TargetLowering.h revision 31959b19a72608051888160514977875a8027dfc
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/CallingConv.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Attributes.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/CodeGen/SelectionDAGNodes.h"
30#include "llvm/CodeGen/RuntimeLibcalls.h"
31#include "llvm/Support/DebugLoc.h"
32#include "llvm/Target/TargetCallingConv.h"
33#include "llvm/Target/TargetMachine.h"
34#include <climits>
35#include <map>
36#include <vector>
37
38namespace llvm {
39  class AllocaInst;
40  class APFloat;
41  class CallInst;
42  class Function;
43  class FastISel;
44  class FunctionLoweringInfo;
45  class ImmutableCallSite;
46  class MachineBasicBlock;
47  class MachineFunction;
48  class MachineFrameInfo;
49  class MachineInstr;
50  class MachineJumpTableInfo;
51  class MCContext;
52  class MCExpr;
53  class SDNode;
54  class SDValue;
55  class SelectionDAG;
56  template<typename T> class SmallVectorImpl;
57  class TargetData;
58  class TargetMachine;
59  class TargetRegisterClass;
60  class TargetLoweringObjectFile;
61  class Value;
62
63  // FIXME: should this be here?
64  namespace TLSModel {
65    enum Model {
66      GeneralDynamic,
67      LocalDynamic,
68      InitialExec,
69      LocalExec
70    };
71  }
72  TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc);
73
74
75//===----------------------------------------------------------------------===//
76/// TargetLowering - This class defines information used to lower LLVM code to
77/// legal SelectionDAG operators that the target instruction selector can accept
78/// natively.
79///
80/// This class also defines callbacks that targets must implement to lower
81/// target-specific constructs to SelectionDAG operators.
82///
83class TargetLowering {
84  TargetLowering(const TargetLowering&);  // DO NOT IMPLEMENT
85  void operator=(const TargetLowering&);  // DO NOT IMPLEMENT
86public:
87  /// LegalizeAction - This enum indicates whether operations are valid for a
88  /// target, and if not, what action should be used to make them valid.
89  enum LegalizeAction {
90    Legal,      // The target natively supports this operation.
91    Promote,    // This operation should be executed in a larger type.
92    Expand,     // Try to expand this to other ops, otherwise use a libcall.
93    Custom      // Use the LowerOperation hook to implement custom lowering.
94  };
95
96  enum BooleanContent { // How the target represents true/false values.
97    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
98    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
99    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
100  };
101
102  /// NOTE: The constructor takes ownership of TLOF.
103  explicit TargetLowering(const TargetMachine &TM,
104                          const TargetLoweringObjectFile *TLOF);
105  virtual ~TargetLowering();
106
107  const TargetMachine &getTargetMachine() const { return TM; }
108  const TargetData *getTargetData() const { return TD; }
109  const TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
110
111  bool isBigEndian() const { return !IsLittleEndian; }
112  bool isLittleEndian() const { return IsLittleEndian; }
113  MVT getPointerTy() const { return PointerTy; }
114  MVT getShiftAmountTy() const { return ShiftAmountTy; }
115
116  /// isSelectExpensive - Return true if the select operation is expensive for
117  /// this target.
118  bool isSelectExpensive() const { return SelectIsExpensive; }
119
120  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
121  /// a sequence of several shifts, adds, and multiplies for this target.
122  bool isIntDivCheap() const { return IntDivIsCheap; }
123
124  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
125  /// srl/add/sra.
126  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
127
128  /// isJumpExpensive() - Return true if Flow Control is an expensive operation
129  /// that should be avoided.
130  bool isJumpExpensive() const { return JumpIsExpensive; }
131
132  /// getSetCCResultType - Return the ValueType of the result of SETCC
133  /// operations.  Also used to obtain the target's preferred type for
134  /// the condition operand of SELECT and BRCOND nodes.  In the case of
135  /// BRCOND the argument passed is MVT::Other since there are no other
136  /// operands to get a type hint from.
137  virtual
138  MVT::SimpleValueType getSetCCResultType(EVT VT) const;
139
140  /// getCmpLibcallReturnType - Return the ValueType for comparison
141  /// libcalls. Comparions libcalls include floating point comparion calls,
142  /// and Ordered/Unordered check calls on floating point numbers.
143  virtual
144  MVT::SimpleValueType getCmpLibcallReturnType() const;
145
146  /// getBooleanContents - For targets without i1 registers, this gives the
147  /// nature of the high-bits of boolean values held in types wider than i1.
148  /// "Boolean values" are special true/false values produced by nodes like
149  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
150  /// Not to be confused with general values promoted from i1.
151  BooleanContent getBooleanContents() const { return BooleanContents;}
152
153  /// getSchedulingPreference - Return target scheduling preference.
154  Sched::Preference getSchedulingPreference() const {
155    return SchedPreferenceInfo;
156  }
157
158  /// getSchedulingPreference - Some scheduler, e.g. hybrid, can switch to
159  /// different scheduling heuristics for different nodes. This function returns
160  /// the preference (or none) for the given node.
161  virtual Sched::Preference getSchedulingPreference(SDNode *N) const {
162    return Sched::None;
163  }
164
165  /// getRegClassFor - Return the register class that should be used for the
166  /// specified value type.
167  virtual TargetRegisterClass *getRegClassFor(EVT VT) const {
168    assert(VT.isSimple() && "getRegClassFor called on illegal type!");
169    TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
170    assert(RC && "This value type is not natively supported!");
171    return RC;
172  }
173
174  /// getRepRegClassFor - Return the 'representative' register class for the
175  /// specified value type. The 'representative' register class is the largest
176  /// legal super-reg register class for the register class of the value type.
177  /// For example, on i386 the rep register class for i8, i16, and i32 are GR32;
178  /// while the rep register class is GR64 on x86_64.
179  virtual const TargetRegisterClass *getRepRegClassFor(EVT VT) const {
180    assert(VT.isSimple() && "getRepRegClassFor called on illegal type!");
181    const TargetRegisterClass *RC = RepRegClassForVT[VT.getSimpleVT().SimpleTy];
182    return RC;
183  }
184
185  /// getRepRegClassCostFor - Return the cost of the 'representative' register
186  /// class for the specified value type.
187  virtual uint8_t getRepRegClassCostFor(EVT VT) const {
188    assert(VT.isSimple() && "getRepRegClassCostFor called on illegal type!");
189    return RepRegClassCostForVT[VT.getSimpleVT().SimpleTy];
190  }
191
192  /// getRegPressureLimit - Return the register pressure "high water mark" for
193  /// the specific register class. The scheduler is in high register pressure
194  /// mode (for the specific register class) if it goes over the limit.
195  virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC,
196                                       MachineFunction &MF) const {
197    return 0;
198  }
199
200  /// isTypeLegal - Return true if the target has native support for the
201  /// specified value type.  This means that it has a register that directly
202  /// holds it without promotions or expansions.
203  bool isTypeLegal(EVT VT) const {
204    assert(!VT.isSimple() ||
205           (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
206    return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0;
207  }
208
209  class ValueTypeActionImpl {
210    /// ValueTypeActions - For each value type, keep a LegalizeAction enum
211    /// that indicates how instruction selection should deal with the type.
212    uint8_t ValueTypeActions[MVT::LAST_VALUETYPE];
213
214    LegalizeAction getExtendedTypeAction(EVT VT) const {
215      // Handle non-vector integers.
216      if (!VT.isVector()) {
217        assert(VT.isInteger() && "Unsupported extended type!");
218        unsigned BitSize = VT.getSizeInBits();
219        // First promote to a power-of-two size, then expand if necessary.
220        if (BitSize < 8 || !isPowerOf2_32(BitSize))
221          return Promote;
222        return Expand;
223      }
224
225      // If this is a type smaller than a legal vector type, promote to that
226      // type, e.g. <2 x float> -> <4 x float>.
227      if (VT.getVectorElementType().isSimple() &&
228          VT.getVectorNumElements() != 1) {
229        MVT EltType = VT.getVectorElementType().getSimpleVT();
230        unsigned NumElts = VT.getVectorNumElements();
231        while (1) {
232          // Round up to the nearest power of 2.
233          NumElts = (unsigned)NextPowerOf2(NumElts);
234
235          MVT LargerVector = MVT::getVectorVT(EltType, NumElts);
236          if (LargerVector == MVT()) break;
237
238          // If this the larger type is legal, promote to it.
