TargetLowering.h revision 81975f6dfd9d306d0ea7ce3ef22561c949de9af9
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/CodeGen/SelectionDAGNodes.h"
26#include "llvm/CodeGen/RuntimeLibcalls.h"
27#include <map>
28#include <vector>
29
30namespace llvm {
31  class Value;
32  class Function;
33  class TargetMachine;
34  class TargetData;
35  class TargetRegisterClass;
36  class SDNode;
37  class SDOperand;
38  class SelectionDAG;
39  class MachineBasicBlock;
40  class MachineInstr;
41  class VectorType;
42
43//===----------------------------------------------------------------------===//
44/// TargetLowering - This class defines information used to lower LLVM code to
45/// legal SelectionDAG operators that the target instruction selector can accept
46/// natively.
47///
48/// This class also defines callbacks that targets must implement to lower
49/// target-specific constructs to SelectionDAG operators.
50///
51class TargetLowering {
52public:
53  /// LegalizeAction - This enum indicates whether operations are valid for a
54  /// target, and if not, what action should be used to make them valid.
55  enum LegalizeAction {
56    Legal,      // The target natively supports this operation.
57    Promote,    // This operation should be executed in a larger type.
58    Expand,     // Try to expand this to other ops, otherwise use a libcall.
59    Custom      // Use the LowerOperation hook to implement custom lowering.
60  };
61
62  enum OutOfRangeShiftAmount {
63    Undefined,  // Oversized shift amounts are undefined (default).
64    Mask,       // Shift amounts are auto masked (anded) to value size.
65    Extend      // Oversized shift pulls in zeros or sign bits.
66  };
67
68  enum SetCCResultValue {
69    UndefinedSetCCResult,          // SetCC returns a garbage/unknown extend.
70    ZeroOrOneSetCCResult,          // SetCC returns a zero extended result.
71    ZeroOrNegativeOneSetCCResult   // SetCC returns a sign extended result.
72  };
73
74  enum SchedPreference {
75    SchedulingForLatency,          // Scheduling for shortest total latency.
76    SchedulingForRegPressure       // Scheduling for lowest register pressure.
77  };
78
79  explicit TargetLowering(TargetMachine &TM);
80  virtual ~TargetLowering();
81
82  TargetMachine &getTargetMachine() const { return TM; }
83  const TargetData *getTargetData() const { return TD; }
84
85  bool isLittleEndian() const { return IsLittleEndian; }
86  MVT::ValueType getPointerTy() const { return PointerTy; }
87  MVT::ValueType getShiftAmountTy() const { return ShiftAmountTy; }
88  OutOfRangeShiftAmount getShiftAmountFlavor() const {return ShiftAmtHandling; }
89
90  /// usesGlobalOffsetTable - Return true if this target uses a GOT for PIC
91  /// codegen.
92  bool usesGlobalOffsetTable() const { return UsesGlobalOffsetTable; }
93
94  /// isSelectExpensive - Return true if the select operation is expensive for
95  /// this target.
96  bool isSelectExpensive() const { return SelectIsExpensive; }
97
98  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
99  /// a sequence of several shifts, adds, and multiplies for this target.
100  bool isIntDivCheap() const { return IntDivIsCheap; }
101
102  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
103  /// srl/add/sra.
104  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
105
106  /// getSetCCResultTy - Return the ValueType of the result of setcc operations.
107  ///
108  MVT::ValueType getSetCCResultTy() const { return SetCCResultTy; }
109
110  /// getSetCCResultContents - For targets without boolean registers, this flag
111  /// returns information about the contents of the high-bits in the setcc
112  /// result register.
113  SetCCResultValue getSetCCResultContents() const { return SetCCResultContents;}
114
115  /// getSchedulingPreference - Return target scheduling preference.
116  SchedPreference getSchedulingPreference() const {
117    return SchedPreferenceInfo;
118  }
119
120  /// getRegClassFor - Return the register class that should be used for the
121  /// specified value type.  This may only be called on legal types.
122  TargetRegisterClass *getRegClassFor(MVT::ValueType VT) const {
123    assert(!MVT::isExtendedVT(VT));
124    TargetRegisterClass *RC = RegClassForVT[VT];
125    assert(RC && "This value type is not natively supported!");
126    return RC;
127  }
128
129  /// isTypeLegal - Return true if the target has native support for the
130  /// specified value type.  This means that it has a register that directly
131  /// holds it without promotions or expansions.
132  bool isTypeLegal(MVT::ValueType VT) const {
133    return !MVT::isExtendedVT(VT) && RegClassForVT[VT] != 0;
134  }
135
136  class ValueTypeActionImpl {
137    /// ValueTypeActions - This is a bitvector that contains two bits for each
138    /// value type, where the two bits correspond to the LegalizeAction enum.
139    /// This can be queried with "getTypeAction(VT)".
140    uint32_t ValueTypeActions[2];
141  public:
142    ValueTypeActionImpl() {
143      ValueTypeActions[0] = ValueTypeActions[1] = 0;
144    }
145    ValueTypeActionImpl(const ValueTypeActionImpl &RHS) {
146      ValueTypeActions[0] = RHS.ValueTypeActions[0];
147      ValueTypeActions[1] = RHS.ValueTypeActions[1];
148    }
149
150    LegalizeAction getTypeAction(MVT::ValueType VT) const {
151      if (MVT::isExtendedVT(VT)) return Expand;
152      return (LegalizeAction)((ValueTypeActions[VT>>4] >> ((2*VT) & 31)) & 3);
153    }
154    void setTypeAction(MVT::ValueType VT, LegalizeAction Action) {
155      assert(!MVT::isExtendedVT(VT));
156      assert(unsigned(VT >> 4) <
157             sizeof(ValueTypeActions)/sizeof(ValueTypeActions[0]));
158      ValueTypeActions[VT>>4] |= Action << ((VT*2) & 31);
159    }
160  };
161
162  const ValueTypeActionImpl &getValueTypeActions() const {
163    return ValueTypeActions;
164  }
165
166  /// getTypeAction - Return how we should legalize values of this type, either
167  /// it is already legal (return 'Legal') or we need to promote it to a larger
168  /// type (return 'Promote'), or we need to expand it into multiple registers
169  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
170  LegalizeAction getTypeAction(MVT::ValueType VT) const {
171    return ValueTypeActions.getTypeAction(VT);
172  }
173
174  /// getTypeToTransformTo - For types supported by the target, this is an
175  /// identity function.  For types that must be promoted to larger types, this
176  /// returns the larger type to promote to.  For integer types that are larger
177  /// than the largest integer register, this contains one step in the expansion
178  /// to get to the smaller register. For illegal floating point types, this
179  /// returns the integer type to transform to.
