893  /// pad.
894  void setExceptionSelectorRegister(unsigned R) {
895    ExceptionSelectorRegister = R;
896  }
897
898  /// SelectIsExpensive - Tells the code generator not to expand operations
899  /// into sequences that use the select operations if possible.
900  void setSelectIsExpensive() { SelectIsExpensive = true; }
901
902  /// setIntDivIsCheap - Tells the code generator that integer divide is
903  /// expensive, and if possible, should be replaced by an alternate sequence
904  /// of instructions not containing an integer divide.
905  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
906
907  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
908  /// srl/add/sra for a signed divide by power of two, and let the target handle
909  /// it.
910  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
911
912  /// addRegisterClass - Add the specified register class as an available
913  /// regclass for the specified value type.  This indicates the selector can
914  /// handle values of that class natively.
915  void addRegisterClass(MVT VT, TargetRegisterClass *RC) {
916    assert((unsigned)VT.getSimpleVT() < array_lengthof(RegClassForVT));
917    AvailableRegClasses.push_back(std::make_pair(VT, RC));
918    RegClassForVT[VT.getSimpleVT()] = RC;
919  }
920
921  /// computeRegisterProperties - Once all of the register classes are added,
922  /// this allows us to compute derived properties we expose.
923  void computeRegisterProperties();
924
925  /// setOperationAction - Indicate that the specified operation does not work
926  /// with the specified type and indicate what to do about it.
927  void setOperationAction(unsigned Op, MVT VT,
928                          LegalizeAction Action) {
929    assert((unsigned)VT.getSimpleVT() < sizeof(OpActions[0])*4 &&
930           Op < array_lengthof(OpActions) && "Table isn't big enough!");
931    OpActions[Op] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2);
932    OpActions[Op] |= (uint64_t)Action << VT.getSimpleVT()*2;
933  }
934
935  /// setLoadExtAction - Indicate that the specified load with extension does
936  /// not work with the with specified type and indicate what to do about it.
937  void setLoadExtAction(unsigned ExtType, MVT VT,
938                      LegalizeAction Action) {
939    assert((unsigned)VT.getSimpleVT() < sizeof(LoadExtActions[0])*4 &&
940           ExtType < array_lengthof(LoadExtActions) &&
941           "Table isn't big enough!");
942    LoadExtActions[ExtType] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2);
943    LoadExtActions[ExtType] |= (uint64_t)Action << VT.getSimpleVT()*2;
944  }
945
946  /// setTruncStoreAction - Indicate that the specified truncating store does
947  /// not work with the with specified type and indicate what to do about it.
948  void setTruncStoreAction(MVT ValVT, MVT MemVT,
949                           LegalizeAction Action) {
950    assert((unsigned)ValVT.getSimpleVT() < array_lengthof(TruncStoreActions) &&
951           (unsigned)MemVT.getSimpleVT() < sizeof(TruncStoreActions[0])*4 &&
952           "Table isn't big enough!");
953    TruncStoreActions[ValVT.getSimpleVT()] &= ~(uint64_t(3UL) <<
954                                                MemVT.getSimpleVT()*2);
955    TruncStoreActions[ValVT.getSimpleVT()] |= (uint64_t)Action <<
956      MemVT.getSimpleVT()*2;
957  }
958
959  /// setIndexedLoadAction - Indicate that the specified indexed load does or
960  /// does not work with the with specified type and indicate what to do abort
961  /// it. NOTE: All indexed mode loads are initialized to Expand in
962  /// TargetLowering.cpp
963  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
964                            LegalizeAction Action) {
965    assert((unsigned)VT.getSimpleVT() < sizeof(IndexedModeActions[0])*4 &&
966           IdxMode < array_lengthof(IndexedModeActions[0]) &&
967           "Table isn't big enough!");
968    IndexedModeActions[0][IdxMode] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2);
969    IndexedModeActions[0][IdxMode] |= (uint64_t)Action << VT.getSimpleVT()*2;
970  }
971
972  /// setIndexedStoreAction - Indicate that the specified indexed store does or
973  /// does not work with the with specified type and indicate what to do about
974  /// it. NOTE: All indexed mode stores are initialized to Expand in
975  /// TargetLowering.cpp
976  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
977                             LegalizeAction Action) {
978    assert((unsigned)VT.getSimpleVT() < sizeof(IndexedModeActions[1][0])*4 &&
979           IdxMode < array_lengthof(IndexedModeActions[1]) &&
980           "Table isn't big enough!");
981    IndexedModeActions[1][IdxMode] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2);
982    IndexedModeActions[1][IdxMode] |= (uint64_t)Action << VT.getSimpleVT()*2;
983  }
984
985  /// setConvertAction - Indicate that the specified conversion does or does
986  /// not work with the with specified type and indicate what to do about it.