239          if (getTypeAction(LargerVector) == Legal) return Promote;
240        }
241      }
242
243      return VT.isPow2VectorType() ? Expand : Promote;
244    }
245  public:
246    ValueTypeActionImpl() {
247      std::fill(ValueTypeActions, array_endof(ValueTypeActions), 0);
248    }
249
250    LegalizeAction getTypeAction(EVT VT) const {
251      if (!VT.isExtended())
252        return getTypeAction(VT.getSimpleVT());
253      return getExtendedTypeAction(VT);
254    }
255
256    LegalizeAction getTypeAction(MVT VT) const {
257      return (LegalizeAction)ValueTypeActions[VT.SimpleTy];
258    }
259
260    void setTypeAction(EVT VT, LegalizeAction Action) {
261      unsigned I = VT.getSimpleVT().SimpleTy;
262      ValueTypeActions[I] = Action;
263    }
264  };
265
266  const ValueTypeActionImpl &getValueTypeActions() const {
267    return ValueTypeActions;
268  }
269
270  /// getTypeAction - Return how we should legalize values of this type, either
271  /// it is already legal (return 'Legal') or we need to promote it to a larger
272  /// type (return 'Promote'), or we need to expand it into multiple registers
273  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
274  LegalizeAction getTypeAction(EVT VT) const {
275    return ValueTypeActions.getTypeAction(VT);
276  }
277  LegalizeAction getTypeAction(MVT VT) const {
278    return ValueTypeActions.getTypeAction(VT);
279  }
280
281  /// getTypeToTransformTo - For types supported by the target, this is an
282  /// identity function.  For types that must be promoted to larger types, this
283  /// returns the larger type to promote to.  For integer types that are larger
284  /// than the largest integer register, this contains one step in the expansion
285  /// to get to the smaller register. For illegal floating point types, this
286  /// returns the integer type to transform to.
287  EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
288    if (VT.isSimple()) {
289      assert((unsigned)VT.getSimpleVT().SimpleTy <
290             array_lengthof(TransformToType));
291      EVT NVT = TransformToType[VT.getSimpleVT().SimpleTy];
292      assert(getTypeAction(NVT) != Promote &&
293             "Promote may not follow Expand or Promote");
294      return NVT;
295    }
296
297    if (VT.isVector()) {
298      EVT NVT = VT.getPow2VectorType(Context);
299      if (NVT == VT) {
300        // Vector length is a power of 2 - split to half the size.
301        unsigned NumElts = VT.getVectorNumElements();
302        EVT EltVT = VT.getVectorElementType();
303        return (NumElts == 1) ?
304          EltVT : EVT::getVectorVT(Context, EltVT, NumElts / 2);
305      }
306      // Promote to a power of two size, avoiding multi-step promotion.
307      return getTypeAction(NVT) == Promote ?
308        getTypeToTransformTo(Context, NVT) : NVT;
309    } else if (VT.isInteger()) {
310      EVT NVT = VT.getRoundIntegerType(Context);
311      if (NVT == VT)      // Size is a power of two - expand to half the size.
312        return EVT::getIntegerVT(Context, VT.getSizeInBits() / 2);
313
314      // Promote to a power of two size, avoiding multi-step promotion.
315      return getTypeAction(NVT) == Promote ?
316        getTypeToTransformTo(Context, NVT) : NVT;
317    }
318    assert(0 && "Unsupported extended type!");
319    return MVT(MVT::Other); // Not reached
320  }
321
322  /// getTypeToExpandTo - For types supported by the target, this is an
323  /// identity function.  For types that must be expanded (i.e. integer types
324  /// that are larger than the largest integer register or illegal floating
325  /// point types), this returns the largest legal type it will be expanded to.
326  EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
327    assert(!VT.isVector());
328    while (true) {
329      switch (getTypeAction(VT)) {
330      case Legal:
331        return VT;
332      case Expand:
333        VT = getTypeToTransformTo(Context, VT);
334        break;
335      default:
336        assert(false && "Type is not legal nor is it to be expanded!");
337        return VT;
338      }
339    }
340    return VT;
341  }
342
343  /// getVectorTypeBreakdown - Vector types are broken down into some number of
344  /// legal first class types.  For example, EVT::v8f32 maps to 2 EVT::v4f32
345  /// with Altivec or SSE1, or 8 promoted EVT::f64 values with the X86 FP stack.
346  /// Similarly, EVT::v2i64 turns into 4 EVT::i32 values with both PPC and X86.
347  ///
348  /// This method returns the number of registers needed, and the VT for each
349  /// register.  It also returns the VT and quantity of the intermediate values
350  /// before they are promoted/expanded.
351  ///
352  unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
353                                  EVT &IntermediateVT,
354                                  unsigned &NumIntermediates,
355                                  EVT &RegisterVT) const;
356
357  /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
358  /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
359  /// this is the case, it returns true and store the intrinsic
360  /// information into the IntrinsicInfo that was passed to the function.
361  struct IntrinsicInfo {
362    unsigned     opc;         // target opcode
363    EVT          memVT;       // memory VT
364    const Value* ptrVal;      // value representing memory location
365    int          offset;      // offset off of ptrVal
366    unsigned     align;       // alignment
367    bool         vol;         // is volatile?
368    bool         readMem;     // reads memory?
369    bool         writeMem;    // writes memory?
370  };
371
372  virtual bool getTgtMemIntrinsic(IntrinsicInfo &Info,
373                                  const CallInst &I, unsigned Intrinsic) const {
374    return false;
375  }
376
377  /// isFPImmLegal - Returns true if the target can instruction select the
378  /// specified FP immediate natively. If false, the legalizer will materialize
379  /// the FP immediate as a load from a constant pool.
380  virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const {
381    return false;
382  }
383
384  /// isShuffleMaskLegal - Targets can use this to indicate that they only
385  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
386  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
387  /// are assumed to be legal.
388  virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
389                                  EVT VT) const {
390    return true;
391  }
392
393  /// canOpTrap - Returns true if the operation can trap for the value type.
394  /// VT must be a legal type. By default, we optimistically assume most
395  /// operations don't trap except for divide and remainder.
396  virtual bool canOpTrap(unsigned Op, EVT VT) const;
397
398  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
399  /// used by Targets can use this to indicate if there is a suitable
400  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
401  /// pool entry.
402  virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
403                                      EVT VT) const {
404    return false;
405  }
406
407  /// getOperationAction - Return how this operation should be treated: either
408  /// it is legal, needs to be promoted to a larger size, needs to be
409  /// expanded to some other code sequence, or the target has a custom expander
410  /// for it.
411  LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
412    if (VT.isExtended()) return Expand;
413    assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
414    unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
415    return (LegalizeAction)OpActions[I][Op];
416  }
417
418  /// isOperationLegalOrCustom - Return true if the specified operation is
419  /// legal on this target or can be made legal with custom lowering. This
420  /// is used to help guide high-level lowering decisions.
421  bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
422    return (VT == MVT::Other || isTypeLegal(VT)) &&
423      (getOperationAction(Op, VT) == Legal ||
424       getOperationAction(Op, VT) == Custom);
425  }
426
427  /// isOperationLegal - Return true if the specified operation is legal on this
428  /// target.
429  bool isOperationLegal(unsigned Op, EVT VT) const {
430    return (VT == MVT::Other || isTypeLegal(VT)) &&
431           getOperationAction(Op, VT) == Legal;
432  }
433
434  /// getLoadExtAction - Return how this load with extension should be treated:
435  /// either it is legal, needs to be promoted to a larger size, needs to be
436  /// expanded to some other code sequence, or the target has a custom expander
437  /// for it.
438  LegalizeAction getLoadExtAction(unsigned ExtType, EVT VT) const {
439    assert(ExtType < ISD::LAST_LOADEXT_TYPE &&
440           VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
441           "Table isn't big enough!");
442    return (LegalizeAction)LoadExtActions[VT.getSimpleVT().SimpleTy][ExtType];
443  }
444
445  /// isLoadExtLegal - Return true if the specified load with extension is legal
446  /// on this target.
447  bool isLoadExtLegal(unsigned ExtType, EVT VT) const {
448    return VT.isSimple() &&
449      (getLoadExtAction(ExtType, VT) == Legal ||
450       getLoadExtAction(ExtType, VT) == Custom);
451  }
452
453  /// getTruncStoreAction - Return how this store with truncation should be
454  /// treated: either it is legal, needs to be promoted to a larger size, needs
455  /// to be expanded to some other code sequence, or the target has a custom
456  /// expander for it.
457  LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const {
458    assert(ValVT.getSimpleVT() < MVT::LAST_VALUETYPE &&
459           MemVT.getSimpleVT() < MVT::LAST_VALUETYPE &&
460           "Table isn't big enough!");
461    return (LegalizeAction)TruncStoreActions[ValVT.getSimpleVT().SimpleTy]
462                                            [MemVT.getSimpleVT().SimpleTy];
463  }
464
465  /// isTruncStoreLegal - Return true if the specified store with truncation is
466  /// legal on this target.
467  bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
468    return isTypeLegal(ValVT) && MemVT.isSimple() &&
469      (getTruncStoreAction(ValVT, MemVT) == Legal ||
470       getTruncStoreAction(ValVT, MemVT) == Custom);
471  }
472
473  /// getIndexedLoadAction - Return how the indexed load should be treated:
474  /// either it is legal, needs to be promoted to a larger size, needs to be
475  /// expanded to some other code sequence, or the target has a custom expander
476  /// for it.
477  LegalizeAction
478  getIndexedLoadAction(unsigned IdxMode, EVT VT) const {
479    assert(IdxMode < ISD::LAST_INDEXED_MODE &&
480           VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
481           "Table isn't big enough!");
482    unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
483    return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
484  }
485
486  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
487  /// on this target.
