TargetLowering.h revision 1cc3984148be113c6e5e470f23c9ddbd37679c5f
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/CallingConv.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/CodeGen/SelectionDAGNodes.h"
28#include "llvm/CodeGen/RuntimeLibcalls.h"
29#include "llvm/ADT/APFloat.h"
30#include "llvm/ADT/DenseMap.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/STLExtras.h"
34#include "llvm/Support/DebugLoc.h"
35#include "llvm/Target/TargetMachine.h"
36#include <climits>
37#include <map>
38#include <vector>
39
40namespace llvm {
41  class AllocaInst;
42  class CallInst;
43  class Function;
44  class FastISel;
45  class MachineBasicBlock;
46  class MachineFunction;
47  class MachineFrameInfo;
48  class MachineInstr;
49  class MachineJumpTableInfo;
50  class MCContext;
51  class MCExpr;
52  class SDNode;
53  class SDValue;
54  class SelectionDAG;
55  class TargetData;
56  class TargetMachine;
57  class TargetRegisterClass;
58  class TargetLoweringObjectFile;
59  class Value;
60
61  // FIXME: should this be here?
62  namespace TLSModel {
63    enum Model {
64      GeneralDynamic,
65      LocalDynamic,
66      InitialExec,
67      LocalExec
68    };
69  }
70  TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc);
71
72
73//===----------------------------------------------------------------------===//
74/// TargetLowering - This class defines information used to lower LLVM code to
75/// legal SelectionDAG operators that the target instruction selector can accept
76/// natively.
77///
78/// This class also defines callbacks that targets must implement to lower
79/// target-specific constructs to SelectionDAG operators.
80///
81class TargetLowering {
82  TargetLowering(const TargetLowering&);  // DO NOT IMPLEMENT
83  void operator=(const TargetLowering&);  // DO NOT IMPLEMENT
84public:
85  /// LegalizeAction - This enum indicates whether operations are valid for a
86  /// target, and if not, what action should be used to make them valid.
87  enum LegalizeAction {
88    Legal,      // The target natively supports this operation.
89    Promote,    // This operation should be executed in a larger type.
90    Expand,     // Try to expand this to other ops, otherwise use a libcall.
91    Custom      // Use the LowerOperation hook to implement custom lowering.
92  };
93
94  enum BooleanContent { // How the target represents true/false values.
95    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
96    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
97    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
98  };
99
100  /// NOTE: The constructor takes ownership of TLOF.
101  explicit TargetLowering(const TargetMachine &TM,
102                          const TargetLoweringObjectFile *TLOF);
103  virtual ~TargetLowering();
104
105  const TargetMachine &getTargetMachine() const { return TM; }
106  const TargetData *getTargetData() const { return TD; }
107  const TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
108
109  bool isBigEndian() const { return !IsLittleEndian; }
110  bool isLittleEndian() const { return IsLittleEndian; }
111  MVT getPointerTy() const { return PointerTy; }
112  MVT getShiftAmountTy() const { return ShiftAmountTy; }
113
114  /// isSelectExpensive - Return true if the select operation is expensive for
115  /// this target.
116  bool isSelectExpensive() const { return SelectIsExpensive; }
117
118  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
119  /// a sequence of several shifts, adds, and multiplies for this target.
120  bool isIntDivCheap() const { return IntDivIsCheap; }
121
122  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
123  /// srl/add/sra.
124  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
125
126  /// getSetCCResultType - Return the ValueType of the result of SETCC
127  /// operations.  Also used to obtain the target's preferred type for
128  /// the condition operand of SELECT and BRCOND nodes.  In the case of
129  /// BRCOND the argument passed is MVT::Other since there are no other
130  /// operands to get a type hint from.
131  virtual
132  MVT::SimpleValueType getSetCCResultType(EVT VT) const;
133
134  /// getCmpLibcallReturnType - Return the ValueType for comparison
135  /// libcalls. Comparions libcalls include floating point comparion calls,
136  /// and Ordered/Unordered check calls on floating point numbers.
137  virtual
138  MVT::SimpleValueType getCmpLibcallReturnType() const;
139
140  /// getBooleanContents - For targets without i1 registers, this gives the
141  /// nature of the high-bits of boolean values held in types wider than i1.
142  /// "Boolean values" are special true/false values produced by nodes like
143  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
144  /// Not to be confused with general values promoted from i1.
145  BooleanContent getBooleanContents() const { return BooleanContents;}
146
147  /// getSchedulingPreference - Return target scheduling preference.
148  Sched::Preference getSchedulingPreference() const {
149    return SchedPreferenceInfo;
150  }
151
152  /// getSchedulingPreference - Some scheduler, e.g. hybrid, can switch to
153  /// different scheduling heuristics for different nodes. This function returns
154  /// the preference (or none) for the given node.
155  virtual Sched::Preference getSchedulingPreference(SDNode *N) const {
156    return Sched::None;
157  }
158
159  /// getRegClassFor - Return the register class that should be used for the
160  /// specified value type.
161  virtual TargetRegisterClass *getRegClassFor(EVT VT) const {
162    assert(VT.isSimple() && "getRegClassFor called on illegal type!");
163    TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
164    assert(RC && "This value type is not natively supported!");
165    return RC;
166  }
167
168  /// isTypeLegal - Return true if the target has native support for the
169  /// specified value type.  This means that it has a register that directly
170  /// holds it without promotions or expansions.
171  bool isTypeLegal(EVT VT) const {
172    assert(!VT.isSimple() ||
173           (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
174    return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0;
175  }
176
177  /// isTypeSynthesizable - Return true if it's OK for the compiler to create
178  /// new operations of this type.  All Legal types are synthesizable except
179  /// MMX vector types on X86.  Non-Legal types are not synthesizable.
180  bool isTypeSynthesizable(EVT VT) const {
181    return isTypeLegal(VT) && Synthesizable[VT.getSimpleVT().SimpleTy];
182  }
183
184  class ValueTypeActionImpl {
185    /// ValueTypeActions - For each value type, keep a LegalizeAction enum
186    /// that indicates how instruction selection should deal with the type.
187    uint8_t ValueTypeActions[MVT::LAST_VALUETYPE];
188  public:
189    ValueTypeActionImpl() {
190      std::fill(ValueTypeActions, array_endof(ValueTypeActions), 0);
191    }
192    LegalizeAction getTypeAction(LLVMContext &Context, EVT VT) const {
193      if (VT.isExtended()) {
194        if (VT.isVector()) {
195          return VT.isPow2VectorType() ? Expand : Promote;
196        }
197        if (VT.isInteger())
198          // First promote to a power-of-two size, then expand if necessary.
199          return VT == VT.getRoundIntegerType(Context) ? Expand : Promote;
200        assert(0 && "Unsupported extended type!");
201        return Legal;
202      }
203      unsigned I = VT.getSimpleVT().SimpleTy;
204      return (LegalizeAction)ValueTypeActions[I];
205    }
206    void setTypeAction(EVT VT, LegalizeAction Action) {
207      unsigned I = VT.getSimpleVT().SimpleTy;
208      ValueTypeActions[I] = Action;
209    }
210  };
211
212  const ValueTypeActionImpl &getValueTypeActions() const {
213    return ValueTypeActions;
214  }
215
216  /// getTypeAction - Return how we should legalize values of this type, either
217  /// it is already legal (return 'Legal') or we need to promote it to a larger
218  /// type (return 'Promote'), or we need to expand it into multiple registers
219  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
220  LegalizeAction getTypeAction(LLVMContext &Context, EVT VT) const {
221    return ValueTypeActions.getTypeAction(Context, VT);
222  }
223
224  /// getTypeToTransformTo - For types supported by the target, this is an
225  /// identity function.  For types that must be promoted to larger types, this
226  /// returns the larger type to promote to.  For integer types that are larger
227  /// than the largest integer register, this contains one step in the expansion
228  /// to get to the smaller register. For illegal floating point types, this
229  /// returns the integer type to transform to.