180  MVT::ValueType getTypeToTransformTo(MVT::ValueType VT) const {
181    if (MVT::isExtendedVT(VT))
182      return MVT::getVectorType(MVT::getVectorElementType(VT),
183                                MVT::getVectorNumElements(VT) / 2);
184
185    return TransformToType[VT];
186  }
187
188  /// getTypeToExpandTo - For types supported by the target, this is an
189  /// identity function.  For types that must be expanded (i.e. integer types
190  /// that are larger than the largest integer register or illegal floating
191  /// point types), this returns the largest legal type it will be expanded to.
192  MVT::ValueType getTypeToExpandTo(MVT::ValueType VT) const {
193    assert(!MVT::isExtendedVT(VT));
194    while (true) {
195      switch (getTypeAction(VT)) {
196      case Legal:
197        return VT;
198      case Expand:
199        VT = getTypeToTransformTo(VT);
200        break;
201      default:
202        assert(false && "Type is not legal nor is it to be expanded!");
203        return VT;
204      }
205    }
206    return VT;
207  }
208
209  /// getVectorTypeBreakdown - Vector types are broken down into some number of
210  /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
211  /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
212  /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
213  ///
214  /// This method returns the number of registers needed, and the VT for each
215  /// register.  It also returns the VT and quantity of the intermediate values
216  /// before they are promoted/expanded.
217  ///
218  unsigned getVectorTypeBreakdown(MVT::ValueType VT,
219                                  MVT::ValueType &IntermediateVT,
220                                  unsigned &NumIntermediates,
221                                  MVT::ValueType &RegisterVT) const;
222
223  typedef std::vector<double>::const_iterator legal_fpimm_iterator;
224  legal_fpimm_iterator legal_fpimm_begin() const {
225    return LegalFPImmediates.begin();
226  }
227  legal_fpimm_iterator legal_fpimm_end() const {
228    return LegalFPImmediates.end();
229  }
230
231  /// isShuffleMaskLegal - Targets can use this to indicate that they only
232  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
233  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
234  /// are assumed to be legal.
235  virtual bool isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
236    return true;
237  }
238
239  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
240  /// used by Targets can use this to indicate if there is a suitable
241  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
242  /// pool entry.
243  virtual bool isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
244                                      MVT::ValueType EVT,
245                                      SelectionDAG &DAG) const {
246    return false;
247  }
248
249  /// getOperationAction - Return how this operation should be treated: either
250  /// it is legal, needs to be promoted to a larger size, needs to be
251  /// expanded to some other code sequence, or the target has a custom expander
252  /// for it.
253  LegalizeAction getOperationAction(unsigned Op, MVT::ValueType VT) const {
254    if (MVT::isExtendedVT(VT)) return Expand;
255    return (LegalizeAction)((OpActions[Op] >> (2*VT)) & 3);
256  }
257
258  /// isOperationLegal - Return true if the specified operation is legal on this
259  /// target.
260  bool isOperationLegal(unsigned Op, MVT::ValueType VT) const {
261    return getOperationAction(Op, VT) == Legal ||
262           getOperationAction(Op, VT) == Custom;
263  }
264
265  /// getLoadXAction - Return how this load with extension should be treated:
266  /// either it is legal, needs to be promoted to a larger size, needs to be
267  /// expanded to some other code sequence, or the target has a custom expander
268  /// for it.
269  LegalizeAction getLoadXAction(unsigned LType, MVT::ValueType VT) const {
270    if (MVT::isExtendedVT(VT)) return Expand;
271    return (LegalizeAction)((LoadXActions[LType] >> (2*VT)) & 3);
272  }
273
274  /// isLoadXLegal - Return true if the specified load with extension is legal
275  /// on this target.
276  bool isLoadXLegal(unsigned LType, MVT::ValueType VT) const {
277    return getLoadXAction(LType, VT) == Legal ||
278           getLoadXAction(LType, VT) == Custom;
279  }
280
281  /// getStoreXAction - Return how this store with truncation should be treated:
282  /// either it is legal, needs to be promoted to a larger size, needs to be
283  /// expanded to some other code sequence, or the target has a custom expander
284  /// for it.
285  LegalizeAction getStoreXAction(MVT::ValueType VT) const {
286    if (MVT::isExtendedVT(VT)) return Expand;
287    return (LegalizeAction)((StoreXActions >> (2*VT)) & 3);
288  }
289
290  /// isStoreXLegal - Return true if the specified store with truncation is
291  /// legal on this target.
292  bool isStoreXLegal(MVT::ValueType VT) const {
293    return getStoreXAction(VT) == Legal || getStoreXAction(VT) == Custom;
294  }
295
296  /// getIndexedLoadAction - Return how the indexed load should be treated:
297  /// either it is legal, needs to be promoted to a larger size, needs to be
298  /// expanded to some other code sequence, or the target has a custom expander
299  /// for it.
300  LegalizeAction
301  getIndexedLoadAction(unsigned IdxMode, MVT::ValueType VT) const {
302    if (MVT::isExtendedVT(VT)) return Expand;
303    return (LegalizeAction)((IndexedModeActions[0][IdxMode] >> (2*VT)) & 3);
304  }
305
306  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
307  /// on this target.
