TargetLowering.h revision 58f15c482a7129c78ca809792b46befa20ea337d
1c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuang//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
24afd3d042215afe68d00b9ab8c32f063a3a1c03fLiming Gao//
3c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuang//                     The LLVM Compiler Infrastructure
4a61331e8b78ba264f0ccd011b6dc5b9e809730a5Liming Gao//
540d841f6a8f84e75409178e19e69b95e01bada0flgao// This file is distributed under the University of Illinois Open Source
6c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuang// License. See LICENSE.TXT for details.
7c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuang//
8c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuang//===----------------------------------------------------------------------===//
9c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuang//
10c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuang// This file describes how to lower LLVM code to machine code.  This has two
11c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuang// main components:
12c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuang//
13c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuang//  1. Which ValueTypes are natively supported by the target.
14c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuang//  2. Which operations are supported for supported ValueTypes.
15c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuang//  3. Cost thresholds for alternative implementations of certain operations.
16c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuang//
17c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuang// In addition it has a few other components, like information about FP
18c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuang// immediates.
19c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuang//
20c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuang//===----------------------------------------------------------------------===//
21c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuang
22c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuang#ifndef LLVM_TARGET_TARGETLOWERING_H
23c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuang#define LLVM_TARGET_TARGETLOWERING_H
24c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuang
25c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuang#include "llvm/Constants.h"
26c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuang#include "llvm/InlineAsm.h"
27a61331e8b78ba264f0ccd011b6dc5b9e809730a5Liming Gao#include "llvm/CodeGen/SelectionDAGNodes.h"
28c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuang#include "llvm/CodeGen/RuntimeLibcalls.h"
29fa318476e442d7e77bf960af281a9bebe86ad59bLiming Gao#include "llvm/ADT/APFloat.h"
30c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuang#include "llvm/ADT/DenseMap.h"
31c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuang#include "llvm/ADT/SmallSet.h"
32c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuang#include "llvm/ADT/STLExtras.h"
33b36d134faf4305247830522b8e2bb255e98c5699lgao#include <map>
34b36d134faf4305247830522b8e2bb255e98c5699lgao#include <vector>
35b36d134faf4305247830522b8e2bb255e98c5699lgao
36b36d134faf4305247830522b8e2bb255e98c5699lgaonamespace llvm {
37b36d134faf4305247830522b8e2bb255e98c5699lgao  class AllocaInst;
38b36d134faf4305247830522b8e2bb255e98c5699lgao  class Function;
39b36d134faf4305247830522b8e2bb255e98c5699lgao  class FastISel;
40b36d134faf4305247830522b8e2bb255e98c5699lgao  class MachineBasicBlock;
41b36d134faf4305247830522b8e2bb255e98c5699lgao  class MachineFunction;
42b36d134faf4305247830522b8e2bb255e98c5699lgao  class MachineFrameInfo;
43b36d134faf4305247830522b8e2bb255e98c5699lgao  class MachineInstr;
44b36d134faf4305247830522b8e2bb255e98c5699lgao  class MachineModuleInfo;
45b36d134faf4305247830522b8e2bb255e98c5699lgao  class SDNode;
46b36d134faf4305247830522b8e2bb255e98c5699lgao  class SDValue;
47b36d134faf4305247830522b8e2bb255e98c5699lgao  class SelectionDAG;
48c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuang  class TargetData;
49c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuang  class TargetMachine;
50c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuang  class TargetRegisterClass;
51c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuang  class TargetSubtarget;
52c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuang  class Value;
53c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuang  class VectorType;
54c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuang
55c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuang//===----------------------------------------------------------------------===//
56e4ac870fe95adc7d178a79b73ad2792e0c8bfeb8Gao, Liming/// TargetLowering - This class defines information used to lower LLVM code to
57c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuang/// legal SelectionDAG operators that the target instruction selector can accept
58c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuang/// natively.
59e4ac870fe95adc7d178a79b73ad2792e0c8bfeb8Gao, Liming///
60c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuang/// This class also defines callbacks that targets must implement to lower
61c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuang/// target-specific constructs to SelectionDAG operators.
62fa318476e442d7e77bf960af281a9bebe86ad59bLiming Gao///
63c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuangclass TargetLowering {
64c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuangpublic:
65fa318476e442d7e77bf960af281a9bebe86ad59bLiming Gao  /// LegalizeAction - This enum indicates whether operations are valid for a
66c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuang  /// target, and if not, what action should be used to make them valid.
67c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuang  enum LegalizeAction {
68fa318476e442d7e77bf960af281a9bebe86ad59bLiming Gao    Legal,      // The target natively supports this operation.
69c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuang    Promote,    // This operation should be executed in a larger type.
70c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuang    Expand,     // Try to expand this to other ops, otherwise use a libcall.
71fa318476e442d7e77bf960af281a9bebe86ad59bLiming Gao    Custom      // Use the LowerOperation hook to implement custom lowering.
72c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuang  };
73c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuang
74c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuang  enum OutOfRangeShiftAmount {
75c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuang    Undefined,  // Oversized shift amounts are undefined (default).
76e4ac870fe95adc7d178a79b73ad2792e0c8bfeb8Gao, Liming    Mask,       // Shift amounts are auto masked (anded) to value size.
77e4ac870fe95adc7d178a79b73ad2792e0c8bfeb8Gao, Liming    Extend      // Oversized shift pulls in zeros or sign bits.
78c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuang  };
79c69f724df0f9e53b2c29f10e1eae3c784749e8daqhuang
80  enum SetCCResultValue {
81    UndefinedSetCCResult,          // SetCC returns a garbage/unknown extend.
82    ZeroOrOneSetCCResult,          // SetCC returns a zero extended result.
83    ZeroOrNegativeOneSetCCResult   // SetCC returns a sign extended result.
84  };
85
86  enum SchedPreference {
87    SchedulingForLatency,          // Scheduling for shortest total latency.
88    SchedulingForRegPressure       // Scheduling for lowest register pressure.
89  };
90
91  explicit TargetLowering(TargetMachine &TM);
92  virtual ~TargetLowering();
93
94  TargetMachine &getTargetMachine() const { return TM; }
95  const TargetData *getTargetData() const { return TD; }
96
97  bool isBigEndian() const { return !IsLittleEndian; }
98  bool isLittleEndian() const { return IsLittleEndian; }
99  MVT getPointerTy() const { return PointerTy; }
100  MVT getShiftAmountTy() const { return ShiftAmountTy; }
101  OutOfRangeShiftAmount getShiftAmountFlavor() const {return ShiftAmtHandling; }
102
103  /// usesGlobalOffsetTable - Return true if this target uses a GOT for PIC
104  /// codegen.
105  bool usesGlobalOffsetTable() const { return UsesGlobalOffsetTable; }
106
107  /// isSelectExpensive - Return true if the select operation is expensive for
108  /// this target.
109  bool isSelectExpensive() const { return SelectIsExpensive; }
110
111  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
112  /// a sequence of several shifts, adds, and multiplies for this target.
113  bool isIntDivCheap() const { return IntDivIsCheap; }
114
115  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
116  /// srl/add/sra.
117  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
118
119  /// getSetCCResultType - Return the ValueType of the result of setcc
120  /// operations.
121  virtual MVT getSetCCResultType(const SDValue &) const;
122
123  /// getSetCCResultContents - For targets without boolean registers, this flag
124  /// returns information about the contents of the high-bits in the setcc
125  /// result register.
126  SetCCResultValue getSetCCResultContents() const { return SetCCResultContents;}
127
128  /// getSchedulingPreference - Return target scheduling preference.
129  SchedPreference getSchedulingPreference() const {
130    return SchedPreferenceInfo;
131  }
132
133  /// getRegClassFor - Return the register class that should be used for the
134  /// specified value type.  This may only be called on legal types.
135  TargetRegisterClass *getRegClassFor(MVT VT) const {
136    assert((unsigned)VT.getSimpleVT() < array_lengthof(RegClassForVT));
137    TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT()];
138    assert(RC && "This value type is not natively supported!");
139    return RC;
140  }
141
142  /// isTypeLegal - Return true if the target has native support for the
143  /// specified value type.  This means that it has a register that directly
144  /// holds it without promotions or expansions.