230  EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
231    if (VT.isSimple()) {
232      assert((unsigned)VT.getSimpleVT().SimpleTy <
233             array_lengthof(TransformToType));
234      EVT NVT = TransformToType[VT.getSimpleVT().SimpleTy];
235      assert(getTypeAction(Context, NVT) != Promote &&
236             "Promote may not follow Expand or Promote");
237      return NVT;
238    }
239
240    if (VT.isVector()) {
241      EVT NVT = VT.getPow2VectorType(Context);
242      if (NVT == VT) {
243        // Vector length is a power of 2 - split to half the size.
244        unsigned NumElts = VT.getVectorNumElements();
245        EVT EltVT = VT.getVectorElementType();
246        return (NumElts == 1) ?
247          EltVT : EVT::getVectorVT(Context, EltVT, NumElts / 2);
248      }
249      // Promote to a power of two size, avoiding multi-step promotion.
250      return getTypeAction(Context, NVT) == Promote ?
251        getTypeToTransformTo(Context, NVT) : NVT;
252    } else if (VT.isInteger()) {
253      EVT NVT = VT.getRoundIntegerType(Context);
254      if (NVT == VT)
255        // Size is a power of two - expand to half the size.
256        return EVT::getIntegerVT(Context, VT.getSizeInBits() / 2);
257      else
258        // Promote to a power of two size, avoiding multi-step promotion.
259        return getTypeAction(Context, NVT) == Promote ?
260          getTypeToTransformTo(Context, NVT) : NVT;
261    }
262    assert(0 && "Unsupported extended type!");
263    return MVT(MVT::Other); // Not reached
264  }
265
266  /// getTypeToExpandTo - For types supported by the target, this is an
267  /// identity function.  For types that must be expanded (i.e. integer types
268  /// that are larger than the largest integer register or illegal floating
269  /// point types), this returns the largest legal type it will be expanded to.
270  EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
271    assert(!VT.isVector());
272    while (true) {
273      switch (getTypeAction(Context, VT)) {
274      case Legal:
275        return VT;
276      case Expand:
277        VT = getTypeToTransformTo(Context, VT);
278        break;
279      default:
280        assert(false && "Type is not legal nor is it to be expanded!");
281        return VT;
282      }
283    }
284    return VT;
285  }
286
287  /// getVectorTypeBreakdown - Vector types are broken down into some number of
288  /// legal first class types.  For example, EVT::v8f32 maps to 2 EVT::v4f32
289  /// with Altivec or SSE1, or 8 promoted EVT::f64 values with the X86 FP stack.
290  /// Similarly, EVT::v2i64 turns into 4 EVT::i32 values with both PPC and X86.
291  ///
292  /// This method returns the number of registers needed, and the VT for each
293  /// register.  It also returns the VT and quantity of the intermediate values
294  /// before they are promoted/expanded.
295  ///
296  unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
297                                  EVT &IntermediateVT,
298                                  unsigned &NumIntermediates,
299                                  EVT &RegisterVT) const;
300
301  /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
302  /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
303  /// this is the case, it returns true and store the intrinsic
304  /// information into the IntrinsicInfo that was passed to the function.
305  struct IntrinsicInfo {
306    unsigned     opc;         // target opcode
307    EVT          memVT;       // memory VT
308    const Value* ptrVal;      // value representing memory location
309    int          offset;      // offset off of ptrVal
310    unsigned     align;       // alignment
311    bool         vol;         // is volatile?
312    bool         readMem;     // reads memory?
313    bool         writeMem;    // writes memory?
314  };
315
316  virtual bool getTgtMemIntrinsic(IntrinsicInfo &Info,
317                                  const CallInst &I, unsigned Intrinsic) const {
318    return false;
319  }
320
321  /// isFPImmLegal - Returns true if the target can instruction select the
322  /// specified FP immediate natively. If false, the legalizer will materialize
323  /// the FP immediate as a load from a constant pool.
324  virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const {
325    return false;
326  }
327
328  /// isShuffleMaskLegal - Targets can use this to indicate that they only
329  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
330  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
331  /// are assumed to be legal.
332  virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
333                                  EVT VT) const {
334    return true;
335  }
336
337  /// canOpTrap - Returns true if the operation can trap for the value type.
338  /// VT must be a legal type. By default, we optimistically assume most
339  /// operations don't trap except for divide and remainder.
340  virtual bool canOpTrap(unsigned Op, EVT VT) const;
341
342  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
343  /// used by Targets can use this to indicate if there is a suitable
344  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
345  /// pool entry.
346  virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
347                                      EVT VT) const {
348    return false;
349  }
350
351  /// getOperationAction - Return how this operation should be treated: either
352  /// it is legal, needs to be promoted to a larger size, needs to be
353  /// expanded to some other code sequence, or the target has a custom expander
354  /// for it.
355  LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
356    if (VT.isExtended()) return Expand;
357    assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
358    unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
359    return (LegalizeAction)OpActions[I][Op];
360  }
361
362  /// isOperationLegalOrCustom - Return true if the specified operation is
363  /// legal on this target or can be made legal with custom lowering. This
364  /// is used to help guide high-level lowering decisions.
365  bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
366    return (VT == MVT::Other || isTypeLegal(VT)) &&
367      (getOperationAction(Op, VT) == Legal ||
368       getOperationAction(Op, VT) == Custom);
369  }
370
371  /// isOperationLegal - Return true if the specified operation is legal on this
372  /// target.
373  bool isOperationLegal(unsigned Op, EVT VT) const {
374    return (VT == MVT::Other || isTypeLegal(VT)) &&
375           getOperationAction(Op, VT) == Legal;
376  }
377
378  /// getLoadExtAction - Return how this load with extension should be treated:
379  /// either it is legal, needs to be promoted to a larger size, needs to be
380  /// expanded to some other code sequence, or the target has a custom expander
381  /// for it.
382  LegalizeAction getLoadExtAction(unsigned ExtType, EVT VT) const {
383    assert(ExtType < ISD::LAST_LOADEXT_TYPE &&
384           (unsigned)VT.getSimpleVT().SimpleTy < MVT::LAST_VALUETYPE &&
385           "Table isn't big enough!");
386    return (LegalizeAction)LoadExtActions[VT.getSimpleVT().SimpleTy][ExtType];
387  }
388
389  /// isLoadExtLegal - Return true if the specified load with extension is legal
390  /// on this target.
391  bool isLoadExtLegal(unsigned ExtType, EVT VT) const {
392    return VT.isSimple() &&
393      (getLoadExtAction(ExtType, VT) == Legal ||
394       getLoadExtAction(ExtType, VT) == Custom);
395  }
396
397  /// getTruncStoreAction - Return how this store with truncation should be
398  /// treated: either it is legal, needs to be promoted to a larger size, needs
399  /// to be expanded to some other code sequence, or the target has a custom
400  /// expander for it.
401  LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const {
402    assert((unsigned)ValVT.getSimpleVT().SimpleTy < MVT::LAST_VALUETYPE &&
403           (unsigned)MemVT.getSimpleVT().SimpleTy < MVT::LAST_VALUETYPE &&
404           "Table isn't big enough!");
405    return (LegalizeAction)TruncStoreActions[ValVT.getSimpleVT().SimpleTy]
406                                            [MemVT.getSimpleVT().SimpleTy];
407  }
408
409  /// isTruncStoreLegal - Return true if the specified store with truncation is
410  /// legal on this target.
411  bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
412    return isTypeLegal(ValVT) && MemVT.isSimple() &&
413      (getTruncStoreAction(ValVT, MemVT) == Legal ||
414       getTruncStoreAction(ValVT, MemVT) == Custom);
415  }
416
417  /// getIndexedLoadAction - Return how the indexed load should be treated:
418  /// either it is legal, needs to be promoted to a larger size, needs to be
419  /// expanded to some other code sequence, or the target has a custom expander
420  /// for it.
421  LegalizeAction
422  getIndexedLoadAction(unsigned IdxMode, EVT VT) const {
423    assert( IdxMode < ISD::LAST_INDEXED_MODE &&
424           ((unsigned)VT.getSimpleVT().SimpleTy) < MVT::LAST_VALUETYPE &&
425           "Table isn't big enough!");
426    unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
427    return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
428  }
429
430  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
431  /// on this target.