987  void setConvertAction(MVT FromVT, MVT ToVT,
988                        LegalizeAction Action) {
989    assert((unsigned)FromVT.getSimpleVT() < array_lengthof(ConvertActions) &&
990           (unsigned)ToVT.getSimpleVT() < sizeof(ConvertActions[0])*4 &&
991           "Table isn't big enough!");
992    ConvertActions[FromVT.getSimpleVT()] &= ~(uint64_t(3UL) <<
993                                              ToVT.getSimpleVT()*2);
994    ConvertActions[FromVT.getSimpleVT()] |= (uint64_t)Action <<
995      ToVT.getSimpleVT()*2;
996  }
997
998  /// setCondCodeAction - Indicate that the specified condition code is or isn't
999  /// supported on the target and indicate what to do about it.
1000  void setCondCodeAction(ISD::CondCode CC, MVT VT, LegalizeAction Action) {
1001    assert((unsigned)VT.getSimpleVT() < sizeof(CondCodeActions[0])*4 &&
1002           (unsigned)CC < array_lengthof(CondCodeActions) &&
1003           "Table isn't big enough!");
1004    CondCodeActions[(unsigned)CC] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2);
1005    CondCodeActions[(unsigned)CC] |= (uint64_t)Action << VT.getSimpleVT()*2;
1006  }
1007
1008  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
1009  /// promotion code defaults to trying a larger integer/fp until it can find
1010  /// one that works.  If that default is insufficient, this method can be used
1011  /// by the target to override the default.
1012  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1013    PromoteToType[std::make_pair(Opc, OrigVT.getSimpleVT())] =
1014      DestVT.getSimpleVT();
1015  }
1016
1017  /// addLegalFPImmediate - Indicate that this target can instruction select
1018  /// the specified FP immediate natively.
1019  void addLegalFPImmediate(const APFloat& Imm) {
1020    LegalFPImmediates.push_back(Imm);
1021  }
1022
1023  /// setTargetDAGCombine - Targets should invoke this method for each target
1024  /// independent node that they want to provide a custom DAG combiner for by
1025  /// implementing the PerformDAGCombine virtual method.
1026  void setTargetDAGCombine(ISD::NodeType NT) {
1027    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1028    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1029  }
1030
1031  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
1032  /// bytes); default is 200
1033  void setJumpBufSize(unsigned Size) {
1034    JumpBufSize = Size;
1035  }
1036
1037  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
1038  /// alignment (in bytes); default is 0
1039  void setJumpBufAlignment(unsigned Align) {
1040    JumpBufAlignment = Align;
1041  }
1042
1043  /// setIfCvtBlockSizeLimit - Set the target's if-conversion block size
1044  /// limit (in number of instructions); default is 2.
1045  void setIfCvtBlockSizeLimit(unsigned Limit) {
1046    IfCvtBlockSizeLimit = Limit;
1047  }
1048
1049  /// setIfCvtDupBlockSizeLimit - Set the target's block size limit (in number
1050  /// of instructions) to be considered for code duplication during
1051  /// if-conversion; default is 2.
1052  void setIfCvtDupBlockSizeLimit(unsigned Limit) {
1053    IfCvtDupBlockSizeLimit = Limit;
1054  }
1055
1056  /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
1057  /// alignment is zero, it means the target does not care about loop alignment.