145  bool isTypeLegal(MVT VT) const {
146    assert(!VT.isSimple() ||
147           (unsigned)VT.getSimpleVT() < array_lengthof(RegClassForVT));
148    return VT.isSimple() && RegClassForVT[VT.getSimpleVT()] != 0;
149  }
150
151  class ValueTypeActionImpl {
152    /// ValueTypeActions - This is a bitvector that contains two bits for each
153    /// value type, where the two bits correspond to the LegalizeAction enum.
154    /// This can be queried with "getTypeAction(VT)".
155    uint32_t ValueTypeActions[2];
156  public:
157    ValueTypeActionImpl() {
158      ValueTypeActions[0] = ValueTypeActions[1] = 0;
159    }
160    ValueTypeActionImpl(const ValueTypeActionImpl &RHS) {
161      ValueTypeActions[0] = RHS.ValueTypeActions[0];
162      ValueTypeActions[1] = RHS.ValueTypeActions[1];
163    }
164
165    LegalizeAction getTypeAction(MVT VT) const {
166      if (VT.isExtended()) {
167        if (VT.isVector()) return Expand;
168        if (VT.isInteger())
169          // First promote to a power-of-two size, then expand if necessary.
170          return VT == VT.getRoundIntegerType() ? Expand : Promote;
171        assert(0 && "Unsupported extended type!");
172        return Legal;
173      }
174      unsigned I = VT.getSimpleVT();
175      assert(I<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
176      return (LegalizeAction)((ValueTypeActions[I>>4] >> ((2*I) & 31)) & 3);
177    }
178    void setTypeAction(MVT VT, LegalizeAction Action) {
179      unsigned I = VT.getSimpleVT();
180      assert(I<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
181      ValueTypeActions[I>>4] |= Action << ((I*2) & 31);
182    }
183  };
184
185  const ValueTypeActionImpl &getValueTypeActions() const {
186    return ValueTypeActions;
187  }
188
189  /// getTypeAction - Return how we should legalize values of this type, either
190  /// it is already legal (return 'Legal') or we need to promote it to a larger
191  /// type (return 'Promote'), or we need to expand it into multiple registers
192  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
193  LegalizeAction getTypeAction(MVT VT) const {
194    return ValueTypeActions.getTypeAction(VT);
195  }
196
197  /// getTypeToTransformTo - For types supported by the target, this is an
198  /// identity function.  For types that must be promoted to larger types, this
199  /// returns the larger type to promote to.  For integer types that are larger
200  /// than the largest integer register, this contains one step in the expansion
201  /// to get to the smaller register. For illegal floating point types, this
202  /// returns the integer type to transform to.
203  MVT getTypeToTransformTo(MVT VT) const {
204    if (VT.isSimple()) {
205      assert((unsigned)VT.getSimpleVT() < array_lengthof(TransformToType));
206      MVT NVT = TransformToType[VT.getSimpleVT()];
207      assert(getTypeAction(NVT) != Promote &&
208             "Promote may not follow Expand or Promote");
209      return NVT;
210    }
211
212    if (VT.isVector())
213      return MVT::getVectorVT(VT.getVectorElementType(),
214                              VT.getVectorNumElements() / 2);
215    if (VT.isInteger()) {
216      MVT NVT = VT.getRoundIntegerType();
217      if (NVT == VT)
218        // Size is a power of two - expand to half the size.
219        return MVT::getIntegerVT(VT.getSizeInBits() / 2);
220      else
221        // Promote to a power of two size, avoiding multi-step promotion.
222        return getTypeAction(NVT) == Promote ? getTypeToTransformTo(NVT) : NVT;
223    }
224    assert(0 && "Unsupported extended type!");
225    return MVT(); // Not reached
226  }
227
228  /// getTypeToExpandTo - For types supported by the target, this is an
229  /// identity function.  For types that must be expanded (i.e. integer types
230  /// that are larger than the largest integer register or illegal floating
231  /// point types), this returns the largest legal type it will be expanded to.
232  MVT getTypeToExpandTo(MVT VT) const {
233    assert(!VT.isVector());
234    while (true) {
235      switch (getTypeAction(VT)) {
236      case Legal:
237        return VT;
238      case Expand:
239        VT = getTypeToTransformTo(VT);
240        break;
241      default:
242        assert(false && "Type is not legal nor is it to be expanded!");
243        return VT;
244      }
245    }
246    return VT;
247  }
248
249  /// getVectorTypeBreakdown - Vector types are broken down into some number of
250  /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
251  /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
252  /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
253  ///
254  /// This method returns the number of registers needed, and the VT for each
255  /// register.  It also returns the VT and quantity of the intermediate values
256  /// before they are promoted/expanded.
257  ///
258  unsigned getVectorTypeBreakdown(MVT VT,
259                                  MVT &IntermediateVT,
260                                  unsigned &NumIntermediates,
261                                  MVT &RegisterVT) const;
262
263  typedef std::vector<APFloat>::const_iterator legal_fpimm_iterator;
264  legal_fpimm_iterator legal_fpimm_begin() const {
265    return LegalFPImmediates.begin();
266  }
267  legal_fpimm_iterator legal_fpimm_end() const {
268    return LegalFPImmediates.end();
269  }
270
271  /// isShuffleMaskLegal - Targets can use this to indicate that they only
272  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
273  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
274  /// are assumed to be legal.
275  virtual bool isShuffleMaskLegal(SDValue Mask, MVT VT) const {
276    return true;
277  }
278
279  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
280  /// used by Targets can use this to indicate if there is a suitable
281  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
282  /// pool entry.
283  virtual bool isVectorClearMaskLegal(const std::vector<SDValue> &BVOps,
284                                      MVT EVT,
285                                      SelectionDAG &DAG) const {
286    return false;
287  }
288
289  /// getOperationAction - Return how this operation should be treated: either
290  /// it is legal, needs to be promoted to a larger size, needs to be
291  /// expanded to some other code sequence, or the target has a custom expander
292  /// for it.
293  LegalizeAction getOperationAction(unsigned Op, MVT VT) const {
294    if (VT.isExtended()) return Expand;
295    assert(Op < array_lengthof(OpActions) &&
296           (unsigned)VT.getSimpleVT() < sizeof(OpActions[0])*4 &&
297           "Table isn't big enough!");
298    return (LegalizeAction)((OpActions[Op] >> (2*VT.getSimpleVT())) & 3);
299  }
300
301  /// isOperationLegal - Return true if the specified operation is legal on this
302  /// target.
303  bool isOperationLegal(unsigned Op, MVT VT) const {
304    return (VT == MVT::Other || isTypeLegal(VT)) &&
305      (getOperationAction(Op, VT) == Legal ||
306       getOperationAction(Op, VT) == Custom);
307  }
308
309  /// getLoadExtAction - Return how this load with extension should be treated:
310  /// either it is legal, needs to be promoted to a larger size, needs to be
311  /// expanded to some other code sequence, or the target has a custom expander
312  /// for it.
313  LegalizeAction getLoadExtAction(unsigned LType, MVT VT) const {
314    assert(LType < array_lengthof(LoadExtActions) &&
315           (unsigned)VT.getSimpleVT() < sizeof(LoadExtActions[0])*4 &&
316           "Table isn't big enough!");
317    return (LegalizeAction)((LoadExtActions[LType] >> (2*VT.getSimpleVT())) & 3);
318  }
319
320  /// isLoadExtLegal - Return true if the specified load with extension is legal
321  /// on this target.
322  bool isLoadExtLegal(unsigned LType, MVT VT) const {
323    return VT.isSimple() &&
324      (getLoadExtAction(LType, VT) == Legal ||
325       getLoadExtAction(LType, VT) == Custom);
326  }
327
328  /// getTruncStoreAction - Return how this store with truncation should be
329  /// treated: either it is legal, needs to be promoted to a larger size, needs
330  /// to be expanded to some other code sequence, or the target has a custom
331  /// expander for it.
332  LegalizeAction getTruncStoreAction(MVT ValVT,
333                                     MVT MemVT) const {
334    assert((unsigned)ValVT.getSimpleVT() < array_lengthof(TruncStoreActions) &&
335           (unsigned)MemVT.getSimpleVT() < sizeof(TruncStoreActions[0])*4 &&
336           "Table isn't big enough!");
337    return (LegalizeAction)((TruncStoreActions[ValVT.getSimpleVT()] >>
338                             (2*MemVT.getSimpleVT())) & 3);
339  }
340
341  /// isTruncStoreLegal - Return true if the specified store with truncation is
342  /// legal on this target.
