TargetLowering.h revision 1203486d92bb1f9a82533ff0a4572d5a23fb5f9a
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/CallingConv.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Attributes.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/CodeGen/SelectionDAGNodes.h"
30#include "llvm/CodeGen/RuntimeLibcalls.h"
31#include "llvm/Support/DebugLoc.h"
32#include "llvm/Target/TargetCallingConv.h"
33#include "llvm/Target/TargetMachine.h"
34#include <climits>
35#include <map>
36#include <vector>
37
38namespace llvm {
39  class AllocaInst;
40  class APFloat;
41  class CallInst;
42  class CCState;
43  class Function;
44  class FastISel;
45  class FunctionLoweringInfo;
46  class ImmutableCallSite;
47  class MachineBasicBlock;
48  class MachineFunction;
49  class MachineFrameInfo;
50  class MachineInstr;
51  class MachineJumpTableInfo;
52  class MCContext;
53  class MCExpr;
54  class SDNode;
55  class SDValue;
56  class SelectionDAG;
57  template<typename T> class SmallVectorImpl;
58  class TargetData;
59  class TargetMachine;
60  class TargetRegisterClass;
61  class TargetLoweringObjectFile;
62  class Value;
63
64  // FIXME: should this be here?
65  namespace TLSModel {
66    enum Model {
67      GeneralDynamic,
68      LocalDynamic,
69      InitialExec,
70      LocalExec
71    };
72  }
73  TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc);
74
75
76//===----------------------------------------------------------------------===//
77/// TargetLowering - This class defines information used to lower LLVM code to
78/// legal SelectionDAG operators that the target instruction selector can accept
79/// natively.
80///
81/// This class also defines callbacks that targets must implement to lower
82/// target-specific constructs to SelectionDAG operators.
83///
84class TargetLowering {
85  TargetLowering(const TargetLowering&);  // DO NOT IMPLEMENT
86  void operator=(const TargetLowering&);  // DO NOT IMPLEMENT
87public:
88  /// LegalizeAction - This enum indicates whether operations are valid for a
89  /// target, and if not, what action should be used to make them valid.
90  enum LegalizeAction {
91    Legal,      // The target natively supports this operation.
92    Promote,    // This operation should be executed in a larger type.
93    Expand,     // Try to expand this to other ops, otherwise use a libcall.
94    Custom      // Use the LowerOperation hook to implement custom lowering.
95  };
96
97  /// LegalizeAction - This enum indicates whether a types are legal for a
98  /// target, and if not, what action should be used to make them valid.
99  enum LegalizeTypeAction {
100    TypeLegal,           // The target natively supports this type.
101    TypePromoteInteger,  // Replace this integer with a larger one.
102    TypeExpandInteger,   // Split this integer into two of half the size.
103    TypeSoftenFloat,     // Convert this float to a same size integer type.
104    TypeExpandFloat,     // Split this float into two of half the size.
105    TypeScalarizeVector, // Replace this one-element vector with its element.
106    TypeSplitVector,     // Split this vector into two of half the size.
107    TypeWidenVector      // This vector should be widened into a larger vector.
108  };
109
110  enum BooleanContent { // How the target represents true/false values.
111    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
112    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
113    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
114  };
115
116  /// NOTE: The constructor takes ownership of TLOF.
117  explicit TargetLowering(const TargetMachine &TM,
118                          const TargetLoweringObjectFile *TLOF);
119  virtual ~TargetLowering();
120
121  const TargetMachine &getTargetMachine() const { return TM; }
122  const TargetData *getTargetData() const { return TD; }
123  const TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
124
125  bool isBigEndian() const { return !IsLittleEndian; }
126  bool isLittleEndian() const { return IsLittleEndian; }
127  MVT getPointerTy() const { return PointerTy; }
128  virtual MVT getShiftAmountTy(EVT LHSTy) const;
129
130  /// isSelectExpensive - Return true if the select operation is expensive for
131  /// this target.
132  bool isSelectExpensive() const { return SelectIsExpensive; }
133
134  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
135  /// a sequence of several shifts, adds, and multiplies for this target.
136  bool isIntDivCheap() const { return IntDivIsCheap; }
137
138  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
139  /// srl/add/sra.
140  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
141
142  /// isJumpExpensive() - Return true if Flow Control is an expensive operation
143  /// that should be avoided.
144  bool isJumpExpensive() const { return JumpIsExpensive; }
145
146  /// getSetCCResultType - Return the ValueType of the result of SETCC
147  /// operations.  Also used to obtain the target's preferred type for
148  /// the condition operand of SELECT and BRCOND nodes.  In the case of
149  /// BRCOND the argument passed is MVT::Other since there are no other
150  /// operands to get a type hint from.
151  virtual
152  MVT::SimpleValueType getSetCCResultType(EVT VT) const;
153
154  /// getCmpLibcallReturnType - Return the ValueType for comparison
155  /// libcalls. Comparions libcalls include floating point comparion calls,
156  /// and Ordered/Unordered check calls on floating point numbers.
157  virtual
158  MVT::SimpleValueType getCmpLibcallReturnType() const;
159
160  /// getBooleanContents - For targets without i1 registers, this gives the
161  /// nature of the high-bits of boolean values held in types wider than i1.
162  /// "Boolean values" are special true/false values produced by nodes like
163  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
164  /// Not to be confused with general values promoted from i1.
165  BooleanContent getBooleanContents() const { return BooleanContents;}
166
167  /// getSchedulingPreference - Return target scheduling preference.
168  Sched::Preference getSchedulingPreference() const {
169    return SchedPreferenceInfo;
170  }
171
172  /// getSchedulingPreference - Some scheduler, e.g. hybrid, can switch to
173  /// different scheduling heuristics for different nodes. This function returns
174  /// the preference (or none) for the given node.
175  virtual Sched::Preference getSchedulingPreference(SDNode *N) const {
176    return Sched::None;
177  }
178
179  /// getRegClassFor - Return the register class that should be used for the
180  /// specified value type.
181  virtual TargetRegisterClass *getRegClassFor(EVT VT) const {
182    assert(VT.isSimple() && "getRegClassFor called on illegal type!");
183    TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
184    assert(RC && "This value type is not natively supported!");
185    return RC;
186  }
187
188  /// getRepRegClassFor - Return the 'representative' register class for the
189  /// specified value type. The 'representative' register class is the largest
190  /// legal super-reg register class for the register class of the value type.
191  /// For example, on i386 the rep register class for i8, i16, and i32 are GR32;
192  /// while the rep register class is GR64 on x86_64.
193  virtual const TargetRegisterClass *getRepRegClassFor(EVT VT) const {
194    assert(VT.isSimple() && "getRepRegClassFor called on illegal type!");
195    const TargetRegisterClass *RC = RepRegClassForVT[VT.getSimpleVT().SimpleTy];
196    return RC;
197  }
198
199  /// getRepRegClassCostFor - Return the cost of the 'representative' register
200  /// class for the specified value type.
201  virtual uint8_t getRepRegClassCostFor(EVT VT) const {
202    assert(VT.isSimple() && "getRepRegClassCostFor called on illegal type!");
203    return RepRegClassCostForVT[VT.getSimpleVT().SimpleTy];
204  }
205
206  /// isTypeLegal - Return true if the target has native support for the
207  /// specified value type.  This means that it has a register that directly
208  /// holds it without promotions or expansions.
209  bool isTypeLegal(EVT VT) const {
210    assert(!VT.isSimple() ||
211           (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
212    return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0;
213  }
214
215  class ValueTypeActionImpl {
216    /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
217    /// that indicates how instruction selection should deal with the type.
218    uint8_t ValueTypeActions[MVT::LAST_VALUETYPE];
219
220  public:
221    ValueTypeActionImpl() {
222      std::fill(ValueTypeActions, array_endof(ValueTypeActions), 0);
223    }
224
225    LegalizeTypeAction getTypeAction(MVT VT) const {
226      return (LegalizeTypeAction)ValueTypeActions[VT.SimpleTy];
227    }
228
229    void setTypeAction(EVT VT, LegalizeTypeAction Action) {
230      unsigned I = VT.getSimpleVT().SimpleTy;
231      ValueTypeActions[I] = Action;
232    }
233  };
234
235  const ValueTypeActionImpl &getValueTypeActions() const {
236    return ValueTypeActions;
237  }
238
239  /// getTypeAction - Return how we should legalize values of this type, either
240  /// it is already legal (return 'Legal') or we need to promote it to a larger
241  /// type (return 'Promote'), or we need to expand it into multiple registers
242  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
243  LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
244    return getTypeConversion(Context, VT).first;
245  }
246  LegalizeTypeAction getTypeAction(MVT VT) const {
247    return ValueTypeActions.getTypeAction(VT);
248  }
249
250  /// getTypeToTransformTo - For types supported by the target, this is an
251  /// identity function.  For types that must be promoted to larger types, this
252  /// returns the larger type to promote to.  For integer types that are larger
253  /// than the largest integer register, this contains one step in the expansion
254  /// to get to the smaller register. For illegal floating point types, this
255  /// returns the integer type to transform to.
256  EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
257    return getTypeConversion(Context, VT).second;
258  }
259
260  /// getTypeToExpandTo - For types supported by the target, this is an
261  /// identity function.  For types that must be expanded (i.e. integer types
262  /// that are larger than the largest integer register or illegal floating
263  /// point types), this returns the largest legal type it will be expanded to.
264  EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
265    assert(!VT.isVector());
266    while (true) {
267      switch (getTypeAction(Context, VT)) {
268      case TypeLegal:
269        return VT;
270      case TypeExpandInteger:
271        VT = getTypeToTransformTo(Context, VT);
272        break;
273      default:
274        assert(false && "Type is not legal nor is it to be expanded!");
275        return VT;
276      }
277    }
278    return VT;
279  }
280
281  /// getVectorTypeBreakdown - Vector types are broken down into some number of
282  /// legal first class types.  For example, EVT::v8f32 maps to 2 EVT::v4f32
283  /// with Altivec or SSE1, or 8 promoted EVT::f64 values with the X86 FP stack.