488  bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
489    return VT.isSimple() &&
490      (getIndexedLoadAction(IdxMode, VT) == Legal ||
491       getIndexedLoadAction(IdxMode, VT) == Custom);
492  }
493
494  /// getIndexedStoreAction - Return how the indexed store should be treated:
495  /// either it is legal, needs to be promoted to a larger size, needs to be
496  /// expanded to some other code sequence, or the target has a custom expander
497  /// for it.
498  LegalizeAction
499  getIndexedStoreAction(unsigned IdxMode, EVT VT) const {
500    assert(IdxMode < ISD::LAST_INDEXED_MODE &&
501           VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
502           "Table isn't big enough!");
503    unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
504    return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
505  }
506
507  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
508  /// on this target.
509  bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
510    return VT.isSimple() &&
511      (getIndexedStoreAction(IdxMode, VT) == Legal ||
512       getIndexedStoreAction(IdxMode, VT) == Custom);
513  }
514
515  /// getCondCodeAction - Return how the condition code should be treated:
516  /// either it is legal, needs to be expanded to some other code sequence,
517  /// or the target has a custom expander for it.
518  LegalizeAction
519  getCondCodeAction(ISD::CondCode CC, EVT VT) const {
520    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
521           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(CondCodeActions[0])*4 &&
522           "Table isn't big enough!");
523    LegalizeAction Action = (LegalizeAction)
524      ((CondCodeActions[CC] >> (2*VT.getSimpleVT().SimpleTy)) & 3);
525    assert(Action != Promote && "Can't promote condition code!");
526    return Action;
527  }
528
529  /// isCondCodeLegal - Return true if the specified condition code is legal
530  /// on this target.
531  bool isCondCodeLegal(ISD::CondCode CC, EVT VT) const {
532    return getCondCodeAction(CC, VT) == Legal ||
533           getCondCodeAction(CC, VT) == Custom;
534  }
535
536
537  /// getTypeToPromoteTo - If the action for this operation is to promote, this
538  /// method returns the ValueType to promote to.
539  EVT getTypeToPromoteTo(unsigned Op, EVT VT) const {
540    assert(getOperationAction(Op, VT) == Promote &&
541           "This operation isn't promoted!");
542
543    // See if this has an explicit type specified.
544    std::map<std::pair<unsigned, MVT::SimpleValueType>,
545             MVT::SimpleValueType>::const_iterator PTTI =
546      PromoteToType.find(std::make_pair(Op, VT.getSimpleVT().SimpleTy));
547    if (PTTI != PromoteToType.end()) return PTTI->second;
548
549    assert((VT.isInteger() || VT.isFloatingPoint()) &&
550           "Cannot autopromote this type, add it with AddPromotedToType.");
551
552    EVT NVT = VT;
553    do {
554      NVT = (MVT::SimpleValueType)(NVT.getSimpleVT().SimpleTy+1);
555      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
556             "Didn't find type to promote to!");
557    } while (!isTypeLegal(NVT) ||
558              getOperationAction(Op, NVT) == Promote);
559    return NVT;
560  }
561
562  /// getValueType - Return the EVT corresponding to this LLVM type.
563  /// This is fixed by the LLVM operations except for the pointer size.  If
564  /// AllowUnknown is true, this will return MVT::Other for types with no EVT
565  /// counterpart (e.g. structs), otherwise it will assert.
566  EVT getValueType(const Type *Ty, bool AllowUnknown = false) const {
567    EVT VT = EVT::getEVT(Ty, AllowUnknown);
568    return VT == MVT::iPTR ? PointerTy : VT;
569  }
570
571  /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
572  /// function arguments in the caller parameter area.  This is the actual
573  /// alignment, not its logarithm.
574  virtual unsigned getByValTypeAlignment(const Type *Ty) const;
575
576  /// getRegisterType - Return the type of registers that this ValueType will
577  /// eventually require.
578  EVT getRegisterType(MVT VT) const {
579    assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
580    return RegisterTypeForVT[VT.SimpleTy];
581  }
582
583  /// getRegisterType - Return the type of registers that this ValueType will
584  /// eventually require.
585  EVT getRegisterType(LLVMContext &Context, EVT VT) const {
586    if (VT.isSimple()) {
587      assert((unsigned)VT.getSimpleVT().SimpleTy <
588                array_lengthof(RegisterTypeForVT));
589      return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
590    }
591    if (VT.isVector()) {
592      EVT VT1, RegisterVT;
593      unsigned NumIntermediates;
594      (void)getVectorTypeBreakdown(Context, VT, VT1,
595                                   NumIntermediates, RegisterVT);
596      return RegisterVT;
597    }
598    if (VT.isInteger()) {
599      return getRegisterType(Context, getTypeToTransformTo(Context, VT));
600    }
601    assert(0 && "Unsupported extended type!");
602    return EVT(MVT::Other); // Not reached
603  }
604
605  /// getNumRegisters - Return the number of registers that this ValueType will
606  /// eventually require.  This is one for any types promoted to live in larger
607  /// registers, but may be more than one for types (like i64) that are split
608  /// into pieces.  For types like i140, which are first promoted then expanded,
609  /// it is the number of registers needed to hold all the bits of the original
610  /// type.  For an i140 on a 32 bit machine this means 5 registers.
611  unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
612    if (VT.isSimple()) {
613      assert((unsigned)VT.getSimpleVT().SimpleTy <
614                array_lengthof(NumRegistersForVT));
615      return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
616    }
617    if (VT.isVector()) {
618      EVT VT1, VT2;
619      unsigned NumIntermediates;
620      return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
621    }
622    if (VT.isInteger()) {
623      unsigned BitWidth = VT.getSizeInBits();
624      unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
625      return (BitWidth + RegWidth - 1) / RegWidth;
626    }
627    assert(0 && "Unsupported extended type!");
628    return 0; // Not reached
629  }
630
631  /// ShouldShrinkFPConstant - If true, then instruction selection should
632  /// seek to shrink the FP constant of the specified type to a smaller type
633  /// in order to save space and / or reduce runtime.
634  virtual bool ShouldShrinkFPConstant(EVT VT) const { return true; }
635
636  /// hasTargetDAGCombine - If true, the target has custom DAG combine
637  /// transformations that it can perform for the specified node.
638  bool hasTargetDAGCombine(ISD::NodeType NT) const {
639    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
640    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
641  }
642
643  /// This function returns the maximum number of store operations permitted
644  /// to replace a call to llvm.memset. The value is set by the target at the
645  /// performance threshold for such a replacement. If OptSize is true,
646  /// return the limit for functions that have OptSize attribute.
647  /// @brief Get maximum # of store operations permitted for llvm.memset
648  unsigned getMaxStoresPerMemset(bool OptSize) const {
649    return OptSize ? maxStoresPerMemsetOptSize : maxStoresPerMemset;
650  }
651
652  /// This function returns the maximum number of store operations permitted
653  /// to replace a call to llvm.memcpy. The value is set by the target at the
654  /// performance threshold for such a replacement. If OptSize is true,
655  /// return the limit for functions that have OptSize attribute.
656  /// @brief Get maximum # of store operations permitted for llvm.memcpy
657  unsigned getMaxStoresPerMemcpy(bool OptSize) const {
658    return OptSize ? maxStoresPerMemcpyOptSize : maxStoresPerMemcpy;
659  }
660
661  /// This function returns the maximum number of store operations permitted
662  /// to replace a call to llvm.memmove. The value is set by the target at the
663  /// performance threshold for such a replacement. If OptSize is true,
664  /// return the limit for functions that have OptSize attribute.
665  /// @brief Get maximum # of store operations permitted for llvm.memmove
666  unsigned getMaxStoresPerMemmove(bool OptSize) const {
667    return OptSize ? maxStoresPerMemmoveOptSize : maxStoresPerMemmove;
668  }
669
670  /// This function returns true if the target allows unaligned memory accesses.
671  /// of the specified type. This is used, for example, in situations where an
672  /// array copy/move/set is  converted to a sequence of store operations. It's
673  /// use helps to ensure that such replacements don't generate code that causes
674  /// an alignment error  (trap) on the target machine.
675  /// @brief Determine if the target supports unaligned memory accesses.
676  virtual bool allowsUnalignedMemoryAccesses(EVT VT) const {
677    return false;
678  }
679
680  /// This function returns true if the target would benefit from code placement
681  /// optimization.
682  /// @brief Determine if the target should perform code placement optimization.
683  bool shouldOptimizeCodePlacement() const {
684    return benefitFromCodePlacementOpt;
685  }
686
687  /// getOptimalMemOpType - Returns the target specific optimal type for load
688  /// and store operations as a result of memset, memcpy, and memmove
689  /// lowering. If DstAlign is zero that means it's safe to destination
690  /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
691  /// means there isn't a need to check it against alignment requirement,
692  /// probably because the source does not need to be loaded. If
693  /// 'NonScalarIntSafe' is true, that means it's safe to return a
694  /// non-scalar-integer type, e.g. empty string source, constant, or loaded
695  /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
696  /// constant so it does not need to be loaded.
697  /// It returns EVT::Other if the type should be determined using generic
698  /// target-independent logic.
