TargetLowering.h revision 95771afbfd604ad003fa3723cac66c9370fed55d
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/CallingConv.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Attributes.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/CodeGen/SelectionDAGNodes.h"
30#include "llvm/CodeGen/RuntimeLibcalls.h"
31#include "llvm/Support/DebugLoc.h"
32#include "llvm/Target/TargetCallingConv.h"
33#include "llvm/Target/TargetMachine.h"
34#include <climits>
35#include <map>
36#include <vector>
37
38namespace llvm {
39  class AllocaInst;
40  class APFloat;
41  class CallInst;
42  class Function;
43  class FastISel;
44  class FunctionLoweringInfo;
45  class ImmutableCallSite;
46  class MachineBasicBlock;
47  class MachineFunction;
48  class MachineFrameInfo;
49  class MachineInstr;
50  class MachineJumpTableInfo;
51  class MCContext;
52  class MCExpr;
53  class SDNode;
54  class SDValue;
55  class SelectionDAG;
56  template<typename T> class SmallVectorImpl;
57  class TargetData;
58  class TargetMachine;
59  class TargetRegisterClass;
60  class TargetLoweringObjectFile;
61  class Value;
62
63  // FIXME: should this be here?
64  namespace TLSModel {
65    enum Model {
66      GeneralDynamic,
67      LocalDynamic,
68      InitialExec,
69      LocalExec
70    };
71  }
72  TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc);
73
74
75//===----------------------------------------------------------------------===//
76/// TargetLowering - This class defines information used to lower LLVM code to
77/// legal SelectionDAG operators that the target instruction selector can accept
78/// natively.
79///
80/// This class also defines callbacks that targets must implement to lower
81/// target-specific constructs to SelectionDAG operators.
82///
83class TargetLowering {
84  TargetLowering(const TargetLowering&);  // DO NOT IMPLEMENT
85  void operator=(const TargetLowering&);  // DO NOT IMPLEMENT
86public:
87  /// LegalizeAction - This enum indicates whether operations are valid for a
88  /// target, and if not, what action should be used to make them valid.
89  enum LegalizeAction {
90    Legal,      // The target natively supports this operation.
91    Promote,    // This operation should be executed in a larger type.
92    Expand,     // Try to expand this to other ops, otherwise use a libcall.
93    Custom      // Use the LowerOperation hook to implement custom lowering.
94  };
95
96  enum BooleanContent { // How the target represents true/false values.
97    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
98    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
99    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
100  };
101
102  /// NOTE: The constructor takes ownership of TLOF.
103  explicit TargetLowering(const TargetMachine &TM,
104                          const TargetLoweringObjectFile *TLOF);
105  virtual ~TargetLowering();
106
107  const TargetMachine &getTargetMachine() const { return TM; }
108  const TargetData *getTargetData() const { return TD; }
109  const TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
110
111  bool isBigEndian() const { return !IsLittleEndian; }
112  bool isLittleEndian() const { return IsLittleEndian; }
113  MVT getPointerTy() const { return PointerTy; }
114  virtual MVT getShiftAmountTy(EVT LHSTy) const;
115
116  /// isSelectExpensive - Return true if the select operation is expensive for
117  /// this target.
118  bool isSelectExpensive() const { return SelectIsExpensive; }
119
120  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
121  /// a sequence of several shifts, adds, and multiplies for this target.
122  bool isIntDivCheap() const { return IntDivIsCheap; }
123
124  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
125  /// srl/add/sra.
126  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
127
128  /// isJumpExpensive() - Return true if Flow Control is an expensive operation
129  /// that should be avoided.
130  bool isJumpExpensive() const { return JumpIsExpensive; }
131
132  /// getSetCCResultType - Return the ValueType of the result of SETCC
133  /// operations.  Also used to obtain the target's preferred type for
134  /// the condition operand of SELECT and BRCOND nodes.  In the case of
135  /// BRCOND the argument passed is MVT::Other since there are no other
136  /// operands to get a type hint from.
137  virtual
138  MVT::SimpleValueType getSetCCResultType(EVT VT) const;
139
140  /// getCmpLibcallReturnType - Return the ValueType for comparison
141  /// libcalls. Comparions libcalls include floating point comparion calls,
142  /// and Ordered/Unordered check calls on floating point numbers.
143  virtual
144  MVT::SimpleValueType getCmpLibcallReturnType() const;
145
146  /// getBooleanContents - For targets without i1 registers, this gives the
147  /// nature of the high-bits of boolean values held in types wider than i1.
148  /// "Boolean values" are special true/false values produced by nodes like
149  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
150  /// Not to be confused with general values promoted from i1.
151  BooleanContent getBooleanContents() const { return BooleanContents;}
152
153  /// getSchedulingPreference - Return target scheduling preference.
154  Sched::Preference getSchedulingPreference() const {
155    return SchedPreferenceInfo;
156  }
157
158  /// getSchedulingPreference - Some scheduler, e.g. hybrid, can switch to
159  /// different scheduling heuristics for different nodes. This function returns
160  /// the preference (or none) for the given node.
161  virtual Sched::Preference getSchedulingPreference(SDNode *N) const {
162    return Sched::None;
163  }
164
165  /// getRegClassFor - Return the register class that should be used for the
166  /// specified value type.
167  virtual TargetRegisterClass *getRegClassFor(EVT VT) const {
168    assert(VT.isSimple() && "getRegClassFor called on illegal type!");
169    TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
170    assert(RC && "This value type is not natively supported!");
171    return RC;
172  }
173
174  /// getRepRegClassFor - Return the 'representative' register class for the
175  /// specified value type. The 'representative' register class is the largest
176  /// legal super-reg register class for the register class of the value type.
177  /// For example, on i386 the rep register class for i8, i16, and i32 are GR32;
178  /// while the rep register class is GR64 on x86_64.
179  virtual const TargetRegisterClass *getRepRegClassFor(EVT VT) const {
180    assert(VT.isSimple() && "getRepRegClassFor called on illegal type!");
181    const TargetRegisterClass *RC = RepRegClassForVT[VT.getSimpleVT().SimpleTy];
182    return RC;
183  }
184
185  /// getRepRegClassCostFor - Return the cost of the 'representative' register
186  /// class for the specified value type.
187  virtual uint8_t getRepRegClassCostFor(EVT VT) const {
188    assert(VT.isSimple() && "getRepRegClassCostFor called on illegal type!");
189    return RepRegClassCostForVT[VT.getSimpleVT().SimpleTy];
190  }
191
192  /// getRegPressureLimit - Return the register pressure "high water mark" for
193  /// the specific register class. The scheduler is in high register pressure
194  /// mode (for the specific register class) if it goes over the limit.
195  virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC,
196                                       MachineFunction &MF) const {
197    return 0;
198  }
199
200  /// isTypeLegal - Return true if the target has native support for the
201  /// specified value type.  This means that it has a register that directly
202  /// holds it without promotions or expansions.
203  bool isTypeLegal(EVT VT) const {
204    assert(!VT.isSimple() ||
205           (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
206    return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0;
207  }
208
209  class ValueTypeActionImpl {
210    /// ValueTypeActions - For each value type, keep a LegalizeAction enum
211    /// that indicates how instruction selection should deal with the type.
212    uint8_t ValueTypeActions[MVT::LAST_VALUETYPE];
213
214    LegalizeAction getExtendedTypeAction(EVT VT) const {
215      // Handle non-vector integers.
216      if (!VT.isVector()) {
217        assert(VT.isInteger() && "Unsupported extended type!");
218        unsigned BitSize = VT.getSizeInBits();
219        // First promote to a power-of-two size, then expand if necessary.
220        if (BitSize < 8 || !isPowerOf2_32(BitSize))
221          return Promote;
222        return Expand;
223      }
224
225      // Vectors with only one element are always scalarized.
226      if (VT.getVectorNumElements() == 1)
227        return Expand;
228
229      // Vectors with a number of elements that is not a power of two are always
230      // widened, for example <3 x float> -> <4 x float>.
231      if (!VT.isPow2VectorType())
232        return Promote;
233
234      // Vectors with a crazy element type are always expanded, for example
235      // <4 x i2> is expanded into two vectors of type <2 x i2>.
236      if (!VT.getVectorElementType().isSimple())
237        return Expand;
238
239      // If this type is smaller than a legal vector type then widen it,
240      // otherwise expand it.  E.g. <2 x float> -> <4 x float>.
241      MVT EltType = VT.getVectorElementType().getSimpleVT();
242      unsigned NumElts = VT.getVectorNumElements();
243      while (1) {
244        // Round up to the next power of 2.
245        NumElts = (unsigned)NextPowerOf2(NumElts);
246
247        // If there is no simple vector type with this many elements then there
248        // cannot be a larger legal vector type.  Note that this assumes that
249        // there are no skipped intermediate vector types in the simple types.
250        MVT LargerVector = MVT::getVectorVT(EltType, NumElts);
251        if (LargerVector == MVT())
252          return Expand;
253
254        // If this type is legal then widen the vector.