284  /// Similarly, EVT::v2i64 turns into 4 EVT::i32 values with both PPC and X86.
285  ///
286  /// This method returns the number of registers needed, and the VT for each
287  /// register.  It also returns the VT and quantity of the intermediate values
288  /// before they are promoted/expanded.
289  ///
290  unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
291                                  EVT &IntermediateVT,
292                                  unsigned &NumIntermediates,
293                                  EVT &RegisterVT) const;
294
295  /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
296  /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
297  /// this is the case, it returns true and store the intrinsic
298  /// information into the IntrinsicInfo that was passed to the function.
299  struct IntrinsicInfo {
300    unsigned     opc;         // target opcode
301    EVT          memVT;       // memory VT
302    const Value* ptrVal;      // value representing memory location
303    int          offset;      // offset off of ptrVal
304    unsigned     align;       // alignment
305    bool         vol;         // is volatile?
306    bool         readMem;     // reads memory?
307    bool         writeMem;    // writes memory?
308  };
309
310  virtual bool getTgtMemIntrinsic(IntrinsicInfo &Info,
311                                  const CallInst &I, unsigned Intrinsic) const {
312    return false;
313  }
314
315  /// isFPImmLegal - Returns true if the target can instruction select the
316  /// specified FP immediate natively. If false, the legalizer will materialize
317  /// the FP immediate as a load from a constant pool.
318  virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const {
319    return false;
320  }
321
322  /// isShuffleMaskLegal - Targets can use this to indicate that they only
323  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
324  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
325  /// are assumed to be legal.
326  virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
327                                  EVT VT) const {
328    return true;
329  }
330
331  /// canOpTrap - Returns true if the operation can trap for the value type.
332  /// VT must be a legal type. By default, we optimistically assume most
333  /// operations don't trap except for divide and remainder.
334  virtual bool canOpTrap(unsigned Op, EVT VT) const;
335
336  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
337  /// used by Targets can use this to indicate if there is a suitable
338  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
339  /// pool entry.
340  virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
341                                      EVT VT) const {
342    return false;
343  }
344
345  /// getOperationAction - Return how this operation should be treated: either
346  /// it is legal, needs to be promoted to a larger size, needs to be
347  /// expanded to some other code sequence, or the target has a custom expander
348  /// for it.
349  LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
350    if (VT.isExtended()) return Expand;
351    assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
352    unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
353    return (LegalizeAction)OpActions[I][Op];
354  }
355
356  /// isOperationLegalOrCustom - Return true if the specified operation is
357  /// legal on this target or can be made legal with custom lowering. This
358  /// is used to help guide high-level lowering decisions.
359  bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
360    return (VT == MVT::Other || isTypeLegal(VT)) &&
361      (getOperationAction(Op, VT) == Legal ||
362       getOperationAction(Op, VT) == Custom);
363  }
364
365  /// isOperationLegal - Return true if the specified operation is legal on this
366  /// target.
367  bool isOperationLegal(unsigned Op, EVT VT) const {
368    return (VT == MVT::Other || isTypeLegal(VT)) &&
369           getOperationAction(Op, VT) == Legal;
370  }
371
372  /// getLoadExtAction - Return how this load with extension should be treated:
373  /// either it is legal, needs to be promoted to a larger size, needs to be
374  /// expanded to some other code sequence, or the target has a custom expander
375  /// for it.
376  LegalizeAction getLoadExtAction(unsigned ExtType, EVT VT) const {
377    assert(ExtType < ISD::LAST_LOADEXT_TYPE &&
378           VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
379           "Table isn't big enough!");
380    return (LegalizeAction)LoadExtActions[VT.getSimpleVT().SimpleTy][ExtType];
381  }
382
383  /// isLoadExtLegal - Return true if the specified load with extension is legal
384  /// on this target.
385  bool isLoadExtLegal(unsigned ExtType, EVT VT) const {
386    return VT.isSimple() && getLoadExtAction(ExtType, VT) == Legal;
387  }
388
389  /// getTruncStoreAction - Return how this store with truncation should be
390  /// treated: either it is legal, needs to be promoted to a larger size, needs
391  /// to be expanded to some other code sequence, or the target has a custom
392  /// expander for it.
393  LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const {
394    assert(ValVT.getSimpleVT() < MVT::LAST_VALUETYPE &&
395           MemVT.getSimpleVT() < MVT::LAST_VALUETYPE &&
396           "Table isn't big enough!");
397    return (LegalizeAction)TruncStoreActions[ValVT.getSimpleVT().SimpleTy]
398                                            [MemVT.getSimpleVT().SimpleTy];
399  }
400
401  /// isTruncStoreLegal - Return true if the specified store with truncation is
402  /// legal on this target.
403  bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
404    return isTypeLegal(ValVT) && MemVT.isSimple() &&
405           getTruncStoreAction(ValVT, MemVT) == Legal;
406  }
407
408  /// getIndexedLoadAction - Return how the indexed load should be treated:
409  /// either it is legal, needs to be promoted to a larger size, needs to be
410  /// expanded to some other code sequence, or the target has a custom expander
411  /// for it.
412  LegalizeAction
413  getIndexedLoadAction(unsigned IdxMode, EVT VT) const {
414    assert(IdxMode < ISD::LAST_INDEXED_MODE &&
415           VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
416           "Table isn't big enough!");
417    unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
418    return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
419  }
420
421  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
422  /// on this target.
423  bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
424    return VT.isSimple() &&
425      (getIndexedLoadAction(IdxMode, VT) == Legal ||
426       getIndexedLoadAction(IdxMode, VT) == Custom);
427  }
428
429  /// getIndexedStoreAction - Return how the indexed store should be treated:
430  /// either it is legal, needs to be promoted to a larger size, needs to be
431  /// expanded to some other code sequence, or the target has a custom expander
432  /// for it.
433  LegalizeAction
434  getIndexedStoreAction(unsigned IdxMode, EVT VT) const {
435    assert(IdxMode < ISD::LAST_INDEXED_MODE &&
436           VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
437           "Table isn't big enough!");
438    unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
439    return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
440  }
441
442  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
443  /// on this target.
444  bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
445    return VT.isSimple() &&
446      (getIndexedStoreAction(IdxMode, VT) == Legal ||
447       getIndexedStoreAction(IdxMode, VT) == Custom);
448  }
449
450  /// getCondCodeAction - Return how the condition code should be treated:
451  /// either it is legal, needs to be expanded to some other code sequence,
452  /// or the target has a custom expander for it.
453  LegalizeAction
454  getCondCodeAction(ISD::CondCode CC, EVT VT) const {
455    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
456           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(CondCodeActions[0])*4 &&
457           "Table isn't big enough!");
458    LegalizeAction Action = (LegalizeAction)
459      ((CondCodeActions[CC] >> (2*VT.getSimpleVT().SimpleTy)) & 3);
460    assert(Action != Promote && "Can't promote condition code!");
461    return Action;
462  }
463
464  /// isCondCodeLegal - Return true if the specified condition code is legal
465  /// on this target.
466  bool isCondCodeLegal(ISD::CondCode CC, EVT VT) const {
467    return getCondCodeAction(CC, VT) == Legal ||
468           getCondCodeAction(CC, VT) == Custom;
469  }
470
471
472  /// getTypeToPromoteTo - If the action for this operation is to promote, this
473  /// method returns the ValueType to promote to.
474  EVT getTypeToPromoteTo(unsigned Op, EVT VT) const {
475    assert(getOperationAction(Op, VT) == Promote &&
476           "This operation isn't promoted!");
477
478    // See if this has an explicit type specified.
479    std::map<std::pair<unsigned, MVT::SimpleValueType>,
480             MVT::SimpleValueType>::const_iterator PTTI =
481      PromoteToType.find(std::make_pair(Op, VT.getSimpleVT().SimpleTy));
482    if (PTTI != PromoteToType.end()) return PTTI->second;
483
484    assert((VT.isInteger() || VT.isFloatingPoint()) &&
485           "Cannot autopromote this type, add it with AddPromotedToType.");
486
487    EVT NVT = VT;
488    do {
489      NVT = (MVT::SimpleValueType)(NVT.getSimpleVT().SimpleTy+1);
490      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
491             "Didn't find type to promote to!");
492    } while (!isTypeLegal(NVT) ||
493              getOperationAction(Op, NVT) == Promote);
494    return NVT;
495  }
496
497  /// getValueType - Return the EVT corresponding to this LLVM type.
498  /// This is fixed by the LLVM operations except for the pointer size.  If
499  /// AllowUnknown is true, this will return MVT::Other for types with no EVT
500  /// counterpart (e.g. structs), otherwise it will assert.
501  EVT getValueType(Type *Ty, bool AllowUnknown = false) const {
502    EVT VT = EVT::getEVT(Ty, AllowUnknown);
503    return VT == MVT::iPTR ? PointerTy : VT;
504  }
505
506  /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
507  /// function arguments in the caller parameter area.  This is the actual
508  /// alignment, not its logarithm.
509  virtual unsigned getByValTypeAlignment(Type *Ty) const;
510
511  /// getRegisterType - Return the type of registers that this ValueType will
512  /// eventually require.
513  EVT getRegisterType(MVT VT) const {
514    assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
515    return RegisterTypeForVT[VT.SimpleTy];
516  }
517
518  /// getRegisterType - Return the type of registers that this ValueType will
519  /// eventually require.