432  bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
433    return VT.isSimple() &&
434      (getIndexedLoadAction(IdxMode, VT) == Legal ||
435       getIndexedLoadAction(IdxMode, VT) == Custom);
436  }
437
438  /// getIndexedStoreAction - Return how the indexed store should be treated:
439  /// either it is legal, needs to be promoted to a larger size, needs to be
440  /// expanded to some other code sequence, or the target has a custom expander
441  /// for it.
442  LegalizeAction
443  getIndexedStoreAction(unsigned IdxMode, EVT VT) const {
444    assert( IdxMode < ISD::LAST_INDEXED_MODE &&
445           ((unsigned)VT.getSimpleVT().SimpleTy) < MVT::LAST_VALUETYPE &&
446           "Table isn't big enough!");
447    unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
448    return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
449  }
450
451  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
452  /// on this target.
453  bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
454    return VT.isSimple() &&
455      (getIndexedStoreAction(IdxMode, VT) == Legal ||
456       getIndexedStoreAction(IdxMode, VT) == Custom);
457  }
458
459  /// getCondCodeAction - Return how the condition code should be treated:
460  /// either it is legal, needs to be expanded to some other code sequence,
461  /// or the target has a custom expander for it.
462  LegalizeAction
463  getCondCodeAction(ISD::CondCode CC, EVT VT) const {
464    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
465           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(CondCodeActions[0])*4 &&
466           "Table isn't big enough!");
467    LegalizeAction Action = (LegalizeAction)
468      ((CondCodeActions[CC] >> (2*VT.getSimpleVT().SimpleTy)) & 3);
469    assert(Action != Promote && "Can't promote condition code!");
470    return Action;
471  }
472
473  /// isCondCodeLegal - Return true if the specified condition code is legal
474  /// on this target.
475  bool isCondCodeLegal(ISD::CondCode CC, EVT VT) const {
476    return getCondCodeAction(CC, VT) == Legal ||
477           getCondCodeAction(CC, VT) == Custom;
478  }
479
480
481  /// getTypeToPromoteTo - If the action for this operation is to promote, this
482  /// method returns the ValueType to promote to.
483  EVT getTypeToPromoteTo(unsigned Op, EVT VT) const {
484    assert(getOperationAction(Op, VT) == Promote &&
485           "This operation isn't promoted!");
486
487    // See if this has an explicit type specified.
488    std::map<std::pair<unsigned, MVT::SimpleValueType>,
489             MVT::SimpleValueType>::const_iterator PTTI =
490      PromoteToType.find(std::make_pair(Op, VT.getSimpleVT().SimpleTy));
491    if (PTTI != PromoteToType.end()) return PTTI->second;
492
493    assert((VT.isInteger() || VT.isFloatingPoint()) &&
494           "Cannot autopromote this type, add it with AddPromotedToType.");
495
496    EVT NVT = VT;
497    do {
498      NVT = (MVT::SimpleValueType)(NVT.getSimpleVT().SimpleTy+1);
499      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
500             "Didn't find type to promote to!");
501    } while (!isTypeLegal(NVT) ||
502              getOperationAction(Op, NVT) == Promote);
503    return NVT;
504  }
505
506  /// getValueType - Return the EVT corresponding to this LLVM type.
507  /// This is fixed by the LLVM operations except for the pointer size.  If
508  /// AllowUnknown is true, this will return MVT::Other for types with no EVT
509  /// counterpart (e.g. structs), otherwise it will assert.
510  EVT getValueType(const Type *Ty, bool AllowUnknown = false) const {
511    EVT VT = EVT::getEVT(Ty, AllowUnknown);
512    return VT == MVT::iPTR ? PointerTy : VT;
513  }
514
515  /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
516  /// function arguments in the caller parameter area.  This is the actual
517  /// alignment, not its logarithm.
518  virtual unsigned getByValTypeAlignment(const Type *Ty) const;
519
520  /// getRegisterType - Return the type of registers that this ValueType will
521  /// eventually require.
522  EVT getRegisterType(MVT VT) const {
523    assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
524    return RegisterTypeForVT[VT.SimpleTy];
525  }
526
527  /// getRegisterType - Return the type of registers that this ValueType will
528  /// eventually require.
529  EVT getRegisterType(LLVMContext &Context, EVT VT) const {
530    if (VT.isSimple()) {
531      assert((unsigned)VT.getSimpleVT().SimpleTy <
532                array_lengthof(RegisterTypeForVT));
533      return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
534    }
535    if (VT.isVector()) {
536      EVT VT1, RegisterVT;
537      unsigned NumIntermediates;
538      (void)getVectorTypeBreakdown(Context, VT, VT1,
539                                   NumIntermediates, RegisterVT);
540      return RegisterVT;
541    }
542    if (VT.isInteger()) {
543      return getRegisterType(Context, getTypeToTransformTo(Context, VT));
544    }
545    assert(0 && "Unsupported extended type!");
546    return EVT(MVT::Other); // Not reached
547  }
548
549  /// getNumRegisters - Return the number of registers that this ValueType will
550  /// eventually require.  This is one for any types promoted to live in larger
551  /// registers, but may be more than one for types (like i64) that are split
552  /// into pieces.  For types like i140, which are first promoted then expanded,
553  /// it is the number of registers needed to hold all the bits of the original
554  /// type.  For an i140 on a 32 bit machine this means 5 registers.
555  unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
556    if (VT.isSimple()) {
557      assert((unsigned)VT.getSimpleVT().SimpleTy <
558                array_lengthof(NumRegistersForVT));
559      return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
560    }
561    if (VT.isVector()) {
562      EVT VT1, VT2;
563      unsigned NumIntermediates;
564      return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
565    }
566    if (VT.isInteger()) {
567      unsigned BitWidth = VT.getSizeInBits();
568      unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
569      return (BitWidth + RegWidth - 1) / RegWidth;
570    }
571    assert(0 && "Unsupported extended type!");
572    return 0; // Not reached
573  }
574
575  /// ShouldShrinkFPConstant - If true, then instruction selection should
576  /// seek to shrink the FP constant of the specified type to a smaller type
577  /// in order to save space and / or reduce runtime.
578  virtual bool ShouldShrinkFPConstant(EVT VT) const { return true; }
579
580  /// hasTargetDAGCombine - If true, the target has custom DAG combine
581  /// transformations that it can perform for the specified node.
582  bool hasTargetDAGCombine(ISD::NodeType NT) const {
583    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
584    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
585  }
586
587  /// This function returns the maximum number of store operations permitted
588  /// to replace a call to llvm.memset. The value is set by the target at the
589  /// performance threshold for such a replacement.
590  /// @brief Get maximum # of store operations permitted for llvm.memset
591  unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; }
592
593  /// This function returns the maximum number of store operations permitted
594  /// to replace a call to llvm.memcpy. The value is set by the target at the
595  /// performance threshold for such a replacement.
596  /// @brief Get maximum # of store operations permitted for llvm.memcpy
597  unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; }
598
599  /// This function returns the maximum number of store operations permitted
600  /// to replace a call to llvm.memmove. The value is set by the target at the
601  /// performance threshold for such a replacement.
602  /// @brief Get maximum # of store operations permitted for llvm.memmove
603  unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; }
604
605  /// This function returns true if the target allows unaligned memory accesses.
606  /// of the specified type. This is used, for example, in situations where an
607  /// array copy/move/set is  converted to a sequence of store operations. It's
608  /// use helps to ensure that such replacements don't generate code that causes
609  /// an alignment error  (trap) on the target machine.
610  /// @brief Determine if the target supports unaligned memory accesses.
611  virtual bool allowsUnalignedMemoryAccesses(EVT VT) const {
612    return false;
613  }
614
615  /// This function returns true if the target would benefit from code placement
616  /// optimization.
617  /// @brief Determine if the target should perform code placement optimization.
618  bool shouldOptimizeCodePlacement() const {
619    return benefitFromCodePlacementOpt;
620  }
621
622  /// getOptimalMemOpType - Returns the target specific optimal type for load
623  /// and store operations as a result of memset, memcpy, and memmove
624  /// lowering. If DstAlign is zero that means it's safe to destination
625  /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
626  /// means there isn't a need to check it against alignment requirement,
627  /// probably because the source does not need to be loaded. If
628  /// 'NonScalarIntSafe' is true, that means it's safe to return a
629  /// non-scalar-integer type, e.g. empty string source, constant, or loaded
630  /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
631  /// constant so it does not need to be loaded.