255        if (getTypeAction(LargerVector) == Legal)
256          return Promote;
257      }
258    }
259  public:
260    ValueTypeActionImpl() {
261      std::fill(ValueTypeActions, array_endof(ValueTypeActions), 0);
262    }
263
264    LegalizeAction getTypeAction(EVT VT) const {
265      if (!VT.isExtended())
266        return getTypeAction(VT.getSimpleVT());
267      return getExtendedTypeAction(VT);
268    }
269
270    LegalizeAction getTypeAction(MVT VT) const {
271      return (LegalizeAction)ValueTypeActions[VT.SimpleTy];
272    }
273
274    void setTypeAction(EVT VT, LegalizeAction Action) {
275      unsigned I = VT.getSimpleVT().SimpleTy;
276      ValueTypeActions[I] = Action;
277    }
278  };
279
280  const ValueTypeActionImpl &getValueTypeActions() const {
281    return ValueTypeActions;
282  }
283
284  /// getTypeAction - Return how we should legalize values of this type, either
285  /// it is already legal (return 'Legal') or we need to promote it to a larger
286  /// type (return 'Promote'), or we need to expand it into multiple registers
287  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
288  LegalizeAction getTypeAction(EVT VT) const {
289    return ValueTypeActions.getTypeAction(VT);
290  }
291  LegalizeAction getTypeAction(MVT VT) const {
292    return ValueTypeActions.getTypeAction(VT);
293  }
294
295  /// getTypeToTransformTo - For types supported by the target, this is an
296  /// identity function.  For types that must be promoted to larger types, this
297  /// returns the larger type to promote to.  For integer types that are larger
298  /// than the largest integer register, this contains one step in the expansion
299  /// to get to the smaller register. For illegal floating point types, this
300  /// returns the integer type to transform to.
301  EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
302    if (VT.isSimple()) {
303      assert((unsigned)VT.getSimpleVT().SimpleTy <
304             array_lengthof(TransformToType));
305      EVT NVT = TransformToType[VT.getSimpleVT().SimpleTy];
306      assert(getTypeAction(NVT) != Promote &&
307             "Promote may not follow Expand or Promote");
308      return NVT;
309    }
310
311    if (VT.isVector()) {
312      EVT NVT = VT.getPow2VectorType(Context);
313      if (NVT == VT) {
314        // Vector length is a power of 2 - split to half the size.
315        unsigned NumElts = VT.getVectorNumElements();
316        EVT EltVT = VT.getVectorElementType();
317        return (NumElts == 1) ?
318          EltVT : EVT::getVectorVT(Context, EltVT, NumElts / 2);
319      }
320      // Promote to a power of two size, avoiding multi-step promotion.
321      return getTypeAction(NVT) == Promote ?
322        getTypeToTransformTo(Context, NVT) : NVT;
323    } else if (VT.isInteger()) {
324      EVT NVT = VT.getRoundIntegerType(Context);
325      if (NVT == VT)      // Size is a power of two - expand to half the size.
326        return EVT::getIntegerVT(Context, VT.getSizeInBits() / 2);
327
328      // Promote to a power of two size, avoiding multi-step promotion.
329      return getTypeAction(NVT) == Promote ?
330        getTypeToTransformTo(Context, NVT) : NVT;
331    }
332    assert(0 && "Unsupported extended type!");
333    return MVT(MVT::Other); // Not reached
334  }
335
336  /// getTypeToExpandTo - For types supported by the target, this is an
337  /// identity function.  For types that must be expanded (i.e. integer types
338  /// that are larger than the largest integer register or illegal floating
339  /// point types), this returns the largest legal type it will be expanded to.
340  EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
341    assert(!VT.isVector());
342    while (true) {
343      switch (getTypeAction(VT)) {
344      case Legal:
345        return VT;
346      case Expand:
347        VT = getTypeToTransformTo(Context, VT);
348        break;
349      default:
350        assert(false && "Type is not legal nor is it to be expanded!");
351        return VT;
352      }
353    }
354    return VT;
355  }
356
357  /// getVectorTypeBreakdown - Vector types are broken down into some number of
358  /// legal first class types.  For example, EVT::v8f32 maps to 2 EVT::v4f32
359  /// with Altivec or SSE1, or 8 promoted EVT::f64 values with the X86 FP stack.
360  /// Similarly, EVT::v2i64 turns into 4 EVT::i32 values with both PPC and X86.
361  ///
362  /// This method returns the number of registers needed, and the VT for each
363  /// register.  It also returns the VT and quantity of the intermediate values
364  /// before they are promoted/expanded.
365  ///
366  unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
367                                  EVT &IntermediateVT,
368                                  unsigned &NumIntermediates,
369                                  EVT &RegisterVT) const;
370
371  /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
372  /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
373  /// this is the case, it returns true and store the intrinsic
374  /// information into the IntrinsicInfo that was passed to the function.
375  struct IntrinsicInfo {
376    unsigned     opc;         // target opcode
377    EVT          memVT;       // memory VT
378    const Value* ptrVal;      // value representing memory location
379    int          offset;      // offset off of ptrVal
380    unsigned     align;       // alignment
381    bool         vol;         // is volatile?
382    bool         readMem;     // reads memory?
383    bool         writeMem;    // writes memory?
384  };
385
386  virtual bool getTgtMemIntrinsic(IntrinsicInfo &Info,
387                                  const CallInst &I, unsigned Intrinsic) const {
388    return false;
389  }
390
391  /// isFPImmLegal - Returns true if the target can instruction select the
392  /// specified FP immediate natively. If false, the legalizer will materialize
393  /// the FP immediate as a load from a constant pool.
394  virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const {
395    return false;
396  }
397
398  /// isShuffleMaskLegal - Targets can use this to indicate that they only
399  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
400  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
401  /// are assumed to be legal.
402  virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
403                                  EVT VT) const {
404    return true;
405  }
406
407  /// canOpTrap - Returns true if the operation can trap for the value type.
408  /// VT must be a legal type. By default, we optimistically assume most
409  /// operations don't trap except for divide and remainder.
410  virtual bool canOpTrap(unsigned Op, EVT VT) const;
411
412  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
413  /// used by Targets can use this to indicate if there is a suitable
414  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
415  /// pool entry.
416  virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
417                                      EVT VT) const {
418    return false;
419  }
420
421  /// getOperationAction - Return how this operation should be treated: either
422  /// it is legal, needs to be promoted to a larger size, needs to be
423  /// expanded to some other code sequence, or the target has a custom expander
424  /// for it.
425  LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
426    if (VT.isExtended()) return Expand;
427    assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
428    unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
429    return (LegalizeAction)OpActions[I][Op];
430  }
431
432  /// isOperationLegalOrCustom - Return true if the specified operation is
433  /// legal on this target or can be made legal with custom lowering. This
434  /// is used to help guide high-level lowering decisions.
435  bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
436    return (VT == MVT::Other || isTypeLegal(VT)) &&
437      (getOperationAction(Op, VT) == Legal ||
438       getOperationAction(Op, VT) == Custom);
439  }
440
441  /// isOperationLegal - Return true if the specified operation is legal on this
442  /// target.
443  bool isOperationLegal(unsigned Op, EVT VT) const {
444    return (VT == MVT::Other || isTypeLegal(VT)) &&
445           getOperationAction(Op, VT) == Legal;
446  }
447
448  /// getLoadExtAction - Return how this load with extension should be treated:
449  /// either it is legal, needs to be promoted to a larger size, needs to be
450  /// expanded to some other code sequence, or the target has a custom expander
451  /// for it.
452  LegalizeAction getLoadExtAction(unsigned ExtType, EVT VT) const {
453    assert(ExtType < ISD::LAST_LOADEXT_TYPE &&
454           VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
455           "Table isn't big enough!");
456    return (LegalizeAction)LoadExtActions[VT.getSimpleVT().SimpleTy][ExtType];
457  }
458
459  /// isLoadExtLegal - Return true if the specified load with extension is legal
460  /// on this target.
461  bool isLoadExtLegal(unsigned ExtType, EVT VT) const {
462    return VT.isSimple() &&
463      (getLoadExtAction(ExtType, VT) == Legal ||
464       getLoadExtAction(ExtType, VT) == Custom);
465  }
466
467  /// getTruncStoreAction - Return how this store with truncation should be
468  /// treated: either it is legal, needs to be promoted to a larger size, needs
469  /// to be expanded to some other code sequence, or the target has a custom
470  /// expander for it.
471  LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const {
472    assert(ValVT.getSimpleVT() < MVT::LAST_VALUETYPE &&
473           MemVT.getSimpleVT() < MVT::LAST_VALUETYPE &&
474           "Table isn't big enough!");
475    return (LegalizeAction)TruncStoreActions[ValVT.getSimpleVT().SimpleTy]
476                                            [MemVT.getSimpleVT().SimpleTy];
477  }
478
479  /// isTruncStoreLegal - Return true if the specified store with truncation is
480  /// legal on this target.
481  bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
482    return isTypeLegal(ValVT) && MemVT.isSimple() &&
483      (getTruncStoreAction(ValVT, MemVT) == Legal ||
484       getTruncStoreAction(ValVT, MemVT) == Custom);
485  }
486
487  /// getIndexedLoadAction - Return how the indexed load should be treated:
488  /// either it is legal, needs to be promoted to a larger size, needs to be
489  /// expanded to some other code sequence, or the target has a custom expander
490  /// for it.