1058  void setPrefLoopAlignment(unsigned Align) {
1059    PrefLoopAlignment = Align;
1060  }
1061
1062public:
1063
1064  virtual const TargetSubtarget *getSubtarget() {
1065    assert(0 && "Not Implemented");
1066    return NULL;    // this is here to silence compiler errors
1067  }
1068  //===--------------------------------------------------------------------===//
1069  // Lowering methods - These methods must be implemented by targets so that
1070  // the SelectionDAGLowering code knows how to lower these.
1071  //
1072
1073  /// LowerArguments - This hook must be implemented to indicate how we should
1074  /// lower the arguments for the specified function, into the specified DAG.
1075  virtual void
1076  LowerArguments(Function &F, SelectionDAG &DAG,
1077                 SmallVectorImpl<SDValue>& ArgValues, DebugLoc dl);
1078
1079  /// LowerCallTo - This hook lowers an abstract call to a function into an
1080  /// actual call.  This returns a pair of operands.  The first element is the
1081  /// return value for the function (if RetTy is not VoidTy).  The second
1082  /// element is the outgoing token chain.
1083  struct ArgListEntry {
1084    SDValue Node;
1085    const Type* Ty;
1086    bool isSExt  : 1;
1087    bool isZExt  : 1;
1088    bool isInReg : 1;
1089    bool isSRet  : 1;
1090    bool isNest  : 1;
1091    bool isByVal : 1;
1092    uint16_t Alignment;
1093
1094    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
1095      isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
1096  };
1097  typedef std::vector<ArgListEntry> ArgListTy;
1098  virtual std::pair<SDValue, SDValue>
1099  LowerCallTo(SDValue Chain, const Type *RetTy, bool RetSExt, bool RetZExt,
1100              bool isVarArg, bool isInreg, unsigned CallingConv,
1101              bool isTailCall, SDValue Callee, ArgListTy &Args,
1102              SelectionDAG &DAG, DebugLoc dl);
1103
1104  /// EmitTargetCodeForMemcpy - Emit target-specific code that performs a
1105  /// memcpy. This can be used by targets to provide code sequences for cases
1106  /// that don't fit the target's parameters for simple loads/stores and can be
1107  /// more efficient than using a library call. This function can return a null
1108  /// SDValue if the target declines to use custom code and a different
1109  /// lowering strategy should be used.
1110  ///
1111  /// If AlwaysInline is true, the size is constant and the target should not
1112  /// emit any calls and is strongly encouraged to attempt to emit inline code
1113  /// even if it is beyond the usual threshold because this intrinsic is being
1114  /// expanded in a place where calls are not feasible (e.g. within the prologue
1115  /// for another call). If the target chooses to decline an AlwaysInline
1116  /// request here, legalize will resort to using simple loads and stores.
1117  virtual SDValue
1118  EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
1119                          SDValue Chain,
1120                          SDValue Op1, SDValue Op2,
1121                          SDValue Op3, unsigned Align,
1122                          bool AlwaysInline,
1123                          const Value *DstSV, uint64_t DstOff,
1124                          const Value *SrcSV, uint64_t SrcOff) {
1125    return SDValue();
1126  }
1127
1128  /// EmitTargetCodeForMemmove - Emit target-specific code that performs a
1129  /// memmove. This can be used by targets to provide code sequences for cases
1130  /// that don't fit the target's parameters for simple loads/stores and can be
1131  /// more efficient than using a library call. This function can return a null
1132  /// SDValue if the target declines to use custom code and a different
1133  /// lowering strategy should be used.
1134  virtual SDValue
1135  EmitTargetCodeForMemmove(SelectionDAG &DAG, DebugLoc dl,
1136                           SDValue Chain,
1137                           SDValue Op1, SDValue Op2,
1138                           SDValue Op3, unsigned Align,
1139                           const Value *DstSV, uint64_t DstOff,
1140                           const Value *SrcSV, uint64_t SrcOff) {
1141    return SDValue();
1142  }
1143
1144  /// EmitTargetCodeForMemset - Emit target-specific code that performs a
1145  /// memset. This can be used by targets to provide code sequences for cases
1146  /// that don't fit the target's parameters for simple stores and can be more
1147  /// efficient than using a library call. This function can return a null
1148  /// SDValue if the target declines to use custom code and a different
1149  /// lowering strategy should be used.