632  /// It returns EVT::Other if the type should be determined using generic
633  /// target-independent logic.
634  virtual EVT getOptimalMemOpType(uint64_t Size,
635                                  unsigned DstAlign, unsigned SrcAlign,
636                                  bool NonScalarIntSafe, bool MemcpyStrSrc,
637                                  MachineFunction &MF) const {
638    return MVT::Other;
639  }
640
641  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
642  /// to implement llvm.setjmp.
643  bool usesUnderscoreSetJmp() const {
644    return UseUnderscoreSetJmp;
645  }
646
647  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
648  /// to implement llvm.longjmp.
649  bool usesUnderscoreLongJmp() const {
650    return UseUnderscoreLongJmp;
651  }
652
653  /// getStackPointerRegisterToSaveRestore - If a physical register, this
654  /// specifies the register that llvm.savestack/llvm.restorestack should save
655  /// and restore.
656  unsigned getStackPointerRegisterToSaveRestore() const {
657    return StackPointerRegisterToSaveRestore;
658  }
659
660  /// getExceptionAddressRegister - If a physical register, this returns
661  /// the register that receives the exception address on entry to a landing
662  /// pad.
663  unsigned getExceptionAddressRegister() const {
664    return ExceptionPointerRegister;
665  }
666
667  /// getExceptionSelectorRegister - If a physical register, this returns
668  /// the register that receives the exception typeid on entry to a landing
669  /// pad.
670  unsigned getExceptionSelectorRegister() const {
671    return ExceptionSelectorRegister;
672  }
673
674  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
675  /// set, the default is 200)
676  unsigned getJumpBufSize() const {
677    return JumpBufSize;
678  }
679
680  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
681  /// (if never set, the default is 0)
682  unsigned getJumpBufAlignment() const {
683    return JumpBufAlignment;
684  }
685
686  /// getIfCvtBlockLimit - returns the target specific if-conversion block size
687  /// limit. Any block whose size is greater should not be predicated.
688  unsigned getIfCvtBlockSizeLimit() const {
689    return IfCvtBlockSizeLimit;
690  }
691
692  /// getIfCvtDupBlockLimit - returns the target specific size limit for a
693  /// block to be considered for duplication. Any block whose size is greater
694  /// should not be duplicated to facilitate its predication.
695  unsigned getIfCvtDupBlockSizeLimit() const {
696    return IfCvtDupBlockSizeLimit;
697  }
698
699  /// getPrefLoopAlignment - return the preferred loop alignment.
700  ///
701  unsigned getPrefLoopAlignment() const {
702    return PrefLoopAlignment;
703  }
704
705  /// getPreIndexedAddressParts - returns true by value, base pointer and
706  /// offset pointer and addressing mode by reference if the node's address
707  /// can be legally represented as pre-indexed load / store address.
708  virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
709                                         SDValue &Offset,
710                                         ISD::MemIndexedMode &AM,
711                                         SelectionDAG &DAG) const {
712    return false;
713  }
714
715  /// getPostIndexedAddressParts - returns true by value, base pointer and
716  /// offset pointer and addressing mode by reference if this node can be
717  /// combined with a load / store to form a post-indexed load / store.
718  virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
719                                          SDValue &Base, SDValue &Offset,
720                                          ISD::MemIndexedMode &AM,
721                                          SelectionDAG &DAG) const {
722    return false;
723  }
724
725  /// getJumpTableEncoding - Return the entry encoding for a jump table in the
726  /// current function.  The returned value is a member of the
727  /// MachineJumpTableInfo::JTEntryKind enum.
728  virtual unsigned getJumpTableEncoding() const;
729
730  virtual const MCExpr *
731  LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
732                            const MachineBasicBlock *MBB, unsigned uid,
733                            MCContext &Ctx) const {
734    assert(0 && "Need to implement this hook if target has custom JTIs");
735    return 0;
736  }
737
738  /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
739  /// jumptable.
740  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
741                                           SelectionDAG &DAG) const;
742
743  /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
744  /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
745  /// MCExpr.
746  virtual const MCExpr *
747  getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
748                               unsigned JTI, MCContext &Ctx) const;
749
750  /// isOffsetFoldingLegal - Return true if folding a constant offset
751  /// with the given GlobalAddress is legal.  It is frequently not legal in
752  /// PIC relocation models.
753  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
754
755  /// getFunctionAlignment - Return the Log2 alignment of this function.
756  virtual unsigned getFunctionAlignment(const Function *) const = 0;
757
758  //===--------------------------------------------------------------------===//
759  // TargetLowering Optimization Methods
760  //
761
762  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
763  /// SDValues for returning information from TargetLowering to its clients
764  /// that want to combine
765  struct TargetLoweringOpt {
766    SelectionDAG &DAG;
767    bool LegalTys;
768    bool LegalOps;
769    bool ShrinkOps;
770    SDValue Old;
771    SDValue New;
772
773    explicit TargetLoweringOpt(SelectionDAG &InDAG,
774                               bool LT, bool LO,
775                               bool Shrink = false) :
776      DAG(InDAG), LegalTys(LT), LegalOps(LO), ShrinkOps(Shrink) {}
777
778    bool LegalTypes() const { return LegalTys; }
779    bool LegalOperations() const { return LegalOps; }
780
781    bool CombineTo(SDValue O, SDValue N) {
782      Old = O;
783      New = N;
784      return true;
785    }
786
787    /// ShrinkDemandedConstant - Check to see if the specified operand of the
788    /// specified instruction is a constant integer.  If so, check to see if
789    /// there are any bits set in the constant that are not demanded.  If so,
790    /// shrink the constant and return true.
791    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
792
793    /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
794    /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
795    /// cast, but it could be generalized for targets with other types of
796    /// implicit widening casts.
797    bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
798                          DebugLoc dl);
799  };
800
801  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
802  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
803  /// use this information to simplify Op, create a new simplified DAG node and
804  /// return true, returning the original and new nodes in Old and New.
805  /// Otherwise, analyze the expression and return a mask of KnownOne and
806  /// KnownZero bits for the expression (used to simplify the caller).
807  /// The KnownZero/One bits may only be accurate for those bits in the
808  /// DemandedMask.
809  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
810                            APInt &KnownZero, APInt &KnownOne,
811                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
812
813  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
814  /// Mask are known to be either zero or one and return them in the
815  /// KnownZero/KnownOne bitsets.
816  virtual void computeMaskedBitsForTargetNode(const SDValue Op,
817                                              const APInt &Mask,
818                                              APInt &KnownZero,
819                                              APInt &KnownOne,
820                                              const SelectionDAG &DAG,
821                                              unsigned Depth = 0) const;
822
823  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
824  /// targets that want to expose additional information about sign bits to the
825  /// DAG Combiner.
826  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
827                                                   unsigned Depth = 0) const;
828
829  struct DAGCombinerInfo {
830    void *DC;  // The DAG Combiner object.
831    bool BeforeLegalize;
832    bool BeforeLegalizeOps;
833    bool CalledByLegalizer;
834  public:
835    SelectionDAG &DAG;
836
837    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool blo, bool cl, void *dc)
838      : DC(dc), BeforeLegalize(bl), BeforeLegalizeOps(blo),
839        CalledByLegalizer(cl), DAG(dag) {}
840
841    bool isBeforeLegalize() const { return BeforeLegalize; }
842    bool isBeforeLegalizeOps() const { return BeforeLegalizeOps; }
843    bool isCalledByLegalizer() const { return CalledByLegalizer; }
844
845    void AddToWorklist(SDNode *N);
846    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
847                      bool AddTo = true);
848    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
849    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
850
851    void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
852  };
853
854  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
855  /// and cc. If it is unable to simplify it, return a null SDValue.
856  SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
857                          ISD::CondCode Cond, bool foldBooleans,
858                          DAGCombinerInfo &DCI, DebugLoc dl) const;
859
860  /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
861  /// node is a GlobalAddress + offset.