699  virtual EVT getOptimalMemOpType(uint64_t Size,
700                                  unsigned DstAlign, unsigned SrcAlign,
701                                  bool NonScalarIntSafe, bool MemcpyStrSrc,
702                                  MachineFunction &MF) const {
703    return MVT::Other;
704  }
705
706  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
707  /// to implement llvm.setjmp.
708  bool usesUnderscoreSetJmp() const {
709    return UseUnderscoreSetJmp;
710  }
711
712  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
713  /// to implement llvm.longjmp.
714  bool usesUnderscoreLongJmp() const {
715    return UseUnderscoreLongJmp;
716  }
717
718  /// getStackPointerRegisterToSaveRestore - If a physical register, this
719  /// specifies the register that llvm.savestack/llvm.restorestack should save
720  /// and restore.
721  unsigned getStackPointerRegisterToSaveRestore() const {
722    return StackPointerRegisterToSaveRestore;
723  }
724
725  /// getExceptionAddressRegister - If a physical register, this returns
726  /// the register that receives the exception address on entry to a landing
727  /// pad.
728  unsigned getExceptionAddressRegister() const {
729    return ExceptionPointerRegister;
730  }
731
732  /// getExceptionSelectorRegister - If a physical register, this returns
733  /// the register that receives the exception typeid on entry to a landing
734  /// pad.
735  unsigned getExceptionSelectorRegister() const {
736    return ExceptionSelectorRegister;
737  }
738
739  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
740  /// set, the default is 200)
741  unsigned getJumpBufSize() const {
742    return JumpBufSize;
743  }
744
745  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
746  /// (if never set, the default is 0)
747  unsigned getJumpBufAlignment() const {
748    return JumpBufAlignment;
749  }
750
751  /// getMinStackArgumentAlignment - return the minimum stack alignment of an
752  /// argument.
753  unsigned getMinStackArgumentAlignment() const {
754    return MinStackArgumentAlignment;
755  }
756
757  /// getPrefLoopAlignment - return the preferred loop alignment.
758  ///
759  unsigned getPrefLoopAlignment() const {
760    return PrefLoopAlignment;
761  }
762
763  /// getShouldFoldAtomicFences - return whether the combiner should fold
764  /// fence MEMBARRIER instructions into the atomic intrinsic instructions.
765  ///
766  bool getShouldFoldAtomicFences() const {
767    return ShouldFoldAtomicFences;
768  }
769
770  /// getPreIndexedAddressParts - returns true by value, base pointer and
771  /// offset pointer and addressing mode by reference if the node's address
772  /// can be legally represented as pre-indexed load / store address.
773  virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
774                                         SDValue &Offset,
775                                         ISD::MemIndexedMode &AM,
776                                         SelectionDAG &DAG) const {
777    return false;
778  }
779
780  /// getPostIndexedAddressParts - returns true by value, base pointer and
781  /// offset pointer and addressing mode by reference if this node can be
782  /// combined with a load / store to form a post-indexed load / store.
783  virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
784                                          SDValue &Base, SDValue &Offset,
785                                          ISD::MemIndexedMode &AM,
786                                          SelectionDAG &DAG) const {
787    return false;
788  }
789
790  /// getJumpTableEncoding - Return the entry encoding for a jump table in the
791  /// current function.  The returned value is a member of the
792  /// MachineJumpTableInfo::JTEntryKind enum.
793  virtual unsigned getJumpTableEncoding() const;
794
795  virtual const MCExpr *
796  LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
797                            const MachineBasicBlock *MBB, unsigned uid,
798                            MCContext &Ctx) const {
799    assert(0 && "Need to implement this hook if target has custom JTIs");
800    return 0;
801  }
802
803  /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
804  /// jumptable.
805  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
806                                           SelectionDAG &DAG) const;
807
808  /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
809  /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
810  /// MCExpr.
811  virtual const MCExpr *
812  getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
813                               unsigned JTI, MCContext &Ctx) const;
814
815  /// isOffsetFoldingLegal - Return true if folding a constant offset
816  /// with the given GlobalAddress is legal.  It is frequently not legal in
817  /// PIC relocation models.
818  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
819
820  /// getFunctionAlignment - Return the Log2 alignment of this function.
821  virtual unsigned getFunctionAlignment(const Function *) const = 0;
822
823  /// getStackCookieLocation - Return true if the target stores stack
824  /// protector cookies at a fixed offset in some non-standard address
825  /// space, and populates the address space and offset as
826  /// appropriate.
827  virtual bool getStackCookieLocation(unsigned &AddressSpace, unsigned &Offset) const {
828    return false;
829  }
830
831  /// getMaximalGlobalOffset - Returns the maximal possible offset which can be
832  /// used for loads / stores from the global.
833  virtual unsigned getMaximalGlobalOffset() const {
834    return 0;
835  }
836
837  //===--------------------------------------------------------------------===//
838  // TargetLowering Optimization Methods
839  //
840
841  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
842  /// SDValues for returning information from TargetLowering to its clients
843  /// that want to combine
844  struct TargetLoweringOpt {
845    SelectionDAG &DAG;
846    bool LegalTys;
847    bool LegalOps;
848    SDValue Old;
849    SDValue New;
850
851    explicit TargetLoweringOpt(SelectionDAG &InDAG,
852                               bool LT, bool LO) :
853      DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
854
855    bool LegalTypes() const { return LegalTys; }
856    bool LegalOperations() const { return LegalOps; }
857
858    bool CombineTo(SDValue O, SDValue N) {
859      Old = O;
860      New = N;
861      return true;
862    }
863
864    /// ShrinkDemandedConstant - Check to see if the specified operand of the
865    /// specified instruction is a constant integer.  If so, check to see if
866    /// there are any bits set in the constant that are not demanded.  If so,
867    /// shrink the constant and return true.
868    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
869
870    /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
871    /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
872    /// cast, but it could be generalized for targets with other types of
873    /// implicit widening casts.
874    bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
875                          DebugLoc dl);
876  };
877
878  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
879  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
880  /// use this information to simplify Op, create a new simplified DAG node and
881  /// return true, returning the original and new nodes in Old and New.
882  /// Otherwise, analyze the expression and return a mask of KnownOne and
883  /// KnownZero bits for the expression (used to simplify the caller).
884  /// The KnownZero/One bits may only be accurate for those bits in the
885  /// DemandedMask.
886  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
887                            APInt &KnownZero, APInt &KnownOne,
888                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
889
890  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
891  /// Mask are known to be either zero or one and return them in the
892  /// KnownZero/KnownOne bitsets.
893  virtual void computeMaskedBitsForTargetNode(const SDValue Op,
894                                              const APInt &Mask,
895                                              APInt &KnownZero,
896                                              APInt &KnownOne,
897                                              const SelectionDAG &DAG,
898                                              unsigned Depth = 0) const;
899
900  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
901  /// targets that want to expose additional information about sign bits to the
902  /// DAG Combiner.
903  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
904                                                   unsigned Depth = 0) const;
905
906  struct DAGCombinerInfo {
907    void *DC;  // The DAG Combiner object.
908    bool BeforeLegalize;
909    bool BeforeLegalizeOps;
910    bool CalledByLegalizer;
911  public:
912    SelectionDAG &DAG;
913
914    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool blo, bool cl, void *dc)
915      : DC(dc), BeforeLegalize(bl), BeforeLegalizeOps(blo),
916        CalledByLegalizer(cl), DAG(dag) {}
917
918    bool isBeforeLegalize() const { return BeforeLegalize; }
919    bool isBeforeLegalizeOps() const { return BeforeLegalizeOps; }
920    bool isCalledByLegalizer() const { return CalledByLegalizer; }
921
922    void AddToWorklist(SDNode *N);
923    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
924                      bool AddTo = true);
925    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
926    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
927
928    void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
929  };
930
931  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
932  /// and cc. If it is unable to simplify it, return a null SDValue.
933  SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
934                          ISD::CondCode Cond, bool foldBooleans,
935                          DAGCombinerInfo &DCI, DebugLoc dl) const;
936
937  /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
938  /// node is a GlobalAddress + offset.
939  virtual bool
940  isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
941
942  /// PerformDAGCombine - This method will be invoked for all target nodes and
943  /// for any target-independent nodes that the target has registered with
944  /// invoke it for.
945  ///
946  /// The semantics are as follows:
947  /// Return Value:
948  ///   SDValue.Val == 0   - No change was made
949  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
950  ///   otherwise          - N should be replaced by the returned Operand.
951  ///
952  /// In addition, methods provided by DAGCombinerInfo may be used to perform
953  /// more complex transformations.
954  ///
955  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
956
957  /// isTypeDesirableForOp - Return true if the target has native support for
958  /// the specified value type and it is 'desirable' to use the type for the
959  /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
960  /// instruction encodings are longer and some i16 instructions are slow.
961  virtual bool isTypeDesirableForOp(unsigned Opc, EVT VT) const {
962    // By default, assume all legal types are desirable.