343  bool isTruncStoreLegal(MVT ValVT, MVT MemVT) const {
344    return isTypeLegal(ValVT) && MemVT.isSimple() &&
345      (getTruncStoreAction(ValVT, MemVT) == Legal ||
346       getTruncStoreAction(ValVT, MemVT) == Custom);
347  }
348
349  /// getIndexedLoadAction - Return how the indexed load should be treated:
350  /// either it is legal, needs to be promoted to a larger size, needs to be
351  /// expanded to some other code sequence, or the target has a custom expander
352  /// for it.
353  LegalizeAction
354  getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
355    assert(IdxMode < array_lengthof(IndexedModeActions[0]) &&
356           (unsigned)VT.getSimpleVT() < sizeof(IndexedModeActions[0][0])*4 &&
357           "Table isn't big enough!");
358    return (LegalizeAction)((IndexedModeActions[0][IdxMode] >>
359                             (2*VT.getSimpleVT())) & 3);
360  }
361
362  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
363  /// on this target.
364  bool isIndexedLoadLegal(unsigned IdxMode, MVT VT) const {
365    return VT.isSimple() &&
366      (getIndexedLoadAction(IdxMode, VT) == Legal ||
367       getIndexedLoadAction(IdxMode, VT) == Custom);
368  }
369
370  /// getIndexedStoreAction - Return how the indexed store should be treated:
371  /// either it is legal, needs to be promoted to a larger size, needs to be
372  /// expanded to some other code sequence, or the target has a custom expander
373  /// for it.
374  LegalizeAction
375  getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
376    assert(IdxMode < array_lengthof(IndexedModeActions[1]) &&
377           (unsigned)VT.getSimpleVT() < sizeof(IndexedModeActions[1][0])*4 &&
378           "Table isn't big enough!");
379    return (LegalizeAction)((IndexedModeActions[1][IdxMode] >>
380                             (2*VT.getSimpleVT())) & 3);
381  }
382
383  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
384  /// on this target.
385  bool isIndexedStoreLegal(unsigned IdxMode, MVT VT) const {
386    return VT.isSimple() &&
387      (getIndexedStoreAction(IdxMode, VT) == Legal ||
388       getIndexedStoreAction(IdxMode, VT) == Custom);
389  }
390
391  /// getConvertAction - Return how the conversion should be treated:
392  /// either it is legal, needs to be promoted to a larger size, needs to be
393  /// expanded to some other code sequence, or the target has a custom expander
394  /// for it.
395  LegalizeAction
396  getConvertAction(MVT FromVT, MVT ToVT) const {
397    assert((unsigned)FromVT.getSimpleVT() < array_lengthof(ConvertActions) &&
398           (unsigned)ToVT.getSimpleVT() < sizeof(ConvertActions[0])*4 &&
399           "Table isn't big enough!");
400    return (LegalizeAction)((ConvertActions[FromVT.getSimpleVT()] >>
401                             (2*ToVT.getSimpleVT())) & 3);
402  }
403
404  /// isConvertLegal - Return true if the specified conversion is legal
405  /// on this target.
406  bool isConvertLegal(MVT FromVT, MVT ToVT) const {
407    return isTypeLegal(FromVT) && isTypeLegal(ToVT) &&
408      (getConvertAction(FromVT, ToVT) == Legal ||
409       getConvertAction(FromVT, ToVT) == Custom);
410  }
411
412  /// getCondCodeAction - Return how the condition code should be treated:
413  /// either it is legal, needs to be expanded to some other code sequence,
414  /// or the target has a custom expander for it.
415  LegalizeAction
416  getCondCodeAction(ISD::CondCode CC, MVT VT) const {
417    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
418           (unsigned)VT.getSimpleVT() < sizeof(CondCodeActions[0])*4 &&
419           "Table isn't big enough!");
420    LegalizeAction Action = (LegalizeAction)
421      ((CondCodeActions[CC] >> (2*VT.getSimpleVT())) & 3);
422    assert(Action != Promote && "Can't promote condition code!");
423    return Action;
424  }
425
426  /// isCondCodeLegal - Return true if the specified condition code is legal
427  /// on this target.
428  bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const {
429    return getCondCodeAction(CC, VT) == Legal ||
430           getCondCodeAction(CC, VT) == Custom;
431  }
432
433
434  /// getTypeToPromoteTo - If the action for this operation is to promote, this
435  /// method returns the ValueType to promote to.
436  MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
437    assert(getOperationAction(Op, VT) == Promote &&
438           "This operation isn't promoted!");
439
440    // See if this has an explicit type specified.
441    std::map<std::pair<unsigned, MVT::SimpleValueType>,
442             MVT::SimpleValueType>::const_iterator PTTI =
443      PromoteToType.find(std::make_pair(Op, VT.getSimpleVT()));
444    if (PTTI != PromoteToType.end()) return PTTI->second;
445
446    assert((VT.isInteger() || VT.isFloatingPoint()) &&
447           "Cannot autopromote this type, add it with AddPromotedToType.");
448
449    MVT NVT = VT;
450    do {
451      NVT = (MVT::SimpleValueType)(NVT.getSimpleVT()+1);
452      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
453             "Didn't find type to promote to!");
454    } while (!isTypeLegal(NVT) ||
455              getOperationAction(Op, NVT) == Promote);
456    return NVT;
457  }
458
459  /// getValueType - Return the MVT corresponding to this LLVM type.
460  /// This is fixed by the LLVM operations except for the pointer size.  If
461  /// AllowUnknown is true, this will return MVT::Other for types with no MVT
462  /// counterpart (e.g. structs), otherwise it will assert.
463  MVT getValueType(const Type *Ty, bool AllowUnknown = false) const {
464    MVT VT = MVT::getMVT(Ty, AllowUnknown);
465    return VT == MVT::iPTR ? PointerTy : VT;
466  }
467
468  /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
469  /// function arguments in the caller parameter area.  This is the actual
470  /// alignment, not its logarithm.
471  virtual unsigned getByValTypeAlignment(const Type *Ty) const;
472
473  /// getRegisterType - Return the type of registers that this ValueType will
474  /// eventually require.
475  MVT getRegisterType(MVT VT) const {
476    if (VT.isSimple()) {
477      assert((unsigned)VT.getSimpleVT() < array_lengthof(RegisterTypeForVT));
478      return RegisterTypeForVT[VT.getSimpleVT()];
479    }
480    if (VT.isVector()) {
481      MVT VT1, RegisterVT;
482      unsigned NumIntermediates;
483      (void)getVectorTypeBreakdown(VT, VT1, NumIntermediates, RegisterVT);
484      return RegisterVT;
485    }
486    if (VT.isInteger()) {
487      return getRegisterType(getTypeToTransformTo(VT));
488    }
489    assert(0 && "Unsupported extended type!");
490    return MVT(); // Not reached
491  }
492
493  /// getNumRegisters - Return the number of registers that this ValueType will
494  /// eventually require.  This is one for any types promoted to live in larger
495  /// registers, but may be more than one for types (like i64) that are split
496  /// into pieces.  For types like i140, which are first promoted then expanded,
497  /// it is the number of registers needed to hold all the bits of the original
498  /// type.  For an i140 on a 32 bit machine this means 5 registers.
499  unsigned getNumRegisters(MVT VT) const {
500    if (VT.isSimple()) {
501      assert((unsigned)VT.getSimpleVT() < array_lengthof(NumRegistersForVT));
502      return NumRegistersForVT[VT.getSimpleVT()];
503    }
504    if (VT.isVector()) {
505      MVT VT1, VT2;
506      unsigned NumIntermediates;
507      return getVectorTypeBreakdown(VT, VT1, NumIntermediates, VT2);
508    }
509    if (VT.isInteger()) {
510      unsigned BitWidth = VT.getSizeInBits();
511      unsigned RegWidth = getRegisterType(VT).getSizeInBits();
512      return (BitWidth + RegWidth - 1) / RegWidth;
513    }
514    assert(0 && "Unsupported extended type!");
515    return 0; // Not reached
516  }
517
518  /// ShouldShrinkFPConstant - If true, then instruction selection should
519  /// seek to shrink the FP constant of the specified type to a smaller type
520  /// in order to save space and / or reduce runtime.
521  virtual bool ShouldShrinkFPConstant(MVT VT) const { return true; }
522
523  /// hasTargetDAGCombine - If true, the target has custom DAG combine
524  /// transformations that it can perform for the specified node.
525  bool hasTargetDAGCombine(ISD::NodeType NT) const {
526    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
527    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
528  }
529
530  /// This function returns the maximum number of store operations permitted
531  /// to replace a call to llvm.memset. The value is set by the target at the
532  /// performance threshold for such a replacement.