862  virtual bool
863  isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
864
865  /// PerformDAGCombine - This method will be invoked for all target nodes and
866  /// for any target-independent nodes that the target has registered with
867  /// invoke it for.
868  ///
869  /// The semantics are as follows:
870  /// Return Value:
871  ///   SDValue.Val == 0   - No change was made
872  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
873  ///   otherwise          - N should be replaced by the returned Operand.
874  ///
875  /// In addition, methods provided by DAGCombinerInfo may be used to perform
876  /// more complex transformations.
877  ///
878  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
879
880  /// isTypeDesirableForOp - Return true if the target has native support for
881  /// the specified value type and it is 'desirable' to use the type for the
882  /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
883  /// instruction encodings are longer and some i16 instructions are slow.
884  virtual bool isTypeDesirableForOp(unsigned Opc, EVT VT) const {
885    // By default, assume all legal types are desirable.
886    return isTypeLegal(VT);
887  }
888
889  /// IsDesirableToPromoteOp - This method query the target whether it is
890  /// beneficial for dag combiner to promote the specified node. If true, it
891  /// should return the desired promotion type by reference.
892  virtual bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
893    return false;
894  }
895
896  //===--------------------------------------------------------------------===//
897  // TargetLowering Configuration Methods - These methods should be invoked by
898  // the derived class constructor to configure this object for the target.
899  //
900
901protected:
902  /// setShiftAmountType - Describe the type that should be used for shift
903  /// amounts.  This type defaults to the pointer type.
904  void setShiftAmountType(MVT VT) { ShiftAmountTy = VT; }
905
906  /// setBooleanContents - Specify how the target extends the result of a
907  /// boolean value from i1 to a wider type.  See getBooleanContents.
908  void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
909
910  /// setSchedulingPreference - Specify the target scheduling preference.
911  void setSchedulingPreference(Sched::Preference Pref) {
912    SchedPreferenceInfo = Pref;
913  }
914
915  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
916  /// use _setjmp to implement llvm.setjmp or the non _ version.
917  /// Defaults to false.
918  void setUseUnderscoreSetJmp(bool Val) {
919    UseUnderscoreSetJmp = Val;
920  }
921
922  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
923  /// use _longjmp to implement llvm.longjmp or the non _ version.
924  /// Defaults to false.
925  void setUseUnderscoreLongJmp(bool Val) {
926    UseUnderscoreLongJmp = Val;
927  }
928
929  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
930  /// specifies the register that llvm.savestack/llvm.restorestack should save
931  /// and restore.
932  void setStackPointerRegisterToSaveRestore(unsigned R) {
933    StackPointerRegisterToSaveRestore = R;
934  }
935
936  /// setExceptionPointerRegister - If set to a physical register, this sets
937  /// the register that receives the exception address on entry to a landing
938  /// pad.
939  void setExceptionPointerRegister(unsigned R) {
940    ExceptionPointerRegister = R;
941  }
942
943  /// setExceptionSelectorRegister - If set to a physical register, this sets
944  /// the register that receives the exception typeid on entry to a landing
945  /// pad.
946  void setExceptionSelectorRegister(unsigned R) {
947    ExceptionSelectorRegister = R;
948  }
949
950  /// SelectIsExpensive - Tells the code generator not to expand operations
951  /// into sequences that use the select operations if possible.
952  void setSelectIsExpensive() { SelectIsExpensive = true; }
953
954  /// setIntDivIsCheap - Tells the code generator that integer divide is
955  /// expensive, and if possible, should be replaced by an alternate sequence
956  /// of instructions not containing an integer divide.
957  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
958
959  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
960  /// srl/add/sra for a signed divide by power of two, and let the target handle
961  /// it.
962  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
963
964  /// addRegisterClass - Add the specified register class as an available
965  /// regclass for the specified value type.  This indicates the selector can
966  /// handle values of that class natively.
967  void addRegisterClass(EVT VT, TargetRegisterClass *RC,
968                        bool isSynthesizable = true) {
969    assert((unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
970    AvailableRegClasses.push_back(std::make_pair(VT, RC));
971    RegClassForVT[VT.getSimpleVT().SimpleTy] = RC;
972    Synthesizable[VT.getSimpleVT().SimpleTy] = isSynthesizable;
973  }
974
975  /// computeRegisterProperties - Once all of the register classes are added,
976  /// this allows us to compute derived properties we expose.
977  void computeRegisterProperties();
978
979  /// setOperationAction - Indicate that the specified operation does not work
980  /// with the specified type and indicate what to do about it.
981  void setOperationAction(unsigned Op, MVT VT,
982                          LegalizeAction Action) {
983    assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
984    OpActions[(unsigned)VT.SimpleTy][Op] = (uint8_t)Action;
985  }
986
987  /// setLoadExtAction - Indicate that the specified load with extension does
988  /// not work with the specified type and indicate what to do about it.
989  void setLoadExtAction(unsigned ExtType, MVT VT,
990                        LegalizeAction Action) {
991    assert(ExtType < ISD::LAST_LOADEXT_TYPE &&
992           (unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
993           "Table isn't big enough!");
994    LoadExtActions[VT.SimpleTy][ExtType] = (uint8_t)Action;
995  }
996
997  /// setTruncStoreAction - Indicate that the specified truncating store does
998  /// not work with the specified type and indicate what to do about it.
999  void setTruncStoreAction(MVT ValVT, MVT MemVT,
1000                           LegalizeAction Action) {
1001    assert((unsigned)ValVT.SimpleTy < MVT::LAST_VALUETYPE &&
1002           (unsigned)MemVT.SimpleTy < MVT::LAST_VALUETYPE &&
1003           "Table isn't big enough!");
1004    TruncStoreActions[ValVT.SimpleTy][MemVT.SimpleTy] = (uint8_t)Action;
1005  }
1006
1007  /// setIndexedLoadAction - Indicate that the specified indexed load does or
1008  /// does not work with the specified type and indicate what to do abort
1009  /// it. NOTE: All indexed mode loads are initialized to Expand in
1010  /// TargetLowering.cpp
1011  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
1012                            LegalizeAction Action) {
1013    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1014           IdxMode < ISD::LAST_INDEXED_MODE &&
1015           (unsigned)Action < 0xf &&
1016           "Table isn't big enough!");
1017    // Load action are kept in the upper half.
1018    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
1019    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
1020  }
1021
1022  /// setIndexedStoreAction - Indicate that the specified indexed store does or
1023  /// does not work with the specified type and indicate what to do about
1024  /// it. NOTE: All indexed mode stores are initialized to Expand in
1025  /// TargetLowering.cpp
1026  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
1027                             LegalizeAction Action) {
1028    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1029           IdxMode < ISD::LAST_INDEXED_MODE &&
1030           (unsigned)Action < 0xf &&
1031           "Table isn't big enough!");
1032    // Store action are kept in the lower half.
1033    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
1034    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
1035  }
1036
1037  /// setCondCodeAction - Indicate that the specified condition code is or isn't
1038  /// supported on the target and indicate what to do about it.
1039  void setCondCodeAction(ISD::CondCode CC, MVT VT,
1040                         LegalizeAction Action) {
1041    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1042           (unsigned)CC < array_lengthof(CondCodeActions) &&
1043           "Table isn't big enough!");
1044    CondCodeActions[(unsigned)CC] &= ~(uint64_t(3UL)  << VT.SimpleTy*2);
1045    CondCodeActions[(unsigned)CC] |= (uint64_t)Action << VT.SimpleTy*2;
1046  }
1047
1048  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
1049  /// promotion code defaults to trying a larger integer/fp until it can find
1050  /// one that works.  If that default is insufficient, this method can be used
1051  /// by the target to override the default.
1052  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1053    PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
1054  }
1055
1056  /// setTargetDAGCombine - Targets should invoke this method for each target
1057  /// independent node that they want to provide a custom DAG combiner for by
1058  /// implementing the PerformDAGCombine virtual method.
1059  void setTargetDAGCombine(ISD::NodeType NT) {
1060    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1061    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1062  }
1063
1064  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
1065  /// bytes); default is 200
1066  void setJumpBufSize(unsigned Size) {
1067    JumpBufSize = Size;
1068  }
1069
1070  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
1071  /// alignment (in bytes); default is 0
1072  void setJumpBufAlignment(unsigned Align) {
1073    JumpBufAlignment = Align;
1074  }
1075
1076  /// setIfCvtBlockSizeLimit - Set the target's if-conversion block size
1077  /// limit (in number of instructions); default is 2.