520  EVT getRegisterType(LLVMContext &Context, EVT VT) const {
521    if (VT.isSimple()) {
522      assert((unsigned)VT.getSimpleVT().SimpleTy <
523                array_lengthof(RegisterTypeForVT));
524      return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
525    }
526    if (VT.isVector()) {
527      EVT VT1, RegisterVT;
528      unsigned NumIntermediates;
529      (void)getVectorTypeBreakdown(Context, VT, VT1,
530                                   NumIntermediates, RegisterVT);
531      return RegisterVT;
532    }
533    if (VT.isInteger()) {
534      return getRegisterType(Context, getTypeToTransformTo(Context, VT));
535    }
536    assert(0 && "Unsupported extended type!");
537    return EVT(MVT::Other); // Not reached
538  }
539
540  /// getNumRegisters - Return the number of registers that this ValueType will
541  /// eventually require.  This is one for any types promoted to live in larger
542  /// registers, but may be more than one for types (like i64) that are split
543  /// into pieces.  For types like i140, which are first promoted then expanded,
544  /// it is the number of registers needed to hold all the bits of the original
545  /// type.  For an i140 on a 32 bit machine this means 5 registers.
546  unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
547    if (VT.isSimple()) {
548      assert((unsigned)VT.getSimpleVT().SimpleTy <
549                array_lengthof(NumRegistersForVT));
550      return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
551    }
552    if (VT.isVector()) {
553      EVT VT1, VT2;
554      unsigned NumIntermediates;
555      return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
556    }
557    if (VT.isInteger()) {
558      unsigned BitWidth = VT.getSizeInBits();
559      unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
560      return (BitWidth + RegWidth - 1) / RegWidth;
561    }
562    assert(0 && "Unsupported extended type!");
563    return 0; // Not reached
564  }
565
566  /// ShouldShrinkFPConstant - If true, then instruction selection should
567  /// seek to shrink the FP constant of the specified type to a smaller type
568  /// in order to save space and / or reduce runtime.
569  virtual bool ShouldShrinkFPConstant(EVT VT) const { return true; }
570
571  /// hasTargetDAGCombine - If true, the target has custom DAG combine
572  /// transformations that it can perform for the specified node.
573  bool hasTargetDAGCombine(ISD::NodeType NT) const {
574    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
575    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
576  }
577
578  /// This function returns the maximum number of store operations permitted
579  /// to replace a call to llvm.memset. The value is set by the target at the
580  /// performance threshold for such a replacement. If OptSize is true,
581  /// return the limit for functions that have OptSize attribute.
582  /// @brief Get maximum # of store operations permitted for llvm.memset
583  unsigned getMaxStoresPerMemset(bool OptSize) const {
584    return OptSize ? maxStoresPerMemsetOptSize : maxStoresPerMemset;
585  }
586
587  /// This function returns the maximum number of store operations permitted
588  /// to replace a call to llvm.memcpy. The value is set by the target at the
589  /// performance threshold for such a replacement. If OptSize is true,
590  /// return the limit for functions that have OptSize attribute.
591  /// @brief Get maximum # of store operations permitted for llvm.memcpy
592  unsigned getMaxStoresPerMemcpy(bool OptSize) const {
593    return OptSize ? maxStoresPerMemcpyOptSize : maxStoresPerMemcpy;
594  }
595
596  /// This function returns the maximum number of store operations permitted
597  /// to replace a call to llvm.memmove. The value is set by the target at the
598  /// performance threshold for such a replacement. If OptSize is true,
599  /// return the limit for functions that have OptSize attribute.
600  /// @brief Get maximum # of store operations permitted for llvm.memmove
601  unsigned getMaxStoresPerMemmove(bool OptSize) const {
602    return OptSize ? maxStoresPerMemmoveOptSize : maxStoresPerMemmove;
603  }
604
605  /// This function returns true if the target allows unaligned memory accesses.
606  /// of the specified type. This is used, for example, in situations where an
607  /// array copy/move/set is  converted to a sequence of store operations. It's
608  /// use helps to ensure that such replacements don't generate code that causes
609  /// an alignment error  (trap) on the target machine.
610  /// @brief Determine if the target supports unaligned memory accesses.
611  virtual bool allowsUnalignedMemoryAccesses(EVT VT) const {
612    return false;
613  }
614
615  /// This function returns true if the target would benefit from code placement
616  /// optimization.
617  /// @brief Determine if the target should perform code placement optimization.
618  bool shouldOptimizeCodePlacement() const {
619    return benefitFromCodePlacementOpt;
620  }
621
622  /// getOptimalMemOpType - Returns the target specific optimal type for load
623  /// and store operations as a result of memset, memcpy, and memmove
624  /// lowering. If DstAlign is zero that means it's safe to destination
625  /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
626  /// means there isn't a need to check it against alignment requirement,
627  /// probably because the source does not need to be loaded. If
628  /// 'NonScalarIntSafe' is true, that means it's safe to return a
629  /// non-scalar-integer type, e.g. empty string source, constant, or loaded
630  /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
631  /// constant so it does not need to be loaded.
632  /// It returns EVT::Other if the type should be determined using generic
633  /// target-independent logic.
634  virtual EVT getOptimalMemOpType(uint64_t Size,
635                                  unsigned DstAlign, unsigned SrcAlign,
636                                  bool NonScalarIntSafe, bool MemcpyStrSrc,
637                                  MachineFunction &MF) const {
638    return MVT::Other;
639  }
640
641  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
642  /// to implement llvm.setjmp.
643  bool usesUnderscoreSetJmp() const {
644    return UseUnderscoreSetJmp;
645  }
646
647  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
648  /// to implement llvm.longjmp.
649  bool usesUnderscoreLongJmp() const {
650    return UseUnderscoreLongJmp;
651  }
652
653  /// getStackPointerRegisterToSaveRestore - If a physical register, this
654  /// specifies the register that llvm.savestack/llvm.restorestack should save
655  /// and restore.
656  unsigned getStackPointerRegisterToSaveRestore() const {
657    return StackPointerRegisterToSaveRestore;
658  }
659
660  /// getExceptionAddressRegister - If a physical register, this returns
661  /// the register that receives the exception address on entry to a landing
662  /// pad.
663  unsigned getExceptionAddressRegister() const {
664    return ExceptionPointerRegister;
665  }
666
667  /// getExceptionSelectorRegister - If a physical register, this returns
668  /// the register that receives the exception typeid on entry to a landing
669  /// pad.
670  unsigned getExceptionSelectorRegister() const {
671    return ExceptionSelectorRegister;
672  }
673
674  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
675  /// set, the default is 200)
676  unsigned getJumpBufSize() const {
677    return JumpBufSize;
678  }
679
680  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
681  /// (if never set, the default is 0)
682  unsigned getJumpBufAlignment() const {
683    return JumpBufAlignment;
684  }
685
686  /// getMinStackArgumentAlignment - return the minimum stack alignment of an
687  /// argument.
688  unsigned getMinStackArgumentAlignment() const {
689    return MinStackArgumentAlignment;
690  }
691
692  /// getMinFunctionAlignment - return the minimum function alignment.
693  ///
694  unsigned getMinFunctionAlignment() const {
695    return MinFunctionAlignment;
696  }
697
698  /// getPrefFunctionAlignment - return the preferred function alignment.
699  ///
700  unsigned getPrefFunctionAlignment() const {
701    return PrefFunctionAlignment;
702  }
703
704  /// getPrefLoopAlignment - return the preferred loop alignment.
705  ///
706  unsigned getPrefLoopAlignment() const {
707    return PrefLoopAlignment;
708  }
709
710  /// getShouldFoldAtomicFences - return whether the combiner should fold
711  /// fence MEMBARRIER instructions into the atomic intrinsic instructions.
712  ///
713  bool getShouldFoldAtomicFences() const {
714    return ShouldFoldAtomicFences;
715  }
716
717  /// getInsertFencesFor - return whether the DAG builder should automatically
718  /// insert fences and reduce ordering for atomics.
719  ///
720  bool getInsertFencesForAtomic() const {
721    return InsertFencesForAtomic;
722  }
723
724  /// getPreIndexedAddressParts - returns true by value, base pointer and
725  /// offset pointer and addressing mode by reference if the node's address
726  /// can be legally represented as pre-indexed load / store address.
727  virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
728                                         SDValue &Offset,
729                                         ISD::MemIndexedMode &AM,
730                                         SelectionDAG &DAG) const {
731    return false;
732  }
733
734  /// getPostIndexedAddressParts - returns true by value, base pointer and
735  /// offset pointer and addressing mode by reference if this node can be
736  /// combined with a load / store to form a post-indexed load / store.
737  virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
738                                          SDValue &Base, SDValue &Offset,
739                                          ISD::MemIndexedMode &AM,
740                                          SelectionDAG &DAG) const {
741    return false;
742  }
743
744  /// getJumpTableEncoding - Return the entry encoding for a jump table in the
745  /// current function.  The returned value is a member of the
746  /// MachineJumpTableInfo::JTEntryKind enum.
747  virtual unsigned getJumpTableEncoding() const;
748
749  virtual const MCExpr *
750  LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
751                            const MachineBasicBlock *MBB, unsigned uid,
752                            MCContext &Ctx) const {
753    assert(0 && "Need to implement this hook if target has custom JTIs");
754    return 0;
755  }
756
757  /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
758  /// jumptable.
759  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
760                                           SelectionDAG &DAG) const;
761
762  /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
763  /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
764  /// MCExpr.
765  virtual const MCExpr *
766  getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
767                               unsigned JTI, MCContext &Ctx) const;
768
769  /// isOffsetFoldingLegal - Return true if folding a constant offset
770  /// with the given GlobalAddress is legal.  It is frequently not legal in
771  /// PIC relocation models.
772  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
773
774  /// getStackCookieLocation - Return true if the target stores stack
775  /// protector cookies at a fixed offset in some non-standard address
776  /// space, and populates the address space and offset as
777  /// appropriate.