533  /// @brief Get maximum # of store operations permitted for llvm.memset
534  unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; }
535
536  /// This function returns the maximum number of store operations permitted
537  /// to replace a call to llvm.memcpy. The value is set by the target at the
538  /// performance threshold for such a replacement.
539  /// @brief Get maximum # of store operations permitted for llvm.memcpy
540  unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; }
541
542  /// This function returns the maximum number of store operations permitted
543  /// to replace a call to llvm.memmove. The value is set by the target at the
544  /// performance threshold for such a replacement.
545  /// @brief Get maximum # of store operations permitted for llvm.memmove
546  unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; }
547
548  /// This function returns true if the target allows unaligned memory accesses.
549  /// This is used, for example, in situations where an array copy/move/set is
550  /// converted to a sequence of store operations. It's use helps to ensure that
551  /// such replacements don't generate code that causes an alignment error
552  /// (trap) on the target machine.
553  /// @brief Determine if the target supports unaligned memory accesses.
554  bool allowsUnalignedMemoryAccesses() const {
555    return allowUnalignedMemoryAccesses;
556  }
557
558  /// getOptimalMemOpType - Returns the target specific optimal type for load
559  /// and store operations as a result of memset, memcpy, and memmove lowering.
560  /// It returns MVT::iAny if SelectionDAG should be responsible for
561  /// determining it.
562  virtual MVT getOptimalMemOpType(uint64_t Size, unsigned Align,
563                                  bool isSrcConst, bool isSrcStr) const {
564    return MVT::iAny;
565  }
566
567  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
568  /// to implement llvm.setjmp.
569  bool usesUnderscoreSetJmp() const {
570    return UseUnderscoreSetJmp;
571  }
572
573  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
574  /// to implement llvm.longjmp.
575  bool usesUnderscoreLongJmp() const {
576    return UseUnderscoreLongJmp;
577  }
578
579  /// getStackPointerRegisterToSaveRestore - If a physical register, this
580  /// specifies the register that llvm.savestack/llvm.restorestack should save
581  /// and restore.
582  unsigned getStackPointerRegisterToSaveRestore() const {
583    return StackPointerRegisterToSaveRestore;
584  }
585
586  /// getExceptionAddressRegister - If a physical register, this returns
587  /// the register that receives the exception address on entry to a landing
588  /// pad.
589  unsigned getExceptionAddressRegister() const {
590    return ExceptionPointerRegister;
591  }
592
593  /// getExceptionSelectorRegister - If a physical register, this returns
594  /// the register that receives the exception typeid on entry to a landing
595  /// pad.
596  unsigned getExceptionSelectorRegister() const {
597    return ExceptionSelectorRegister;
598  }
599
600  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
601  /// set, the default is 200)
602  unsigned getJumpBufSize() const {
603    return JumpBufSize;
604  }
605
606  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
607  /// (if never set, the default is 0)
608  unsigned getJumpBufAlignment() const {
609    return JumpBufAlignment;
610  }
611
612  /// getIfCvtBlockLimit - returns the target specific if-conversion block size
613  /// limit. Any block whose size is greater should not be predicated.
614  unsigned getIfCvtBlockSizeLimit() const {
615    return IfCvtBlockSizeLimit;
616  }
617
618  /// getIfCvtDupBlockLimit - returns the target specific size limit for a
619  /// block to be considered for duplication. Any block whose size is greater
620  /// should not be duplicated to facilitate its predication.
621  unsigned getIfCvtDupBlockSizeLimit() const {
622    return IfCvtDupBlockSizeLimit;
623  }
624
625  /// getPrefLoopAlignment - return the preferred loop alignment.
626  ///
627  unsigned getPrefLoopAlignment() const {
628    return PrefLoopAlignment;
629  }
630
631  /// getPreIndexedAddressParts - returns true by value, base pointer and
632  /// offset pointer and addressing mode by reference if the node's address
633  /// can be legally represented as pre-indexed load / store address.
634  virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
635                                         SDValue &Offset,
636                                         ISD::MemIndexedMode &AM,
637                                         SelectionDAG &DAG) {
638    return false;
639  }
640
641  /// getPostIndexedAddressParts - returns true by value, base pointer and
642  /// offset pointer and addressing mode by reference if this node can be
643  /// combined with a load / store to form a post-indexed load / store.
644  virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
645                                          SDValue &Base, SDValue &Offset,
646                                          ISD::MemIndexedMode &AM,
647                                          SelectionDAG &DAG) {
648    return false;
649  }
650
651  /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
652  /// jumptable.
653  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
654                                             SelectionDAG &DAG) const;
655
656  //===--------------------------------------------------------------------===//
657  // TargetLowering Optimization Methods
658  //
659
660  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
661  /// SDValues for returning information from TargetLowering to its clients
662  /// that want to combine
663  struct TargetLoweringOpt {
664    SelectionDAG &DAG;
665    bool AfterLegalize;
666    SDValue Old;
667    SDValue New;
668
669    explicit TargetLoweringOpt(SelectionDAG &InDAG, bool afterLegalize)
670      : DAG(InDAG), AfterLegalize(afterLegalize) {}
671
672    bool CombineTo(SDValue O, SDValue N) {
673      Old = O;
674      New = N;
675      return true;
676    }
677
678    /// ShrinkDemandedConstant - Check to see if the specified operand of the
679    /// specified instruction is a constant integer.  If so, check to see if
680    /// there are any bits set in the constant that are not demanded.  If so,
681    /// shrink the constant and return true.
682    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
683  };
684
685  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
686  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
687  /// use this information to simplify Op, create a new simplified DAG node and
688  /// return true, returning the original and new nodes in Old and New.
689  /// Otherwise, analyze the expression and return a mask of KnownOne and
690  /// KnownZero bits for the expression (used to simplify the caller).
691  /// The KnownZero/One bits may only be accurate for those bits in the
692  /// DemandedMask.
693  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
694                            APInt &KnownZero, APInt &KnownOne,
695                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
696
697  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
698  /// Mask are known to be either zero or one and return them in the
699  /// KnownZero/KnownOne bitsets.
700  virtual void computeMaskedBitsForTargetNode(const SDValue Op,
701                                              const APInt &Mask,
702                                              APInt &KnownZero,
703                                              APInt &KnownOne,
704                                              const SelectionDAG &DAG,
705                                              unsigned Depth = 0) const;
706
707  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
708  /// targets that want to expose additional information about sign bits to the
709  /// DAG Combiner.
710  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
711                                                   unsigned Depth = 0) const;
712
713  struct DAGCombinerInfo {
714    void *DC;  // The DAG Combiner object.
715    bool BeforeLegalize;
716    bool CalledByLegalizer;
717  public:
718    SelectionDAG &DAG;
719
720    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool cl, void *dc)
721      : DC(dc), BeforeLegalize(bl), CalledByLegalizer(cl), DAG(dag) {}
722
723    bool isBeforeLegalize() const { return BeforeLegalize; }
724    bool isCalledByLegalizer() const { return CalledByLegalizer; }
725
726    void AddToWorklist(SDNode *N);
727    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To);
728    SDValue CombineTo(SDNode *N, SDValue Res);
729    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1);
730  };
731
732  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
733  /// and cc. If it is unable to simplify it, return a null SDValue.
734  SDValue SimplifySetCC(MVT VT, SDValue N0, SDValue N1,
735                          ISD::CondCode Cond, bool foldBooleans,
736                          DAGCombinerInfo &DCI) const;
737
738  /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
739  /// node is a GlobalAddress + offset.
740  virtual bool
741  isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) const;
742
743  /// isConsecutiveLoad - Return true if LD (which must be a LoadSDNode) is
744  /// loading 'Bytes' bytes from a location that is 'Dist' units away from the
745  /// location that the 'Base' load is loading from.
746  bool isConsecutiveLoad(SDNode *LD, SDNode *Base, unsigned Bytes, int Dist,
747                         const MachineFrameInfo *MFI) const;
748
749  /// PerformDAGCombine - This method will be invoked for all target nodes and
750  /// for any target-independent nodes that the target has registered with
751  /// invoke it for.
752  ///
753  /// The semantics are as follows:
754  /// Return Value:
755  ///   SDValue.Val == 0   - No change was made
756  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
757  ///   otherwise            - N should be replaced by the returned Operand.