308  bool isIndexedLoadLegal(unsigned IdxMode, MVT::ValueType VT) const {
309    return getIndexedLoadAction(IdxMode, VT) == Legal ||
310           getIndexedLoadAction(IdxMode, VT) == Custom;
311  }
312
313  /// getIndexedStoreAction - Return how the indexed store should be treated:
314  /// either it is legal, needs to be promoted to a larger size, needs to be
315  /// expanded to some other code sequence, or the target has a custom expander
316  /// for it.
317  LegalizeAction
318  getIndexedStoreAction(unsigned IdxMode, MVT::ValueType VT) const {
319    if (MVT::isExtendedVT(VT)) return Expand;
320    return (LegalizeAction)((IndexedModeActions[1][IdxMode] >> (2*VT)) & 3);
321  }
322
323  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
324  /// on this target.
325  bool isIndexedStoreLegal(unsigned IdxMode, MVT::ValueType VT) const {
326    return getIndexedStoreAction(IdxMode, VT) == Legal ||
327           getIndexedStoreAction(IdxMode, VT) == Custom;
328  }
329
330  /// getConvertAction - Return how the conversion should be treated:
331  /// either it is legal, needs to be promoted to a larger size, needs to be
332  /// expanded to some other code sequence, or the target has a custom expander
333  /// for it.
334  LegalizeAction
335  getConvertAction(MVT::ValueType FromVT, MVT::ValueType ToVT) const {
336    assert(FromVT < MVT::LAST_VALUETYPE && ToVT < 32 &&
337           "Table isn't big enough!");
338    return (LegalizeAction)((ConvertActions[FromVT] >> (2*ToVT)) & 3);
339  }
340
341  /// isConvertLegal - Return true if the specified conversion is legal
342  /// on this target.
343  bool isConvertLegal(MVT::ValueType FromVT, MVT::ValueType ToVT) const {
344    return getConvertAction(FromVT, ToVT) == Legal ||
345           getConvertAction(FromVT, ToVT) == Custom;
346  }
347
348  /// getTypeToPromoteTo - If the action for this operation is to promote, this
349  /// method returns the ValueType to promote to.
350  MVT::ValueType getTypeToPromoteTo(unsigned Op, MVT::ValueType VT) const {
351    assert(getOperationAction(Op, VT) == Promote &&
352           "This operation isn't promoted!");
353
354    // See if this has an explicit type specified.
355    std::map<std::pair<unsigned, MVT::ValueType>,
356             MVT::ValueType>::const_iterator PTTI =
357      PromoteToType.find(std::make_pair(Op, VT));
358    if (PTTI != PromoteToType.end()) return PTTI->second;
359
360    assert((MVT::isInteger(VT) || MVT::isFloatingPoint(VT)) &&
361           "Cannot autopromote this type, add it with AddPromotedToType.");
362
363    MVT::ValueType NVT = VT;
364    do {
365      NVT = (MVT::ValueType)(NVT+1);
366      assert(MVT::isInteger(NVT) == MVT::isInteger(VT) && NVT != MVT::isVoid &&
367             "Didn't find type to promote to!");
368    } while (!isTypeLegal(NVT) ||
369              getOperationAction(Op, NVT) == Promote);
370    return NVT;
371  }
372
373  /// getValueType - Return the MVT::ValueType corresponding to this LLVM type.
374  /// This is fixed by the LLVM operations except for the pointer size.  If
375  /// AllowUnknown is true, this will return MVT::Other for types with no MVT
376  /// counterpart (e.g. structs), otherwise it will assert.
377  MVT::ValueType getValueType(const Type *Ty, bool AllowUnknown = false) const {
378    MVT::ValueType VT = MVT::getValueType(Ty, AllowUnknown);
379    return VT == MVT::iPTR ? PointerTy : VT;
380  }
381
382  /// getRegisterType - Return the type of registers that this ValueType will
383  /// eventually require.
384  MVT::ValueType getRegisterType(MVT::ValueType VT) const {
385    if (!MVT::isExtendedVT(VT))
386      return RegisterTypeForVT[VT];
387
388    MVT::ValueType VT1, RegisterVT;
389    unsigned NumIntermediates;
390    (void)getVectorTypeBreakdown(VT, VT1, NumIntermediates, RegisterVT);
391    return RegisterVT;
392  }
393
394  /// getNumRegisters - Return the number of registers that this ValueType will
395  /// eventually require.  This is one for any types promoted to live in larger
396  /// registers, but may be more than one for types (like i64) that are split
397  /// into pieces.
398  unsigned getNumRegisters(MVT::ValueType VT) const {
399    if (!MVT::isExtendedVT(VT))
400      return NumRegistersForVT[VT];
401
402    MVT::ValueType VT1, VT2;
403    unsigned NumIntermediates;
404    return getVectorTypeBreakdown(VT, VT1, NumIntermediates, VT2);
405  }
406
407  /// hasTargetDAGCombine - If true, the target has custom DAG combine
408  /// transformations that it can perform for the specified node.
409  bool hasTargetDAGCombine(ISD::NodeType NT) const {
410    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
411  }
412
413  /// This function returns the maximum number of store operations permitted
414  /// to replace a call to llvm.memset. The value is set by the target at the
415  /// performance threshold for such a replacement.
416  /// @brief Get maximum # of store operations permitted for llvm.memset
417  unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; }
418
419  /// This function returns the maximum number of store operations permitted
420  /// to replace a call to llvm.memcpy. The value is set by the target at the
421  /// performance threshold for such a replacement.
422  /// @brief Get maximum # of store operations permitted for llvm.memcpy
423  unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; }
424
425  /// This function returns the maximum number of store operations permitted
426  /// to replace a call to llvm.memmove. The value is set by the target at the
427  /// performance threshold for such a replacement.
428  /// @brief Get maximum # of store operations permitted for llvm.memmove
429  unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; }
430
431  /// This function returns true if the target allows unaligned memory accesses.
432  /// This is used, for example, in situations where an array copy/move/set is
433  /// converted to a sequence of store operations. It's use helps to ensure that
434  /// such replacements don't generate code that causes an alignment error
435  /// (trap) on the target machine.
436  /// @brief Determine if the target supports unaligned memory accesses.