778  virtual bool getStackCookieLocation(unsigned &AddressSpace, unsigned &Offset) const {
779    return false;
780  }
781
782  /// getMaximalGlobalOffset - Returns the maximal possible offset which can be
783  /// used for loads / stores from the global.
784  virtual unsigned getMaximalGlobalOffset() const {
785    return 0;
786  }
787
788  //===--------------------------------------------------------------------===//
789  // TargetLowering Optimization Methods
790  //
791
792  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
793  /// SDValues for returning information from TargetLowering to its clients
794  /// that want to combine
795  struct TargetLoweringOpt {
796    SelectionDAG &DAG;
797    bool LegalTys;
798    bool LegalOps;
799    SDValue Old;
800    SDValue New;
801
802    explicit TargetLoweringOpt(SelectionDAG &InDAG,
803                               bool LT, bool LO) :
804      DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
805
806    bool LegalTypes() const { return LegalTys; }
807    bool LegalOperations() const { return LegalOps; }
808
809    bool CombineTo(SDValue O, SDValue N) {
810      Old = O;
811      New = N;
812      return true;
813    }
814
815    /// ShrinkDemandedConstant - Check to see if the specified operand of the
816    /// specified instruction is a constant integer.  If so, check to see if
817    /// there are any bits set in the constant that are not demanded.  If so,
818    /// shrink the constant and return true.
819    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
820
821    /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
822    /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
823    /// cast, but it could be generalized for targets with other types of
824    /// implicit widening casts.
825    bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
826                          DebugLoc dl);
827  };
828
829  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
830  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
831  /// use this information to simplify Op, create a new simplified DAG node and
832  /// return true, returning the original and new nodes in Old and New.
833  /// Otherwise, analyze the expression and return a mask of KnownOne and
834  /// KnownZero bits for the expression (used to simplify the caller).
835  /// The KnownZero/One bits may only be accurate for those bits in the
836  /// DemandedMask.
837  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
838                            APInt &KnownZero, APInt &KnownOne,
839                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
840
841  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
842  /// Mask are known to be either zero or one and return them in the
843  /// KnownZero/KnownOne bitsets.
844  virtual void computeMaskedBitsForTargetNode(const SDValue Op,
845                                              const APInt &Mask,
846                                              APInt &KnownZero,
847                                              APInt &KnownOne,
848                                              const SelectionDAG &DAG,
849                                              unsigned Depth = 0) const;
850
851  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
852  /// targets that want to expose additional information about sign bits to the
853  /// DAG Combiner.
854  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
855                                                   unsigned Depth = 0) const;
856
857  struct DAGCombinerInfo {
858    void *DC;  // The DAG Combiner object.
859    bool BeforeLegalize;
860    bool BeforeLegalizeOps;
861    bool CalledByLegalizer;
862  public:
863    SelectionDAG &DAG;
864
865    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool blo, bool cl, void *dc)
866      : DC(dc), BeforeLegalize(bl), BeforeLegalizeOps(blo),
867        CalledByLegalizer(cl), DAG(dag) {}
868
869    bool isBeforeLegalize() const { return BeforeLegalize; }
870    bool isBeforeLegalizeOps() const { return BeforeLegalizeOps; }
871    bool isCalledByLegalizer() const { return CalledByLegalizer; }
872
873    void AddToWorklist(SDNode *N);
874    void RemoveFromWorklist(SDNode *N);
875    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
876                      bool AddTo = true);
877    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
878    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
879
880    void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
881  };
882
883  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
884  /// and cc. If it is unable to simplify it, return a null SDValue.
885  SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
886                          ISD::CondCode Cond, bool foldBooleans,
887                          DAGCombinerInfo &DCI, DebugLoc dl) const;
888
889  /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
890  /// node is a GlobalAddress + offset.
891  virtual bool
892  isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
893
894  /// PerformDAGCombine - This method will be invoked for all target nodes and
895  /// for any target-independent nodes that the target has registered with
896  /// invoke it for.
897  ///
898  /// The semantics are as follows:
899  /// Return Value:
900  ///   SDValue.Val == 0   - No change was made
901  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
902  ///   otherwise          - N should be replaced by the returned Operand.
903  ///
904  /// In addition, methods provided by DAGCombinerInfo may be used to perform
905  /// more complex transformations.
906  ///
907  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
908
909  /// isTypeDesirableForOp - Return true if the target has native support for
910  /// the specified value type and it is 'desirable' to use the type for the
911  /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
912  /// instruction encodings are longer and some i16 instructions are slow.
913  virtual bool isTypeDesirableForOp(unsigned Opc, EVT VT) const {
914    // By default, assume all legal types are desirable.
915    return isTypeLegal(VT);
916  }
917
918  /// isDesirableToPromoteOp - Return true if it is profitable for dag combiner
919  /// to transform a floating point op of specified opcode to a equivalent op of
920  /// an integer type. e.g. f32 load -> i32 load can be profitable on ARM.
921  virtual bool isDesirableToTransformToIntegerOp(unsigned Opc, EVT VT) const {
922    return false;
923  }
924
925  /// IsDesirableToPromoteOp - This method query the target whether it is
926  /// beneficial for dag combiner to promote the specified node. If true, it
927  /// should return the desired promotion type by reference.
928  virtual bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
929    return false;
930  }
931
932  //===--------------------------------------------------------------------===//
933  // TargetLowering Configuration Methods - These methods should be invoked by
934  // the derived class constructor to configure this object for the target.
935  //
936
937protected:
938  /// setBooleanContents - Specify how the target extends the result of a
939  /// boolean value from i1 to a wider type.  See getBooleanContents.
940  void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
941
942  /// setSchedulingPreference - Specify the target scheduling preference.
943  void setSchedulingPreference(Sched::Preference Pref) {
944    SchedPreferenceInfo = Pref;
945  }
946
947  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
948  /// use _setjmp to implement llvm.setjmp or the non _ version.
949  /// Defaults to false.
950  void setUseUnderscoreSetJmp(bool Val) {
951    UseUnderscoreSetJmp = Val;
952  }
953
954  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
955  /// use _longjmp to implement llvm.longjmp or the non _ version.
956  /// Defaults to false.
957  void setUseUnderscoreLongJmp(bool Val) {
958    UseUnderscoreLongJmp = Val;
959  }
960
961  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
962  /// specifies the register that llvm.savestack/llvm.restorestack should save
963  /// and restore.
964  void setStackPointerRegisterToSaveRestore(unsigned R) {
965    StackPointerRegisterToSaveRestore = R;
966  }
967
968  /// setExceptionPointerRegister - If set to a physical register, this sets
969  /// the register that receives the exception address on entry to a landing
970  /// pad.
971  void setExceptionPointerRegister(unsigned R) {
972    ExceptionPointerRegister = R;
973  }
974
975  /// setExceptionSelectorRegister - If set to a physical register, this sets
976  /// the register that receives the exception typeid on entry to a landing
977  /// pad.
978  void setExceptionSelectorRegister(unsigned R) {
979    ExceptionSelectorRegister = R;
980  }
981
982  /// SelectIsExpensive - Tells the code generator not to expand operations
983  /// into sequences that use the select operations if possible.
984  void setSelectIsExpensive(bool isExpensive = true) {
985    SelectIsExpensive = isExpensive;
986  }
987
988  /// JumpIsExpensive - Tells the code generator not to expand sequence of
989  /// operations into a separate sequences that increases the amount of
990  /// flow control.
991  void setJumpIsExpensive(bool isExpensive = true) {
992    JumpIsExpensive = isExpensive;
993  }
994
995  /// setIntDivIsCheap - Tells the code generator that integer divide is
996  /// expensive, and if possible, should be replaced by an alternate sequence
997  /// of instructions not containing an integer divide.
998  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
999
1000  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
1001  /// srl/add/sra for a signed divide by power of two, and let the target handle
1002  /// it.
1003  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
1004
1005  /// addRegisterClass - Add the specified register class as an available
1006  /// regclass for the specified value type.  This indicates the selector can
1007  /// handle values of that class natively.
1008  void addRegisterClass(EVT VT, TargetRegisterClass *RC) {
1009    assert((unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
1010    AvailableRegClasses.push_back(std::make_pair(VT, RC));
1011    RegClassForVT[VT.getSimpleVT().SimpleTy] = RC;
1012  }
1013
1014  /// findRepresentativeClass - Return the largest legal super-reg register class
1015  /// of the register class for the specified type and its associated "cost".
1016  virtual std::pair<const TargetRegisterClass*, uint8_t>
1017  findRepresentativeClass(EVT VT) const;
1018
1019  /// computeRegisterProperties - Once all of the register classes are added,
1020  /// this allows us to compute derived properties we expose.
1021  void computeRegisterProperties();
1022
1023  /// setOperationAction - Indicate that the specified operation does not work
1024  /// with the specified type and indicate what to do about it.
1025  void setOperationAction(unsigned Op, MVT VT,
1026                          LegalizeAction Action) {
1027    assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
1028    OpActions[(unsigned)VT.SimpleTy][Op] = (uint8_t)Action;
1029  }
1030
1031  /// setLoadExtAction - Indicate that the specified load with extension does
1032  /// not work with the specified type and indicate what to do about it.
1033  void setLoadExtAction(unsigned ExtType, MVT VT,
1034                        LegalizeAction Action) {
1035    assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT < MVT::LAST_VALUETYPE &&
1036           "Table isn't big enough!");
1037    LoadExtActions[VT.SimpleTy][ExtType] = (uint8_t)Action;
1038  }
1039
1040  /// setTruncStoreAction - Indicate that the specified truncating store does
1041  /// not work with the specified type and indicate what to do about it.