491  LegalizeAction
492  getIndexedLoadAction(unsigned IdxMode, EVT VT) const {
493    assert(IdxMode < ISD::LAST_INDEXED_MODE &&
494           VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
495           "Table isn't big enough!");
496    unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
497    return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
498  }
499
500  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
501  /// on this target.
502  bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
503    return VT.isSimple() &&
504      (getIndexedLoadAction(IdxMode, VT) == Legal ||
505       getIndexedLoadAction(IdxMode, VT) == Custom);
506  }
507
508  /// getIndexedStoreAction - Return how the indexed store should be treated:
509  /// either it is legal, needs to be promoted to a larger size, needs to be
510  /// expanded to some other code sequence, or the target has a custom expander
511  /// for it.
512  LegalizeAction
513  getIndexedStoreAction(unsigned IdxMode, EVT VT) const {
514    assert(IdxMode < ISD::LAST_INDEXED_MODE &&
515           VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
516           "Table isn't big enough!");
517    unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
518    return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
519  }
520
521  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
522  /// on this target.
523  bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
524    return VT.isSimple() &&
525      (getIndexedStoreAction(IdxMode, VT) == Legal ||
526       getIndexedStoreAction(IdxMode, VT) == Custom);
527  }
528
529  /// getCondCodeAction - Return how the condition code should be treated:
530  /// either it is legal, needs to be expanded to some other code sequence,
531  /// or the target has a custom expander for it.
532  LegalizeAction
533  getCondCodeAction(ISD::CondCode CC, EVT VT) const {
534    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
535           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(CondCodeActions[0])*4 &&
536           "Table isn't big enough!");
537    LegalizeAction Action = (LegalizeAction)
538      ((CondCodeActions[CC] >> (2*VT.getSimpleVT().SimpleTy)) & 3);
539    assert(Action != Promote && "Can't promote condition code!");
540    return Action;
541  }
542
543  /// isCondCodeLegal - Return true if the specified condition code is legal
544  /// on this target.
545  bool isCondCodeLegal(ISD::CondCode CC, EVT VT) const {
546    return getCondCodeAction(CC, VT) == Legal ||
547           getCondCodeAction(CC, VT) == Custom;
548  }
549
550
551  /// getTypeToPromoteTo - If the action for this operation is to promote, this
552  /// method returns the ValueType to promote to.
553  EVT getTypeToPromoteTo(unsigned Op, EVT VT) const {
554    assert(getOperationAction(Op, VT) == Promote &&
555           "This operation isn't promoted!");
556
557    // See if this has an explicit type specified.
558    std::map<std::pair<unsigned, MVT::SimpleValueType>,
559             MVT::SimpleValueType>::const_iterator PTTI =
560      PromoteToType.find(std::make_pair(Op, VT.getSimpleVT().SimpleTy));
561    if (PTTI != PromoteToType.end()) return PTTI->second;
562
563    assert((VT.isInteger() || VT.isFloatingPoint()) &&
564           "Cannot autopromote this type, add it with AddPromotedToType.");
565
566    EVT NVT = VT;
567    do {
568      NVT = (MVT::SimpleValueType)(NVT.getSimpleVT().SimpleTy+1);
569      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
570             "Didn't find type to promote to!");
571    } while (!isTypeLegal(NVT) ||
572              getOperationAction(Op, NVT) == Promote);
573    return NVT;
574  }
575
576  /// getValueType - Return the EVT corresponding to this LLVM type.
577  /// This is fixed by the LLVM operations except for the pointer size.  If
578  /// AllowUnknown is true, this will return MVT::Other for types with no EVT
579  /// counterpart (e.g. structs), otherwise it will assert.
580  EVT getValueType(const Type *Ty, bool AllowUnknown = false) const {
581    EVT VT = EVT::getEVT(Ty, AllowUnknown);
582    return VT == MVT::iPTR ? PointerTy : VT;
583  }
584
585  /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
586  /// function arguments in the caller parameter area.  This is the actual
587  /// alignment, not its logarithm.
588  virtual unsigned getByValTypeAlignment(const Type *Ty) const;
589
590  /// getRegisterType - Return the type of registers that this ValueType will
591  /// eventually require.
592  EVT getRegisterType(MVT VT) const {
593    assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
594    return RegisterTypeForVT[VT.SimpleTy];
595  }
596
597  /// getRegisterType - Return the type of registers that this ValueType will
598  /// eventually require.
599  EVT getRegisterType(LLVMContext &Context, EVT VT) const {
600    if (VT.isSimple()) {
601      assert((unsigned)VT.getSimpleVT().SimpleTy <
602                array_lengthof(RegisterTypeForVT));
603      return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
604    }
605    if (VT.isVector()) {
606      EVT VT1, RegisterVT;
607      unsigned NumIntermediates;
608      (void)getVectorTypeBreakdown(Context, VT, VT1,
609                                   NumIntermediates, RegisterVT);
610      return RegisterVT;
611    }
612    if (VT.isInteger()) {
613      return getRegisterType(Context, getTypeToTransformTo(Context, VT));
614    }
615    assert(0 && "Unsupported extended type!");
616    return EVT(MVT::Other); // Not reached
617  }
618
619  /// getNumRegisters - Return the number of registers that this ValueType will
620  /// eventually require.  This is one for any types promoted to live in larger
621  /// registers, but may be more than one for types (like i64) that are split
622  /// into pieces.  For types like i140, which are first promoted then expanded,
623  /// it is the number of registers needed to hold all the bits of the original
624  /// type.  For an i140 on a 32 bit machine this means 5 registers.
625  unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
626    if (VT.isSimple()) {
627      assert((unsigned)VT.getSimpleVT().SimpleTy <
628                array_lengthof(NumRegistersForVT));
629      return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
630    }
631    if (VT.isVector()) {
632      EVT VT1, VT2;
633      unsigned NumIntermediates;
634      return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
635    }
636    if (VT.isInteger()) {
637      unsigned BitWidth = VT.getSizeInBits();
638      unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
639      return (BitWidth + RegWidth - 1) / RegWidth;
640    }
641    assert(0 && "Unsupported extended type!");
642    return 0; // Not reached
643  }
644
645  /// ShouldShrinkFPConstant - If true, then instruction selection should
646  /// seek to shrink the FP constant of the specified type to a smaller type
647  /// in order to save space and / or reduce runtime.
648  virtual bool ShouldShrinkFPConstant(EVT VT) const { return true; }
649
650  /// hasTargetDAGCombine - If true, the target has custom DAG combine
651  /// transformations that it can perform for the specified node.
652  bool hasTargetDAGCombine(ISD::NodeType NT) const {
653    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
654    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
655  }
656
657  /// This function returns the maximum number of store operations permitted
658  /// to replace a call to llvm.memset. The value is set by the target at the
659  /// performance threshold for such a replacement. If OptSize is true,
660  /// return the limit for functions that have OptSize attribute.
661  /// @brief Get maximum # of store operations permitted for llvm.memset
662  unsigned getMaxStoresPerMemset(bool OptSize) const {
663    return OptSize ? maxStoresPerMemsetOptSize : maxStoresPerMemset;
664  }
665
666  /// This function returns the maximum number of store operations permitted
667  /// to replace a call to llvm.memcpy. The value is set by the target at the
668  /// performance threshold for such a replacement. If OptSize is true,
669  /// return the limit for functions that have OptSize attribute.
670  /// @brief Get maximum # of store operations permitted for llvm.memcpy
671  unsigned getMaxStoresPerMemcpy(bool OptSize) const {
672    return OptSize ? maxStoresPerMemcpyOptSize : maxStoresPerMemcpy;
673  }
674
675  /// This function returns the maximum number of store operations permitted
676  /// to replace a call to llvm.memmove. The value is set by the target at the
677  /// performance threshold for such a replacement. If OptSize is true,
678  /// return the limit for functions that have OptSize attribute.
679  /// @brief Get maximum # of store operations permitted for llvm.memmove
680  unsigned getMaxStoresPerMemmove(bool OptSize) const {
681    return OptSize ? maxStoresPerMemmoveOptSize : maxStoresPerMemmove;
682  }
683
684  /// This function returns true if the target allows unaligned memory accesses.
685  /// of the specified type. This is used, for example, in situations where an
686  /// array copy/move/set is  converted to a sequence of store operations. It's
687  /// use helps to ensure that such replacements don't generate code that causes
688  /// an alignment error  (trap) on the target machine.
689  /// @brief Determine if the target supports unaligned memory accesses.
690  virtual bool allowsUnalignedMemoryAccesses(EVT VT) const {
691    return false;
692  }
693
694  /// This function returns true if the target would benefit from code placement
695  /// optimization.
696  /// @brief Determine if the target should perform code placement optimization.