437  bool allowsUnalignedMemoryAccesses() const {
438    return allowUnalignedMemoryAccesses;
439  }
440
441  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
442  /// to implement llvm.setjmp.
443  bool usesUnderscoreSetJmp() const {
444    return UseUnderscoreSetJmp;
445  }
446
447  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
448  /// to implement llvm.longjmp.
449  bool usesUnderscoreLongJmp() const {
450    return UseUnderscoreLongJmp;
451  }
452
453  /// getStackPointerRegisterToSaveRestore - If a physical register, this
454  /// specifies the register that llvm.savestack/llvm.restorestack should save
455  /// and restore.
456  unsigned getStackPointerRegisterToSaveRestore() const {
457    return StackPointerRegisterToSaveRestore;
458  }
459
460  /// getExceptionAddressRegister - If a physical register, this returns
461  /// the register that receives the exception address on entry to a landing
462  /// pad.
463  unsigned getExceptionAddressRegister() const {
464    return ExceptionPointerRegister;
465  }
466
467  /// getExceptionSelectorRegister - If a physical register, this returns
468  /// the register that receives the exception typeid on entry to a landing
469  /// pad.
470  unsigned getExceptionSelectorRegister() const {
471    return ExceptionSelectorRegister;
472  }
473
474  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
475  /// set, the default is 200)
476  unsigned getJumpBufSize() const {
477    return JumpBufSize;
478  }
479
480  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
481  /// (if never set, the default is 0)
482  unsigned getJumpBufAlignment() const {
483    return JumpBufAlignment;
484  }
485
486  /// getIfCvtBlockLimit - returns the target specific if-conversion block size
487  /// limit. Any block whose size is greater should not be predicated.
488  virtual unsigned getIfCvtBlockSizeLimit() const {
489    return IfCvtBlockSizeLimit;
490  }
491
492  /// getIfCvtDupBlockLimit - returns the target specific size limit for a
493  /// block to be considered for duplication. Any block whose size is greater
494  /// should not be duplicated to facilitate its predication.
495  virtual unsigned getIfCvtDupBlockSizeLimit() const {
496    return IfCvtDupBlockSizeLimit;
497  }
498
499  /// getPreIndexedAddressParts - returns true by value, base pointer and
500  /// offset pointer and addressing mode by reference if the node's address
501  /// can be legally represented as pre-indexed load / store address.
502  virtual bool getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
503                                         SDOperand &Offset,
504                                         ISD::MemIndexedMode &AM,
505                                         SelectionDAG &DAG) {
506    return false;
507  }
508
509  /// getPostIndexedAddressParts - returns true by value, base pointer and
510  /// offset pointer and addressing mode by reference if this node can be
511  /// combined with a load / store to form a post-indexed load / store.
512  virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
513                                          SDOperand &Base, SDOperand &Offset,
514                                          ISD::MemIndexedMode &AM,
515                                          SelectionDAG &DAG) {
516    return false;
517  }
518
519  //===--------------------------------------------------------------------===//
520  // TargetLowering Optimization Methods
521  //
522
523  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
524  /// SDOperands for returning information from TargetLowering to its clients
525  /// that want to combine
526  struct TargetLoweringOpt {
527    SelectionDAG &DAG;
528    SDOperand Old;
529    SDOperand New;
530
531    explicit TargetLoweringOpt(SelectionDAG &InDAG) : DAG(InDAG) {}
532
533    bool CombineTo(SDOperand O, SDOperand N) {
534      Old = O;
535      New = N;
536      return true;
537    }
538
539    /// ShrinkDemandedConstant - Check to see if the specified operand of the
540    /// specified instruction is a constant integer.  If so, check to see if there
541    /// are any bits set in the constant that are not demanded.  If so, shrink the
542    /// constant and return true.
543    bool ShrinkDemandedConstant(SDOperand Op, uint64_t Demanded);
544  };
545
546  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
547  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
548  /// use this information to simplify Op, create a new simplified DAG node and
549  /// return true, returning the original and new nodes in Old and New.
550  /// Otherwise, analyze the expression and return a mask of KnownOne and
551  /// KnownZero bits for the expression (used to simplify the caller).
552  /// The KnownZero/One bits may only be accurate for those bits in the
553  /// DemandedMask.
554  bool SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
555                            uint64_t &KnownZero, uint64_t &KnownOne,
556                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
557
558  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
559  /// Mask are known to be either zero or one and return them in the
560  /// KnownZero/KnownOne bitsets.
561  virtual void computeMaskedBitsForTargetNode(const SDOperand Op,
562                                              uint64_t Mask,
563                                              uint64_t &KnownZero,
564                                              uint64_t &KnownOne,
565                                              const SelectionDAG &DAG,
566                                              unsigned Depth = 0) const;
567
568  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
569  /// targets that want to expose additional information about sign bits to the
570  /// DAG Combiner.
571  virtual unsigned ComputeNumSignBitsForTargetNode(SDOperand Op,
572                                                   unsigned Depth = 0) const;
573
574  struct DAGCombinerInfo {
575    void *DC;  // The DAG Combiner object.
576    bool BeforeLegalize;
577    bool CalledByLegalizer;
578  public:
579    SelectionDAG &DAG;
580
581    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool cl, void *dc)
582      : DC(dc), BeforeLegalize(bl), CalledByLegalizer(cl), DAG(dag) {}
583
584    bool isBeforeLegalize() const { return BeforeLegalize; }
585    bool isCalledByLegalizer() const { return CalledByLegalizer; }
586
587    void AddToWorklist(SDNode *N);
588    SDOperand CombineTo(SDNode *N, const std::vector<SDOperand> &To);
589    SDOperand CombineTo(SDNode *N, SDOperand Res);
590    SDOperand CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1);
591  };
592
593  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
594  /// and cc. If it is unable to simplify it, return a null SDOperand.
595  SDOperand SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
596                          ISD::CondCode Cond, bool foldBooleans,
597                          DAGCombinerInfo &DCI) const;
598
599  /// PerformDAGCombine - This method will be invoked for all target nodes and
600  /// for any target-independent nodes that the target has registered with
601  /// invoke it for.