1042  void setTruncStoreAction(MVT ValVT, MVT MemVT,
1043                           LegalizeAction Action) {
1044    assert(ValVT < MVT::LAST_VALUETYPE && MemVT < MVT::LAST_VALUETYPE &&
1045           "Table isn't big enough!");
1046    TruncStoreActions[ValVT.SimpleTy][MemVT.SimpleTy] = (uint8_t)Action;
1047  }
1048
1049  /// setIndexedLoadAction - Indicate that the specified indexed load does or
1050  /// does not work with the specified type and indicate what to do abort
1051  /// it. NOTE: All indexed mode loads are initialized to Expand in
1052  /// TargetLowering.cpp
1053  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
1054                            LegalizeAction Action) {
1055    assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
1056           (unsigned)Action < 0xf && "Table isn't big enough!");
1057    // Load action are kept in the upper half.
1058    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
1059    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
1060  }
1061
1062  /// setIndexedStoreAction - Indicate that the specified indexed store does or
1063  /// does not work with the specified type and indicate what to do about
1064  /// it. NOTE: All indexed mode stores are initialized to Expand in
1065  /// TargetLowering.cpp
1066  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
1067                             LegalizeAction Action) {
1068    assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
1069           (unsigned)Action < 0xf && "Table isn't big enough!");
1070    // Store action are kept in the lower half.
1071    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
1072    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
1073  }
1074
1075  /// setCondCodeAction - Indicate that the specified condition code is or isn't
1076  /// supported on the target and indicate what to do about it.
1077  void setCondCodeAction(ISD::CondCode CC, MVT VT,
1078                         LegalizeAction Action) {
1079    assert(VT < MVT::LAST_VALUETYPE &&
1080           (unsigned)CC < array_lengthof(CondCodeActions) &&
1081           "Table isn't big enough!");
1082    CondCodeActions[(unsigned)CC] &= ~(uint64_t(3UL)  << VT.SimpleTy*2);
1083    CondCodeActions[(unsigned)CC] |= (uint64_t)Action << VT.SimpleTy*2;
1084  }
1085
1086  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
1087  /// promotion code defaults to trying a larger integer/fp until it can find
1088  /// one that works.  If that default is insufficient, this method can be used
1089  /// by the target to override the default.
1090  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1091    PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
1092  }
1093
1094  /// setTargetDAGCombine - Targets should invoke this method for each target
1095  /// independent node that they want to provide a custom DAG combiner for by
1096  /// implementing the PerformDAGCombine virtual method.
1097  void setTargetDAGCombine(ISD::NodeType NT) {
1098    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1099    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1100  }
1101
1102  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
1103  /// bytes); default is 200
1104  void setJumpBufSize(unsigned Size) {
1105    JumpBufSize = Size;
1106  }
1107
1108  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
1109  /// alignment (in bytes); default is 0
1110  void setJumpBufAlignment(unsigned Align) {
1111    JumpBufAlignment = Align;
1112  }
1113
1114  /// setMinFunctionAlignment - Set the target's minimum function alignment.
1115  void setMinFunctionAlignment(unsigned Align) {
1116    MinFunctionAlignment = Align;
1117  }
1118
1119  /// setPrefFunctionAlignment - Set the target's preferred function alignment.
1120  /// This should be set if there is a performance benefit to
1121  /// higher-than-minimum alignment
1122  void setPrefFunctionAlignment(unsigned Align) {
1123    PrefFunctionAlignment = Align;
1124  }
1125
1126  /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
1127  /// alignment is zero, it means the target does not care about loop alignment.
1128  void setPrefLoopAlignment(unsigned Align) {
1129    PrefLoopAlignment = Align;
1130  }
1131
1132  /// setMinStackArgumentAlignment - Set the minimum stack alignment of an
1133  /// argument.
1134  void setMinStackArgumentAlignment(unsigned Align) {
1135    MinStackArgumentAlignment = Align;
1136  }
1137
1138  /// setShouldFoldAtomicFences - Set if the target's implementation of the
1139  /// atomic operation intrinsics includes locking. Default is false.
1140  void setShouldFoldAtomicFences(bool fold) {
1141    ShouldFoldAtomicFences = fold;
1142  }
1143
1144  /// setInsertFencesForAtomic - Set if the the DAG builder should
1145  /// automatically insert fences and reduce the order of atomic memory
1146  /// operations to Monotonic.
1147  void setInsertFencesForAtomic(bool fence) {
1148    InsertFencesForAtomic = fence;
1149  }
1150
1151public:
1152  //===--------------------------------------------------------------------===//
1153  // Lowering methods - These methods must be implemented by targets so that
1154  // the SelectionDAGLowering code knows how to lower these.
1155  //
1156
1157  /// LowerFormalArguments - This hook must be implemented to lower the
1158  /// incoming (formal) arguments, described by the Ins array, into the
1159  /// specified DAG. The implementation should fill in the InVals array
1160  /// with legal-type argument values, and return the resulting token
1161  /// chain value.
1162  ///
1163  virtual SDValue
1164    LowerFormalArguments(SDValue Chain,
1165                         CallingConv::ID CallConv, bool isVarArg,
1166                         const SmallVectorImpl<ISD::InputArg> &Ins,
1167                         DebugLoc dl, SelectionDAG &DAG,
1168                         SmallVectorImpl<SDValue> &InVals) const {
1169    assert(0 && "Not Implemented");
1170    return SDValue();    // this is here to silence compiler errors
1171  }
1172
1173  /// LowerCallTo - This function lowers an abstract call to a function into an
1174  /// actual call.  This returns a pair of operands.  The first element is the
1175  /// return value for the function (if RetTy is not VoidTy).  The second
1176  /// element is the outgoing token chain. It calls LowerCall to do the actual
1177  /// lowering.
1178  struct ArgListEntry {
1179    SDValue Node;
1180    Type* Ty;
1181    bool isSExt  : 1;
1182    bool isZExt  : 1;
1183    bool isInReg : 1;
1184    bool isSRet  : 1;
1185    bool isNest  : 1;
1186    bool isByVal : 1;
1187    uint16_t Alignment;
1188
1189    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
1190      isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
1191  };
1192  typedef std::vector<ArgListEntry> ArgListTy;
1193  std::pair<SDValue, SDValue>
1194  LowerCallTo(SDValue Chain, Type *RetTy, bool RetSExt, bool RetZExt,
1195              bool isVarArg, bool isInreg, unsigned NumFixedArgs,
1196              CallingConv::ID CallConv, bool isTailCall,
1197              bool isReturnValueUsed, SDValue Callee, ArgListTy &Args,
1198              SelectionDAG &DAG, DebugLoc dl) const;
1199
1200  /// LowerCall - This hook must be implemented to lower calls into the
1201  /// the specified DAG. The outgoing arguments to the call are described
1202  /// by the Outs array, and the values to be returned by the call are
1203  /// described by the Ins array. The implementation should fill in the
1204  /// InVals array with legal-type return values from the call, and return
1205  /// the resulting token chain value.
1206  virtual SDValue
1207    LowerCall(SDValue Chain, SDValue Callee,
1208              CallingConv::ID CallConv, bool isVarArg, bool &isTailCall,
1209              const SmallVectorImpl<ISD::OutputArg> &Outs,
1210              const SmallVectorImpl<SDValue> &OutVals,
1211              const SmallVectorImpl<ISD::InputArg> &Ins,
1212              DebugLoc dl, SelectionDAG &DAG,
1213              SmallVectorImpl<SDValue> &InVals) const {
1214    assert(0 && "Not Implemented");
1215    return SDValue();    // this is here to silence compiler errors
1216  }
1217
1218  /// HandleByVal - Target-specific cleanup for formal ByVal parameters.
1219  virtual void HandleByVal(CCState *, unsigned &) const {}
1220
1221  /// CanLowerReturn - This hook should be implemented to check whether the
1222  /// return values described by the Outs array can fit into the return
1223  /// registers.  If false is returned, an sret-demotion is performed.
1224  ///
1225  virtual bool CanLowerReturn(CallingConv::ID CallConv,
1226			      MachineFunction &MF, bool isVarArg,
1227               const SmallVectorImpl<ISD::OutputArg> &Outs,
1228               LLVMContext &Context) const
1229  {
1230    // Return true by default to get preexisting behavior.
1231    return true;
1232  }
1233
1234  /// LowerReturn - This hook must be implemented to lower outgoing
1235  /// return values, described by the Outs array, into the specified
1236  /// DAG. The implementation should return the resulting token chain
1237  /// value.
1238  ///
1239  virtual SDValue
1240    LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1241                const SmallVectorImpl<ISD::OutputArg> &Outs,
1242                const SmallVectorImpl<SDValue> &OutVals,
1243                DebugLoc dl, SelectionDAG &DAG) const {
1244    assert(0 && "Not Implemented");
1245    return SDValue();    // this is here to silence compiler errors
1246  }
1247
1248  /// isUsedByReturnOnly - Return true if result of the specified node is used
1249  /// by a return node only. This is used to determine whether it is possible
1250  /// to codegen a libcall as tail call at legalization time.
1251  virtual bool isUsedByReturnOnly(SDNode *N) const {
1252    return false;
1253  }
1254
1255  /// mayBeEmittedAsTailCall - Return true if the target may be able emit the
1256  /// call instruction as a tail call. This is used by optimization passes to
1257  /// determine if it's profitable to duplicate return instructions to enable
1258  /// tailcall optimization.
1259  virtual bool mayBeEmittedAsTailCall(CallInst *CI) const {
1260    return false;
1261  }
1262
1263  /// getTypeForExtArgOrReturn - Return the type that should be used to zero or
1264  /// sign extend a zeroext/signext integer argument or return value.
1265  /// FIXME: Most C calling convention requires the return type to be promoted,
1266  /// but this is not true all the time, e.g. i1 on x86-64. It is also not
1267  /// necessary for non-C calling conventions. The frontend should handle this
1268  /// and include all of the necessary information.