758  ///
759  /// In addition, methods provided by DAGCombinerInfo may be used to perform
760  /// more complex transformations.
761  ///
762  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
763
764  //===--------------------------------------------------------------------===//
765  // TargetLowering Configuration Methods - These methods should be invoked by
766  // the derived class constructor to configure this object for the target.
767  //
768
769protected:
770  /// setUsesGlobalOffsetTable - Specify that this target does or doesn't use a
771  /// GOT for PC-relative code.
772  void setUsesGlobalOffsetTable(bool V) { UsesGlobalOffsetTable = V; }
773
774  /// setShiftAmountType - Describe the type that should be used for shift
775  /// amounts.  This type defaults to the pointer type.
776  void setShiftAmountType(MVT VT) { ShiftAmountTy = VT; }
777
778  /// setSetCCResultContents - Specify how the target extends the result of a
779  /// setcc operation in a register.
780  void setSetCCResultContents(SetCCResultValue Ty) { SetCCResultContents = Ty; }
781
782  /// setSchedulingPreference - Specify the target scheduling preference.
783  void setSchedulingPreference(SchedPreference Pref) {
784    SchedPreferenceInfo = Pref;
785  }
786
787  /// setShiftAmountFlavor - Describe how the target handles out of range shift
788  /// amounts.
789  void setShiftAmountFlavor(OutOfRangeShiftAmount OORSA) {
790    ShiftAmtHandling = OORSA;
791  }
792
793  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
794  /// use _setjmp to implement llvm.setjmp or the non _ version.
795  /// Defaults to false.
796  void setUseUnderscoreSetJmp(bool Val) {
797    UseUnderscoreSetJmp = Val;
798  }
799
800  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
801  /// use _longjmp to implement llvm.longjmp or the non _ version.
802  /// Defaults to false.
803  void setUseUnderscoreLongJmp(bool Val) {
804    UseUnderscoreLongJmp = Val;
805  }
806
807  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
808  /// specifies the register that llvm.savestack/llvm.restorestack should save
809  /// and restore.
810  void setStackPointerRegisterToSaveRestore(unsigned R) {
811    StackPointerRegisterToSaveRestore = R;
812  }
813
814  /// setExceptionPointerRegister - If set to a physical register, this sets
815  /// the register that receives the exception address on entry to a landing
816  /// pad.
817  void setExceptionPointerRegister(unsigned R) {
818    ExceptionPointerRegister = R;
819  }
820
821  /// setExceptionSelectorRegister - If set to a physical register, this sets
822  /// the register that receives the exception typeid on entry to a landing
823  /// pad.
824  void setExceptionSelectorRegister(unsigned R) {
825    ExceptionSelectorRegister = R;
826  }
827
828  /// SelectIsExpensive - Tells the code generator not to expand operations
829  /// into sequences that use the select operations if possible.
830  void setSelectIsExpensive() { SelectIsExpensive = true; }
831
832  /// setIntDivIsCheap - Tells the code generator that integer divide is
833  /// expensive, and if possible, should be replaced by an alternate sequence
834  /// of instructions not containing an integer divide.
835  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
836
837  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
838  /// srl/add/sra for a signed divide by power of two, and let the target handle
839  /// it.
840  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
841
842  /// addRegisterClass - Add the specified register class as an available
843  /// regclass for the specified value type.  This indicates the selector can
844  /// handle values of that class natively.
845  void addRegisterClass(MVT VT, TargetRegisterClass *RC) {
846    assert((unsigned)VT.getSimpleVT() < array_lengthof(RegClassForVT));
847    AvailableRegClasses.push_back(std::make_pair(VT, RC));
848    RegClassForVT[VT.getSimpleVT()] = RC;
849  }
850
851  /// computeRegisterProperties - Once all of the register classes are added,
852  /// this allows us to compute derived properties we expose.
853  void computeRegisterProperties();
854
855  /// setOperationAction - Indicate that the specified operation does not work
856  /// with the specified type and indicate what to do about it.
857  void setOperationAction(unsigned Op, MVT VT,
858                          LegalizeAction Action) {
859    assert((unsigned)VT.getSimpleVT() < sizeof(OpActions[0])*4 &&
860           Op < array_lengthof(OpActions) && "Table isn't big enough!");
861    OpActions[Op] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2);
862    OpActions[Op] |= (uint64_t)Action << VT.getSimpleVT()*2;
863  }
864
865  /// setLoadExtAction - Indicate that the specified load with extension does
866  /// not work with the with specified type and indicate what to do about it.
867  void setLoadExtAction(unsigned ExtType, MVT VT,
868                      LegalizeAction Action) {
869    assert((unsigned)VT.getSimpleVT() < sizeof(LoadExtActions[0])*4 &&
870           ExtType < array_lengthof(LoadExtActions) &&
871           "Table isn't big enough!");
872    LoadExtActions[ExtType] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2);
873    LoadExtActions[ExtType] |= (uint64_t)Action << VT.getSimpleVT()*2;
874  }
875
876  /// setTruncStoreAction - Indicate that the specified truncating store does
877  /// not work with the with specified type and indicate what to do about it.
878  void setTruncStoreAction(MVT ValVT, MVT MemVT,
879                           LegalizeAction Action) {
880    assert((unsigned)ValVT.getSimpleVT() < array_lengthof(TruncStoreActions) &&
881           (unsigned)MemVT.getSimpleVT() < sizeof(TruncStoreActions[0])*4 &&
882           "Table isn't big enough!");
883    TruncStoreActions[ValVT.getSimpleVT()] &= ~(uint64_t(3UL) <<
884                                                MemVT.getSimpleVT()*2);
885    TruncStoreActions[ValVT.getSimpleVT()] |= (uint64_t)Action <<
886      MemVT.getSimpleVT()*2;
887  }
888
889  /// setIndexedLoadAction - Indicate that the specified indexed load does or
890  /// does not work with the with specified type and indicate what to do abort
891  /// it. NOTE: All indexed mode loads are initialized to Expand in
892  /// TargetLowering.cpp
893  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
894                            LegalizeAction Action) {
895    assert((unsigned)VT.getSimpleVT() < sizeof(IndexedModeActions[0])*4 &&
896           IdxMode < array_lengthof(IndexedModeActions[0]) &&
897           "Table isn't big enough!");
898    IndexedModeActions[0][IdxMode] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2);
899    IndexedModeActions[0][IdxMode] |= (uint64_t)Action << VT.getSimpleVT()*2;
900  }
901
902  /// setIndexedStoreAction - Indicate that the specified indexed store does or
903  /// does not work with the with specified type and indicate what to do about
904  /// it. NOTE: All indexed mode stores are initialized to Expand in
905  /// TargetLowering.cpp
906  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
907                             LegalizeAction Action) {
908    assert((unsigned)VT.getSimpleVT() < sizeof(IndexedModeActions[1][0])*4 &&
909           IdxMode < array_lengthof(IndexedModeActions[1]) &&
910           "Table isn't big enough!");
911    IndexedModeActions[1][IdxMode] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2);
912    IndexedModeActions[1][IdxMode] |= (uint64_t)Action << VT.getSimpleVT()*2;
913  }
914
915  /// setConvertAction - Indicate that the specified conversion does or does
916  /// not work with the with specified type and indicate what to do about it.
917  void setConvertAction(MVT FromVT, MVT ToVT,
918                        LegalizeAction Action) {
919    assert((unsigned)FromVT.getSimpleVT() < array_lengthof(ConvertActions) &&
920           (unsigned)ToVT.getSimpleVT() < sizeof(ConvertActions[0])*4 &&
921           "Table isn't big enough!");
922    ConvertActions[FromVT.getSimpleVT()] &= ~(uint64_t(3UL) <<
923                                              ToVT.getSimpleVT()*2);
924    ConvertActions[FromVT.getSimpleVT()] |= (uint64_t)Action <<
925      ToVT.getSimpleVT()*2;
926  }
927
928  /// setCondCodeAction - Indicate that the specified condition code is or isn't
929  /// supported on the target and indicate what to do about it.
930  void setCondCodeAction(ISD::CondCode CC, MVT VT, LegalizeAction Action) {
931    assert((unsigned)VT.getSimpleVT() < sizeof(CondCodeActions[0])*4 &&
932           (unsigned)CC < array_lengthof(CondCodeActions) &&
933           "Table isn't big enough!");
934    CondCodeActions[(unsigned)CC] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2);
935    CondCodeActions[(unsigned)CC] |= (uint64_t)Action << VT.getSimpleVT()*2;
936  }
937
938  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
939  /// promotion code defaults to trying a larger integer/fp until it can find
940  /// one that works.  If that default is insufficient, this method can be used
941  /// by the target to override the default.