697  bool shouldOptimizeCodePlacement() const {
698    return benefitFromCodePlacementOpt;
699  }
700
701  /// getOptimalMemOpType - Returns the target specific optimal type for load
702  /// and store operations as a result of memset, memcpy, and memmove
703  /// lowering. If DstAlign is zero that means it's safe to destination
704  /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
705  /// means there isn't a need to check it against alignment requirement,
706  /// probably because the source does not need to be loaded. If
707  /// 'NonScalarIntSafe' is true, that means it's safe to return a
708  /// non-scalar-integer type, e.g. empty string source, constant, or loaded
709  /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
710  /// constant so it does not need to be loaded.
711  /// It returns EVT::Other if the type should be determined using generic
712  /// target-independent logic.
713  virtual EVT getOptimalMemOpType(uint64_t Size,
714                                  unsigned DstAlign, unsigned SrcAlign,
715                                  bool NonScalarIntSafe, bool MemcpyStrSrc,
716                                  MachineFunction &MF) const {
717    return MVT::Other;
718  }
719
720  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
721  /// to implement llvm.setjmp.
722  bool usesUnderscoreSetJmp() const {
723    return UseUnderscoreSetJmp;
724  }
725
726  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
727  /// to implement llvm.longjmp.
728  bool usesUnderscoreLongJmp() const {
729    return UseUnderscoreLongJmp;
730  }
731
732  /// getStackPointerRegisterToSaveRestore - If a physical register, this
733  /// specifies the register that llvm.savestack/llvm.restorestack should save
734  /// and restore.
735  unsigned getStackPointerRegisterToSaveRestore() const {
736    return StackPointerRegisterToSaveRestore;
737  }
738
739  /// getExceptionAddressRegister - If a physical register, this returns
740  /// the register that receives the exception address on entry to a landing
741  /// pad.
742  unsigned getExceptionAddressRegister() const {
743    return ExceptionPointerRegister;
744  }
745
746  /// getExceptionSelectorRegister - If a physical register, this returns
747  /// the register that receives the exception typeid on entry to a landing
748  /// pad.
749  unsigned getExceptionSelectorRegister() const {
750    return ExceptionSelectorRegister;
751  }
752
753  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
754  /// set, the default is 200)
755  unsigned getJumpBufSize() const {
756    return JumpBufSize;
757  }
758
759  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
760  /// (if never set, the default is 0)
761  unsigned getJumpBufAlignment() const {
762    return JumpBufAlignment;
763  }
764
765  /// getMinStackArgumentAlignment - return the minimum stack alignment of an
766  /// argument.
767  unsigned getMinStackArgumentAlignment() const {
768    return MinStackArgumentAlignment;
769  }
770
771  /// getPrefLoopAlignment - return the preferred loop alignment.
772  ///
773  unsigned getPrefLoopAlignment() const {
774    return PrefLoopAlignment;
775  }
776
777  /// getShouldFoldAtomicFences - return whether the combiner should fold
778  /// fence MEMBARRIER instructions into the atomic intrinsic instructions.
779  ///
780  bool getShouldFoldAtomicFences() const {
781    return ShouldFoldAtomicFences;
782  }
783
784  /// getPreIndexedAddressParts - returns true by value, base pointer and
785  /// offset pointer and addressing mode by reference if the node's address
786  /// can be legally represented as pre-indexed load / store address.
787  virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
788                                         SDValue &Offset,
789                                         ISD::MemIndexedMode &AM,
790                                         SelectionDAG &DAG) const {
791    return false;
792  }
793
794  /// getPostIndexedAddressParts - returns true by value, base pointer and
795  /// offset pointer and addressing mode by reference if this node can be
796  /// combined with a load / store to form a post-indexed load / store.
797  virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
798                                          SDValue &Base, SDValue &Offset,
799                                          ISD::MemIndexedMode &AM,
800                                          SelectionDAG &DAG) const {
801    return false;
802  }
803
804  /// getJumpTableEncoding - Return the entry encoding for a jump table in the
805  /// current function.  The returned value is a member of the
806  /// MachineJumpTableInfo::JTEntryKind enum.
807  virtual unsigned getJumpTableEncoding() const;
808
809  virtual const MCExpr *
810  LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
811                            const MachineBasicBlock *MBB, unsigned uid,
812                            MCContext &Ctx) const {
813    assert(0 && "Need to implement this hook if target has custom JTIs");
814    return 0;
815  }
816
817  /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
818  /// jumptable.
819  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
820                                           SelectionDAG &DAG) const;
821
822  /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
823  /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
824  /// MCExpr.
825  virtual const MCExpr *
826  getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
827                               unsigned JTI, MCContext &Ctx) const;
828
829  /// isOffsetFoldingLegal - Return true if folding a constant offset
830  /// with the given GlobalAddress is legal.  It is frequently not legal in
831  /// PIC relocation models.
832  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
833
834  /// getFunctionAlignment - Return the Log2 alignment of this function.
835  virtual unsigned getFunctionAlignment(const Function *) const = 0;
836
837  /// getStackCookieLocation - Return true if the target stores stack
838  /// protector cookies at a fixed offset in some non-standard address
839  /// space, and populates the address space and offset as
840  /// appropriate.
841  virtual bool getStackCookieLocation(unsigned &AddressSpace, unsigned &Offset) const {
842    return false;
843  }
844
845  /// getMaximalGlobalOffset - Returns the maximal possible offset which can be
846  /// used for loads / stores from the global.
847  virtual unsigned getMaximalGlobalOffset() const {
848    return 0;
849  }
850
851  //===--------------------------------------------------------------------===//
852  // TargetLowering Optimization Methods
853  //
854
855  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
856  /// SDValues for returning information from TargetLowering to its clients
857  /// that want to combine
858  struct TargetLoweringOpt {
859    SelectionDAG &DAG;
860    bool LegalTys;
861    bool LegalOps;
862    SDValue Old;
863    SDValue New;
864
865    explicit TargetLoweringOpt(SelectionDAG &InDAG,
866                               bool LT, bool LO) :
867      DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
868
869    bool LegalTypes() const { return LegalTys; }
870    bool LegalOperations() const { return LegalOps; }
871
872    bool CombineTo(SDValue O, SDValue N) {
873      Old = O;
874      New = N;
875      return true;
876    }
877
878    /// ShrinkDemandedConstant - Check to see if the specified operand of the
879    /// specified instruction is a constant integer.  If so, check to see if
880    /// there are any bits set in the constant that are not demanded.  If so,
881    /// shrink the constant and return true.
882    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
883
884    /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
885    /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
886    /// cast, but it could be generalized for targets with other types of
887    /// implicit widening casts.
888    bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
889                          DebugLoc dl);
890  };
891
892  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
893  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
894  /// use this information to simplify Op, create a new simplified DAG node and
895  /// return true, returning the original and new nodes in Old and New.
896  /// Otherwise, analyze the expression and return a mask of KnownOne and
897  /// KnownZero bits for the expression (used to simplify the caller).
898  /// The KnownZero/One bits may only be accurate for those bits in the
899  /// DemandedMask.
900  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
901                            APInt &KnownZero, APInt &KnownOne,
902                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
903
904  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
905  /// Mask are known to be either zero or one and return them in the
906  /// KnownZero/KnownOne bitsets.
907  virtual void computeMaskedBitsForTargetNode(const SDValue Op,
908                                              const APInt &Mask,
909                                              APInt &KnownZero,
910                                              APInt &KnownOne,
911                                              const SelectionDAG &DAG,
912                                              unsigned Depth = 0) const;
913
914  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
915  /// targets that want to expose additional information about sign bits to the
916  /// DAG Combiner.
917  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
918                                                   unsigned Depth = 0) const;
919
920  struct DAGCombinerInfo {
921    void *DC;  // The DAG Combiner object.
922    bool BeforeLegalize;
923    bool BeforeLegalizeOps;
924    bool CalledByLegalizer;
925  public:
926    SelectionDAG &DAG;
927
928    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool blo, bool cl, void *dc)
929      : DC(dc), BeforeLegalize(bl), BeforeLegalizeOps(blo),
930        CalledByLegalizer(cl), DAG(dag) {}
931
932    bool isBeforeLegalize() const { return BeforeLegalize; }
933    bool isBeforeLegalizeOps() const { return BeforeLegalizeOps; }
934    bool isCalledByLegalizer() const { return CalledByLegalizer; }
935
936    void AddToWorklist(SDNode *N);
937    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
938                      bool AddTo = true);
939    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
940    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
941
942    void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
943  };
944
945  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
946  /// and cc. If it is unable to simplify it, return a null SDValue.
947  SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
948                          ISD::CondCode Cond, bool foldBooleans,
949                          DAGCombinerInfo &DCI, DebugLoc dl) const;
950
951  /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
952  /// node is a GlobalAddress + offset.
953  virtual bool
954  isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
955
956  /// PerformDAGCombine - This method will be invoked for all target nodes and
957  /// for any target-independent nodes that the target has registered with
958  /// invoke it for.
959  ///
960  /// The semantics are as follows:
961  /// Return Value:
962  ///   SDValue.Val == 0   - No change was made
963  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
964  ///   otherwise          - N should be replaced by the returned Operand.
965  ///
966  /// In addition, methods provided by DAGCombinerInfo may be used to perform
967  /// more complex transformations.