1269  virtual EVT getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1270                                       ISD::NodeType ExtendKind) const {
1271    EVT MinVT = getRegisterType(Context, MVT::i32);
1272    return VT.bitsLT(MinVT) ? MinVT : VT;
1273  }
1274
1275  /// LowerOperationWrapper - This callback is invoked by the type legalizer
1276  /// to legalize nodes with an illegal operand type but legal result types.
1277  /// It replaces the LowerOperation callback in the type Legalizer.
1278  /// The reason we can not do away with LowerOperation entirely is that
1279  /// LegalizeDAG isn't yet ready to use this callback.
1280  /// TODO: Consider merging with ReplaceNodeResults.
1281
1282  /// The target places new result values for the node in Results (their number
1283  /// and types must exactly match those of the original return values of
1284  /// the node), or leaves Results empty, which indicates that the node is not
1285  /// to be custom lowered after all.
1286  /// The default implementation calls LowerOperation.
1287  virtual void LowerOperationWrapper(SDNode *N,
1288                                     SmallVectorImpl<SDValue> &Results,
1289                                     SelectionDAG &DAG) const;
1290
1291  /// LowerOperation - This callback is invoked for operations that are
1292  /// unsupported by the target, which are registered to use 'custom' lowering,
1293  /// and whose defined values are all legal.
1294  /// If the target has no operations that require custom lowering, it need not
1295  /// implement this.  The default implementation of this aborts.
1296  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
1297
1298  /// ReplaceNodeResults - This callback is invoked when a node result type is
1299  /// illegal for the target, and the operation was registered to use 'custom'
1300  /// lowering for that result type.  The target places new result values for
1301  /// the node in Results (their number and types must exactly match those of
1302  /// the original return values of the node), or leaves Results empty, which
1303  /// indicates that the node is not to be custom lowered after all.
1304  ///
1305  /// If the target has no operations that require custom lowering, it need not
1306  /// implement this.  The default implementation aborts.
1307  virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
1308                                  SelectionDAG &DAG) const {
1309    assert(0 && "ReplaceNodeResults not implemented for this target!");
1310  }
1311
1312  /// getTargetNodeName() - This method returns the name of a target specific
1313  /// DAG node.
1314  virtual const char *getTargetNodeName(unsigned Opcode) const;
1315
1316  /// createFastISel - This method returns a target specific FastISel object,
1317  /// or null if the target does not support "fast" ISel.
1318  virtual FastISel *createFastISel(FunctionLoweringInfo &funcInfo) const {
1319    return 0;
1320  }
1321
1322  //===--------------------------------------------------------------------===//
1323  // Inline Asm Support hooks
1324  //
1325
1326  /// ExpandInlineAsm - This hook allows the target to expand an inline asm
1327  /// call to be explicit llvm code if it wants to.  This is useful for
1328  /// turning simple inline asms into LLVM intrinsics, which gives the
1329  /// compiler more information about the behavior of the code.
1330  virtual bool ExpandInlineAsm(CallInst *CI) const {
1331    return false;
1332  }
1333
1334  enum ConstraintType {
1335    C_Register,            // Constraint represents specific register(s).
1336    C_RegisterClass,       // Constraint represents any of register(s) in class.
1337    C_Memory,              // Memory constraint.
1338    C_Other,               // Something else.
1339    C_Unknown              // Unsupported constraint.
1340  };
1341
1342  enum ConstraintWeight {
1343    // Generic weights.
1344    CW_Invalid  = -1,     // No match.
1345    CW_Okay     = 0,      // Acceptable.
1346    CW_Good     = 1,      // Good weight.
1347    CW_Better   = 2,      // Better weight.
1348    CW_Best     = 3,      // Best weight.
1349
1350    // Well-known weights.
1351    CW_SpecificReg  = CW_Okay,    // Specific register operands.
1352    CW_Register     = CW_Good,    // Register operands.
1353    CW_Memory       = CW_Better,  // Memory operands.
1354    CW_Constant     = CW_Best,    // Constant operand.
1355    CW_Default      = CW_Okay     // Default or don't know type.
1356  };
1357
1358  /// AsmOperandInfo - This contains information for each constraint that we are
1359  /// lowering.
1360  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
1361    /// ConstraintCode - This contains the actual string for the code, like "m".
1362    /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
1363    /// most closely matches the operand.
1364    std::string ConstraintCode;
1365
1366    /// ConstraintType - Information about the constraint code, e.g. Register,
1367    /// RegisterClass, Memory, Other, Unknown.
1368    TargetLowering::ConstraintType ConstraintType;
1369
1370    /// CallOperandval - If this is the result output operand or a
1371    /// clobber, this is null, otherwise it is the incoming operand to the
1372    /// CallInst.  This gets modified as the asm is processed.
1373    Value *CallOperandVal;
1374
1375    /// ConstraintVT - The ValueType for the operand value.
1376    EVT ConstraintVT;
1377
1378    /// isMatchingInputConstraint - Return true of this is an input operand that
1379    /// is a matching constraint like "4".
1380    bool isMatchingInputConstraint() const;
1381
1382    /// getMatchedOperand - If this is an input matching constraint, this method
1383    /// returns the output operand it matches.
1384    unsigned getMatchedOperand() const;
1385
1386    /// Copy constructor for copying from an AsmOperandInfo.
1387    AsmOperandInfo(const AsmOperandInfo &info)
1388      : InlineAsm::ConstraintInfo(info),
1389        ConstraintCode(info.ConstraintCode),
1390        ConstraintType(info.ConstraintType),
1391        CallOperandVal(info.CallOperandVal),
1392        ConstraintVT(info.ConstraintVT) {
1393    }
1394
1395    /// Copy constructor for copying from a ConstraintInfo.
1396    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
1397      : InlineAsm::ConstraintInfo(info),
1398        ConstraintType(TargetLowering::C_Unknown),
1399        CallOperandVal(0), ConstraintVT(MVT::Other) {
1400    }
1401  };
1402
1403  typedef std::vector<AsmOperandInfo> AsmOperandInfoVector;
1404
1405  /// ParseConstraints - Split up the constraint string from the inline
1406  /// assembly value into the specific constraints and their prefixes,
1407  /// and also tie in the associated operand values.
1408  /// If this returns an empty vector, and if the constraint string itself
1409  /// isn't empty, there was an error parsing.
1410  virtual AsmOperandInfoVector ParseConstraints(ImmutableCallSite CS) const;
1411
1412  /// Examine constraint type and operand type and determine a weight value.
1413  /// The operand object must already have been set up with the operand type.
1414  virtual ConstraintWeight getMultipleConstraintMatchWeight(
1415      AsmOperandInfo &info, int maIndex) const;
1416
1417  /// Examine constraint string and operand type and determine a weight value.
1418  /// The operand object must already have been set up with the operand type.
1419  virtual ConstraintWeight getSingleConstraintMatchWeight(
1420      AsmOperandInfo &info, const char *constraint) const;
1421
1422  /// ComputeConstraintToUse - Determines the constraint code and constraint
1423  /// type to use for the specific AsmOperandInfo, setting
1424  /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
1425  /// being passed in is available, it can be passed in as Op, otherwise an
1426  /// empty SDValue can be passed.
1427  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1428                                      SDValue Op,
1429                                      SelectionDAG *DAG = 0) const;
1430
1431  /// getConstraintType - Given a constraint, return the type of constraint it
1432  /// is for this target.
1433  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
1434
1435  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
1436  /// {edx}), return the register number and the register class for the
1437  /// register.
1438  ///
1439  /// Given a register class constraint, like 'r', if this corresponds directly
1440  /// to an LLVM register class, return a register of 0 and the register class
1441  /// pointer.
1442  ///
1443  /// This should only be used for C_Register constraints.  On error,
1444  /// this returns a register number of 0 and a null register class pointer..
1445  virtual std::pair<unsigned, const TargetRegisterClass*>
1446    getRegForInlineAsmConstraint(const std::string &Constraint,
1447                                 EVT VT) const;
1448
1449  /// LowerXConstraint - try to replace an X constraint, which matches anything,
1450  /// with another that has more specific requirements based on the type of the
1451  /// corresponding operand.  This returns null if there is no replacement to
1452  /// make.
1453  virtual const char *LowerXConstraint(EVT ConstraintVT) const;
1454
1455  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1456  /// vector.  If it is invalid, don't add anything to Ops.
1457  virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
1458                                            std::vector<SDValue> &Ops,
1459                                            SelectionDAG &DAG) const;
1460
1461  //===--------------------------------------------------------------------===//
1462  // Instruction Emitting Hooks
1463  //
1464
1465  // EmitInstrWithCustomInserter - This method should be implemented by targets
1466  // that mark instructions with the 'usesCustomInserter' flag.  These
1467  // instructions are special in various ways, which require special support to
1468  // insert.  The specified MachineInstr is created but not inserted into any
1469  // basic blocks, and this method is called to expand it into a sequence of
1470  // instructions, potentially also creating new basic blocks and control flow.
1471  virtual MachineBasicBlock *
1472    EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;
1473
1474  //===--------------------------------------------------------------------===//
1475  // Addressing mode description hooks (used by LSR etc).
1476  //
1477
1478  /// AddrMode - This represents an addressing mode of:
1479  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1480  /// If BaseGV is null,  there is no BaseGV.
1481  /// If BaseOffs is zero, there is no base offset.
1482  /// If HasBaseReg is false, there is no base register.
1483  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1484  /// no scale.
1485  ///
1486  struct AddrMode {
1487    GlobalValue *BaseGV;
1488    int64_t      BaseOffs;
1489    bool         HasBaseReg;
1490    int64_t      Scale;
1491    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1492  };
1493
1494  /// isLegalAddressingMode - Return true if the addressing mode represented by
1495  /// AM is legal for this target, for a load/store of the specified type.