602  ///
603  /// The semantics are as follows:
604  /// Return Value:
605  ///   SDOperand.Val == 0   - No change was made
606  ///   SDOperand.Val == N   - N was replaced, is dead, and is already handled.
607  ///   otherwise            - N should be replaced by the returned Operand.
608  ///
609  /// In addition, methods provided by DAGCombinerInfo may be used to perform
610  /// more complex transformations.
611  ///
612  virtual SDOperand PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
613
614  //===--------------------------------------------------------------------===//
615  // TargetLowering Configuration Methods - These methods should be invoked by
616  // the derived class constructor to configure this object for the target.
617  //
618
619protected:
620  /// setUsesGlobalOffsetTable - Specify that this target does or doesn't use a
621  /// GOT for PC-relative code.
622  void setUsesGlobalOffsetTable(bool V) { UsesGlobalOffsetTable = V; }
623
624  /// setShiftAmountType - Describe the type that should be used for shift
625  /// amounts.  This type defaults to the pointer type.
626  void setShiftAmountType(MVT::ValueType VT) { ShiftAmountTy = VT; }
627
628  /// setSetCCResultType - Describe the type that shoudl be used as the result
629  /// of a setcc operation.  This defaults to the pointer type.
630  void setSetCCResultType(MVT::ValueType VT) { SetCCResultTy = VT; }
631
632  /// setSetCCResultContents - Specify how the target extends the result of a
633  /// setcc operation in a register.
634  void setSetCCResultContents(SetCCResultValue Ty) { SetCCResultContents = Ty; }
635
636  /// setSchedulingPreference - Specify the target scheduling preference.
637  void setSchedulingPreference(SchedPreference Pref) {
638    SchedPreferenceInfo = Pref;
639  }
640
641  /// setShiftAmountFlavor - Describe how the target handles out of range shift
642  /// amounts.
643  void setShiftAmountFlavor(OutOfRangeShiftAmount OORSA) {
644    ShiftAmtHandling = OORSA;
645  }
646
647  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
648  /// use _setjmp to implement llvm.setjmp or the non _ version.
649  /// Defaults to false.
650  void setUseUnderscoreSetJmp(bool Val) {
651    UseUnderscoreSetJmp = Val;
652  }
653
654  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
655  /// use _longjmp to implement llvm.longjmp or the non _ version.
656  /// Defaults to false.
657  void setUseUnderscoreLongJmp(bool Val) {
658    UseUnderscoreLongJmp = Val;
659  }
660
661  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
662  /// specifies the register that llvm.savestack/llvm.restorestack should save
663  /// and restore.
664  void setStackPointerRegisterToSaveRestore(unsigned R) {
665    StackPointerRegisterToSaveRestore = R;
666  }
667
668  /// setExceptionPointerRegister - If set to a physical register, this sets
669  /// the register that receives the exception address on entry to a landing
670  /// pad.
671  void setExceptionPointerRegister(unsigned R) {
672    ExceptionPointerRegister = R;
673  }
674
675  /// setExceptionSelectorRegister - If set to a physical register, this sets
676  /// the register that receives the exception typeid on entry to a landing
677  /// pad.
678  void setExceptionSelectorRegister(unsigned R) {
679    ExceptionSelectorRegister = R;
680  }
681
682  /// SelectIsExpensive - Tells the code generator not to expand operations
683  /// into sequences that use the select operations if possible.
684  void setSelectIsExpensive() { SelectIsExpensive = true; }
685
686  /// setIntDivIsCheap - Tells the code generator that integer divide is
687  /// expensive, and if possible, should be replaced by an alternate sequence
688  /// of instructions not containing an integer divide.
689  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
690
691  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
692  /// srl/add/sra for a signed divide by power of two, and let the target handle
693  /// it.
694  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
695
696  /// addRegisterClass - Add the specified register class as an available
697  /// regclass for the specified value type.  This indicates the selector can
698  /// handle values of that class natively.
699  void addRegisterClass(MVT::ValueType VT, TargetRegisterClass *RC) {
700    assert(!MVT::isExtendedVT(VT));
701    AvailableRegClasses.push_back(std::make_pair(VT, RC));
702    RegClassForVT[VT] = RC;
703  }
704
705  /// computeRegisterProperties - Once all of the register classes are added,
706  /// this allows us to compute derived properties we expose.
707  void computeRegisterProperties();
708
709  /// setOperationAction - Indicate that the specified operation does not work
710  /// with the specified type and indicate what to do about it.
711  void setOperationAction(unsigned Op, MVT::ValueType VT,
712                          LegalizeAction Action) {
713    assert(VT < 32 && Op < sizeof(OpActions)/sizeof(OpActions[0]) &&
714           "Table isn't big enough!");
715    OpActions[Op] &= ~(uint64_t(3UL) << VT*2);
716    OpActions[Op] |= (uint64_t)Action << VT*2;
717  }
718
719  /// setLoadXAction - Indicate that the specified load with extension does not
720  /// work with the with specified type and indicate what to do about it.
721  void setLoadXAction(unsigned ExtType, MVT::ValueType VT,
722                      LegalizeAction Action) {
723    assert(VT < 32 && ExtType < sizeof(LoadXActions)/sizeof(LoadXActions[0]) &&
724           "Table isn't big enough!");
725    LoadXActions[ExtType] &= ~(uint64_t(3UL) << VT*2);
726    LoadXActions[ExtType] |= (uint64_t)Action << VT*2;
727  }
728
729  /// setStoreXAction - Indicate that the specified store with truncation does
730  /// not work with the with specified type and indicate what to do about it.