968  ///
969  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
970
971  /// isTypeDesirableForOp - Return true if the target has native support for
972  /// the specified value type and it is 'desirable' to use the type for the
973  /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
974  /// instruction encodings are longer and some i16 instructions are slow.
975  virtual bool isTypeDesirableForOp(unsigned Opc, EVT VT) const {
976    // By default, assume all legal types are desirable.
977    return isTypeLegal(VT);
978  }
979
980  /// isDesirableToPromoteOp - Return true if it is profitable for dag combiner
981  /// to transform a floating point op of specified opcode to a equivalent op of
982  /// an integer type. e.g. f32 load -> i32 load can be profitable on ARM.
983  virtual bool isDesirableToTransformToIntegerOp(unsigned Opc, EVT VT) const {
984    return false;
985  }
986
987  /// IsDesirableToPromoteOp - This method query the target whether it is
988  /// beneficial for dag combiner to promote the specified node. If true, it
989  /// should return the desired promotion type by reference.
990  virtual bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
991    return false;
992  }
993
994  //===--------------------------------------------------------------------===//
995  // TargetLowering Configuration Methods - These methods should be invoked by
996  // the derived class constructor to configure this object for the target.
997  //
998
999protected:
1000  /// setBooleanContents - Specify how the target extends the result of a
1001  /// boolean value from i1 to a wider type.  See getBooleanContents.
1002  void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
1003
1004  /// setSchedulingPreference - Specify the target scheduling preference.
1005  void setSchedulingPreference(Sched::Preference Pref) {
1006    SchedPreferenceInfo = Pref;
1007  }
1008
1009  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
1010  /// use _setjmp to implement llvm.setjmp or the non _ version.
1011  /// Defaults to false.
1012  void setUseUnderscoreSetJmp(bool Val) {
1013    UseUnderscoreSetJmp = Val;
1014  }
1015
1016  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
1017  /// use _longjmp to implement llvm.longjmp or the non _ version.
1018  /// Defaults to false.
1019  void setUseUnderscoreLongJmp(bool Val) {
1020    UseUnderscoreLongJmp = Val;
1021  }
1022
1023  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
1024  /// specifies the register that llvm.savestack/llvm.restorestack should save
1025  /// and restore.
1026  void setStackPointerRegisterToSaveRestore(unsigned R) {
1027    StackPointerRegisterToSaveRestore = R;
1028  }
1029
1030  /// setExceptionPointerRegister - If set to a physical register, this sets
1031  /// the register that receives the exception address on entry to a landing
1032  /// pad.
1033  void setExceptionPointerRegister(unsigned R) {
1034    ExceptionPointerRegister = R;
1035  }
1036
1037  /// setExceptionSelectorRegister - If set to a physical register, this sets
1038  /// the register that receives the exception typeid on entry to a landing
1039  /// pad.
1040  void setExceptionSelectorRegister(unsigned R) {
1041    ExceptionSelectorRegister = R;
1042  }
1043
1044  /// SelectIsExpensive - Tells the code generator not to expand operations
1045  /// into sequences that use the select operations if possible.
1046  void setSelectIsExpensive(bool isExpensive = true) {
1047    SelectIsExpensive = isExpensive;
1048  }
1049
1050  /// JumpIsExpensive - Tells the code generator not to expand sequence of
1051  /// operations into a seperate sequences that increases the amount of
1052  /// flow control.
1053  void setJumpIsExpensive(bool isExpensive = true) {
1054    JumpIsExpensive = isExpensive;
1055  }
1056
1057  /// setIntDivIsCheap - Tells the code generator that integer divide is
1058  /// expensive, and if possible, should be replaced by an alternate sequence
1059  /// of instructions not containing an integer divide.
1060  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
1061
1062  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
1063  /// srl/add/sra for a signed divide by power of two, and let the target handle
1064  /// it.
1065  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
1066
1067  /// addRegisterClass - Add the specified register class as an available
1068  /// regclass for the specified value type.  This indicates the selector can
1069  /// handle values of that class natively.
1070  void addRegisterClass(EVT VT, TargetRegisterClass *RC) {
1071    assert((unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
1072    AvailableRegClasses.push_back(std::make_pair(VT, RC));
1073    RegClassForVT[VT.getSimpleVT().SimpleTy] = RC;
1074  }
1075
1076  /// findRepresentativeClass - Return the largest legal super-reg register class
1077  /// of the register class for the specified type and its associated "cost".
1078  virtual std::pair<const TargetRegisterClass*, uint8_t>
1079  findRepresentativeClass(EVT VT) const;
1080
1081  /// computeRegisterProperties - Once all of the register classes are added,
1082  /// this allows us to compute derived properties we expose.
1083  void computeRegisterProperties();
1084
1085  /// setOperationAction - Indicate that the specified operation does not work
1086  /// with the specified type and indicate what to do about it.
1087  void setOperationAction(unsigned Op, MVT VT,
1088                          LegalizeAction Action) {
1089    assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
1090    OpActions[(unsigned)VT.SimpleTy][Op] = (uint8_t)Action;
1091  }
1092
1093  /// setLoadExtAction - Indicate that the specified load with extension does
1094  /// not work with the specified type and indicate what to do about it.
1095  void setLoadExtAction(unsigned ExtType, MVT VT,
1096                        LegalizeAction Action) {
1097    assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT < MVT::LAST_VALUETYPE &&
1098           "Table isn't big enough!");
1099    LoadExtActions[VT.SimpleTy][ExtType] = (uint8_t)Action;
1100  }
1101
1102  /// setTruncStoreAction - Indicate that the specified truncating store does
1103  /// not work with the specified type and indicate what to do about it.
1104  void setTruncStoreAction(MVT ValVT, MVT MemVT,
1105                           LegalizeAction Action) {
1106    assert(ValVT < MVT::LAST_VALUETYPE && MemVT < MVT::LAST_VALUETYPE &&
1107           "Table isn't big enough!");
1108    TruncStoreActions[ValVT.SimpleTy][MemVT.SimpleTy] = (uint8_t)Action;
1109  }
1110
1111  /// setIndexedLoadAction - Indicate that the specified indexed load does or
1112  /// does not work with the specified type and indicate what to do abort
1113  /// it. NOTE: All indexed mode loads are initialized to Expand in
1114  /// TargetLowering.cpp
1115  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
1116                            LegalizeAction Action) {
1117    assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
1118           (unsigned)Action < 0xf && "Table isn't big enough!");
1119    // Load action are kept in the upper half.
1120    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
1121    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
1122  }
1123
1124  /// setIndexedStoreAction - Indicate that the specified indexed store does or
1125  /// does not work with the specified type and indicate what to do about
1126  /// it. NOTE: All indexed mode stores are initialized to Expand in
1127  /// TargetLowering.cpp
1128  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
1129                             LegalizeAction Action) {
1130    assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
1131           (unsigned)Action < 0xf && "Table isn't big enough!");
1132    // Store action are kept in the lower half.
1133    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
1134    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
1135  }
1136
1137  /// setCondCodeAction - Indicate that the specified condition code is or isn't
1138  /// supported on the target and indicate what to do about it.
1139  void setCondCodeAction(ISD::CondCode CC, MVT VT,
1140                         LegalizeAction Action) {
1141    assert(VT < MVT::LAST_VALUETYPE &&
1142           (unsigned)CC < array_lengthof(CondCodeActions) &&
1143           "Table isn't big enough!");
1144    CondCodeActions[(unsigned)CC] &= ~(uint64_t(3UL)  << VT.SimpleTy*2);
1145    CondCodeActions[(unsigned)CC] |= (uint64_t)Action << VT.SimpleTy*2;
1146  }
1147
1148  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
1149  /// promotion code defaults to trying a larger integer/fp until it can find
1150  /// one that works.  If that default is insufficient, this method can be used
1151  /// by the target to override the default.
1152  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1153    PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
1154  }
1155
1156  /// setTargetDAGCombine - Targets should invoke this method for each target
1157  /// independent node that they want to provide a custom DAG combiner for by
1158  /// implementing the PerformDAGCombine virtual method.
1159  void setTargetDAGCombine(ISD::NodeType NT) {
1160    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1161    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1162  }
1163
1164  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
1165  /// bytes); default is 200
1166  void setJumpBufSize(unsigned Size) {
1167    JumpBufSize = Size;
1168  }
1169
1170  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
1171  /// alignment (in bytes); default is 0
1172  void setJumpBufAlignment(unsigned Align) {
1173    JumpBufAlignment = Align;
1174  }
1175
1176  /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
1177  /// alignment is zero, it means the target does not care about loop alignment.
1178  void setPrefLoopAlignment(unsigned Align) {
1179    PrefLoopAlignment = Align;
1180  }
1181
1182  /// setMinStackArgumentAlignment - Set the minimum stack alignment of an
1183  /// argument.
1184  void setMinStackArgumentAlignment(unsigned Align) {
1185    MinStackArgumentAlignment = Align;
1186  }
1187
1188  /// setShouldFoldAtomicFences - Set if the target's implementation of the
1189  /// atomic operation intrinsics includes locking. Default is false.