1150  virtual SDValue
1151  EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
1152                          SDValue Chain,
1153                          SDValue Op1, SDValue Op2,
1154                          SDValue Op3, unsigned Align,
1155                          const Value *DstSV, uint64_t DstOff) {
1156    return SDValue();
1157  }
1158
1159  /// LowerOperationWrapper - This callback is invoked by the type legalizer
1160  /// to legalize nodes with an illegal operand type but legal result types.
1161  /// It replaces the LowerOperation callback in the type Legalizer.
1162  /// The reason we can not do away with LowerOperation entirely is that
1163  /// LegalizeDAG isn't yet ready to use this callback.
1164  /// TODO: Consider merging with ReplaceNodeResults.
1165
1166  /// The target places new result values for the node in Results (their number
1167  /// and types must exactly match those of the original return values of
1168  /// the node), or leaves Results empty, which indicates that the node is not
1169  /// to be custom lowered after all.
1170  /// The default implementation calls LowerOperation.
1171  virtual void LowerOperationWrapper(SDNode *N,
1172                                     SmallVectorImpl<SDValue> &Results,
1173                                     SelectionDAG &DAG);
1174
1175  /// LowerOperation - This callback is invoked for operations that are
1176  /// unsupported by the target, which are registered to use 'custom' lowering,
1177  /// and whose defined values are all legal.
1178  /// If the target has no operations that require custom lowering, it need not
1179  /// implement this.  The default implementation of this aborts.
1180  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG);
1181
1182  /// ReplaceNodeResults - This callback is invoked when a node result type is
1183  /// illegal for the target, and the operation was registered to use 'custom'
1184  /// lowering for that result type.  The target places new result values for
1185  /// the node in Results (their number and types must exactly match those of
1186  /// the original return values of the node), or leaves Results empty, which
1187  /// indicates that the node is not to be custom lowered after all.
1188  ///
1189  /// If the target has no operations that require custom lowering, it need not
1190  /// implement this.  The default implementation aborts.
1191  virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
1192                                  SelectionDAG &DAG) {
1193    assert(0 && "ReplaceNodeResults not implemented for this target!");
1194  }
1195
1196  /// IsEligibleForTailCallOptimization - Check whether the call is eligible for
1197  /// tail call optimization. Targets which want to do tail call optimization
1198  /// should override this function.
1199  virtual bool IsEligibleForTailCallOptimization(CallSDNode *Call,
1200                                                 SDValue Ret,
1201                                                 SelectionDAG &DAG) const {
1202    return false;
1203  }
1204
1205  /// CheckTailCallReturnConstraints - Check whether CALL node immediatly
1206  /// preceeds the RET node and whether the return uses the result of the node
1207  /// or is a void return. This function can be used by the target to determine
1208  /// eligiblity of tail call optimization.
1209  static bool CheckTailCallReturnConstraints(CallSDNode *TheCall, SDValue Ret) {
1210    unsigned NumOps = Ret.getNumOperands();
1211    if ((NumOps == 1 &&
1212       (Ret.getOperand(0) == SDValue(TheCall,1) ||
1213        Ret.getOperand(0) == SDValue(TheCall,0))) ||
1214      (NumOps > 1 &&
1215       Ret.getOperand(0) == SDValue(TheCall,
1216                                    TheCall->getNumValues()-1) &&
1217       Ret.getOperand(1) == SDValue(TheCall,0)))
1218      return true;
1219    return false;
1220  }
1221
1222  /// GetPossiblePreceedingTailCall - Get preceeding TailCallNodeOpCode node if
1223  /// it exists. Skip a possible ISD::TokenFactor.