963    return isTypeLegal(VT);
964  }
965
966  /// isDesirableToPromoteOp - Return true if it is profitable for dag combiner
967  /// to transform a floating point op of specified opcode to a equivalent op of
968  /// an integer type. e.g. f32 load -> i32 load can be profitable on ARM.
969  virtual bool isDesirableToTransformToIntegerOp(unsigned Opc, EVT VT) const {
970    return false;
971  }
972
973  /// IsDesirableToPromoteOp - This method query the target whether it is
974  /// beneficial for dag combiner to promote the specified node. If true, it
975  /// should return the desired promotion type by reference.
976  virtual bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
977    return false;
978  }
979
980  //===--------------------------------------------------------------------===//
981  // TargetLowering Configuration Methods - These methods should be invoked by
982  // the derived class constructor to configure this object for the target.
983  //
984
985protected:
986  /// setShiftAmountType - Describe the type that should be used for shift
987  /// amounts.  This type defaults to the pointer type.
988  void setShiftAmountType(MVT VT) { ShiftAmountTy = VT; }
989
990  /// setBooleanContents - Specify how the target extends the result of a
991  /// boolean value from i1 to a wider type.  See getBooleanContents.
992  void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
993
994  /// setSchedulingPreference - Specify the target scheduling preference.
995  void setSchedulingPreference(Sched::Preference Pref) {
996    SchedPreferenceInfo = Pref;
997  }
998
999  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
1000  /// use _setjmp to implement llvm.setjmp or the non _ version.
1001  /// Defaults to false.
1002  void setUseUnderscoreSetJmp(bool Val) {
1003    UseUnderscoreSetJmp = Val;
1004  }
1005
1006  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
1007  /// use _longjmp to implement llvm.longjmp or the non _ version.
1008  /// Defaults to false.
1009  void setUseUnderscoreLongJmp(bool Val) {
1010    UseUnderscoreLongJmp = Val;
1011  }
1012
1013  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
1014  /// specifies the register that llvm.savestack/llvm.restorestack should save
1015  /// and restore.
1016  void setStackPointerRegisterToSaveRestore(unsigned R) {
1017    StackPointerRegisterToSaveRestore = R;
1018  }
1019
1020  /// setExceptionPointerRegister - If set to a physical register, this sets
1021  /// the register that receives the exception address on entry to a landing
1022  /// pad.
1023  void setExceptionPointerRegister(unsigned R) {
1024    ExceptionPointerRegister = R;
1025  }
1026
1027  /// setExceptionSelectorRegister - If set to a physical register, this sets
1028  /// the register that receives the exception typeid on entry to a landing
1029  /// pad.
1030  void setExceptionSelectorRegister(unsigned R) {
1031    ExceptionSelectorRegister = R;
1032  }
1033
1034  /// SelectIsExpensive - Tells the code generator not to expand operations
1035  /// into sequences that use the select operations if possible.
1036  void setSelectIsExpensive(bool isExpensive = true) {
1037    SelectIsExpensive = isExpensive;
1038  }
1039
1040  /// JumpIsExpensive - Tells the code generator not to expand sequence of
1041  /// operations into a seperate sequences that increases the amount of
1042  /// flow control.
1043  void setJumpIsExpensive(bool isExpensive = true) {
1044    JumpIsExpensive = isExpensive;
1045  }
1046
1047  /// setIntDivIsCheap - Tells the code generator that integer divide is
1048  /// expensive, and if possible, should be replaced by an alternate sequence
1049  /// of instructions not containing an integer divide.
1050  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
1051
1052  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
1053  /// srl/add/sra for a signed divide by power of two, and let the target handle
1054  /// it.
1055  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
1056
1057  /// addRegisterClass - Add the specified register class as an available
1058  /// regclass for the specified value type.  This indicates the selector can
1059  /// handle values of that class natively.
1060  void addRegisterClass(EVT VT, TargetRegisterClass *RC) {
1061    assert((unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
1062    AvailableRegClasses.push_back(std::make_pair(VT, RC));
1063    RegClassForVT[VT.getSimpleVT().SimpleTy] = RC;
1064  }
1065
1066  /// findRepresentativeClass - Return the largest legal super-reg register class
1067  /// of the register class for the specified type and its associated "cost".
1068  virtual std::pair<const TargetRegisterClass*, uint8_t>
1069  findRepresentativeClass(EVT VT) const;
1070
1071  /// computeRegisterProperties - Once all of the register classes are added,
1072  /// this allows us to compute derived properties we expose.
1073  void computeRegisterProperties();
1074
1075  /// setOperationAction - Indicate that the specified operation does not work
1076  /// with the specified type and indicate what to do about it.
1077  void setOperationAction(unsigned Op, MVT VT,
1078                          LegalizeAction Action) {
1079    assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
1080    OpActions[(unsigned)VT.SimpleTy][Op] = (uint8_t)Action;
1081  }
1082
1083  /// setLoadExtAction - Indicate that the specified load with extension does
1084  /// not work with the specified type and indicate what to do about it.
1085  void setLoadExtAction(unsigned ExtType, MVT VT,
1086                        LegalizeAction Action) {
1087    assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT < MVT::LAST_VALUETYPE &&
1088           "Table isn't big enough!");
1089    LoadExtActions[VT.SimpleTy][ExtType] = (uint8_t)Action;
1090  }
1091
1092  /// setTruncStoreAction - Indicate that the specified truncating store does
1093  /// not work with the specified type and indicate what to do about it.
1094  void setTruncStoreAction(MVT ValVT, MVT MemVT,
1095                           LegalizeAction Action) {
1096    assert(ValVT < MVT::LAST_VALUETYPE && MemVT < MVT::LAST_VALUETYPE &&
1097           "Table isn't big enough!");
1098    TruncStoreActions[ValVT.SimpleTy][MemVT.SimpleTy] = (uint8_t)Action;
1099  }
1100
1101  /// setIndexedLoadAction - Indicate that the specified indexed load does or
1102  /// does not work with the specified type and indicate what to do abort
1103  /// it. NOTE: All indexed mode loads are initialized to Expand in
1104  /// TargetLowering.cpp
1105  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
1106                            LegalizeAction Action) {
1107    assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
1108           (unsigned)Action < 0xf && "Table isn't big enough!");
1109    // Load action are kept in the upper half.
1110    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
1111    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
1112  }
1113
1114  /// setIndexedStoreAction - Indicate that the specified indexed store does or
1115  /// does not work with the specified type and indicate what to do about
1116  /// it. NOTE: All indexed mode stores are initialized to Expand in
1117  /// TargetLowering.cpp
1118  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
1119                             LegalizeAction Action) {
1120    assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
1121           (unsigned)Action < 0xf && "Table isn't big enough!");
1122    // Store action are kept in the lower half.
1123    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
1124    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
1125  }
1126
1127  /// setCondCodeAction - Indicate that the specified condition code is or isn't
1128  /// supported on the target and indicate what to do about it.
1129  void setCondCodeAction(ISD::CondCode CC, MVT VT,
1130                         LegalizeAction Action) {
1131    assert(VT < MVT::LAST_VALUETYPE &&
1132           (unsigned)CC < array_lengthof(CondCodeActions) &&
1133           "Table isn't big enough!");
1134    CondCodeActions[(unsigned)CC] &= ~(uint64_t(3UL)  << VT.SimpleTy*2);
1135    CondCodeActions[(unsigned)CC] |= (uint64_t)Action << VT.SimpleTy*2;
1136  }
1137
1138  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
1139  /// promotion code defaults to trying a larger integer/fp until it can find
1140  /// one that works.  If that default is insufficient, this method can be used
1141  /// by the target to override the default.
1142  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1143    PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
1144  }
1145
1146  /// setTargetDAGCombine - Targets should invoke this method for each target
1147  /// independent node that they want to provide a custom DAG combiner for by
1148  /// implementing the PerformDAGCombine virtual method.
1149  void setTargetDAGCombine(ISD::NodeType NT) {
1150    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1151    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1152  }
1153
1154  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
1155  /// bytes); default is 200
1156  void setJumpBufSize(unsigned Size) {
1157    JumpBufSize = Size;
1158  }
1159
1160  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
1161  /// alignment (in bytes); default is 0
1162  void setJumpBufAlignment(unsigned Align) {
1163    JumpBufAlignment = Align;
1164  }
1165
1166  /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
1167  /// alignment is zero, it means the target does not care about loop alignment.
1168  void setPrefLoopAlignment(unsigned Align) {
1169    PrefLoopAlignment = Align;
1170  }
1171
1172  /// setMinStackArgumentAlignment - Set the minimum stack alignment of an
1173  /// argument.
1174  void setMinStackArgumentAlignment(unsigned Align) {
1175    MinStackArgumentAlignment = Align;
1176  }
1177
1178  /// setShouldFoldAtomicFences - Set if the target's implementation of the
1179  /// atomic operation intrinsics includes locking. Default is false.
1180  void setShouldFoldAtomicFences(bool fold) {
1181    ShouldFoldAtomicFences = fold;
1182  }
1183
1184public:
1185  //===--------------------------------------------------------------------===//
1186  // Lowering methods - These methods must be implemented by targets so that
1187  // the SelectionDAGLowering code knows how to lower these.