1190  void setShouldFoldAtomicFences(bool fold) {
1191    ShouldFoldAtomicFences = fold;
1192  }
1193
1194public:
1195  //===--------------------------------------------------------------------===//
1196  // Lowering methods - These methods must be implemented by targets so that
1197  // the SelectionDAGLowering code knows how to lower these.
1198  //
1199
1200  /// LowerFormalArguments - This hook must be implemented to lower the
1201  /// incoming (formal) arguments, described by the Ins array, into the
1202  /// specified DAG. The implementation should fill in the InVals array
1203  /// with legal-type argument values, and return the resulting token
1204  /// chain value.
1205  ///
1206  virtual SDValue
1207    LowerFormalArguments(SDValue Chain,
1208                         CallingConv::ID CallConv, bool isVarArg,
1209                         const SmallVectorImpl<ISD::InputArg> &Ins,
1210                         DebugLoc dl, SelectionDAG &DAG,
1211                         SmallVectorImpl<SDValue> &InVals) const {
1212    assert(0 && "Not Implemented");
1213    return SDValue();    // this is here to silence compiler errors
1214  }
1215
1216  /// LowerCallTo - This function lowers an abstract call to a function into an
1217  /// actual call.  This returns a pair of operands.  The first element is the
1218  /// return value for the function (if RetTy is not VoidTy).  The second
1219  /// element is the outgoing token chain. It calls LowerCall to do the actual
1220  /// lowering.
1221  struct ArgListEntry {
1222    SDValue Node;
1223    const Type* Ty;
1224    bool isSExt  : 1;
1225    bool isZExt  : 1;
1226    bool isInReg : 1;
1227    bool isSRet  : 1;
1228    bool isNest  : 1;
1229    bool isByVal : 1;
1230    uint16_t Alignment;
1231
1232    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
1233      isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
1234  };
1235  typedef std::vector<ArgListEntry> ArgListTy;
1236  std::pair<SDValue, SDValue>
1237  LowerCallTo(SDValue Chain, const Type *RetTy, bool RetSExt, bool RetZExt,
1238              bool isVarArg, bool isInreg, unsigned NumFixedArgs,
1239              CallingConv::ID CallConv, bool isTailCall,
1240              bool isReturnValueUsed, SDValue Callee, ArgListTy &Args,
1241              SelectionDAG &DAG, DebugLoc dl) const;
1242
1243  /// LowerCall - This hook must be implemented to lower calls into the
1244  /// the specified DAG. The outgoing arguments to the call are described
1245  /// by the Outs array, and the values to be returned by the call are
1246  /// described by the Ins array. The implementation should fill in the
1247  /// InVals array with legal-type return values from the call, and return
1248  /// the resulting token chain value.
1249  virtual SDValue
1250    LowerCall(SDValue Chain, SDValue Callee,
1251              CallingConv::ID CallConv, bool isVarArg, bool &isTailCall,
1252              const SmallVectorImpl<ISD::OutputArg> &Outs,
1253              const SmallVectorImpl<SDValue> &OutVals,
1254              const SmallVectorImpl<ISD::InputArg> &Ins,
1255              DebugLoc dl, SelectionDAG &DAG,
1256              SmallVectorImpl<SDValue> &InVals) const {
1257    assert(0 && "Not Implemented");
1258    return SDValue();    // this is here to silence compiler errors
1259  }
1260
1261  /// CanLowerReturn - This hook should be implemented to check whether the
1262  /// return values described by the Outs array can fit into the return
1263  /// registers.  If false is returned, an sret-demotion is performed.
1264  ///
1265  virtual bool CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1266               const SmallVectorImpl<ISD::OutputArg> &Outs,
1267               LLVMContext &Context) const
1268  {
1269    // Return true by default to get preexisting behavior.
1270    return true;
1271  }
1272
1273  /// LowerReturn - This hook must be implemented to lower outgoing
1274  /// return values, described by the Outs array, into the specified
1275  /// DAG. The implementation should return the resulting token chain
1276  /// value.
1277  ///
1278  virtual SDValue
1279    LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1280                const SmallVectorImpl<ISD::OutputArg> &Outs,
1281                const SmallVectorImpl<SDValue> &OutVals,
1282                DebugLoc dl, SelectionDAG &DAG) const {
1283    assert(0 && "Not Implemented");
1284    return SDValue();    // this is here to silence compiler errors
1285  }
1286
1287  /// isUsedByReturnOnly - Return true if result of the specified node is used
1288  /// by a return node only. This is used to determine whether it is possible
1289  /// to codegen a libcall as tail call at legalization time.
1290  virtual bool isUsedByReturnOnly(SDNode *N) const {
1291    return false;
1292  }
1293
1294  /// LowerOperationWrapper - This callback is invoked by the type legalizer
1295  /// to legalize nodes with an illegal operand type but legal result types.
1296  /// It replaces the LowerOperation callback in the type Legalizer.
1297  /// The reason we can not do away with LowerOperation entirely is that
1298  /// LegalizeDAG isn't yet ready to use this callback.
1299  /// TODO: Consider merging with ReplaceNodeResults.
1300
1301  /// The target places new result values for the node in Results (their number
1302  /// and types must exactly match those of the original return values of
1303  /// the node), or leaves Results empty, which indicates that the node is not
1304  /// to be custom lowered after all.
1305  /// The default implementation calls LowerOperation.
1306  virtual void LowerOperationWrapper(SDNode *N,
1307                                     SmallVectorImpl<SDValue> &Results,
1308                                     SelectionDAG &DAG) const;
1309
1310  /// LowerOperation - This callback is invoked for operations that are
1311  /// unsupported by the target, which are registered to use 'custom' lowering,
1312  /// and whose defined values are all legal.
1313  /// If the target has no operations that require custom lowering, it need not
1314  /// implement this.  The default implementation of this aborts.
1315  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
1316
1317  /// ReplaceNodeResults - This callback is invoked when a node result type is
1318  /// illegal for the target, and the operation was registered to use 'custom'
1319  /// lowering for that result type.  The target places new result values for
1320  /// the node in Results (their number and types must exactly match those of
1321  /// the original return values of the node), or leaves Results empty, which
1322  /// indicates that the node is not to be custom lowered after all.
1323  ///
1324  /// If the target has no operations that require custom lowering, it need not
1325  /// implement this.  The default implementation aborts.
1326  virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
1327                                  SelectionDAG &DAG) const {
1328    assert(0 && "ReplaceNodeResults not implemented for this target!");
1329  }
1330
1331  /// getTargetNodeName() - This method returns the name of a target specific
1332  /// DAG node.
1333  virtual const char *getTargetNodeName(unsigned Opcode) const;
1334
1335  /// createFastISel - This method returns a target specific FastISel object,
1336  /// or null if the target does not support "fast" ISel.
1337  virtual FastISel *createFastISel(FunctionLoweringInfo &funcInfo) const {
1338    return 0;
1339  }
1340
1341  //===--------------------------------------------------------------------===//
1342  // Inline Asm Support hooks
1343  //
1344
1345  /// ExpandInlineAsm - This hook allows the target to expand an inline asm
1346  /// call to be explicit llvm code if it wants to.  This is useful for
1347  /// turning simple inline asms into LLVM intrinsics, which gives the
1348  /// compiler more information about the behavior of the code.
1349  virtual bool ExpandInlineAsm(CallInst *CI) const {
1350    return false;
1351  }
1352
1353  enum ConstraintType {
1354    C_Register,            // Constraint represents specific register(s).
1355    C_RegisterClass,       // Constraint represents any of register(s) in class.
1356    C_Memory,              // Memory constraint.
1357    C_Other,               // Something else.
1358    C_Unknown              // Unsupported constraint.
1359  };
1360
1361  enum ConstraintWeight {
1362    // Generic weights.
1363    CW_Invalid  = -1,     // No match.
1364    CW_Okay     = 0,      // Acceptable.
1365    CW_Good     = 1,      // Good weight.
1366    CW_Better   = 2,      // Better weight.
1367    CW_Best     = 3,      // Best weight.
1368
1369    // Well-known weights.
1370    CW_SpecificReg  = CW_Okay,    // Specific register operands.
1371    CW_Register     = CW_Good,    // Register operands.
1372    CW_Memory       = CW_Better,  // Memory operands.
1373    CW_Constant     = CW_Best,    // Constant operand.
1374    CW_Default      = CW_Okay     // Default or don't know type.
1375  };
1376
1377  /// AsmOperandInfo - This contains information for each constraint that we are
1378  /// lowering.
1379  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
1380    /// ConstraintCode - This contains the actual string for the code, like "m".
1381    /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
1382    /// most closely matches the operand.
1383    std::string ConstraintCode;
1384
1385    /// ConstraintType - Information about the constraint code, e.g. Register,
1386    /// RegisterClass, Memory, Other, Unknown.
1387    TargetLowering::ConstraintType ConstraintType;
1388
1389    /// CallOperandval - If this is the result output operand or a
1390    /// clobber, this is null, otherwise it is the incoming operand to the
1391    /// CallInst.  This gets modified as the asm is processed.
1392    Value *CallOperandVal;
1393
1394    /// ConstraintVT - The ValueType for the operand value.