731  void setStoreXAction(MVT::ValueType VT, LegalizeAction Action) {
732    assert(VT < 32 && "Table isn't big enough!");
733    StoreXActions &= ~(uint64_t(3UL) << VT*2);
734    StoreXActions |= (uint64_t)Action << VT*2;
735  }
736
737  /// setIndexedLoadAction - Indicate that the specified indexed load does or
738  /// does not work with the with specified type and indicate what to do abort
739  /// it. NOTE: All indexed mode loads are initialized to Expand in
740  /// TargetLowering.cpp
741  void setIndexedLoadAction(unsigned IdxMode, MVT::ValueType VT,
742                            LegalizeAction Action) {
743    assert(VT < 32 && IdxMode <
744           sizeof(IndexedModeActions[0]) / sizeof(IndexedModeActions[0][0]) &&
745           "Table isn't big enough!");
746    IndexedModeActions[0][IdxMode] &= ~(uint64_t(3UL) << VT*2);
747    IndexedModeActions[0][IdxMode] |= (uint64_t)Action << VT*2;
748  }
749
750  /// setIndexedStoreAction - Indicate that the specified indexed store does or
751  /// does not work with the with specified type and indicate what to do about
752  /// it. NOTE: All indexed mode stores are initialized to Expand in
753  /// TargetLowering.cpp
754  void setIndexedStoreAction(unsigned IdxMode, MVT::ValueType VT,
755                             LegalizeAction Action) {
756    assert(VT < 32 && IdxMode <
757           sizeof(IndexedModeActions[1]) / sizeof(IndexedModeActions[1][0]) &&
758           "Table isn't big enough!");
759    IndexedModeActions[1][IdxMode] &= ~(uint64_t(3UL) << VT*2);
760    IndexedModeActions[1][IdxMode] |= (uint64_t)Action << VT*2;
761  }
762
763  /// setConvertAction - Indicate that the specified conversion does or does
764  /// not work with the with specified type and indicate what to do about it.
765  void setConvertAction(MVT::ValueType FromVT, MVT::ValueType ToVT,
766                        LegalizeAction Action) {
767    assert(FromVT < MVT::LAST_VALUETYPE && ToVT < 32 &&
768           "Table isn't big enough!");
769    ConvertActions[FromVT] &= ~(uint64_t(3UL) << ToVT*2);
770    ConvertActions[FromVT] |= (uint64_t)Action << ToVT*2;
771  }
772
773  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
774  /// promotion code defaults to trying a larger integer/fp until it can find
775  /// one that works.  If that default is insufficient, this method can be used
776  /// by the target to override the default.
777  void AddPromotedToType(unsigned Opc, MVT::ValueType OrigVT,
778                         MVT::ValueType DestVT) {
779    PromoteToType[std::make_pair(Opc, OrigVT)] = DestVT;
780  }
781
782  /// addLegalFPImmediate - Indicate that this target can instruction select
783  /// the specified FP immediate natively.
784  void addLegalFPImmediate(double Imm) {
785    LegalFPImmediates.push_back(Imm);
786  }
787
788  /// setTargetDAGCombine - Targets should invoke this method for each target
789  /// independent node that they want to provide a custom DAG combiner for by
790  /// implementing the PerformDAGCombine virtual method.
791  void setTargetDAGCombine(ISD::NodeType NT) {
792    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
793  }
794
795  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
796  /// bytes); default is 200
797  void setJumpBufSize(unsigned Size) {
798    JumpBufSize = Size;
799  }
800
801  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
802  /// alignment (in bytes); default is 0
803  void setJumpBufAlignment(unsigned Align) {
804    JumpBufAlignment = Align;
805  }
806
807  /// setIfCvtBlockSizeLimit - Set the target's if-conversion block size
808  /// limit (in number of instructions); default is 2.
809  void setIfCvtBlockSizeLimit(unsigned Limit) {
810    IfCvtBlockSizeLimit = Limit;
811  }
812
813  /// setIfCvtDupBlockSizeLimit - Set the target's block size limit (in number
814  /// of instructions) to be considered for code duplication during
815  /// if-conversion; default is 2.
816  void setIfCvtDupBlockSizeLimit(unsigned Limit) {
817    IfCvtDupBlockSizeLimit = Limit;
818  }
819
820public:
821
822  //===--------------------------------------------------------------------===//
823  // Lowering methods - These methods must be implemented by targets so that
824  // the SelectionDAGLowering code knows how to lower these.
825  //
826
827  /// LowerArguments - This hook must be implemented to indicate how we should
828  /// lower the arguments for the specified function, into the specified DAG.
829  virtual std::vector<SDOperand>
830  LowerArguments(Function &F, SelectionDAG &DAG);
831
832  /// LowerCallTo - This hook lowers an abstract call to a function into an
833  /// actual call.  This returns a pair of operands.  The first element is the
834  /// return value for the function (if RetTy is not VoidTy).  The second
835  /// element is the outgoing token chain.
836  struct ArgListEntry {
837    SDOperand Node;
838    const Type* Ty;
839    bool isSExt;
840    bool isZExt;
841    bool isInReg;
842    bool isSRet;
843    bool isNest;
844    bool isByVal;
845
846    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
847      isSRet(false), isNest(false), isByVal(false) { }
848  };
849  typedef std::vector<ArgListEntry> ArgListTy;
850  virtual std::pair<SDOperand, SDOperand>
851  LowerCallTo(SDOperand Chain, const Type *RetTy, bool RetTyIsSigned,
852              bool isVarArg, unsigned CallingConv, bool isTailCall,
853              SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG);
854
855  /// LowerOperation - This callback is invoked for operations that are
856  /// unsupported by the target, which are registered to use 'custom' lowering,
857  /// and whose defined values are all legal.
858  /// If the target has no operations that require custom lowering, it need not
859  /// implement this.  The default implementation of this aborts.
860  virtual SDOperand LowerOperation(SDOperand Op, SelectionDAG &DAG);
861
862  /// CustomPromoteOperation - This callback is invoked for operations that are
863  /// unsupported by the target, are registered to use 'custom' lowering, and
864  /// whose type needs to be promoted.
865  virtual SDOperand CustomPromoteOperation(SDOperand Op, SelectionDAG &DAG);
866
867  /// getTargetNodeName() - This method returns the name of a target specific
868  /// DAG node.