1188  //
1189
1190  /// LowerFormalArguments - This hook must be implemented to lower the
1191  /// incoming (formal) arguments, described by the Ins array, into the
1192  /// specified DAG. The implementation should fill in the InVals array
1193  /// with legal-type argument values, and return the resulting token
1194  /// chain value.
1195  ///
1196  virtual SDValue
1197    LowerFormalArguments(SDValue Chain,
1198                         CallingConv::ID CallConv, bool isVarArg,
1199                         const SmallVectorImpl<ISD::InputArg> &Ins,
1200                         DebugLoc dl, SelectionDAG &DAG,
1201                         SmallVectorImpl<SDValue> &InVals) const {
1202    assert(0 && "Not Implemented");
1203    return SDValue();    // this is here to silence compiler errors
1204  }
1205
1206  /// LowerCallTo - This function lowers an abstract call to a function into an
1207  /// actual call.  This returns a pair of operands.  The first element is the
1208  /// return value for the function (if RetTy is not VoidTy).  The second
1209  /// element is the outgoing token chain. It calls LowerCall to do the actual
1210  /// lowering.
1211  struct ArgListEntry {
1212    SDValue Node;
1213    const Type* Ty;
1214    bool isSExt  : 1;
1215    bool isZExt  : 1;
1216    bool isInReg : 1;
1217    bool isSRet  : 1;
1218    bool isNest  : 1;
1219    bool isByVal : 1;
1220    uint16_t Alignment;
1221
1222    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
1223      isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
1224  };
1225  typedef std::vector<ArgListEntry> ArgListTy;
1226  std::pair<SDValue, SDValue>
1227  LowerCallTo(SDValue Chain, const Type *RetTy, bool RetSExt, bool RetZExt,
1228              bool isVarArg, bool isInreg, unsigned NumFixedArgs,
1229              CallingConv::ID CallConv, bool isTailCall,
1230              bool isReturnValueUsed, SDValue Callee, ArgListTy &Args,
1231              SelectionDAG &DAG, DebugLoc dl) const;
1232
1233  /// LowerCall - This hook must be implemented to lower calls into the
1234  /// the specified DAG. The outgoing arguments to the call are described
1235  /// by the Outs array, and the values to be returned by the call are
1236  /// described by the Ins array. The implementation should fill in the
1237  /// InVals array with legal-type return values from the call, and return
1238  /// the resulting token chain value.
1239  virtual SDValue
1240    LowerCall(SDValue Chain, SDValue Callee,
1241              CallingConv::ID CallConv, bool isVarArg, bool &isTailCall,
1242              const SmallVectorImpl<ISD::OutputArg> &Outs,
1243              const SmallVectorImpl<SDValue> &OutVals,
1244              const SmallVectorImpl<ISD::InputArg> &Ins,
1245              DebugLoc dl, SelectionDAG &DAG,
1246              SmallVectorImpl<SDValue> &InVals) const {
1247    assert(0 && "Not Implemented");
1248    return SDValue();    // this is here to silence compiler errors
1249  }
1250
1251  /// CanLowerReturn - This hook should be implemented to check whether the
1252  /// return values described by the Outs array can fit into the return
1253  /// registers.  If false is returned, an sret-demotion is performed.
1254  ///
1255  virtual bool CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1256               const SmallVectorImpl<ISD::OutputArg> &Outs,
1257               LLVMContext &Context) const
1258  {
1259    // Return true by default to get preexisting behavior.
1260    return true;
1261  }
1262
1263  /// LowerReturn - This hook must be implemented to lower outgoing
1264  /// return values, described by the Outs array, into the specified
1265  /// DAG. The implementation should return the resulting token chain
1266  /// value.
1267  ///
1268  virtual SDValue
1269    LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1270                const SmallVectorImpl<ISD::OutputArg> &Outs,
1271                const SmallVectorImpl<SDValue> &OutVals,
1272                DebugLoc dl, SelectionDAG &DAG) const {
1273    assert(0 && "Not Implemented");
1274    return SDValue();    // this is here to silence compiler errors
1275  }
1276
1277  /// isUsedByReturnOnly - Return true if result of the specified node is used
1278  /// by a return node only. This is used to determine whether it is possible
1279  /// to codegen a libcall as tail call at legalization time.
1280  virtual bool isUsedByReturnOnly(SDNode *N) const {
1281    return false;
1282  }
1283
1284  /// LowerOperationWrapper - This callback is invoked by the type legalizer
1285  /// to legalize nodes with an illegal operand type but legal result types.
1286  /// It replaces the LowerOperation callback in the type Legalizer.
1287  /// The reason we can not do away with LowerOperation entirely is that
1288  /// LegalizeDAG isn't yet ready to use this callback.
1289  /// TODO: Consider merging with ReplaceNodeResults.
1290
1291  /// The target places new result values for the node in Results (their number
1292  /// and types must exactly match those of the original return values of
1293  /// the node), or leaves Results empty, which indicates that the node is not
1294  /// to be custom lowered after all.
1295  /// The default implementation calls LowerOperation.
1296  virtual void LowerOperationWrapper(SDNode *N,
1297                                     SmallVectorImpl<SDValue> &Results,
1298                                     SelectionDAG &DAG) const;
1299
1300  /// LowerOperation - This callback is invoked for operations that are
1301  /// unsupported by the target, which are registered to use 'custom' lowering,
1302  /// and whose defined values are all legal.
1303  /// If the target has no operations that require custom lowering, it need not
1304  /// implement this.  The default implementation of this aborts.
1305  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
1306
1307  /// ReplaceNodeResults - This callback is invoked when a node result type is
1308  /// illegal for the target, and the operation was registered to use 'custom'
1309  /// lowering for that result type.  The target places new result values for
1310  /// the node in Results (their number and types must exactly match those of
1311  /// the original return values of the node), or leaves Results empty, which
1312  /// indicates that the node is not to be custom lowered after all.
1313  ///
1314  /// If the target has no operations that require custom lowering, it need not
1315  /// implement this.  The default implementation aborts.
1316  virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
1317                                  SelectionDAG &DAG) const {
1318    assert(0 && "ReplaceNodeResults not implemented for this target!");
1319  }
1320
1321  /// getTargetNodeName() - This method returns the name of a target specific
1322  /// DAG node.
1323  virtual const char *getTargetNodeName(unsigned Opcode) const;
1324
1325  /// createFastISel - This method returns a target specific FastISel object,
1326  /// or null if the target does not support "fast" ISel.
1327  virtual FastISel *createFastISel(FunctionLoweringInfo &funcInfo) const {
1328    return 0;
1329  }
1330
1331  //===--------------------------------------------------------------------===//
1332  // Inline Asm Support hooks
1333  //
1334
1335  /// ExpandInlineAsm - This hook allows the target to expand an inline asm
1336  /// call to be explicit llvm code if it wants to.  This is useful for
1337  /// turning simple inline asms into LLVM intrinsics, which gives the
1338  /// compiler more information about the behavior of the code.
1339  virtual bool ExpandInlineAsm(CallInst *CI) const {
1340    return false;
1341  }
1342
1343  enum ConstraintType {
1344    C_Register,            // Constraint represents specific register(s).
1345    C_RegisterClass,       // Constraint represents any of register(s) in class.
1346    C_Memory,              // Memory constraint.
1347    C_Other,               // Something else.
1348    C_Unknown              // Unsupported constraint.
1349  };
1350
1351  enum ConstraintWeight {
1352    // Generic weights.
1353    CW_Invalid  = -1,     // No match.
1354    CW_Okay     = 0,      // Acceptable.
1355    CW_Good     = 1,      // Good weight.
1356    CW_Better   = 2,      // Better weight.
1357    CW_Best     = 3,      // Best weight.
1358
1359    // Well-known weights.
1360    CW_SpecificReg  = CW_Okay,    // Specific register operands.
1361    CW_Register     = CW_Good,    // Register operands.
1362    CW_Memory       = CW_Better,  // Memory operands.
1363    CW_Constant     = CW_Best,    // Constant operand.
1364    CW_Default      = CW_Okay     // Default or don't know type.
1365  };
1366
1367  /// AsmOperandInfo - This contains information for each constraint that we are
1368  /// lowering.
1369  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
1370    /// ConstraintCode - This contains the actual string for the code, like "m".
1371    /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
1372    /// most closely matches the operand.
1373    std::string ConstraintCode;
1374
1375    /// ConstraintType - Information about the constraint code, e.g. Register,
1376    /// RegisterClass, Memory, Other, Unknown.
1377    TargetLowering::ConstraintType ConstraintType;
1378
1379    /// CallOperandval - If this is the result output operand or a
1380    /// clobber, this is null, otherwise it is the incoming operand to the
1381    /// CallInst.  This gets modified as the asm is processed.
1382    Value *CallOperandVal;
1383
1384    /// ConstraintVT - The ValueType for the operand value.
1385    EVT ConstraintVT;
1386
1387    /// isMatchingInputConstraint - Return true of this is an input operand that
1388    /// is a matching constraint like "4".