1078  void setIfCvtBlockSizeLimit(unsigned Limit) {
1079    IfCvtBlockSizeLimit = Limit;
1080  }
1081
1082  /// setIfCvtDupBlockSizeLimit - Set the target's block size limit (in number
1083  /// of instructions) to be considered for code duplication during
1084  /// if-conversion; default is 2.
1085  void setIfCvtDupBlockSizeLimit(unsigned Limit) {
1086    IfCvtDupBlockSizeLimit = Limit;
1087  }
1088
1089  /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
1090  /// alignment is zero, it means the target does not care about loop alignment.
1091  void setPrefLoopAlignment(unsigned Align) {
1092    PrefLoopAlignment = Align;
1093  }
1094
1095public:
1096  //===--------------------------------------------------------------------===//
1097  // Lowering methods - These methods must be implemented by targets so that
1098  // the SelectionDAGLowering code knows how to lower these.
1099  //
1100
1101  /// LowerFormalArguments - This hook must be implemented to lower the
1102  /// incoming (formal) arguments, described by the Ins array, into the
1103  /// specified DAG. The implementation should fill in the InVals array
1104  /// with legal-type argument values, and return the resulting token
1105  /// chain value.
1106  ///
1107  virtual SDValue
1108    LowerFormalArguments(SDValue Chain,
1109                         CallingConv::ID CallConv, bool isVarArg,
1110                         const SmallVectorImpl<ISD::InputArg> &Ins,
1111                         DebugLoc dl, SelectionDAG &DAG,
1112                         SmallVectorImpl<SDValue> &InVals) const {
1113    assert(0 && "Not Implemented");
1114    return SDValue();    // this is here to silence compiler errors
1115  }
1116
1117  /// LowerCallTo - This function lowers an abstract call to a function into an
1118  /// actual call.  This returns a pair of operands.  The first element is the
1119  /// return value for the function (if RetTy is not VoidTy).  The second
1120  /// element is the outgoing token chain. It calls LowerCall to do the actual
1121  /// lowering.
1122  struct ArgListEntry {
1123    SDValue Node;
1124    const Type* Ty;
1125    bool isSExt  : 1;
1126    bool isZExt  : 1;
1127    bool isInReg : 1;
1128    bool isSRet  : 1;
1129    bool isNest  : 1;
1130    bool isByVal : 1;
1131    uint16_t Alignment;
1132
1133    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
1134      isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
1135  };
1136  typedef std::vector<ArgListEntry> ArgListTy;
1137  std::pair<SDValue, SDValue>
1138  LowerCallTo(SDValue Chain, const Type *RetTy, bool RetSExt, bool RetZExt,
1139              bool isVarArg, bool isInreg, unsigned NumFixedArgs,
1140              CallingConv::ID CallConv, bool isTailCall,
1141              bool isReturnValueUsed, SDValue Callee, ArgListTy &Args,
1142              SelectionDAG &DAG, DebugLoc dl) const;
1143
1144  /// LowerCall - This hook must be implemented to lower calls into the
1145  /// the specified DAG. The outgoing arguments to the call are described
1146  /// by the Outs array, and the values to be returned by the call are
1147  /// described by the Ins array. The implementation should fill in the
1148  /// InVals array with legal-type return values from the call, and return
1149  /// the resulting token chain value.
1150  virtual SDValue
1151    LowerCall(SDValue Chain, SDValue Callee,
1152              CallingConv::ID CallConv, bool isVarArg, bool &isTailCall,
1153              const SmallVectorImpl<ISD::OutputArg> &Outs,
1154              const SmallVectorImpl<ISD::InputArg> &Ins,
1155              DebugLoc dl, SelectionDAG &DAG,
1156              SmallVectorImpl<SDValue> &InVals) const {
1157    assert(0 && "Not Implemented");
1158    return SDValue();    // this is here to silence compiler errors
1159  }
1160
1161  /// CanLowerReturn - This hook should be implemented to check whether the
1162  /// return values described by the Outs array can fit into the return
1163  /// registers.  If false is returned, an sret-demotion is performed.
1164  ///
1165  virtual bool CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1166               const SmallVectorImpl<EVT> &OutTys,
1167               const SmallVectorImpl<ISD::ArgFlagsTy> &ArgsFlags,
1168               SelectionDAG &DAG) const
1169  {
1170    // Return true by default to get preexisting behavior.
1171    return true;
1172  }
1173
1174  /// LowerReturn - This hook must be implemented to lower outgoing
1175  /// return values, described by the Outs array, into the specified
1176  /// DAG. The implementation should return the resulting token chain
1177  /// value.
1178  ///
1179  virtual SDValue
1180    LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1181                const SmallVectorImpl<ISD::OutputArg> &Outs,
1182                DebugLoc dl, SelectionDAG &DAG) const {
1183    assert(0 && "Not Implemented");
1184    return SDValue();    // this is here to silence compiler errors
1185  }
1186
1187  /// LowerOperationWrapper - This callback is invoked by the type legalizer
1188  /// to legalize nodes with an illegal operand type but legal result types.
1189  /// It replaces the LowerOperation callback in the type Legalizer.
1190  /// The reason we can not do away with LowerOperation entirely is that
1191  /// LegalizeDAG isn't yet ready to use this callback.
1192  /// TODO: Consider merging with ReplaceNodeResults.
1193
1194  /// The target places new result values for the node in Results (their number
1195  /// and types must exactly match those of the original return values of
1196  /// the node), or leaves Results empty, which indicates that the node is not
1197  /// to be custom lowered after all.
1198  /// The default implementation calls LowerOperation.
1199  virtual void LowerOperationWrapper(SDNode *N,
1200                                     SmallVectorImpl<SDValue> &Results,
1201                                     SelectionDAG &DAG) const;
1202
1203  /// LowerOperation - This callback is invoked for operations that are
1204  /// unsupported by the target, which are registered to use 'custom' lowering,
1205  /// and whose defined values are all legal.
1206  /// If the target has no operations that require custom lowering, it need not
1207  /// implement this.  The default implementation of this aborts.
1208  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
1209
1210  /// ReplaceNodeResults - This callback is invoked when a node result type is
1211  /// illegal for the target, and the operation was registered to use 'custom'
1212  /// lowering for that result type.  The target places new result values for
1213  /// the node in Results (their number and types must exactly match those of
1214  /// the original return values of the node), or leaves Results empty, which
1215  /// indicates that the node is not to be custom lowered after all.
1216  ///
1217  /// If the target has no operations that require custom lowering, it need not
1218  /// implement this.  The default implementation aborts.
1219  virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
1220                                  SelectionDAG &DAG) const {
1221    assert(0 && "ReplaceNodeResults not implemented for this target!");
1222  }
1223
1224  /// getTargetNodeName() - This method returns the name of a target specific
1225  /// DAG node.
1226  virtual const char *getTargetNodeName(unsigned Opcode) const;
1227
1228  /// createFastISel - This method returns a target specific FastISel object,
1229  /// or null if the target does not support "fast" ISel.
1230  virtual FastISel *
1231  createFastISel(MachineFunction &,
1232                 DenseMap<const Value *, unsigned> &,
1233                 DenseMap<const BasicBlock *, MachineBasicBlock *> &,
1234                 DenseMap<const AllocaInst *, int> &,
1235                 std::vector<std::pair<MachineInstr*, unsigned> > &
1236#ifndef NDEBUG
1237                 , SmallSet<const Instruction *, 8> &CatchInfoLost
1238#endif
1239                 ) const {
1240    return 0;
1241  }
1242
1243  //===--------------------------------------------------------------------===//
1244  // Inline Asm Support hooks
1245  //
1246
1247  /// ExpandInlineAsm - This hook allows the target to expand an inline asm
1248  /// call to be explicit llvm code if it wants to.  This is useful for
1249  /// turning simple inline asms into LLVM intrinsics, which gives the
1250  /// compiler more information about the behavior of the code.