869  virtual const char *getTargetNodeName(unsigned Opcode) const;
870
871  //===--------------------------------------------------------------------===//
872  // Inline Asm Support hooks
873  //
874
875  enum ConstraintType {
876    C_Register,            // Constraint represents a single register.
877    C_RegisterClass,       // Constraint represents one or more registers.
878    C_Memory,              // Memory constraint.
879    C_Other,               // Something else.
880    C_Unknown              // Unsupported constraint.
881  };
882
883  /// getConstraintType - Given a constraint, return the type of constraint it
884  /// is for this target.
885  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
886
887
888  /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
889  /// return a list of registers that can be used to satisfy the constraint.
890  /// This should only be used for C_RegisterClass constraints.
891  virtual std::vector<unsigned>
892  getRegClassForInlineAsmConstraint(const std::string &Constraint,
893                                    MVT::ValueType VT) const;
894
895  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
896  /// {edx}), return the register number and the register class for the
897  /// register.
898  ///
899  /// Given a register class constraint, like 'r', if this corresponds directly
900  /// to an LLVM register class, return a register of 0 and the register class
901  /// pointer.
902  ///
903  /// This should only be used for C_Register constraints.  On error,
904  /// this returns a register number of 0 and a null register class pointer..
905  virtual std::pair<unsigned, const TargetRegisterClass*>
906    getRegForInlineAsmConstraint(const std::string &Constraint,
907                                 MVT::ValueType VT) const;
908
909
910  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
911  /// vector.  If it is invalid, don't add anything to Ops.
912  virtual void LowerAsmOperandForConstraint(SDOperand Op, char ConstraintLetter,
913                                            std::vector<SDOperand> &Ops,
914                                            SelectionDAG &DAG);
915
916  //===--------------------------------------------------------------------===//
917  // Scheduler hooks
918  //
919
920  // InsertAtEndOfBasicBlock - This method should be implemented by targets that
921  // mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
922  // instructions are special in various ways, which require special support to
923  // insert.  The specified MachineInstr is created but not inserted into any
924  // basic blocks, and the scheduler passes ownership of it to this method.
925  virtual MachineBasicBlock *InsertAtEndOfBasicBlock(MachineInstr *MI,
926                                                     MachineBasicBlock *MBB);
927
928  //===--------------------------------------------------------------------===//
929  // Addressing mode description hooks (used by LSR etc).
930  //
931
932  /// AddrMode - This represents an addressing mode of:
933  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
934  /// If BaseGV is null,  there is no BaseGV.
935  /// If BaseOffs is zero, there is no base offset.
936  /// If HasBaseReg is false, there is no base register.
937  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
938  /// no scale.
939  ///
940  struct AddrMode {
941    GlobalValue *BaseGV;
942    int64_t      BaseOffs;
943    bool         HasBaseReg;
944    int64_t      Scale;
945    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
946  };
947
948  /// isLegalAddressingMode - Return true if the addressing mode represented by
949  /// AM is legal for this target, for a load/store of the specified type.
950  /// TODO: Handle pre/postinc as well.
951  virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const;
952
953  //===--------------------------------------------------------------------===//
954  // Div utility functions
955  //
956  SDOperand BuildSDIV(SDNode *N, SelectionDAG &DAG,
957                      std::vector<SDNode*>* Created) const;
958  SDOperand BuildUDIV(SDNode *N, SelectionDAG &DAG,
959                      std::vector<SDNode*>* Created) const;
960
961
962  //===--------------------------------------------------------------------===//
963  // Runtime Library hooks
964  //
965
966  /// setLibcallName - Rename the default libcall routine name for the specified
967  /// libcall.
968  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
969    LibcallRoutineNames[Call] = Name;
970  }
971
972  /// getLibcallName - Get the libcall routine name for the specified libcall.
973  ///
974  const char *getLibcallName(RTLIB::Libcall Call) const {
975    return LibcallRoutineNames[Call];
976  }
977
978  /// setCmpLibcallCC - Override the default CondCode to be used to test the
979  /// result of the comparison libcall against zero.
980  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
981    CmpLibcallCCs[Call] = CC;
982  }
983
984  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
985  /// the comparison libcall against zero.
986  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
987    return CmpLibcallCCs[Call];
988  }
989
990private:
991  TargetMachine &TM;
992  const TargetData *TD;
993
994  /// IsLittleEndian - True if this is a little endian target.
995  ///
996  bool IsLittleEndian;
997
998  /// PointerTy - The type to use for pointers, usually i32 or i64.
999  ///
1000  MVT::ValueType PointerTy;
1001
1002  /// UsesGlobalOffsetTable - True if this target uses a GOT for PIC codegen.
1003  ///
1004  bool UsesGlobalOffsetTable;
1005
1006  /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
1007  /// PointerTy is.
1008  MVT::ValueType ShiftAmountTy;
1009
1010  OutOfRangeShiftAmount ShiftAmtHandling;
1011
1012  /// SelectIsExpensive - Tells the code generator not to expand operations
1013  /// into sequences that use the select operations if possible.
1014  bool SelectIsExpensive;
1015
1016  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1017  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1018  /// a real cost model is in place.  If we ever optimize for size, this will be
1019  /// set to true unconditionally.
1020  bool IntDivIsCheap;
1021
1022  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1023  /// srl/add/sra for a signed divide by power of two, and let the target handle
1024  /// it.
1025  bool Pow2DivIsCheap;
1026
1027  /// SetCCResultTy - The type that SetCC operations use.  This defaults to the
1028  /// PointerTy.
1029  MVT::ValueType SetCCResultTy;
1030
1031  /// SetCCResultContents - Information about the contents of the high-bits in
1032  /// the result of a setcc comparison operation.
1033  SetCCResultValue SetCCResultContents;
1034
1035  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1036  /// total cycles or lowest register usage.
1037  SchedPreference SchedPreferenceInfo;
1038
1039  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1040  /// llvm.setjmp.  Defaults to false.
1041  bool UseUnderscoreSetJmp;
1042
1043  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1044  /// llvm.longjmp.  Defaults to false.
1045  bool UseUnderscoreLongJmp;
1046
1047  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1048  unsigned JumpBufSize;
1049
1050  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1051  /// buffers
1052  unsigned JumpBufAlignment;
1053
1054  /// IfCvtBlockSizeLimit - The maximum allowed size for a block to be
1055  /// if-converted.