1496  /// The type may be VoidTy, in which case only return true if the addressing
1497  /// mode is legal for a load/store of any legal type.
1498  /// TODO: Handle pre/postinc as well.
1499  virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const;
1500
1501  /// isTruncateFree - Return true if it's free to truncate a value of
1502  /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1503  /// register EAX to i16 by referencing its sub-register AX.
1504  virtual bool isTruncateFree(Type *Ty1, Type *Ty2) const {
1505    return false;
1506  }
1507
1508  virtual bool isTruncateFree(EVT VT1, EVT VT2) const {
1509    return false;
1510  }
1511
1512  /// isZExtFree - Return true if any actual instruction that defines a
1513  /// value of type Ty1 implicitly zero-extends the value to Ty2 in the result
1514  /// register. This does not necessarily include registers defined in
1515  /// unknown ways, such as incoming arguments, or copies from unknown
1516  /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1517  /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1518  /// all instructions that define 32-bit values implicit zero-extend the
1519  /// result out to 64 bits.
1520  virtual bool isZExtFree(Type *Ty1, Type *Ty2) const {
1521    return false;
1522  }
1523
1524  virtual bool isZExtFree(EVT VT1, EVT VT2) const {
1525    return false;
1526  }
1527
1528  /// isNarrowingProfitable - Return true if it's profitable to narrow
1529  /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
1530  /// from i32 to i8 but not from i32 to i16.
1531  virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const {
1532    return false;
1533  }
1534
1535  /// isLegalICmpImmediate - Return true if the specified immediate is legal
1536  /// icmp immediate, that is the target has icmp instructions which can compare
1537  /// a register against the immediate without having to materialize the
1538  /// immediate into a register.
1539  virtual bool isLegalICmpImmediate(int64_t Imm) const {
1540    return true;
1541  }
1542
1543  /// isLegalAddImmediate - Return true if the specified immediate is legal
1544  /// add immediate, that is the target has add instructions which can add
1545  /// a register with the immediate without having to materialize the
1546  /// immediate into a register.
1547  virtual bool isLegalAddImmediate(int64_t Imm) const {
1548    return true;
1549  }
1550
1551  //===--------------------------------------------------------------------===//
1552  // Div utility functions
1553  //
1554  SDValue BuildExactSDIV(SDValue Op1, SDValue Op2, DebugLoc dl,
1555                         SelectionDAG &DAG) const;
1556  SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG,
1557                      std::vector<SDNode*>* Created) const;
1558  SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG,
1559                      std::vector<SDNode*>* Created) const;
1560
1561
1562  //===--------------------------------------------------------------------===//
1563  // Runtime Library hooks
1564  //
1565
1566  /// setLibcallName - Rename the default libcall routine name for the specified
1567  /// libcall.
1568  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1569    LibcallRoutineNames[Call] = Name;
1570  }
1571
1572  /// getLibcallName - Get the libcall routine name for the specified libcall.
1573  ///
1574  const char *getLibcallName(RTLIB::Libcall Call) const {
1575    return LibcallRoutineNames[Call];
1576  }
1577
1578  /// setCmpLibcallCC - Override the default CondCode to be used to test the
1579  /// result of the comparison libcall against zero.
1580  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1581    CmpLibcallCCs[Call] = CC;
1582  }
1583
1584  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1585  /// the comparison libcall against zero.
1586  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1587    return CmpLibcallCCs[Call];
1588  }
1589
1590  /// setLibcallCallingConv - Set the CallingConv that should be used for the
1591  /// specified libcall.
1592  void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
1593    LibcallCallingConvs[Call] = CC;
1594  }
1595
1596  /// getLibcallCallingConv - Get the CallingConv that should be used for the
1597  /// specified libcall.
1598  CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
1599    return LibcallCallingConvs[Call];
1600  }
1601
1602private:
1603  const TargetMachine &TM;
1604  const TargetData *TD;
1605  const TargetLoweringObjectFile &TLOF;
1606
1607  /// We are in the process of implementing a new TypeLegalization action
1608  /// which is the promotion of vector elements. This feature is under
1609  /// development. Until this feature is complete, it is only enabled using a
1610  /// flag. We pass this flag using a member because of circular dep issues.
1611  /// This member will be removed with the flag once we complete the transition.
1612  bool mayPromoteElements;
1613
1614  /// PointerTy - The type to use for pointers, usually i32 or i64.
1615  ///
1616  MVT PointerTy;
1617
1618  /// IsLittleEndian - True if this is a little endian target.
1619  ///
1620  bool IsLittleEndian;
1621
1622  /// SelectIsExpensive - Tells the code generator not to expand operations
1623  /// into sequences that use the select operations if possible.
1624  bool SelectIsExpensive;
1625
1626  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1627  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1628  /// a real cost model is in place.  If we ever optimize for size, this will be
1629  /// set to true unconditionally.
1630  bool IntDivIsCheap;
1631
1632  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1633  /// srl/add/sra for a signed divide by power of two, and let the target handle
1634  /// it.
1635  bool Pow2DivIsCheap;
1636
1637  /// JumpIsExpensive - Tells the code generator that it shouldn't generate
1638  /// extra flow control instructions and should attempt to combine flow
1639  /// control instructions via predication.
1640  bool JumpIsExpensive;
1641
1642  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1643  /// llvm.setjmp.  Defaults to false.
1644  bool UseUnderscoreSetJmp;
1645
1646  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1647  /// llvm.longjmp.  Defaults to false.
1648  bool UseUnderscoreLongJmp;
1649
1650  /// BooleanContents - Information about the contents of the high-bits in
1651  /// boolean values held in a type wider than i1.  See getBooleanContents.
1652  BooleanContent BooleanContents;
1653
1654  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1655  /// total cycles or lowest register usage.
1656  Sched::Preference SchedPreferenceInfo;
1657
1658  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1659  unsigned JumpBufSize;
1660
1661  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1662  /// buffers
1663  unsigned JumpBufAlignment;
1664
1665  /// MinStackArgumentAlignment - The minimum alignment that any argument
1666  /// on the stack needs to have.
1667  ///
1668  unsigned MinStackArgumentAlignment;
1669
1670  /// MinFunctionAlignment - The minimum function alignment (used when
1671  /// optimizing for size, and to prevent explicitly provided alignment
1672  /// from leading to incorrect code).
1673  ///
1674  unsigned MinFunctionAlignment;
1675
1676  /// PrefFunctionAlignment - The preferred function alignment (used when
1677  /// alignment unspecified and optimizing for speed).
1678  ///
1679  unsigned PrefFunctionAlignment;
1680
1681  /// PrefLoopAlignment - The preferred loop alignment.
1682  ///
1683  unsigned PrefLoopAlignment;
1684
1685  /// ShouldFoldAtomicFences - Whether fencing MEMBARRIER instructions should
1686  /// be folded into the enclosed atomic intrinsic instruction by the
1687  /// combiner.
1688  bool ShouldFoldAtomicFences;
1689
1690  /// InsertFencesForAtomic - Whether the DAG builder should automatically
1691  /// insert fences and reduce ordering for atomics.  (This will be set for
1692  /// for most architectures with weak memory ordering.)
1693  bool InsertFencesForAtomic;
1694
1695  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1696  /// specifies the register that llvm.savestack/llvm.restorestack should save
1697  /// and restore.
1698  unsigned StackPointerRegisterToSaveRestore;
1699
1700  /// ExceptionPointerRegister - If set to a physical register, this specifies
1701  /// the register that receives the exception address on entry to a landing
1702  /// pad.
1703  unsigned ExceptionPointerRegister;
1704
1705  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1706  /// the register that receives the exception typeid on entry to a landing
1707  /// pad.
1708  unsigned ExceptionSelectorRegister;
1709
1710  /// RegClassForVT - This indicates the default register class to use for
1711  /// each ValueType the target supports natively.
1712  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1713  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1714  EVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1715
1716  /// RepRegClassForVT - This indicates the "representative" register class to
1717  /// use for each ValueType the target supports natively. This information is
1718  /// used by the scheduler to track register pressure. By default, the
1719  /// representative register class is the largest legal super-reg register
1720  /// class of the register class of the specified type. e.g. On x86, i8, i16,
1721  /// and i32's representative class would be GR32.
1722  const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
1723
1724  /// RepRegClassCostForVT - This indicates the "cost" of the "representative"
1725  /// register class for each ValueType. The cost is used by the scheduler to
1726  /// approximate register pressure.
1727  uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
1728
1729  /// TransformToType - For any value types we are promoting or expanding, this
1730  /// contains the value type that we are changing to.  For Expanded types, this
1731  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1732  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1733  /// by the system, this holds the same type (e.g. i32 -> i32).
1734  EVT TransformToType[MVT::LAST_VALUETYPE];
1735
1736  /// OpActions - For each operation and each value type, keep a LegalizeAction
1737  /// that indicates how instruction selection should deal with the operation.
1738  /// Most operations are Legal (aka, supported natively by the target), but
1739  /// operations that are not should be described.  Note that operations on
1740  /// non-legal value types are not described here.
1741  uint8_t OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
1742
1743  /// LoadExtActions - For each load extension type and each value type,
1744  /// keep a LegalizeAction that indicates how instruction selection should deal
1745  /// with a load of a specific value type and extension type.
1746  uint8_t LoadExtActions[MVT::LAST_VALUETYPE][ISD::LAST_LOADEXT_TYPE];
1747
1748  /// TruncStoreActions - For each value type pair keep a LegalizeAction that
1749  /// indicates whether a truncating store of a specific value type and
1750  /// truncating type is legal.
1751  uint8_t TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
1752
1753  /// IndexedModeActions - For each indexed mode and each value type,
1754  /// keep a pair of LegalizeAction that indicates how instruction
1755  /// selection should deal with the load / store.  The first dimension is the
1756  /// value_type for the reference. The second dimension represents the various
1757  /// modes for load store.