1251  virtual bool ExpandInlineAsm(CallInst *CI) const {
1252    return false;
1253  }
1254
1255  enum ConstraintType {
1256    C_Register,            // Constraint represents specific register(s).
1257    C_RegisterClass,       // Constraint represents any of register(s) in class.
1258    C_Memory,              // Memory constraint.
1259    C_Other,               // Something else.
1260    C_Unknown              // Unsupported constraint.
1261  };
1262
1263  /// AsmOperandInfo - This contains information for each constraint that we are
1264  /// lowering.
1265  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
1266    /// ConstraintCode - This contains the actual string for the code, like "m".
1267    /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
1268    /// most closely matches the operand.
1269    std::string ConstraintCode;
1270
1271    /// ConstraintType - Information about the constraint code, e.g. Register,
1272    /// RegisterClass, Memory, Other, Unknown.
1273    TargetLowering::ConstraintType ConstraintType;
1274
1275    /// CallOperandval - If this is the result output operand or a
1276    /// clobber, this is null, otherwise it is the incoming operand to the
1277    /// CallInst.  This gets modified as the asm is processed.
1278    Value *CallOperandVal;
1279
1280    /// ConstraintVT - The ValueType for the operand value.
1281    EVT ConstraintVT;
1282
1283    /// isMatchingInputConstraint - Return true of this is an input operand that
1284    /// is a matching constraint like "4".
1285    bool isMatchingInputConstraint() const;
1286
1287    /// getMatchedOperand - If this is an input matching constraint, this method
1288    /// returns the output operand it matches.
1289    unsigned getMatchedOperand() const;
1290
1291    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
1292      : InlineAsm::ConstraintInfo(info),
1293        ConstraintType(TargetLowering::C_Unknown),
1294        CallOperandVal(0), ConstraintVT(MVT::Other) {
1295    }
1296  };
1297
1298  /// ComputeConstraintToUse - Determines the constraint code and constraint
1299  /// type to use for the specific AsmOperandInfo, setting
1300  /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
1301  /// being passed in is available, it can be passed in as Op, otherwise an
1302  /// empty SDValue can be passed. If hasMemory is true it means one of the asm
1303  /// constraint of the inline asm instruction being processed is 'm'.
1304  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1305                                      SDValue Op,
1306                                      bool hasMemory,
1307                                      SelectionDAG *DAG = 0) const;
1308
1309  /// getConstraintType - Given a constraint, return the type of constraint it
1310  /// is for this target.
1311  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
1312
1313  /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
1314  /// return a list of registers that can be used to satisfy the constraint.
1315  /// This should only be used for C_RegisterClass constraints.
1316  virtual std::vector<unsigned>
1317  getRegClassForInlineAsmConstraint(const std::string &Constraint,
1318                                    EVT VT) const;
1319
1320  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
1321  /// {edx}), return the register number and the register class for the
1322  /// register.
1323  ///
1324  /// Given a register class constraint, like 'r', if this corresponds directly
1325  /// to an LLVM register class, return a register of 0 and the register class
1326  /// pointer.
1327  ///
1328  /// This should only be used for C_Register constraints.  On error,
1329  /// this returns a register number of 0 and a null register class pointer..
1330  virtual std::pair<unsigned, const TargetRegisterClass*>
1331    getRegForInlineAsmConstraint(const std::string &Constraint,
1332                                 EVT VT) const;
1333
1334  /// LowerXConstraint - try to replace an X constraint, which matches anything,
1335  /// with another that has more specific requirements based on the type of the
1336  /// corresponding operand.  This returns null if there is no replacement to
1337  /// make.
1338  virtual const char *LowerXConstraint(EVT ConstraintVT) const;
1339
1340  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1341  /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is true
1342  /// it means one of the asm constraint of the inline asm instruction being
1343  /// processed is 'm'.
1344  virtual void LowerAsmOperandForConstraint(SDValue Op, char ConstraintLetter,
1345                                            bool hasMemory,
1346                                            std::vector<SDValue> &Ops,
1347                                            SelectionDAG &DAG) const;
1348
1349  //===--------------------------------------------------------------------===//
1350  // Instruction Emitting Hooks
1351  //
1352
1353  // EmitInstrWithCustomInserter - This method should be implemented by targets
1354  // that mark instructions with the 'usesCustomInserter' flag.  These
1355  // instructions are special in various ways, which require special support to
1356  // insert.  The specified MachineInstr is created but not inserted into any
1357  // basic blocks, and this method is called to expand it into a sequence of
1358  // instructions, potentially also creating new basic blocks and control flow.
1359  virtual MachineBasicBlock *
1360    EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;
1361
1362  //===--------------------------------------------------------------------===//
1363  // Addressing mode description hooks (used by LSR etc).
1364  //
1365
1366  /// AddrMode - This represents an addressing mode of:
1367  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1368  /// If BaseGV is null,  there is no BaseGV.
1369  /// If BaseOffs is zero, there is no base offset.
1370  /// If HasBaseReg is false, there is no base register.
1371  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1372  /// no scale.
1373  ///
1374  struct AddrMode {
1375    GlobalValue *BaseGV;
1376    int64_t      BaseOffs;
1377    bool         HasBaseReg;
1378    int64_t      Scale;
1379    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1380  };
1381
1382  /// isLegalAddressingMode - Return true if the addressing mode represented by
1383  /// AM is legal for this target, for a load/store of the specified type.
1384  /// The type may be VoidTy, in which case only return true if the addressing
1385  /// mode is legal for a load/store of any legal type.
1386  /// TODO: Handle pre/postinc as well.
1387  virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const;
1388
1389  /// isTruncateFree - Return true if it's free to truncate a value of
1390  /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1391  /// register EAX to i16 by referencing its sub-register AX.
1392  virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const {
1393    return false;
1394  }
1395
1396  virtual bool isTruncateFree(EVT VT1, EVT VT2) const {
1397    return false;
1398  }
1399
1400  /// isZExtFree - Return true if any actual instruction that defines a
1401  /// value of type Ty1 implicitly zero-extends the value to Ty2 in the result
1402  /// register. This does not necessarily include registers defined in
1403  /// unknown ways, such as incoming arguments, or copies from unknown
1404  /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1405  /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1406  /// all instructions that define 32-bit values implicit zero-extend the
1407  /// result out to 64 bits.
1408  virtual bool isZExtFree(const Type *Ty1, const Type *Ty2) const {
1409    return false;
1410  }
1411
1412  virtual bool isZExtFree(EVT VT1, EVT VT2) const {
1413    return false;
1414  }
1415
1416  /// isNarrowingProfitable - Return true if it's profitable to narrow
1417  /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
1418  /// from i32 to i8 but not from i32 to i16.
1419  virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const {
1420    return false;
1421  }
1422
1423  /// isLegalICmpImmediate - Return true if the specified immediate is legal
1424  /// icmp immediate, that is the target has icmp instructions which can compare
1425  /// a register against the immediate without having to materialize the
1426  /// immediate into a register.
1427  virtual bool isLegalICmpImmediate(int64_t Imm) const {
1428    return true;
1429  }
1430
1431  //===--------------------------------------------------------------------===//
1432  // Div utility functions
1433  //
1434  SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG,
1435                      std::vector<SDNode*>* Created) const;
1436  SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG,
1437                      std::vector<SDNode*>* Created) const;
1438
1439
1440  //===--------------------------------------------------------------------===//
1441  // Runtime Library hooks
1442  //
1443
1444  /// setLibcallName - Rename the default libcall routine name for the specified
1445  /// libcall.
1446  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1447    LibcallRoutineNames[Call] = Name;
1448  }
1449
1450  /// getLibcallName - Get the libcall routine name for the specified libcall.
1451  ///
1452  const char *getLibcallName(RTLIB::Libcall Call) const {
1453    return LibcallRoutineNames[Call];
1454  }
1455
1456  /// setCmpLibcallCC - Override the default CondCode to be used to test the
1457  /// result of the comparison libcall against zero.
1458  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1459    CmpLibcallCCs[Call] = CC;
1460  }
1461
1462  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1463  /// the comparison libcall against zero.