1056  unsigned IfCvtBlockSizeLimit;
1057
1058  /// IfCvtDupBlockSizeLimit - The maximum allowed size for a block to be
1059  /// duplicated during if-conversion.
1060  unsigned IfCvtDupBlockSizeLimit;
1061
1062  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1063  /// specifies the register that llvm.savestack/llvm.restorestack should save
1064  /// and restore.
1065  unsigned StackPointerRegisterToSaveRestore;
1066
1067  /// ExceptionPointerRegister - If set to a physical register, this specifies
1068  /// the register that receives the exception address on entry to a landing
1069  /// pad.
1070  unsigned ExceptionPointerRegister;
1071
1072  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1073  /// the register that receives the exception typeid on entry to a landing
1074  /// pad.
1075  unsigned ExceptionSelectorRegister;
1076
1077  /// RegClassForVT - This indicates the default register class to use for
1078  /// each ValueType the target supports natively.
1079  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1080  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1081  MVT::ValueType RegisterTypeForVT[MVT::LAST_VALUETYPE];
1082
1083  /// TransformToType - For any value types we are promoting or expanding, this
1084  /// contains the value type that we are changing to.  For Expanded types, this
1085  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1086  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1087  /// by the system, this holds the same type (e.g. i32 -> i32).
1088  MVT::ValueType TransformToType[MVT::LAST_VALUETYPE];
1089
1090  /// OpActions - For each operation and each value type, keep a LegalizeAction
1091  /// that indicates how instruction selection should deal with the operation.
1092  /// Most operations are Legal (aka, supported natively by the target), but
1093  /// operations that are not should be described.  Note that operations on
1094  /// non-legal value types are not described here.
1095  uint64_t OpActions[156];
1096
1097  /// LoadXActions - For each load of load extension type and each value type,
1098  /// keep a LegalizeAction that indicates how instruction selection should deal
1099  /// with the load.
1100  uint64_t LoadXActions[ISD::LAST_LOADX_TYPE];
1101
1102  /// StoreXActions - For each store with truncation of each value type, keep a
1103  /// LegalizeAction that indicates how instruction selection should deal with
1104  /// the store.
1105  uint64_t StoreXActions;
1106
1107  /// IndexedModeActions - For each indexed mode and each value type, keep a
1108  /// pair of LegalizeAction that indicates how instruction selection should
1109  /// deal with the load / store.
1110  uint64_t IndexedModeActions[2][ISD::LAST_INDEXED_MODE];
1111
1112  /// ConvertActions - For each conversion from source type to destination type,
1113  /// keep a LegalizeAction that indicates how instruction selection should
1114  /// deal with the conversion.
1115  /// Currently, this is used only for floating->floating conversions
1116  /// (FP_EXTEND and FP_ROUND).
1117  uint64_t ConvertActions[MVT::LAST_VALUETYPE];
1118
1119  ValueTypeActionImpl ValueTypeActions;
1120
1121  std::vector<double> LegalFPImmediates;
1122
1123  std::vector<std::pair<MVT::ValueType,
1124                        TargetRegisterClass*> > AvailableRegClasses;
1125
1126  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
1127  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
1128  /// which sets a bit in this array.
1129  unsigned char TargetDAGCombineArray[156/(sizeof(unsigned char)*8)];
1130
1131  /// PromoteToType - For operations that must be promoted to a specific type,
1132  /// this holds the destination type.  This map should be sparse, so don't hold
1133  /// it as an array.
1134  ///
1135  /// Targets add entries to this map with AddPromotedToType(..), clients access
1136  /// this with getTypeToPromoteTo(..).
1137  std::map<std::pair<unsigned, MVT::ValueType>, MVT::ValueType> PromoteToType;
1138
1139  /// LibcallRoutineNames - Stores the name each libcall.
1140  ///
1141  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1142
1143  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
1144  /// of each of the comparison libcall against zero.
1145  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1146
1147protected:
1148  /// When lowering %llvm.memset this field specifies the maximum number of
1149  /// store operations that may be substituted for the call to memset. Targets
1150  /// must set this value based on the cost threshold for that target. Targets
1151  /// should assume that the memset will be done using as many of the largest
1152  /// store operations first, followed by smaller ones, if necessary, per
1153  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1154  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1155  /// store.  This only applies to setting a constant array of a constant size.
1156  /// @brief Specify maximum number of store instructions per memset call.
1157  unsigned maxStoresPerMemset;
1158
1159  /// When lowering %llvm.memcpy this field specifies the maximum number of
1160  /// store operations that may be substituted for a call to memcpy. Targets
1161  /// must set this value based on the cost threshold for that target. Targets
1162  /// should assume that the memcpy will be done using as many of the largest
1163  /// store operations first, followed by smaller ones, if necessary, per
1164  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1165  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1166  /// and one 1-byte store. This only applies to copying a constant array of
1167  /// constant size.
1168  /// @brief Specify maximum bytes of store instructions per memcpy call.
1169  unsigned maxStoresPerMemcpy;
1170
1171  /// When lowering %llvm.memmove this field specifies the maximum number of
1172  /// store instructions that may be substituted for a call to memmove. Targets
1173  /// must set this value based on the cost threshold for that target. Targets
1174  /// should assume that the memmove will be done using as many of the largest
1175  /// store operations first, followed by smaller ones, if necessary, per
1176  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1177  /// with 8-bit alignment would result in nine 1-byte stores.  This only
1178  /// applies to copying a constant array of constant size.
1179  /// @brief Specify maximum bytes of store instructions per memmove call.
1180  unsigned maxStoresPerMemmove;
1181
1182  /// This field specifies whether the target machine permits unaligned memory
1183  /// accesses.  This is used, for example, to determine the size of store
1184  /// operations when copying small arrays and other similar tasks.
1185  /// @brief Indicate whether the target permits unaligned memory accesses.
1186  bool allowUnalignedMemoryAccesses;
1187};
1188} // end llvm namespace
1189
1190#endif
1191