942  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
943    PromoteToType[std::make_pair(Opc, OrigVT.getSimpleVT())] =
944      DestVT.getSimpleVT();
945  }
946
947  /// addLegalFPImmediate - Indicate that this target can instruction select
948  /// the specified FP immediate natively.
949  void addLegalFPImmediate(const APFloat& Imm) {
950    LegalFPImmediates.push_back(Imm);
951  }
952
953  /// setTargetDAGCombine - Targets should invoke this method for each target
954  /// independent node that they want to provide a custom DAG combiner for by
955  /// implementing the PerformDAGCombine virtual method.
956  void setTargetDAGCombine(ISD::NodeType NT) {
957    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
958    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
959  }
960
961  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
962  /// bytes); default is 200
963  void setJumpBufSize(unsigned Size) {
964    JumpBufSize = Size;
965  }
966
967  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
968  /// alignment (in bytes); default is 0
969  void setJumpBufAlignment(unsigned Align) {
970    JumpBufAlignment = Align;
971  }
972
973  /// setIfCvtBlockSizeLimit - Set the target's if-conversion block size
974  /// limit (in number of instructions); default is 2.
975  void setIfCvtBlockSizeLimit(unsigned Limit) {
976    IfCvtBlockSizeLimit = Limit;
977  }
978
979  /// setIfCvtDupBlockSizeLimit - Set the target's block size limit (in number
980  /// of instructions) to be considered for code duplication during
981  /// if-conversion; default is 2.
982  void setIfCvtDupBlockSizeLimit(unsigned Limit) {
983    IfCvtDupBlockSizeLimit = Limit;
984  }
985
986  /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
987  /// alignment is zero, it means the target does not care about loop alignment.
988  void setPrefLoopAlignment(unsigned Align) {
989    PrefLoopAlignment = Align;
990  }
991
992public:
993
994  virtual const TargetSubtarget *getSubtarget() {
995    assert(0 && "Not Implemented");
996    return NULL;    // this is here to silence compiler errors
997  }
998  //===--------------------------------------------------------------------===//
999  // Lowering methods - These methods must be implemented by targets so that
1000  // the SelectionDAGLowering code knows how to lower these.
1001  //
1002
1003  /// LowerArguments - This hook must be implemented to indicate how we should
1004  /// lower the arguments for the specified function, into the specified DAG.
1005  virtual void
1006  LowerArguments(Function &F, SelectionDAG &DAG,
1007                 SmallVectorImpl<SDValue>& ArgValues);
1008
1009  /// LowerCallTo - This hook lowers an abstract call to a function into an
1010  /// actual call.  This returns a pair of operands.  The first element is the
1011  /// return value for the function (if RetTy is not VoidTy).  The second
1012  /// element is the outgoing token chain.
1013  struct ArgListEntry {
1014    SDValue Node;
1015    const Type* Ty;
1016    bool isSExt  : 1;
1017    bool isZExt  : 1;
1018    bool isInReg : 1;
1019    bool isSRet  : 1;
1020    bool isNest  : 1;
1021    bool isByVal : 1;
1022    uint16_t Alignment;
1023
1024    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
1025      isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
1026  };
1027  typedef std::vector<ArgListEntry> ArgListTy;
1028  virtual std::pair<SDValue, SDValue>
1029  LowerCallTo(SDValue Chain, const Type *RetTy, bool RetSExt, bool RetZExt,
1030              bool isVarArg, bool isInreg, unsigned CallingConv,
1031              bool isTailCall, SDValue Callee, ArgListTy &Args,
1032              SelectionDAG &DAG);
1033
1034  /// EmitTargetCodeForMemcpy - Emit target-specific code that performs a
1035  /// memcpy. This can be used by targets to provide code sequences for cases
1036  /// that don't fit the target's parameters for simple loads/stores and can be
1037  /// more efficient than using a library call. This function can return a null
1038  /// SDValue if the target declines to use custom code and a different
1039  /// lowering strategy should be used.
1040  ///
1041  /// If AlwaysInline is true, the size is constant and the target should not
1042  /// emit any calls and is strongly encouraged to attempt to emit inline code
1043  /// even if it is beyond the usual threshold because this intrinsic is being
1044  /// expanded in a place where calls are not feasible (e.g. within the prologue
1045  /// for another call). If the target chooses to decline an AlwaysInline
1046  /// request here, legalize will resort to using simple loads and stores.
1047  virtual SDValue
1048  EmitTargetCodeForMemcpy(SelectionDAG &DAG,
1049                          SDValue Chain,
1050                          SDValue Op1, SDValue Op2,
1051                          SDValue Op3, unsigned Align,
1052                          bool AlwaysInline,
1053                          const Value *DstSV, uint64_t DstOff,
1054                          const Value *SrcSV, uint64_t SrcOff) {
1055    return SDValue();
1056  }
1057
1058  /// EmitTargetCodeForMemmove - Emit target-specific code that performs a
1059  /// memmove. This can be used by targets to provide code sequences for cases
1060  /// that don't fit the target's parameters for simple loads/stores and can be
1061  /// more efficient than using a library call. This function can return a null
1062  /// SDValue if the target declines to use custom code and a different
1063  /// lowering strategy should be used.
1064  virtual SDValue
1065  EmitTargetCodeForMemmove(SelectionDAG &DAG,
1066                           SDValue Chain,
1067                           SDValue Op1, SDValue Op2,
1068                           SDValue Op3, unsigned Align,
1069                           const Value *DstSV, uint64_t DstOff,
1070                           const Value *SrcSV, uint64_t SrcOff) {
1071    return SDValue();
1072  }
1073
1074  /// EmitTargetCodeForMemset - Emit target-specific code that performs a
1075  /// memset. This can be used by targets to provide code sequences for cases
1076  /// that don't fit the target's parameters for simple stores and can be more
1077  /// efficient than using a library call. This function can return a null
1078  /// SDValue if the target declines to use custom code and a different
1079  /// lowering strategy should be used.
1080  virtual SDValue
1081  EmitTargetCodeForMemset(SelectionDAG &DAG,
1082                          SDValue Chain,
1083                          SDValue Op1, SDValue Op2,
1084                          SDValue Op3, unsigned Align,
1085                          const Value *DstSV, uint64_t DstOff) {
1086    return SDValue();
1087  }
1088
1089  /// LowerOperation - This callback is invoked for operations that are
1090  /// unsupported by the target, which are registered to use 'custom' lowering,
1091  /// and whose defined values are all legal.
1092  /// If the target has no operations that require custom lowering, it need not
1093  /// implement this.  The default implementation of this aborts.
1094  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG);
1095
1096  /// ReplaceNodeResults - This callback is invoked for operations that are
1097  /// unsupported by the target, which are registered to use 'custom' lowering,
1098  /// and whose result type is illegal.  This must return a node whose results
1099  /// precisely match the results of the input node.  This typically involves a
1100  /// MERGE_VALUES node and/or BUILD_PAIR.
1101  ///
1102  /// If the target has no operations that require custom lowering, it need not
1103  /// implement this.  The default implementation aborts.
1104  virtual SDNode *ReplaceNodeResults(SDNode *N, SelectionDAG &DAG) {
1105    assert(0 && "ReplaceNodeResults not implemented for this target!");
1106    return 0;
1107  }
1108
1109  /// IsEligibleForTailCallOptimization - Check whether the call is eligible for
1110  /// tail call optimization. Targets which want to do tail call optimization
1111  /// should override this function.
1112  virtual bool IsEligibleForTailCallOptimization(CallSDNode *Call,
1113                                                 SDValue Ret,
1114                                                 SelectionDAG &DAG) const {
1115    return false;
1116  }
1117
1118  /// CheckTailCallReturnConstraints - Check whether CALL node immediatly
1119  /// preceeds the RET node and whether the return uses the result of the node
1120  /// or is a void return. This function can be used by the target to determine
1121  /// eligiblity of tail call optimization.