1464  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1465    return CmpLibcallCCs[Call];
1466  }
1467
1468  /// setLibcallCallingConv - Set the CallingConv that should be used for the
1469  /// specified libcall.
1470  void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
1471    LibcallCallingConvs[Call] = CC;
1472  }
1473
1474  /// getLibcallCallingConv - Get the CallingConv that should be used for the
1475  /// specified libcall.
1476  CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
1477    return LibcallCallingConvs[Call];
1478  }
1479
1480private:
1481  const TargetMachine &TM;
1482  const TargetData *TD;
1483  const TargetLoweringObjectFile &TLOF;
1484
1485  /// PointerTy - The type to use for pointers, usually i32 or i64.
1486  ///
1487  MVT PointerTy;
1488
1489  /// IsLittleEndian - True if this is a little endian target.
1490  ///
1491  bool IsLittleEndian;
1492
1493  /// SelectIsExpensive - Tells the code generator not to expand operations
1494  /// into sequences that use the select operations if possible.
1495  bool SelectIsExpensive;
1496
1497  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1498  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1499  /// a real cost model is in place.  If we ever optimize for size, this will be
1500  /// set to true unconditionally.
1501  bool IntDivIsCheap;
1502
1503  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1504  /// srl/add/sra for a signed divide by power of two, and let the target handle
1505  /// it.
1506  bool Pow2DivIsCheap;
1507
1508  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1509  /// llvm.setjmp.  Defaults to false.
1510  bool UseUnderscoreSetJmp;
1511
1512  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1513  /// llvm.longjmp.  Defaults to false.
1514  bool UseUnderscoreLongJmp;
1515
1516  /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
1517  /// PointerTy is.
1518  MVT ShiftAmountTy;
1519
1520  /// BooleanContents - Information about the contents of the high-bits in
1521  /// boolean values held in a type wider than i1.  See getBooleanContents.
1522  BooleanContent BooleanContents;
1523
1524  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1525  /// total cycles or lowest register usage.
1526  Sched::Preference SchedPreferenceInfo;
1527
1528  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1529  unsigned JumpBufSize;
1530
1531  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1532  /// buffers
1533  unsigned JumpBufAlignment;
1534
1535  /// IfCvtBlockSizeLimit - The maximum allowed size for a block to be
1536  /// if-converted.
1537  unsigned IfCvtBlockSizeLimit;
1538
1539  /// IfCvtDupBlockSizeLimit - The maximum allowed size for a block to be
1540  /// duplicated during if-conversion.
1541  unsigned IfCvtDupBlockSizeLimit;
1542
1543  /// PrefLoopAlignment - The perferred loop alignment.
1544  ///
1545  unsigned PrefLoopAlignment;
1546
1547  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1548  /// specifies the register that llvm.savestack/llvm.restorestack should save
1549  /// and restore.
1550  unsigned StackPointerRegisterToSaveRestore;
1551
1552  /// ExceptionPointerRegister - If set to a physical register, this specifies
1553  /// the register that receives the exception address on entry to a landing
1554  /// pad.
1555  unsigned ExceptionPointerRegister;
1556
1557  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1558  /// the register that receives the exception typeid on entry to a landing
1559  /// pad.
1560  unsigned ExceptionSelectorRegister;
1561
1562  /// RegClassForVT - This indicates the default register class to use for
1563  /// each ValueType the target supports natively.
1564  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1565  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1566  EVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1567
1568  /// Synthesizable indicates whether it is OK for the compiler to create new
1569  /// operations using this type.  All Legal types are Synthesizable except
1570  /// MMX types on X86.  Non-Legal types are not Synthesizable.
1571  bool Synthesizable[MVT::LAST_VALUETYPE];
1572
1573  /// TransformToType - For any value types we are promoting or expanding, this
1574  /// contains the value type that we are changing to.  For Expanded types, this
1575  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1576  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1577  /// by the system, this holds the same type (e.g. i32 -> i32).
1578  EVT TransformToType[MVT::LAST_VALUETYPE];
1579
1580  /// OpActions - For each operation and each value type, keep a LegalizeAction
1581  /// that indicates how instruction selection should deal with the operation.
1582  /// Most operations are Legal (aka, supported natively by the target), but
1583  /// operations that are not should be described.  Note that operations on
1584  /// non-legal value types are not described here.
1585  uint8_t OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
1586
1587  /// LoadExtActions - For each load extension type and each value type,
1588  /// keep a LegalizeAction that indicates how instruction selection should deal
1589  /// with a load of a specific value type and extension type.
1590  uint8_t LoadExtActions[MVT::LAST_VALUETYPE][ISD::LAST_LOADEXT_TYPE];
1591
1592  /// TruncStoreActions - For each value type pair keep a LegalizeAction that
1593  /// indicates whether a truncating store of a specific value type and
1594  /// truncating type is legal.
1595  uint8_t TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
1596
1597  /// IndexedModeActions - For each indexed mode and each value type,
1598  /// keep a pair of LegalizeAction that indicates how instruction
1599  /// selection should deal with the load / store.  The first dimension is the
1600  /// value_type for the reference. The second dimension represents the various
1601  /// modes for load store.
1602  uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
1603
1604  /// CondCodeActions - For each condition code (ISD::CondCode) keep a
1605  /// LegalizeAction that indicates how instruction selection should
1606  /// deal with the condition code.
1607  uint64_t CondCodeActions[ISD::SETCC_INVALID];
1608
1609  ValueTypeActionImpl ValueTypeActions;
1610
1611  std::vector<std::pair<EVT, TargetRegisterClass*> > AvailableRegClasses;
1612
1613  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
1614  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
1615  /// which sets a bit in this array.
1616  unsigned char
1617  TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
1618
1619  /// PromoteToType - For operations that must be promoted to a specific type,
1620  /// this holds the destination type.  This map should be sparse, so don't hold
1621  /// it as an array.
1622  ///
1623  /// Targets add entries to this map with AddPromotedToType(..), clients access
1624  /// this with getTypeToPromoteTo(..).
1625  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
1626    PromoteToType;
1627
1628  /// LibcallRoutineNames - Stores the name each libcall.
1629  ///
1630  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1631
1632  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
1633  /// of each of the comparison libcall against zero.
1634  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1635
1636  /// LibcallCallingConvs - Stores the CallingConv that should be used for each
1637  /// libcall.
1638  CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
1639
1640protected:
1641  /// When lowering \@llvm.memset this field specifies the maximum number of
1642  /// store operations that may be substituted for the call to memset. Targets
1643  /// must set this value based on the cost threshold for that target. Targets
1644  /// should assume that the memset will be done using as many of the largest
1645  /// store operations first, followed by smaller ones, if necessary, per
1646  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1647  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1648  /// store.  This only applies to setting a constant array of a constant size.
1649  /// @brief Specify maximum number of store instructions per memset call.
1650  unsigned maxStoresPerMemset;
1651
1652  /// When lowering \@llvm.memcpy this field specifies the maximum number of
1653  /// store operations that may be substituted for a call to memcpy. Targets
1654  /// must set this value based on the cost threshold for that target. Targets
1655  /// should assume that the memcpy will be done using as many of the largest
1656  /// store operations first, followed by smaller ones, if necessary, per
1657  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1658  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1659  /// and one 1-byte store. This only applies to copying a constant array of
1660  /// constant size.
1661  /// @brief Specify maximum bytes of store instructions per memcpy call.
1662  unsigned maxStoresPerMemcpy;
1663
1664  /// When lowering \@llvm.memmove this field specifies the maximum number of
1665  /// store instructions that may be substituted for a call to memmove. Targets
1666  /// must set this value based on the cost threshold for that target. Targets
1667  /// should assume that the memmove will be done using as many of the largest
1668  /// store operations first, followed by smaller ones, if necessary, per
1669  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1670  /// with 8-bit alignment would result in nine 1-byte stores.  This only
1671  /// applies to copying a constant array of constant size.
1672  /// @brief Specify maximum bytes of store instructions per memmove call.
1673  unsigned maxStoresPerMemmove;
1674
1675  /// This field specifies whether the target can benefit from code placement
1676  /// optimization.
1677  bool benefitFromCodePlacementOpt;
1678};
1679} // end llvm namespace
1680
1681#endif
1682