1224  static SDValue GetPossiblePreceedingTailCall(SDValue Chain,
1225                                                 unsigned TailCallNodeOpCode) {
1226    if (Chain.getOpcode() == TailCallNodeOpCode) {
1227      return Chain;
1228    } else if (Chain.getOpcode() == ISD::TokenFactor) {
1229      if (Chain.getNumOperands() &&
1230          Chain.getOperand(0).getOpcode() == TailCallNodeOpCode)
1231        return Chain.getOperand(0);
1232    }
1233    return Chain;
1234  }
1235
1236  /// getTargetNodeName() - This method returns the name of a target specific
1237  /// DAG node.
1238  virtual const char *getTargetNodeName(unsigned Opcode) const;
1239
1240  /// createFastISel - This method returns a target specific FastISel object,
1241  /// or null if the target does not support "fast" ISel.
1242  virtual FastISel *
1243  createFastISel(MachineFunction &,
1244                 MachineModuleInfo *, DwarfWriter *,
1245                 DenseMap<const Value *, unsigned> &,
1246                 DenseMap<const BasicBlock *, MachineBasicBlock *> &,
1247                 DenseMap<const AllocaInst *, int> &
1248#ifndef NDEBUG
1249                 , SmallSet<Instruction*, 8> &CatchInfoLost
1250#endif
1251                 ) {
1252    return 0;
1253  }
1254
1255  //===--------------------------------------------------------------------===//
1256  // Inline Asm Support hooks
1257  //
1258
1259  enum ConstraintType {
1260    C_Register,            // Constraint represents specific register(s).
1261    C_RegisterClass,       // Constraint represents any of register(s) in class.
1262    C_Memory,              // Memory constraint.
1263    C_Other,               // Something else.
1264    C_Unknown              // Unsupported constraint.
1265  };
1266
1267  /// AsmOperandInfo - This contains information for each constraint that we are
1268  /// lowering.
1269  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
1270    /// ConstraintCode - This contains the actual string for the code, like "m".
1271    /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
1272    /// most closely matches the operand.
1273    std::string ConstraintCode;
1274
1275    /// ConstraintType - Information about the constraint code, e.g. Register,
1276    /// RegisterClass, Memory, Other, Unknown.
1277    TargetLowering::ConstraintType ConstraintType;
1278
1279    /// CallOperandval - If this is the result output operand or a
1280    /// clobber, this is null, otherwise it is the incoming operand to the
1281    /// CallInst.  This gets modified as the asm is processed.
1282    Value *CallOperandVal;
1283
1284    /// ConstraintVT - The ValueType for the operand value.
1285    MVT ConstraintVT;
1286
1287    /// isMatchingInputConstraint - Return true of this is an input operand that
1288    /// is a matching constraint like "4".
1289    bool isMatchingInputConstraint() const;
1290
1291    /// getMatchedOperand - If this is an input matching constraint, this method
1292    /// returns the output operand it matches.
1293    unsigned getMatchedOperand() const;
1294
1295    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
1296      : InlineAsm::ConstraintInfo(info),
1297        ConstraintType(TargetLowering::C_Unknown),
1298        CallOperandVal(0), ConstraintVT(MVT::Other) {
1299    }
1300  };
1301
1302  /// ComputeConstraintToUse - Determines the constraint code and constraint
1303  /// type to use for the specific AsmOperandInfo, setting
1304  /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
1305  /// being passed in is available, it can be passed in as Op, otherwise an
1306  /// empty SDValue can be passed. If hasMemory is true it means one of the asm
1307  /// constraint of the inline asm instruction being processed is 'm'.
1308  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1309                                      SDValue Op,
1310                                      bool hasMemory,
1311                                      SelectionDAG *DAG = 0) const;
1312
1313  /// getConstraintType - Given a constraint, return the type of constraint it
1314  /// is for this target.
1315  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
1316
1317  /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
1318  /// return a list of registers that can be used to satisfy the constraint.
1319  /// This should only be used for C_RegisterClass constraints.
1320  virtual std::vector<unsigned>
1321  getRegClassForInlineAsmConstraint(const std::string &Constraint,
1322                                    MVT VT) const;
1323
1324  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
1325  /// {edx}), return the register number and the register class for the
1326  /// register.