1758  uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
1759
1760  /// CondCodeActions - For each condition code (ISD::CondCode) keep a
1761  /// LegalizeAction that indicates how instruction selection should
1762  /// deal with the condition code.
1763  uint64_t CondCodeActions[ISD::SETCC_INVALID];
1764
1765  ValueTypeActionImpl ValueTypeActions;
1766
1767  typedef std::pair<LegalizeTypeAction, EVT> LegalizeKind;
1768
1769  LegalizeKind
1770  getTypeConversion(LLVMContext &Context, EVT VT) const {
1771    // If this is a simple type, use the ComputeRegisterProp mechanism.
1772    if (VT.isSimple()) {
1773      assert((unsigned)VT.getSimpleVT().SimpleTy <
1774             array_lengthof(TransformToType));
1775      EVT NVT = TransformToType[VT.getSimpleVT().SimpleTy];
1776      LegalizeTypeAction LA = ValueTypeActions.getTypeAction(VT.getSimpleVT());
1777
1778      assert(
1779        (!(NVT.isSimple() && LA != TypeLegal) ||
1780         ValueTypeActions.getTypeAction(NVT.getSimpleVT()) != TypePromoteInteger)
1781         && "Promote may not follow Expand or Promote");
1782
1783      return LegalizeKind(LA, NVT);
1784    }
1785
1786    // Handle Extended Scalar Types.
1787    if (!VT.isVector()) {
1788      assert(VT.isInteger() && "Float types must be simple");
1789      unsigned BitSize = VT.getSizeInBits();
1790      // First promote to a power-of-two size, then expand if necessary.
1791      if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
1792        EVT NVT = VT.getRoundIntegerType(Context);
1793        assert(NVT != VT && "Unable to round integer VT");
1794        LegalizeKind NextStep = getTypeConversion(Context, NVT);
1795        // Avoid multi-step promotion.
1796        if (NextStep.first == TypePromoteInteger) return NextStep;
1797        // Return rounded integer type.
1798        return LegalizeKind(TypePromoteInteger, NVT);
1799      }
1800
1801      return LegalizeKind(TypeExpandInteger,
1802                          EVT::getIntegerVT(Context, VT.getSizeInBits()/2));
1803    }
1804
1805    // Handle vector types.
1806    unsigned NumElts = VT.getVectorNumElements();
1807    EVT EltVT = VT.getVectorElementType();
1808
1809    // Vectors with only one element are always scalarized.
1810    if (NumElts == 1)
1811      return LegalizeKind(TypeScalarizeVector, EltVT);
1812
1813    // If we allow the promotion of vector elements using a flag,
1814    // then try to widen vector elements until a legal type is found.
1815    if (mayPromoteElements && EltVT.isInteger()) {
1816      // Vectors with a number of elements that is not a power of two are always
1817      // widened, for example <3 x float> -> <4 x float>.
1818      if (!VT.isPow2VectorType()) {
1819        NumElts = (unsigned)NextPowerOf2(NumElts);
1820        EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
1821        return LegalizeKind(TypeWidenVector, NVT);
1822      }
1823
1824      // Examine the element type.
1825      LegalizeKind LK = getTypeConversion(Context, EltVT);
1826
1827      // If type is to be expanded, split the vector.
1828      //  <4 x i140> -> <2 x i140>
1829      if (LK.first == TypeExpandInteger)
1830        return LegalizeKind(TypeSplitVector,
1831                            EVT::getVectorVT(Context, EltVT, NumElts / 2));
1832
1833      // Promote the integer element types until a legal vector type is found
1834      // or until the element integer type is too big. If a legal type was not
1835      // found, fallback to the usual mechanism of widening/splitting the
1836      // vector.
1837      while (1) {
1838        // Increase the bitwidth of the element to the next pow-of-two
1839        // (which is greater than 8 bits).
1840        EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()
1841                                 ).getRoundIntegerType(Context);
1842
1843        // Stop trying when getting a non-simple element type.
1844        // Note that vector elements may be greater than legal vector element
1845        // types. Example: X86 XMM registers hold 64bit element on 32bit systems.
1846        if (!EltVT.isSimple()) break;
1847
1848        // Build a new vector type and check if it is legal.
1849        MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1850        // Found a legal promoted vector type.
1851        if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
1852          return LegalizeKind(TypePromoteInteger,
1853                              EVT::getVectorVT(Context, EltVT, NumElts));
1854      }
1855    }
1856
1857    // Try to widen the vector until a legal type is found.
1858    // If there is no wider legal type, split the vector.
1859    while (1) {
1860      // Round up to the next power of 2.
1861      NumElts = (unsigned)NextPowerOf2(NumElts);
1862
1863      // If there is no simple vector type with this many elements then there
1864      // cannot be a larger legal vector type.  Note that this assumes that
1865      // there are no skipped intermediate vector types in the simple types.
1866      if (!EltVT.isSimple()) break;
1867      MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1868      if (LargerVector == MVT()) break;
1869
1870      // If this type is legal then widen the vector.
1871      if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
1872        return LegalizeKind(TypeWidenVector, LargerVector);
1873    }
1874
1875    // Widen odd vectors to next power of two.
1876    if (!VT.isPow2VectorType()) {
1877      EVT NVT = VT.getPow2VectorType(Context);
1878      return LegalizeKind(TypeWidenVector, NVT);
1879    }
1880
1881    // Vectors with illegal element types are expanded.
1882    EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
1883    return LegalizeKind(TypeSplitVector, NVT);
1884
1885    assert(false && "Unable to handle this kind of vector type");
1886    return LegalizeKind(TypeLegal, VT);
1887  }
1888
1889  std::vector<std::pair<EVT, TargetRegisterClass*> > AvailableRegClasses;
1890
1891  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
1892  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
1893  /// which sets a bit in this array.
1894  unsigned char
1895  TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
1896
1897  /// PromoteToType - For operations that must be promoted to a specific type,
1898  /// this holds the destination type.  This map should be sparse, so don't hold
1899  /// it as an array.
1900  ///
1901  /// Targets add entries to this map with AddPromotedToType(..), clients access
1902  /// this with getTypeToPromoteTo(..).
1903  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
1904    PromoteToType;
1905
1906  /// LibcallRoutineNames - Stores the name each libcall.
1907  ///
1908  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1909
1910  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
1911  /// of each of the comparison libcall against zero.
1912  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1913
1914  /// LibcallCallingConvs - Stores the CallingConv that should be used for each
1915  /// libcall.
1916  CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
1917
1918protected:
1919  /// When lowering \@llvm.memset this field specifies the maximum number of
1920  /// store operations that may be substituted for the call to memset. Targets
1921  /// must set this value based on the cost threshold for that target. Targets
1922  /// should assume that the memset will be done using as many of the largest
1923  /// store operations first, followed by smaller ones, if necessary, per
1924  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1925  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1926  /// store.  This only applies to setting a constant array of a constant size.
1927  /// @brief Specify maximum number of store instructions per memset call.
1928  unsigned maxStoresPerMemset;
1929
1930  /// Maximum number of stores operations that may be substituted for the call
1931  /// to memset, used for functions with OptSize attribute.
1932  unsigned maxStoresPerMemsetOptSize;
1933
1934  /// When lowering \@llvm.memcpy this field specifies the maximum number of
1935  /// store operations that may be substituted for a call to memcpy. Targets
1936  /// must set this value based on the cost threshold for that target. Targets
1937  /// should assume that the memcpy will be done using as many of the largest
1938  /// store operations first, followed by smaller ones, if necessary, per
1939  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1940  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1941  /// and one 1-byte store. This only applies to copying a constant array of
1942  /// constant size.
1943  /// @brief Specify maximum bytes of store instructions per memcpy call.
1944  unsigned maxStoresPerMemcpy;
1945
1946  /// Maximum number of store operations that may be substituted for a call
1947  /// to memcpy, used for functions with OptSize attribute.
1948  unsigned maxStoresPerMemcpyOptSize;
1949
1950  /// When lowering \@llvm.memmove this field specifies the maximum number of
1951  /// store instructions that may be substituted for a call to memmove. Targets
1952  /// must set this value based on the cost threshold for that target. Targets
1953  /// should assume that the memmove will be done using as many of the largest
1954  /// store operations first, followed by smaller ones, if necessary, per
1955  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1956  /// with 8-bit alignment would result in nine 1-byte stores.  This only
1957  /// applies to copying a constant array of constant size.
1958  /// @brief Specify maximum bytes of store instructions per memmove call.
1959  unsigned maxStoresPerMemmove;
1960
1961  /// Maximum number of store instructions that may be substituted for a call
1962  /// to memmove, used for functions with OpSize attribute.
1963  unsigned maxStoresPerMemmoveOptSize;
1964
1965  /// This field specifies whether the target can benefit from code placement
1966  /// optimization.
1967  bool benefitFromCodePlacementOpt;
1968
1969private:
1970  /// isLegalRC - Return true if the value types that can be represented by the
1971  /// specified register class are all legal.
1972  bool isLegalRC(const TargetRegisterClass *RC) const;
1973
1974  /// hasLegalSuperRegRegClasses - Return true if the specified register class
1975  /// has one or more super-reg register classes that are legal.
1976  bool hasLegalSuperRegRegClasses(const TargetRegisterClass *RC) const;
1977};
1978
1979/// GetReturnInfo - Given an LLVM IR type and return type attributes,
1980/// compute the return value EVTs and flags, and optionally also
1981/// the offsets, if the return value is being lowered to memory.
1982void GetReturnInfo(Type* ReturnType, Attributes attr,
1983                   SmallVectorImpl<ISD::OutputArg> &Outs,
1984                   const TargetLowering &TLI,
1985                   SmallVectorImpl<uint64_t> *Offsets = 0);
1986
1987} // end llvm namespace
1988
1989#endif
1990