1389    bool isMatchingInputConstraint() const;
1390
1391    /// getMatchedOperand - If this is an input matching constraint, this method
1392    /// returns the output operand it matches.
1393    unsigned getMatchedOperand() const;
1394
1395    /// Copy constructor for copying from an AsmOperandInfo.
1396    AsmOperandInfo(const AsmOperandInfo &info)
1397      : InlineAsm::ConstraintInfo(info),
1398        ConstraintCode(info.ConstraintCode),
1399        ConstraintType(info.ConstraintType),
1400        CallOperandVal(info.CallOperandVal),
1401        ConstraintVT(info.ConstraintVT) {
1402    }
1403
1404    /// Copy constructor for copying from a ConstraintInfo.
1405    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
1406      : InlineAsm::ConstraintInfo(info),
1407        ConstraintType(TargetLowering::C_Unknown),
1408        CallOperandVal(0), ConstraintVT(MVT::Other) {
1409    }
1410  };
1411
1412  typedef std::vector<AsmOperandInfo> AsmOperandInfoVector;
1413
1414  /// ParseConstraints - Split up the constraint string from the inline
1415  /// assembly value into the specific constraints and their prefixes,
1416  /// and also tie in the associated operand values.
1417  /// If this returns an empty vector, and if the constraint string itself
1418  /// isn't empty, there was an error parsing.
1419  virtual AsmOperandInfoVector ParseConstraints(ImmutableCallSite CS) const;
1420
1421  /// Examine constraint type and operand type and determine a weight value.
1422  /// The operand object must already have been set up with the operand type.
1423  virtual ConstraintWeight getMultipleConstraintMatchWeight(
1424      AsmOperandInfo &info, int maIndex) const;
1425
1426  /// Examine constraint string and operand type and determine a weight value.
1427  /// The operand object must already have been set up with the operand type.
1428  virtual ConstraintWeight getSingleConstraintMatchWeight(
1429      AsmOperandInfo &info, const char *constraint) const;
1430
1431  /// ComputeConstraintToUse - Determines the constraint code and constraint
1432  /// type to use for the specific AsmOperandInfo, setting
1433  /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
1434  /// being passed in is available, it can be passed in as Op, otherwise an
1435  /// empty SDValue can be passed.
1436  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1437                                      SDValue Op,
1438                                      SelectionDAG *DAG = 0) const;
1439
1440  /// getConstraintType - Given a constraint, return the type of constraint it
1441  /// is for this target.
1442  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
1443
1444  /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
1445  /// return a list of registers that can be used to satisfy the constraint.
1446  /// This should only be used for C_RegisterClass constraints.
1447  virtual std::vector<unsigned>
1448  getRegClassForInlineAsmConstraint(const std::string &Constraint,
1449                                    EVT VT) const;
1450
1451  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
1452  /// {edx}), return the register number and the register class for the
1453  /// register.
1454  ///
1455  /// Given a register class constraint, like 'r', if this corresponds directly
1456  /// to an LLVM register class, return a register of 0 and the register class
1457  /// pointer.
1458  ///
1459  /// This should only be used for C_Register constraints.  On error,
1460  /// this returns a register number of 0 and a null register class pointer..
1461  virtual std::pair<unsigned, const TargetRegisterClass*>
1462    getRegForInlineAsmConstraint(const std::string &Constraint,
1463                                 EVT VT) const;
1464
1465  /// LowerXConstraint - try to replace an X constraint, which matches anything,
1466  /// with another that has more specific requirements based on the type of the
1467  /// corresponding operand.  This returns null if there is no replacement to
1468  /// make.
1469  virtual const char *LowerXConstraint(EVT ConstraintVT) const;
1470
1471  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1472  /// vector.  If it is invalid, don't add anything to Ops.
1473  virtual void LowerAsmOperandForConstraint(SDValue Op, char ConstraintLetter,
1474                                            std::vector<SDValue> &Ops,
1475                                            SelectionDAG &DAG) const;
1476
1477  //===--------------------------------------------------------------------===//
1478  // Instruction Emitting Hooks
1479  //
1480
1481  // EmitInstrWithCustomInserter - This method should be implemented by targets
1482  // that mark instructions with the 'usesCustomInserter' flag.  These
1483  // instructions are special in various ways, which require special support to
1484  // insert.  The specified MachineInstr is created but not inserted into any
1485  // basic blocks, and this method is called to expand it into a sequence of
1486  // instructions, potentially also creating new basic blocks and control flow.
1487  virtual MachineBasicBlock *
1488    EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;
1489
1490  //===--------------------------------------------------------------------===//
1491  // Addressing mode description hooks (used by LSR etc).
1492  //
1493
1494  /// AddrMode - This represents an addressing mode of:
1495  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1496  /// If BaseGV is null,  there is no BaseGV.
1497  /// If BaseOffs is zero, there is no base offset.
1498  /// If HasBaseReg is false, there is no base register.
1499  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1500  /// no scale.
1501  ///
1502  struct AddrMode {
1503    GlobalValue *BaseGV;
1504    int64_t      BaseOffs;
1505    bool         HasBaseReg;
1506    int64_t      Scale;
1507    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1508  };
1509
1510  /// isLegalAddressingMode - Return true if the addressing mode represented by
1511  /// AM is legal for this target, for a load/store of the specified type.
1512  /// The type may be VoidTy, in which case only return true if the addressing
1513  /// mode is legal for a load/store of any legal type.
1514  /// TODO: Handle pre/postinc as well.
1515  virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const;
1516
1517  /// isTruncateFree - Return true if it's free to truncate a value of
1518  /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1519  /// register EAX to i16 by referencing its sub-register AX.
1520  virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const {
1521    return false;
1522  }
1523
1524  virtual bool isTruncateFree(EVT VT1, EVT VT2) const {
1525    return false;
1526  }
1527
1528  /// isZExtFree - Return true if any actual instruction that defines a
1529  /// value of type Ty1 implicitly zero-extends the value to Ty2 in the result
1530  /// register. This does not necessarily include registers defined in
1531  /// unknown ways, such as incoming arguments, or copies from unknown
1532  /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1533  /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1534  /// all instructions that define 32-bit values implicit zero-extend the
1535  /// result out to 64 bits.
1536  virtual bool isZExtFree(const Type *Ty1, const Type *Ty2) const {
1537    return false;
1538  }
1539
1540  virtual bool isZExtFree(EVT VT1, EVT VT2) const {
1541    return false;
1542  }
1543
1544  /// isNarrowingProfitable - Return true if it's profitable to narrow
1545  /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
1546  /// from i32 to i8 but not from i32 to i16.
1547  virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const {
1548    return false;
1549  }
1550
1551  /// isLegalICmpImmediate - Return true if the specified immediate is legal
1552  /// icmp immediate, that is the target has icmp instructions which can compare
1553  /// a register against the immediate without having to materialize the
1554  /// immediate into a register.
1555  virtual bool isLegalICmpImmediate(int64_t Imm) const {
1556    return true;
1557  }
1558
1559  //===--------------------------------------------------------------------===//
1560  // Div utility functions
1561  //
1562  SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG,
1563                      std::vector<SDNode*>* Created) const;
1564  SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG,
1565                      std::vector<SDNode*>* Created) const;
1566
1567
1568  //===--------------------------------------------------------------------===//
1569  // Runtime Library hooks
1570  //
1571
1572  /// setLibcallName - Rename the default libcall routine name for the specified
1573  /// libcall.
1574  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1575    LibcallRoutineNames[Call] = Name;
1576  }
1577
1578  /// getLibcallName - Get the libcall routine name for the specified libcall.
1579  ///
1580  const char *getLibcallName(RTLIB::Libcall Call) const {
1581    return LibcallRoutineNames[Call];
1582  }
1583
1584  /// setCmpLibcallCC - Override the default CondCode to be used to test the
1585  /// result of the comparison libcall against zero.
1586  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1587    CmpLibcallCCs[Call] = CC;
1588  }
1589
1590  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1591  /// the comparison libcall against zero.
1592  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1593    return CmpLibcallCCs[Call];
1594  }
1595
1596  /// setLibcallCallingConv - Set the CallingConv that should be used for the
1597  /// specified libcall.
1598  void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
1599    LibcallCallingConvs[Call] = CC;
1600  }
1601
1602  /// getLibcallCallingConv - Get the CallingConv that should be used for the
1603  /// specified libcall.
1604  CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
1605    return LibcallCallingConvs[Call];
1606  }
1607
1608private:
1609  const TargetMachine &TM;
1610  const TargetData *TD;
1611  const TargetLoweringObjectFile &TLOF;
1612
1613  /// PointerTy - The type to use for pointers, usually i32 or i64.
1614  ///
1615  MVT PointerTy;
1616
1617  /// IsLittleEndian - True if this is a little endian target.
1618  ///
1619  bool IsLittleEndian;
1620
1621  /// SelectIsExpensive - Tells the code generator not to expand operations
1622  /// into sequences that use the select operations if possible.
1623  bool SelectIsExpensive;
1624
1625  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1626  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1627  /// a real cost model is in place.  If we ever optimize for size, this will be
1628  /// set to true unconditionally.