1395    EVT ConstraintVT;
1396
1397    /// isMatchingInputConstraint - Return true of this is an input operand that
1398    /// is a matching constraint like "4".
1399    bool isMatchingInputConstraint() const;
1400
1401    /// getMatchedOperand - If this is an input matching constraint, this method
1402    /// returns the output operand it matches.
1403    unsigned getMatchedOperand() const;
1404
1405    /// Copy constructor for copying from an AsmOperandInfo.
1406    AsmOperandInfo(const AsmOperandInfo &info)
1407      : InlineAsm::ConstraintInfo(info),
1408        ConstraintCode(info.ConstraintCode),
1409        ConstraintType(info.ConstraintType),
1410        CallOperandVal(info.CallOperandVal),
1411        ConstraintVT(info.ConstraintVT) {
1412    }
1413
1414    /// Copy constructor for copying from a ConstraintInfo.
1415    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
1416      : InlineAsm::ConstraintInfo(info),
1417        ConstraintType(TargetLowering::C_Unknown),
1418        CallOperandVal(0), ConstraintVT(MVT::Other) {
1419    }
1420  };
1421
1422  typedef std::vector<AsmOperandInfo> AsmOperandInfoVector;
1423
1424  /// ParseConstraints - Split up the constraint string from the inline
1425  /// assembly value into the specific constraints and their prefixes,
1426  /// and also tie in the associated operand values.
1427  /// If this returns an empty vector, and if the constraint string itself
1428  /// isn't empty, there was an error parsing.
1429  virtual AsmOperandInfoVector ParseConstraints(ImmutableCallSite CS) const;
1430
1431  /// Examine constraint type and operand type and determine a weight value.
1432  /// The operand object must already have been set up with the operand type.
1433  virtual ConstraintWeight getMultipleConstraintMatchWeight(
1434      AsmOperandInfo &info, int maIndex) const;
1435
1436  /// Examine constraint string and operand type and determine a weight value.
1437  /// The operand object must already have been set up with the operand type.
1438  virtual ConstraintWeight getSingleConstraintMatchWeight(
1439      AsmOperandInfo &info, const char *constraint) const;
1440
1441  /// ComputeConstraintToUse - Determines the constraint code and constraint
1442  /// type to use for the specific AsmOperandInfo, setting
1443  /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
1444  /// being passed in is available, it can be passed in as Op, otherwise an
1445  /// empty SDValue can be passed.
1446  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1447                                      SDValue Op,
1448                                      SelectionDAG *DAG = 0) const;
1449
1450  /// getConstraintType - Given a constraint, return the type of constraint it
1451  /// is for this target.
1452  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
1453
1454  /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
1455  /// return a list of registers that can be used to satisfy the constraint.
1456  /// This should only be used for C_RegisterClass constraints.
1457  virtual std::vector<unsigned>
1458  getRegClassForInlineAsmConstraint(const std::string &Constraint,
1459                                    EVT VT) const;
1460
1461  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
1462  /// {edx}), return the register number and the register class for the
1463  /// register.
1464  ///
1465  /// Given a register class constraint, like 'r', if this corresponds directly
1466  /// to an LLVM register class, return a register of 0 and the register class
1467  /// pointer.
1468  ///
1469  /// This should only be used for C_Register constraints.  On error,
1470  /// this returns a register number of 0 and a null register class pointer..
1471  virtual std::pair<unsigned, const TargetRegisterClass*>
1472    getRegForInlineAsmConstraint(const std::string &Constraint,
1473                                 EVT VT) const;
1474
1475  /// LowerXConstraint - try to replace an X constraint, which matches anything,
1476  /// with another that has more specific requirements based on the type of the
1477  /// corresponding operand.  This returns null if there is no replacement to
1478  /// make.
1479  virtual const char *LowerXConstraint(EVT ConstraintVT) const;
1480
1481  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1482  /// vector.  If it is invalid, don't add anything to Ops.
1483  virtual void LowerAsmOperandForConstraint(SDValue Op, char ConstraintLetter,
1484                                            std::vector<SDValue> &Ops,
1485                                            SelectionDAG &DAG) const;
1486
1487  //===--------------------------------------------------------------------===//
1488  // Instruction Emitting Hooks
1489  //
1490
1491  // EmitInstrWithCustomInserter - This method should be implemented by targets
1492  // that mark instructions with the 'usesCustomInserter' flag.  These
1493  // instructions are special in various ways, which require special support to
1494  // insert.  The specified MachineInstr is created but not inserted into any
1495  // basic blocks, and this method is called to expand it into a sequence of
1496  // instructions, potentially also creating new basic blocks and control flow.
1497  virtual MachineBasicBlock *
1498    EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;
1499
1500  //===--------------------------------------------------------------------===//
1501  // Addressing mode description hooks (used by LSR etc).
1502  //
1503
1504  /// AddrMode - This represents an addressing mode of:
1505  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1506  /// If BaseGV is null,  there is no BaseGV.
1507  /// If BaseOffs is zero, there is no base offset.
1508  /// If HasBaseReg is false, there is no base register.
1509  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1510  /// no scale.
1511  ///
1512  struct AddrMode {
1513    GlobalValue *BaseGV;
1514    int64_t      BaseOffs;
1515    bool         HasBaseReg;
1516    int64_t      Scale;
1517    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1518  };
1519
1520  /// isLegalAddressingMode - Return true if the addressing mode represented by
1521  /// AM is legal for this target, for a load/store of the specified type.
1522  /// The type may be VoidTy, in which case only return true if the addressing
1523  /// mode is legal for a load/store of any legal type.
1524  /// TODO: Handle pre/postinc as well.
1525  virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const;
1526
1527  /// isTruncateFree - Return true if it's free to truncate a value of
1528  /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1529  /// register EAX to i16 by referencing its sub-register AX.
1530  virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const {
1531    return false;
1532  }
1533
1534  virtual bool isTruncateFree(EVT VT1, EVT VT2) const {
1535    return false;
1536  }
1537
1538  /// isZExtFree - Return true if any actual instruction that defines a
1539  /// value of type Ty1 implicitly zero-extends the value to Ty2 in the result
1540  /// register. This does not necessarily include registers defined in
1541  /// unknown ways, such as incoming arguments, or copies from unknown
1542  /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1543  /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1544  /// all instructions that define 32-bit values implicit zero-extend the
1545  /// result out to 64 bits.
1546  virtual bool isZExtFree(const Type *Ty1, const Type *Ty2) const {
1547    return false;
1548  }
1549
1550  virtual bool isZExtFree(EVT VT1, EVT VT2) const {
1551    return false;
1552  }
1553
1554  /// isNarrowingProfitable - Return true if it's profitable to narrow
1555  /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
1556  /// from i32 to i8 but not from i32 to i16.
1557  virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const {
1558    return false;
1559  }
1560
1561  /// isLegalICmpImmediate - Return true if the specified immediate is legal
1562  /// icmp immediate, that is the target has icmp instructions which can compare
1563  /// a register against the immediate without having to materialize the
1564  /// immediate into a register.
1565  virtual bool isLegalICmpImmediate(int64_t Imm) const {
1566    return true;
1567  }
1568
1569  //===--------------------------------------------------------------------===//
1570  // Div utility functions
1571  //
1572  SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG,
1573                      std::vector<SDNode*>* Created) const;
1574  SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG,
1575                      std::vector<SDNode*>* Created) const;
1576
1577
1578  //===--------------------------------------------------------------------===//
1579  // Runtime Library hooks
1580  //
1581
1582  /// setLibcallName - Rename the default libcall routine name for the specified
1583  /// libcall.
1584  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1585    LibcallRoutineNames[Call] = Name;
1586  }
1587
1588  /// getLibcallName - Get the libcall routine name for the specified libcall.
1589  ///
1590  const char *getLibcallName(RTLIB::Libcall Call) const {
1591    return LibcallRoutineNames[Call];
1592  }
1593
1594  /// setCmpLibcallCC - Override the default CondCode to be used to test the
1595  /// result of the comparison libcall against zero.
1596  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1597    CmpLibcallCCs[Call] = CC;
1598  }
1599
1600  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1601  /// the comparison libcall against zero.
1602  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1603    return CmpLibcallCCs[Call];
1604  }
1605
1606  /// setLibcallCallingConv - Set the CallingConv that should be used for the
1607  /// specified libcall.
1608  void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
1609    LibcallCallingConvs[Call] = CC;
1610  }
1611
1612  /// getLibcallCallingConv - Get the CallingConv that should be used for the
1613  /// specified libcall.
1614  CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
1615    return LibcallCallingConvs[Call];
1616  }
1617
1618private:
1619  const TargetMachine &TM;
1620  const TargetData *TD;
1621  const TargetLoweringObjectFile &TLOF;
1622
1623  /// PointerTy - The type to use for pointers, usually i32 or i64.
1624  ///
1625  MVT PointerTy;
1626
1627  /// IsLittleEndian - True if this is a little endian target.
1628  ///
1629  bool IsLittleEndian;
1630
1631  /// SelectIsExpensive - Tells the code generator not to expand operations
1632  /// into sequences that use the select operations if possible.