1122  static bool CheckTailCallReturnConstraints(CallSDNode *TheCall, SDValue Ret) {
1123    unsigned NumOps = Ret.getNumOperands();
1124    if ((NumOps == 1 &&
1125       (Ret.getOperand(0) == SDValue(TheCall,1) ||
1126        Ret.getOperand(0) == SDValue(TheCall,0))) ||
1127      (NumOps > 1 &&
1128       Ret.getOperand(0) == SDValue(TheCall,
1129                                    TheCall->getNumValues()-1) &&
1130       Ret.getOperand(1) == SDValue(TheCall,0)))
1131      return true;
1132    return false;
1133  }
1134
1135  /// GetPossiblePreceedingTailCall - Get preceeding TailCallNodeOpCode node if
1136  /// it exists skip possible ISD:TokenFactor.
1137  static SDValue GetPossiblePreceedingTailCall(SDValue Chain,
1138                                                 unsigned TailCallNodeOpCode) {
1139    if (Chain.getOpcode() == TailCallNodeOpCode) {
1140      return Chain;
1141    } else if (Chain.getOpcode() == ISD::TokenFactor) {
1142      if (Chain.getNumOperands() &&
1143          Chain.getOperand(0).getOpcode() == TailCallNodeOpCode)
1144        return Chain.getOperand(0);
1145    }
1146    return Chain;
1147  }
1148
1149  /// getTargetNodeName() - This method returns the name of a target specific
1150  /// DAG node.
1151  virtual const char *getTargetNodeName(unsigned Opcode) const;
1152
1153  /// createFastISel - This method returns a target specific FastISel object,
1154  /// or null if the target does not support "fast" ISel.
1155  virtual FastISel *
1156  createFastISel(MachineFunction &,
1157                 MachineModuleInfo *,
1158                 DenseMap<const Value *, unsigned> &,
1159                 DenseMap<const BasicBlock *, MachineBasicBlock *> &,
1160                 DenseMap<const AllocaInst *, int> &
1161#ifndef NDEBUG
1162                 , SmallSet<Instruction*, 8> &CatchInfoLost
1163#endif
1164                 ) {
1165    return 0;
1166  }
1167
1168  //===--------------------------------------------------------------------===//
1169  // Inline Asm Support hooks
1170  //
1171
1172  enum ConstraintType {
1173    C_Register,            // Constraint represents a single register.
1174    C_RegisterClass,       // Constraint represents one or more registers.
1175    C_Memory,              // Memory constraint.
1176    C_Other,               // Something else.
1177    C_Unknown              // Unsupported constraint.
1178  };
1179
1180  /// AsmOperandInfo - This contains information for each constraint that we are
1181  /// lowering.
1182  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
1183    /// ConstraintCode - This contains the actual string for the code, like "m".
1184    /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
1185    /// most closely matches the operand.
1186    std::string ConstraintCode;
1187
1188    /// ConstraintType - Information about the constraint code, e.g. Register,
1189    /// RegisterClass, Memory, Other, Unknown.
1190    TargetLowering::ConstraintType ConstraintType;
1191
1192    /// CallOperandval - If this is the result output operand or a
1193    /// clobber, this is null, otherwise it is the incoming operand to the
1194    /// CallInst.  This gets modified as the asm is processed.
1195    Value *CallOperandVal;
1196
1197    /// ConstraintVT - The ValueType for the operand value.
1198    MVT ConstraintVT;
1199
1200    /// isMatchingConstraint - Return true of this is an input operand that is a
1201    /// matching constraint like "4".
1202    bool isMatchingConstraint() const;
1203
1204    /// getMatchedOperand - If this is an input matching constraint, this method
1205    /// returns the output operand it matches.
1206    unsigned getMatchedOperand() const;
1207
1208    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
1209      : InlineAsm::ConstraintInfo(info),
1210        ConstraintType(TargetLowering::C_Unknown),
1211        CallOperandVal(0), ConstraintVT(MVT::Other) {
1212    }
1213  };
1214
1215  /// ComputeConstraintToUse - Determines the constraint code and constraint
1216  /// type to use for the specific AsmOperandInfo, setting
1217  /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
1218  /// being passed in is available, it can be passed in as Op, otherwise an
1219  /// empty SDValue can be passed. If hasMemory is true it means one of the asm
1220  /// constraint of the inline asm instruction being processed is 'm'.
1221  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1222                                      SDValue Op,
1223                                      bool hasMemory,
1224                                      SelectionDAG *DAG = 0) const;
1225
1226  /// getConstraintType - Given a constraint, return the type of constraint it
1227  /// is for this target.
1228  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
1229
1230  /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
1231  /// return a list of registers that can be used to satisfy the constraint.
1232  /// This should only be used for C_RegisterClass constraints.
1233  virtual std::vector<unsigned>
1234  getRegClassForInlineAsmConstraint(const std::string &Constraint,
1235                                    MVT VT) const;
1236
1237  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
1238  /// {edx}), return the register number and the register class for the
1239  /// register.
1240  ///
1241  /// Given a register class constraint, like 'r', if this corresponds directly
1242  /// to an LLVM register class, return a register of 0 and the register class
1243  /// pointer.
1244  ///
1245  /// This should only be used for C_Register constraints.  On error,
1246  /// this returns a register number of 0 and a null register class pointer..
1247  virtual std::pair<unsigned, const TargetRegisterClass*>
1248    getRegForInlineAsmConstraint(const std::string &Constraint,
1249                                 MVT VT) const;
1250
1251  /// LowerXConstraint - try to replace an X constraint, which matches anything,
1252  /// with another that has more specific requirements based on the type of the
1253  /// corresponding operand.  This returns null if there is no replacement to
1254  /// make.
1255  virtual const char *LowerXConstraint(MVT ConstraintVT) const;
1256
1257  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1258  /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is true
1259  /// it means one of the asm constraint of the inline asm instruction being
1260  /// processed is 'm'.
1261  virtual void LowerAsmOperandForConstraint(SDValue Op, char ConstraintLetter,
1262                                            bool hasMemory,
1263                                            std::vector<SDValue> &Ops,
1264                                            SelectionDAG &DAG) const;
1265
1266  //===--------------------------------------------------------------------===//
1267  // Scheduler hooks
1268  //
1269
1270  // EmitInstrWithCustomInserter - This method should be implemented by targets
1271  // that mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
1272  // instructions are special in various ways, which require special support to
1273  // insert.  The specified MachineInstr is created but not inserted into any
1274  // basic blocks, and the scheduler passes ownership of it to this method.
1275  virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
1276                                                        MachineBasicBlock *MBB);
1277
1278  //===--------------------------------------------------------------------===//
1279  // Addressing mode description hooks (used by LSR etc).
1280  //
1281
1282  /// AddrMode - This represents an addressing mode of:
1283  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1284  /// If BaseGV is null,  there is no BaseGV.
1285  /// If BaseOffs is zero, there is no base offset.
1286  /// If HasBaseReg is false, there is no base register.
1287  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1288  /// no scale.
1289  ///
1290  struct AddrMode {
1291    GlobalValue *BaseGV;
1292    int64_t      BaseOffs;
1293    bool         HasBaseReg;
1294    int64_t      Scale;
1295    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1296  };
1297
1298  /// isLegalAddressingMode - Return true if the addressing mode represented by
1299  /// AM is legal for this target, for a load/store of the specified type.
1300  /// TODO: Handle pre/postinc as well.
1301  virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const;
1302
1303  /// isTruncateFree - Return true if it's free to truncate a value of
1304  /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1305  /// register EAX to i16 by referencing its sub-register AX.
1306  virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const {
1307    return false;
1308  }
1309
1310  virtual bool isTruncateFree(MVT VT1, MVT VT2) const {
1311    return false;
1312  }
1313
1314  //===--------------------------------------------------------------------===//
1315  // Div utility functions
1316  //
1317  SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG,
1318                      std::vector<SDNode*>* Created) const;
1319  SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG,
1320                      std::vector<SDNode*>* Created) const;
1321
1322
1323  //===--------------------------------------------------------------------===//
1324  // Runtime Library hooks
1325  //
1326
1327  /// setLibcallName - Rename the default libcall routine name for the specified
1328  /// libcall.
1329  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1330    LibcallRoutineNames[Call] = Name;
1331  }
1332
1333  /// getLibcallName - Get the libcall routine name for the specified libcall.
1334  ///
1335  const char *getLibcallName(RTLIB::Libcall Call) const {
1336    return LibcallRoutineNames[Call];
1337  }
1338
1339  /// setCmpLibcallCC - Override the default CondCode to be used to test the
1340  /// result of the comparison libcall against zero.
1341  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1342    CmpLibcallCCs[Call] = CC;
1343  }
1344
1345  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1346  /// the comparison libcall against zero.