1327  ///
1328  /// Given a register class constraint, like 'r', if this corresponds directly
1329  /// to an LLVM register class, return a register of 0 and the register class
1330  /// pointer.
1331  ///
1332  /// This should only be used for C_Register constraints.  On error,
1333  /// this returns a register number of 0 and a null register class pointer..
1334  virtual std::pair<unsigned, const TargetRegisterClass*>
1335    getRegForInlineAsmConstraint(const std::string &Constraint,
1336                                 MVT VT) const;
1337
1338  /// LowerXConstraint - try to replace an X constraint, which matches anything,
1339  /// with another that has more specific requirements based on the type of the
1340  /// corresponding operand.  This returns null if there is no replacement to
1341  /// make.
1342  virtual const char *LowerXConstraint(MVT ConstraintVT) const;
1343
1344  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1345  /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is true
1346  /// it means one of the asm constraint of the inline asm instruction being
1347  /// processed is 'm'.
1348  virtual void LowerAsmOperandForConstraint(SDValue Op, char ConstraintLetter,
1349                                            bool hasMemory,
1350                                            std::vector<SDValue> &Ops,
1351                                            SelectionDAG &DAG) const;
1352
1353  //===--------------------------------------------------------------------===//
1354  // Scheduler hooks
1355  //
1356
1357  // EmitInstrWithCustomInserter - This method should be implemented by targets
1358  // that mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
1359  // instructions are special in various ways, which require special support to
1360  // insert.  The specified MachineInstr is created but not inserted into any
1361  // basic blocks, and the scheduler passes ownership of it to this method.
1362  virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
1363                                                  MachineBasicBlock *MBB) const;
1364
1365  //===--------------------------------------------------------------------===//
1366  // Addressing mode description hooks (used by LSR etc).
1367  //
1368
1369  /// AddrMode - This represents an addressing mode of:
1370  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1371  /// If BaseGV is null,  there is no BaseGV.
1372  /// If BaseOffs is zero, there is no base offset.
1373  /// If HasBaseReg is false, there is no base register.
1374  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1375  /// no scale.
1376  ///
1377  struct AddrMode {
1378    GlobalValue *BaseGV;
1379    int64_t      BaseOffs;
1380    bool         HasBaseReg;
1381    int64_t      Scale;
1382    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1383  };
1384
1385  /// isLegalAddressingMode - Return true if the addressing mode represented by
1386  /// AM is legal for this target, for a load/store of the specified type.
1387  /// TODO: Handle pre/postinc as well.
1388  virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const;
1389
1390  /// isTruncateFree - Return true if it's free to truncate a value of
1391  /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1392  /// register EAX to i16 by referencing its sub-register AX.
1393  virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const {
1394    return false;
1395  }
1396
1397  virtual bool isTruncateFree(MVT VT1, MVT VT2) const {
1398    return false;
1399  }
1400
1401  //===--------------------------------------------------------------------===//
1402  // Div utility functions
1403  //
1404  SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG,
1405                      std::vector<SDNode*>* Created) const;
1406  SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG,
1407                      std::vector<SDNode*>* Created) const;
1408
1409
1410  //===--------------------------------------------------------------------===//
1411  // Runtime Library hooks
1412  //
1413
1414  /// setLibcallName - Rename the default libcall routine name for the specified
1415  /// libcall.
1416  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1417    LibcallRoutineNames[Call] = Name;
1418  }
1419
1420  /// getLibcallName - Get the libcall routine name for the specified libcall.
1421  ///
1422  const char *getLibcallName(RTLIB::Libcall Call) const {
1423    return LibcallRoutineNames[Call];
1424  }
1425
1426  /// setCmpLibcallCC - Override the default CondCode to be used to test the
1427  /// result of the comparison libcall against zero.
1428  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1429    CmpLibcallCCs[Call] = CC;
1430  }
1431
1432  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1433  /// the comparison libcall against zero.
1434  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1435    return CmpLibcallCCs[Call];
1436  }
1437
1438private:
1439  TargetMachine &TM;
1440  const TargetData *TD;
1441
1442  /// PointerTy - The type to use for pointers, usually i32 or i64.