1629  bool IntDivIsCheap;
1630
1631  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1632  /// srl/add/sra for a signed divide by power of two, and let the target handle
1633  /// it.
1634  bool Pow2DivIsCheap;
1635
1636  /// JumpIsExpensive - Tells the code generator that it shouldn't generate
1637  /// extra flow control instructions and should attempt to combine flow
1638  /// control instructions via predication.
1639  bool JumpIsExpensive;
1640
1641  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1642  /// llvm.setjmp.  Defaults to false.
1643  bool UseUnderscoreSetJmp;
1644
1645  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1646  /// llvm.longjmp.  Defaults to false.
1647  bool UseUnderscoreLongJmp;
1648
1649  /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
1650  /// PointerTy is.
1651  MVT ShiftAmountTy;
1652
1653  /// BooleanContents - Information about the contents of the high-bits in
1654  /// boolean values held in a type wider than i1.  See getBooleanContents.
1655  BooleanContent BooleanContents;
1656
1657  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1658  /// total cycles or lowest register usage.
1659  Sched::Preference SchedPreferenceInfo;
1660
1661  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1662  unsigned JumpBufSize;
1663
1664  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1665  /// buffers
1666  unsigned JumpBufAlignment;
1667
1668  /// MinStackArgumentAlignment - The minimum alignment that any argument
1669  /// on the stack needs to have.
1670  ///
1671  unsigned MinStackArgumentAlignment;
1672
1673  /// PrefLoopAlignment - The perferred loop alignment.
1674  ///
1675  unsigned PrefLoopAlignment;
1676
1677  /// ShouldFoldAtomicFences - Whether fencing MEMBARRIER instructions should
1678  /// be folded into the enclosed atomic intrinsic instruction by the
1679  /// combiner.
1680  bool ShouldFoldAtomicFences;
1681
1682  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1683  /// specifies the register that llvm.savestack/llvm.restorestack should save
1684  /// and restore.
1685  unsigned StackPointerRegisterToSaveRestore;
1686
1687  /// ExceptionPointerRegister - If set to a physical register, this specifies
1688  /// the register that receives the exception address on entry to a landing
1689  /// pad.
1690  unsigned ExceptionPointerRegister;
1691
1692  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1693  /// the register that receives the exception typeid on entry to a landing
1694  /// pad.
1695  unsigned ExceptionSelectorRegister;
1696
1697  /// RegClassForVT - This indicates the default register class to use for
1698  /// each ValueType the target supports natively.
1699  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1700  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1701  EVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1702
1703  /// RepRegClassForVT - This indicates the "representative" register class to
1704  /// use for each ValueType the target supports natively. This information is
1705  /// used by the scheduler to track register pressure. By default, the
1706  /// representative register class is the largest legal super-reg register
1707  /// class of the register class of the specified type. e.g. On x86, i8, i16,
1708  /// and i32's representative class would be GR32.
1709  const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
1710
1711  /// RepRegClassCostForVT - This indicates the "cost" of the "representative"
1712  /// register class for each ValueType. The cost is used by the scheduler to
1713  /// approximate register pressure.
1714  uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
1715
1716  /// TransformToType - For any value types we are promoting or expanding, this
1717  /// contains the value type that we are changing to.  For Expanded types, this
1718  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1719  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1720  /// by the system, this holds the same type (e.g. i32 -> i32).
1721  EVT TransformToType[MVT::LAST_VALUETYPE];
1722
1723  /// OpActions - For each operation and each value type, keep a LegalizeAction
1724  /// that indicates how instruction selection should deal with the operation.
1725  /// Most operations are Legal (aka, supported natively by the target), but
1726  /// operations that are not should be described.  Note that operations on
1727  /// non-legal value types are not described here.
1728  uint8_t OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
1729
1730  /// LoadExtActions - For each load extension type and each value type,
1731  /// keep a LegalizeAction that indicates how instruction selection should deal
1732  /// with a load of a specific value type and extension type.
1733  uint8_t LoadExtActions[MVT::LAST_VALUETYPE][ISD::LAST_LOADEXT_TYPE];
1734
1735  /// TruncStoreActions - For each value type pair keep a LegalizeAction that
1736  /// indicates whether a truncating store of a specific value type and
1737  /// truncating type is legal.
1738  uint8_t TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
1739
1740  /// IndexedModeActions - For each indexed mode and each value type,
1741  /// keep a pair of LegalizeAction that indicates how instruction
1742  /// selection should deal with the load / store.  The first dimension is the
1743  /// value_type for the reference. The second dimension represents the various
1744  /// modes for load store.
1745  uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
1746
1747  /// CondCodeActions - For each condition code (ISD::CondCode) keep a
1748  /// LegalizeAction that indicates how instruction selection should
1749  /// deal with the condition code.
1750  uint64_t CondCodeActions[ISD::SETCC_INVALID];
1751
1752  ValueTypeActionImpl ValueTypeActions;
1753
1754  std::vector<std::pair<EVT, TargetRegisterClass*> > AvailableRegClasses;
1755
1756  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
1757  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
1758  /// which sets a bit in this array.
1759  unsigned char
1760  TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
1761
1762  /// PromoteToType - For operations that must be promoted to a specific type,
1763  /// this holds the destination type.  This map should be sparse, so don't hold
1764  /// it as an array.
1765  ///
1766  /// Targets add entries to this map with AddPromotedToType(..), clients access
1767  /// this with getTypeToPromoteTo(..).
1768  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
1769    PromoteToType;
1770
1771  /// LibcallRoutineNames - Stores the name each libcall.
1772  ///
1773  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1774
1775  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
1776  /// of each of the comparison libcall against zero.
1777  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1778
1779  /// LibcallCallingConvs - Stores the CallingConv that should be used for each
1780  /// libcall.
1781  CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
1782
1783protected:
1784  /// When lowering \@llvm.memset this field specifies the maximum number of
1785  /// store operations that may be substituted for the call to memset. Targets
1786  /// must set this value based on the cost threshold for that target. Targets
1787  /// should assume that the memset will be done using as many of the largest
1788  /// store operations first, followed by smaller ones, if necessary, per
1789  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1790  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1791  /// store.  This only applies to setting a constant array of a constant size.
1792  /// @brief Specify maximum number of store instructions per memset call.
1793  unsigned maxStoresPerMemset;
1794
1795  /// Maximum number of stores operations that may be substituted for the call
1796  /// to memset, used for functions with OptSize attribute.
1797  unsigned maxStoresPerMemsetOptSize;
1798
1799  /// When lowering \@llvm.memcpy this field specifies the maximum number of
1800  /// store operations that may be substituted for a call to memcpy. Targets
1801  /// must set this value based on the cost threshold for that target. Targets
1802  /// should assume that the memcpy will be done using as many of the largest
1803  /// store operations first, followed by smaller ones, if necessary, per
1804  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1805  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1806  /// and one 1-byte store. This only applies to copying a constant array of
1807  /// constant size.
1808  /// @brief Specify maximum bytes of store instructions per memcpy call.
1809  unsigned maxStoresPerMemcpy;
1810
1811  /// Maximum number of store operations that may be substituted for a call
1812  /// to memcpy, used for functions with OptSize attribute.
1813  unsigned maxStoresPerMemcpyOptSize;
1814
1815  /// When lowering \@llvm.memmove this field specifies the maximum number of
1816  /// store instructions that may be substituted for a call to memmove. Targets
1817  /// must set this value based on the cost threshold for that target. Targets
1818  /// should assume that the memmove will be done using as many of the largest
1819  /// store operations first, followed by smaller ones, if necessary, per
1820  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1821  /// with 8-bit alignment would result in nine 1-byte stores.  This only
1822  /// applies to copying a constant array of constant size.
1823  /// @brief Specify maximum bytes of store instructions per memmove call.
1824  unsigned maxStoresPerMemmove;
1825
1826  /// Maximum number of store instructions that may be substituted for a call
1827  /// to memmove, used for functions with OpSize attribute.
1828  unsigned maxStoresPerMemmoveOptSize;
1829
1830  /// This field specifies whether the target can benefit from code placement
1831  /// optimization.
1832  bool benefitFromCodePlacementOpt;
1833
1834private:
1835  /// isLegalRC - Return true if the value types that can be represented by the
1836  /// specified register class are all legal.
1837  bool isLegalRC(const TargetRegisterClass *RC) const;
1838
1839  /// hasLegalSuperRegRegClasses - Return true if the specified register class
1840  /// has one or more super-reg register classes that are legal.
1841  bool hasLegalSuperRegRegClasses(const TargetRegisterClass *RC) const;
1842};
1843
1844/// GetReturnInfo - Given an LLVM IR type and return type attributes,
1845/// compute the return value EVTs and flags, and optionally also
1846/// the offsets, if the return value is being lowered to memory.
1847void GetReturnInfo(const Type* ReturnType, Attributes attr,
1848                   SmallVectorImpl<ISD::OutputArg> &Outs,
1849                   const TargetLowering &TLI,
1850                   SmallVectorImpl<uint64_t> *Offsets = 0);
1851
1852} // end llvm namespace
1853
1854#endif
1855