1347  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1348    return CmpLibcallCCs[Call];
1349  }
1350
1351private:
1352  TargetMachine &TM;
1353  const TargetData *TD;
1354
1355  /// PointerTy - The type to use for pointers, usually i32 or i64.
1356  ///
1357  MVT PointerTy;
1358
1359  /// IsLittleEndian - True if this is a little endian target.
1360  ///
1361  bool IsLittleEndian;
1362
1363  /// UsesGlobalOffsetTable - True if this target uses a GOT for PIC codegen.
1364  ///
1365  bool UsesGlobalOffsetTable;
1366
1367  /// SelectIsExpensive - Tells the code generator not to expand operations
1368  /// into sequences that use the select operations if possible.
1369  bool SelectIsExpensive;
1370
1371  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1372  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1373  /// a real cost model is in place.  If we ever optimize for size, this will be
1374  /// set to true unconditionally.
1375  bool IntDivIsCheap;
1376
1377  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1378  /// srl/add/sra for a signed divide by power of two, and let the target handle
1379  /// it.
1380  bool Pow2DivIsCheap;
1381
1382  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1383  /// llvm.setjmp.  Defaults to false.
1384  bool UseUnderscoreSetJmp;
1385
1386  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1387  /// llvm.longjmp.  Defaults to false.
1388  bool UseUnderscoreLongJmp;
1389
1390  /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
1391  /// PointerTy is.
1392  MVT ShiftAmountTy;
1393
1394  OutOfRangeShiftAmount ShiftAmtHandling;
1395
1396  /// SetCCResultContents - Information about the contents of the high-bits in
1397  /// the result of a setcc comparison operation.
1398  SetCCResultValue SetCCResultContents;
1399
1400  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1401  /// total cycles or lowest register usage.
1402  SchedPreference SchedPreferenceInfo;
1403
1404  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1405  unsigned JumpBufSize;
1406
1407  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1408  /// buffers
1409  unsigned JumpBufAlignment;
1410
1411  /// IfCvtBlockSizeLimit - The maximum allowed size for a block to be
1412  /// if-converted.
1413  unsigned IfCvtBlockSizeLimit;
1414
1415  /// IfCvtDupBlockSizeLimit - The maximum allowed size for a block to be
1416  /// duplicated during if-conversion.
1417  unsigned IfCvtDupBlockSizeLimit;
1418
1419  /// PrefLoopAlignment - The perferred loop alignment.
1420  ///
1421  unsigned PrefLoopAlignment;
1422
1423  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1424  /// specifies the register that llvm.savestack/llvm.restorestack should save
1425  /// and restore.
1426  unsigned StackPointerRegisterToSaveRestore;
1427
1428  /// ExceptionPointerRegister - If set to a physical register, this specifies
1429  /// the register that receives the exception address on entry to a landing
1430  /// pad.
1431  unsigned ExceptionPointerRegister;
1432
1433  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1434  /// the register that receives the exception typeid on entry to a landing
1435  /// pad.
1436  unsigned ExceptionSelectorRegister;
1437
1438  /// RegClassForVT - This indicates the default register class to use for
1439  /// each ValueType the target supports natively.
1440  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1441  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1442  MVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1443
1444  /// TransformToType - For any value types we are promoting or expanding, this
1445  /// contains the value type that we are changing to.  For Expanded types, this
1446  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1447  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1448  /// by the system, this holds the same type (e.g. i32 -> i32).
1449  MVT TransformToType[MVT::LAST_VALUETYPE];
1450
1451  // Defines the capacity of the TargetLowering::OpActions table
1452  static const int OpActionsCapacity = 212;
1453
1454  /// OpActions - For each operation and each value type, keep a LegalizeAction
1455  /// that indicates how instruction selection should deal with the operation.
1456  /// Most operations are Legal (aka, supported natively by the target), but
1457  /// operations that are not should be described.  Note that operations on
1458  /// non-legal value types are not described here.
1459  uint64_t OpActions[OpActionsCapacity];
1460
1461  /// LoadExtActions - For each load of load extension type and each value type,
1462  /// keep a LegalizeAction that indicates how instruction selection should deal
1463  /// with the load.
1464  uint64_t LoadExtActions[ISD::LAST_LOADEXT_TYPE];
1465
1466  /// TruncStoreActions - For each truncating store, keep a LegalizeAction that
1467  /// indicates how instruction selection should deal with the store.
1468  uint64_t TruncStoreActions[MVT::LAST_VALUETYPE];
1469
1470  /// IndexedModeActions - For each indexed mode and each value type, keep a
1471  /// pair of LegalizeAction that indicates how instruction selection should
1472  /// deal with the load / store.
1473  uint64_t IndexedModeActions[2][ISD::LAST_INDEXED_MODE];
1474
1475  /// ConvertActions - For each conversion from source type to destination type,
1476  /// keep a LegalizeAction that indicates how instruction selection should
1477  /// deal with the conversion.
1478  /// Currently, this is used only for floating->floating conversions
1479  /// (FP_EXTEND and FP_ROUND).
1480  uint64_t ConvertActions[MVT::LAST_VALUETYPE];
1481
1482  /// CondCodeActions - For each condition code (ISD::CondCode) keep a
1483  /// LegalizeAction that indicates how instruction selection should
1484  /// deal with the condition code.
1485  uint64_t CondCodeActions[ISD::SETCC_INVALID];
1486
1487  ValueTypeActionImpl ValueTypeActions;
1488
1489  std::vector<APFloat> LegalFPImmediates;
1490
1491  std::vector<std::pair<MVT, TargetRegisterClass*> > AvailableRegClasses;
1492
1493  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
1494  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
1495  /// which sets a bit in this array.
1496  unsigned char
1497  TargetDAGCombineArray[OpActionsCapacity/(sizeof(unsigned char)*8)];
1498
1499  /// PromoteToType - For operations that must be promoted to a specific type,
1500  /// this holds the destination type.  This map should be sparse, so don't hold
1501  /// it as an array.
1502  ///
1503  /// Targets add entries to this map with AddPromotedToType(..), clients access
1504  /// this with getTypeToPromoteTo(..).
1505  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
1506    PromoteToType;
1507
1508  /// LibcallRoutineNames - Stores the name each libcall.
1509  ///
1510  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1511
1512  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
1513  /// of each of the comparison libcall against zero.
1514  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1515
1516protected:
1517  /// When lowering @llvm.memset this field specifies the maximum number of
1518  /// store operations that may be substituted for the call to memset. Targets
1519  /// must set this value based on the cost threshold for that target. Targets
1520  /// should assume that the memset will be done using as many of the largest
1521  /// store operations first, followed by smaller ones, if necessary, per
1522  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1523  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1524  /// store.  This only applies to setting a constant array of a constant size.
1525  /// @brief Specify maximum number of store instructions per memset call.
1526  unsigned maxStoresPerMemset;
1527
1528  /// When lowering @llvm.memcpy this field specifies the maximum number of
1529  /// store operations that may be substituted for a call to memcpy. Targets
1530  /// must set this value based on the cost threshold for that target. Targets
1531  /// should assume that the memcpy will be done using as many of the largest
1532  /// store operations first, followed by smaller ones, if necessary, per
1533  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1534  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1535  /// and one 1-byte store. This only applies to copying a constant array of
1536  /// constant size.
1537  /// @brief Specify maximum bytes of store instructions per memcpy call.
1538  unsigned maxStoresPerMemcpy;
1539
1540  /// When lowering @llvm.memmove this field specifies the maximum number of
1541  /// store instructions that may be substituted for a call to memmove. Targets
1542  /// must set this value based on the cost threshold for that target. Targets
1543  /// should assume that the memmove will be done using as many of the largest
1544  /// store operations first, followed by smaller ones, if necessary, per
1545  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1546  /// with 8-bit alignment would result in nine 1-byte stores.  This only
1547  /// applies to copying a constant array of constant size.
1548  /// @brief Specify maximum bytes of store instructions per memmove call.
1549  unsigned maxStoresPerMemmove;
1550
1551  /// This field specifies whether the target machine permits unaligned memory
1552  /// accesses.  This is used, for example, to determine the size of store
1553  /// operations when copying small arrays and other similar tasks.
1554  /// @brief Indicate whether the target permits unaligned memory accesses.
1555  bool allowUnalignedMemoryAccesses;
1556};
1557} // end llvm namespace
1558
1559#endif
1560