1443  ///
1444  MVT PointerTy;
1445
1446  /// IsLittleEndian - True if this is a little endian target.
1447  ///
1448  bool IsLittleEndian;
1449
1450  /// UsesGlobalOffsetTable - True if this target uses a GOT for PIC codegen.
1451  ///
1452  bool UsesGlobalOffsetTable;
1453
1454  /// SelectIsExpensive - Tells the code generator not to expand operations
1455  /// into sequences that use the select operations if possible.
1456  bool SelectIsExpensive;
1457
1458  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1459  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1460  /// a real cost model is in place.  If we ever optimize for size, this will be
1461  /// set to true unconditionally.
1462  bool IntDivIsCheap;
1463
1464  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1465  /// srl/add/sra for a signed divide by power of two, and let the target handle
1466  /// it.
1467  bool Pow2DivIsCheap;
1468
1469  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1470  /// llvm.setjmp.  Defaults to false.
1471  bool UseUnderscoreSetJmp;
1472
1473  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1474  /// llvm.longjmp.  Defaults to false.
1475  bool UseUnderscoreLongJmp;
1476
1477  /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
1478  /// PointerTy is.
1479  MVT ShiftAmountTy;
1480
1481  OutOfRangeShiftAmount ShiftAmtHandling;
1482
1483  /// BooleanContents - Information about the contents of the high-bits in
1484  /// boolean values held in a type wider than i1.  See getBooleanContents.
1485  BooleanContent BooleanContents;
1486
1487  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1488  /// total cycles or lowest register usage.
1489  SchedPreference SchedPreferenceInfo;
1490
1491  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1492  unsigned JumpBufSize;
1493
1494  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1495  /// buffers
1496  unsigned JumpBufAlignment;
1497
1498  /// IfCvtBlockSizeLimit - The maximum allowed size for a block to be
1499  /// if-converted.
1500  unsigned IfCvtBlockSizeLimit;
1501
1502  /// IfCvtDupBlockSizeLimit - The maximum allowed size for a block to be
1503  /// duplicated during if-conversion.
1504  unsigned IfCvtDupBlockSizeLimit;
1505
1506  /// PrefLoopAlignment - The perferred loop alignment.
1507  ///
1508  unsigned PrefLoopAlignment;
1509
1510  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1511  /// specifies the register that llvm.savestack/llvm.restorestack should save
1512  /// and restore.
1513  unsigned StackPointerRegisterToSaveRestore;
1514
1515  /// ExceptionPointerRegister - If set to a physical register, this specifies
1516  /// the register that receives the exception address on entry to a landing
1517  /// pad.
1518  unsigned ExceptionPointerRegister;
1519
1520  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1521  /// the register that receives the exception typeid on entry to a landing
1522  /// pad.
1523  unsigned ExceptionSelectorRegister;
1524
1525  /// RegClassForVT - This indicates the default register class to use for
1526  /// each ValueType the target supports natively.
1527  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1528  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1529  MVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1530
1531  /// TransformToType - For any value types we are promoting or expanding, this
1532  /// contains the value type that we are changing to.  For Expanded types, this
1533  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1534  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1535  /// by the system, this holds the same type (e.g. i32 -> i32).
1536  MVT TransformToType[MVT::LAST_VALUETYPE];
1537
1538  /// OpActions - For each operation and each value type, keep a LegalizeAction
1539  /// that indicates how instruction selection should deal with the operation.
1540  /// Most operations are Legal (aka, supported natively by the target), but
1541  /// operations that are not should be described.  Note that operations on
1542  /// non-legal value types are not described here.
1543  uint64_t OpActions[ISD::BUILTIN_OP_END];
1544
1545  /// LoadExtActions - For each load of load extension type and each value type,
1546  /// keep a LegalizeAction that indicates how instruction selection should deal
1547  /// with the load.
1548  uint64_t LoadExtActions[ISD::LAST_LOADEXT_TYPE];
1549
1550  /// TruncStoreActions - For each truncating store, keep a LegalizeAction that
1551  /// indicates how instruction selection should deal with the store.