1633  bool SelectIsExpensive;
1634
1635  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1636  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1637  /// a real cost model is in place.  If we ever optimize for size, this will be
1638  /// set to true unconditionally.
1639  bool IntDivIsCheap;
1640
1641  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1642  /// srl/add/sra for a signed divide by power of two, and let the target handle
1643  /// it.
1644  bool Pow2DivIsCheap;
1645
1646  /// JumpIsExpensive - Tells the code generator that it shouldn't generate
1647  /// extra flow control instructions and should attempt to combine flow
1648  /// control instructions via predication.
1649  bool JumpIsExpensive;
1650
1651  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1652  /// llvm.setjmp.  Defaults to false.
1653  bool UseUnderscoreSetJmp;
1654
1655  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1656  /// llvm.longjmp.  Defaults to false.
1657  bool UseUnderscoreLongJmp;
1658
1659  /// BooleanContents - Information about the contents of the high-bits in
1660  /// boolean values held in a type wider than i1.  See getBooleanContents.
1661  BooleanContent BooleanContents;
1662
1663  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1664  /// total cycles or lowest register usage.
1665  Sched::Preference SchedPreferenceInfo;
1666
1667  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1668  unsigned JumpBufSize;
1669
1670  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1671  /// buffers
1672  unsigned JumpBufAlignment;
1673
1674  /// MinStackArgumentAlignment - The minimum alignment that any argument
1675  /// on the stack needs to have.
1676  ///
1677  unsigned MinStackArgumentAlignment;
1678
1679  /// PrefLoopAlignment - The perferred loop alignment.
1680  ///
1681  unsigned PrefLoopAlignment;
1682
1683  /// ShouldFoldAtomicFences - Whether fencing MEMBARRIER instructions should
1684  /// be folded into the enclosed atomic intrinsic instruction by the
1685  /// combiner.
1686  bool ShouldFoldAtomicFences;
1687
1688  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1689  /// specifies the register that llvm.savestack/llvm.restorestack should save
1690  /// and restore.
1691  unsigned StackPointerRegisterToSaveRestore;
1692
1693  /// ExceptionPointerRegister - If set to a physical register, this specifies
1694  /// the register that receives the exception address on entry to a landing
1695  /// pad.
1696  unsigned ExceptionPointerRegister;
1697
1698  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1699  /// the register that receives the exception typeid on entry to a landing
1700  /// pad.
1701  unsigned ExceptionSelectorRegister;
1702
1703  /// RegClassForVT - This indicates the default register class to use for
1704  /// each ValueType the target supports natively.
1705  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1706  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1707  EVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1708
1709  /// RepRegClassForVT - This indicates the "representative" register class to
1710  /// use for each ValueType the target supports natively. This information is
1711  /// used by the scheduler to track register pressure. By default, the
1712  /// representative register class is the largest legal super-reg register
1713  /// class of the register class of the specified type. e.g. On x86, i8, i16,
1714  /// and i32's representative class would be GR32.
1715  const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
1716
1717  /// RepRegClassCostForVT - This indicates the "cost" of the "representative"
1718  /// register class for each ValueType. The cost is used by the scheduler to
1719  /// approximate register pressure.
1720  uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
1721
1722  /// TransformToType - For any value types we are promoting or expanding, this
1723  /// contains the value type that we are changing to.  For Expanded types, this
1724  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1725  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1726  /// by the system, this holds the same type (e.g. i32 -> i32).
1727  EVT TransformToType[MVT::LAST_VALUETYPE];
1728
1729  /// OpActions - For each operation and each value type, keep a LegalizeAction
1730  /// that indicates how instruction selection should deal with the operation.
1731  /// Most operations are Legal (aka, supported natively by the target), but
1732  /// operations that are not should be described.  Note that operations on
1733  /// non-legal value types are not described here.
1734  uint8_t OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
1735
1736  /// LoadExtActions - For each load extension type and each value type,
1737  /// keep a LegalizeAction that indicates how instruction selection should deal
1738  /// with a load of a specific value type and extension type.
1739  uint8_t LoadExtActions[MVT::LAST_VALUETYPE][ISD::LAST_LOADEXT_TYPE];
1740
1741  /// TruncStoreActions - For each value type pair keep a LegalizeAction that
1742  /// indicates whether a truncating store of a specific value type and
1743  /// truncating type is legal.
1744  uint8_t TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
1745
1746  /// IndexedModeActions - For each indexed mode and each value type,
1747  /// keep a pair of LegalizeAction that indicates how instruction
1748  /// selection should deal with the load / store.  The first dimension is the
1749  /// value_type for the reference. The second dimension represents the various
1750  /// modes for load store.
1751  uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
1752
1753  /// CondCodeActions - For each condition code (ISD::CondCode) keep a
1754  /// LegalizeAction that indicates how instruction selection should
1755  /// deal with the condition code.
1756  uint64_t CondCodeActions[ISD::SETCC_INVALID];
1757
1758  ValueTypeActionImpl ValueTypeActions;
1759
1760  std::vector<std::pair<EVT, TargetRegisterClass*> > AvailableRegClasses;
1761
1762  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
1763  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
1764  /// which sets a bit in this array.
1765  unsigned char
1766  TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
1767
1768  /// PromoteToType - For operations that must be promoted to a specific type,
1769  /// this holds the destination type.  This map should be sparse, so don't hold
1770  /// it as an array.
1771  ///
1772  /// Targets add entries to this map with AddPromotedToType(..), clients access
1773  /// this with getTypeToPromoteTo(..).
1774  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
1775    PromoteToType;
1776
1777  /// LibcallRoutineNames - Stores the name each libcall.
1778  ///
1779  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1780
1781  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
1782  /// of each of the comparison libcall against zero.
1783  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1784
1785  /// LibcallCallingConvs - Stores the CallingConv that should be used for each
1786  /// libcall.
1787  CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
1788
1789protected:
1790  /// When lowering \@llvm.memset this field specifies the maximum number of
1791  /// store operations that may be substituted for the call to memset. Targets
1792  /// must set this value based on the cost threshold for that target. Targets
1793  /// should assume that the memset will be done using as many of the largest
1794  /// store operations first, followed by smaller ones, if necessary, per
1795  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1796  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1797  /// store.  This only applies to setting a constant array of a constant size.
1798  /// @brief Specify maximum number of store instructions per memset call.
1799  unsigned maxStoresPerMemset;
1800
1801  /// Maximum number of stores operations that may be substituted for the call
1802  /// to memset, used for functions with OptSize attribute.
1803  unsigned maxStoresPerMemsetOptSize;
1804
1805  /// When lowering \@llvm.memcpy this field specifies the maximum number of
1806  /// store operations that may be substituted for a call to memcpy. Targets
1807  /// must set this value based on the cost threshold for that target. Targets
1808  /// should assume that the memcpy will be done using as many of the largest
1809  /// store operations first, followed by smaller ones, if necessary, per
1810  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1811  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1812  /// and one 1-byte store. This only applies to copying a constant array of
1813  /// constant size.
1814  /// @brief Specify maximum bytes of store instructions per memcpy call.
1815  unsigned maxStoresPerMemcpy;
1816
1817  /// Maximum number of store operations that may be substituted for a call
1818  /// to memcpy, used for functions with OptSize attribute.
1819  unsigned maxStoresPerMemcpyOptSize;
1820
1821  /// When lowering \@llvm.memmove this field specifies the maximum number of
1822  /// store instructions that may be substituted for a call to memmove. Targets
1823  /// must set this value based on the cost threshold for that target. Targets
1824  /// should assume that the memmove will be done using as many of the largest
1825  /// store operations first, followed by smaller ones, if necessary, per
1826  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1827  /// with 8-bit alignment would result in nine 1-byte stores.  This only
1828  /// applies to copying a constant array of constant size.
1829  /// @brief Specify maximum bytes of store instructions per memmove call.
1830  unsigned maxStoresPerMemmove;
1831
1832  /// Maximum number of store instructions that may be substituted for a call
1833  /// to memmove, used for functions with OpSize attribute.
1834  unsigned maxStoresPerMemmoveOptSize;
1835
1836  /// This field specifies whether the target can benefit from code placement
1837  /// optimization.
1838  bool benefitFromCodePlacementOpt;
1839
1840private:
1841  /// isLegalRC - Return true if the value types that can be represented by the
1842  /// specified register class are all legal.
1843  bool isLegalRC(const TargetRegisterClass *RC) const;
1844
1845  /// hasLegalSuperRegRegClasses - Return true if the specified register class
1846  /// has one or more super-reg register classes that are legal.
1847  bool hasLegalSuperRegRegClasses(const TargetRegisterClass *RC) const;
1848};
1849
1850/// GetReturnInfo - Given an LLVM IR type and return type attributes,
1851/// compute the return value EVTs and flags, and optionally also
1852/// the offsets, if the return value is being lowered to memory.
1853void GetReturnInfo(const Type* ReturnType, Attributes attr,
1854                   SmallVectorImpl<ISD::OutputArg> &Outs,
1855                   const TargetLowering &TLI,
1856                   SmallVectorImpl<uint64_t> *Offsets = 0);
1857
1858} // end llvm namespace
1859
1860#endif
1861