1552  uint64_t TruncStoreActions[MVT::LAST_VALUETYPE];
1553
1554  /// IndexedModeActions - For each indexed mode and each value type, keep a
1555  /// pair of LegalizeAction that indicates how instruction selection should
1556  /// deal with the load / store.
1557  uint64_t IndexedModeActions[2][ISD::LAST_INDEXED_MODE];
1558
1559  /// ConvertActions - For each conversion from source type to destination type,
1560  /// keep a LegalizeAction that indicates how instruction selection should
1561  /// deal with the conversion.
1562  /// Currently, this is used only for floating->floating conversions
1563  /// (FP_EXTEND and FP_ROUND).
1564  uint64_t ConvertActions[MVT::LAST_VALUETYPE];
1565
1566  /// CondCodeActions - For each condition code (ISD::CondCode) keep a
1567  /// LegalizeAction that indicates how instruction selection should
1568  /// deal with the condition code.
1569  uint64_t CondCodeActions[ISD::SETCC_INVALID];
1570
1571  ValueTypeActionImpl ValueTypeActions;
1572
1573  std::vector<APFloat> LegalFPImmediates;
1574
1575  std::vector<std::pair<MVT, TargetRegisterClass*> > AvailableRegClasses;
1576
1577  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
1578  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
1579  /// which sets a bit in this array.
1580  unsigned char
1581  TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
1582
1583  /// PromoteToType - For operations that must be promoted to a specific type,
1584  /// this holds the destination type.  This map should be sparse, so don't hold
1585  /// it as an array.
1586  ///
1587  /// Targets add entries to this map with AddPromotedToType(..), clients access
1588  /// this with getTypeToPromoteTo(..).
1589  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
1590    PromoteToType;
1591
1592  /// LibcallRoutineNames - Stores the name each libcall.
1593  ///
1594  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1595
1596  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
1597  /// of each of the comparison libcall against zero.
1598  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1599
1600protected:
1601  /// When lowering \@llvm.memset this field specifies the maximum number of
1602  /// store operations that may be substituted for the call to memset. Targets
1603  /// must set this value based on the cost threshold for that target. Targets
1604  /// should assume that the memset will be done using as many of the largest
1605  /// store operations first, followed by smaller ones, if necessary, per
1606  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1607  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1608  /// store.  This only applies to setting a constant array of a constant size.
1609  /// @brief Specify maximum number of store instructions per memset call.
1610  unsigned maxStoresPerMemset;
1611
1612  /// When lowering \@llvm.memcpy this field specifies the maximum number of
1613  /// store operations that may be substituted for a call to memcpy. Targets
1614  /// must set this value based on the cost threshold for that target. Targets
1615  /// should assume that the memcpy will be done using as many of the largest
1616  /// store operations first, followed by smaller ones, if necessary, per
1617  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1618  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1619  /// and one 1-byte store. This only applies to copying a constant array of
1620  /// constant size.
1621  /// @brief Specify maximum bytes of store instructions per memcpy call.
1622  unsigned maxStoresPerMemcpy;
1623
1624  /// When lowering \@llvm.memmove this field specifies the maximum number of
1625  /// store instructions that may be substituted for a call to memmove. Targets
1626  /// must set this value based on the cost threshold for that target. Targets
1627  /// should assume that the memmove will be done using as many of the largest
1628  /// store operations first, followed by smaller ones, if necessary, per
1629  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1630  /// with 8-bit alignment would result in nine 1-byte stores.  This only
1631  /// applies to copying a constant array of constant size.
1632  /// @brief Specify maximum bytes of store instructions per memmove call.
1633  unsigned maxStoresPerMemmove;
1634
1635  /// This field specifies whether the target machine permits unaligned memory
1636  /// accesses.  This is used, for example, to determine the size of store
1637  /// operations when copying small arrays and other similar tasks.
1638  /// @brief Indicate whether the target permits unaligned memory accesses.
1639  bool allowUnalignedMemoryAccesses;
1640};
1641} // end llvm namespace
1642
1643#endif
1644