TargetLowering.h revision 977a76fbb6ea1b87dfd7fbbe2ae2afb63e982ff3
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/CodeGen/SelectionDAGNodes.h"
26#include "llvm/CodeGen/RuntimeLibcalls.h"
27#include "llvm/ADT/APFloat.h"
28#include "llvm/ADT/STLExtras.h"
29#include <map>
30#include <vector>
31
32namespace llvm {
33  class Value;
34  class Function;
35  class TargetMachine;
36  class TargetData;
37  class TargetRegisterClass;
38  class SDNode;
39  class SDOperand;
40  class SelectionDAG;
41  class MachineBasicBlock;
42  class MachineInstr;
43  class VectorType;
44  class TargetSubtarget;
45
46//===----------------------------------------------------------------------===//
47/// TargetLowering - This class defines information used to lower LLVM code to
48/// legal SelectionDAG operators that the target instruction selector can accept
49/// natively.
50///
51/// This class also defines callbacks that targets must implement to lower
52/// target-specific constructs to SelectionDAG operators.
53///
54class TargetLowering {
55public:
56  /// LegalizeAction - This enum indicates whether operations are valid for a
57  /// target, and if not, what action should be used to make them valid.
58  enum LegalizeAction {
59    Legal,      // The target natively supports this operation.
60    Promote,    // This operation should be executed in a larger type.
61    Expand,     // Try to expand this to other ops, otherwise use a libcall.
62    Custom      // Use the LowerOperation hook to implement custom lowering.
63  };
64
65  enum OutOfRangeShiftAmount {
66    Undefined,  // Oversized shift amounts are undefined (default).
67    Mask,       // Shift amounts are auto masked (anded) to value size.
68    Extend      // Oversized shift pulls in zeros or sign bits.
69  };
70
71  enum SetCCResultValue {
72    UndefinedSetCCResult,          // SetCC returns a garbage/unknown extend.
73    ZeroOrOneSetCCResult,          // SetCC returns a zero extended result.
74    ZeroOrNegativeOneSetCCResult   // SetCC returns a sign extended result.
75  };
76
77  enum SchedPreference {
78    SchedulingForLatency,          // Scheduling for shortest total latency.
79    SchedulingForRegPressure       // Scheduling for lowest register pressure.
80  };
81
82  explicit TargetLowering(TargetMachine &TM);
83  virtual ~TargetLowering();
84
85  TargetMachine &getTargetMachine() const { return TM; }
86  const TargetData *getTargetData() const { return TD; }
87
88  bool isBigEndian() const { return !IsLittleEndian; }
89  bool isLittleEndian() const { return IsLittleEndian; }
90  MVT::ValueType getPointerTy() const { return PointerTy; }
91  MVT::ValueType getShiftAmountTy() const { return ShiftAmountTy; }
92  OutOfRangeShiftAmount getShiftAmountFlavor() const {return ShiftAmtHandling; }
93
94  /// usesGlobalOffsetTable - Return true if this target uses a GOT for PIC
95  /// codegen.
96  bool usesGlobalOffsetTable() const { return UsesGlobalOffsetTable; }
97
98  /// isSelectExpensive - Return true if the select operation is expensive for
99  /// this target.
100  bool isSelectExpensive() const { return SelectIsExpensive; }
101
102  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
103  /// a sequence of several shifts, adds, and multiplies for this target.
104  bool isIntDivCheap() const { return IntDivIsCheap; }
105
106  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
107  /// srl/add/sra.
108  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
109
110  /// getSetCCResultTy - Return the ValueType of the result of setcc operations.
111  ///
112  MVT::ValueType getSetCCResultTy() const { return SetCCResultTy; }
113
114  /// getSetCCResultContents - For targets without boolean registers, this flag
115  /// returns information about the contents of the high-bits in the setcc
116  /// result register.
117  SetCCResultValue getSetCCResultContents() const { return SetCCResultContents;}
118
119  /// getSchedulingPreference - Return target scheduling preference.
120  SchedPreference getSchedulingPreference() const {
121    return SchedPreferenceInfo;
122  }
123
124  /// getRegClassFor - Return the register class that should be used for the
125  /// specified value type.  This may only be called on legal types.
126  TargetRegisterClass *getRegClassFor(MVT::ValueType VT) const {
127    assert(VT < array_lengthof(RegClassForVT));
128    TargetRegisterClass *RC = RegClassForVT[VT];
129    assert(RC && "This value type is not natively supported!");
130    return RC;
131  }
132
133  /// isTypeLegal - Return true if the target has native support for the
134  /// specified value type.  This means that it has a register that directly
135  /// holds it without promotions or expansions.
136  bool isTypeLegal(MVT::ValueType VT) const {
137    assert(MVT::isExtendedVT(VT) || VT < array_lengthof(RegClassForVT));
138    return !MVT::isExtendedVT(VT) && RegClassForVT[VT] != 0;
139  }
140
141  class ValueTypeActionImpl {
142    /// ValueTypeActions - This is a bitvector that contains two bits for each
143    /// value type, where the two bits correspond to the LegalizeAction enum.
144    /// This can be queried with "getTypeAction(VT)".
145    uint32_t ValueTypeActions[2];
146  public:
147    ValueTypeActionImpl() {
148      ValueTypeActions[0] = ValueTypeActions[1] = 0;
149    }
150    ValueTypeActionImpl(const ValueTypeActionImpl &RHS) {
151      ValueTypeActions[0] = RHS.ValueTypeActions[0];
152      ValueTypeActions[1] = RHS.ValueTypeActions[1];
153    }
154
155    LegalizeAction getTypeAction(MVT::ValueType VT) const {
156      if (MVT::isExtendedVT(VT)) {
157        if (MVT::isVector(VT)) return Expand;
158        if (MVT::isInteger(VT))
159          // First promote to a power-of-two size, then expand if necessary.
160          return VT == MVT::RoundIntegerType(VT) ? Expand : Promote;
161        assert(0 && "Unsupported extended type!");
162      }
163      assert(VT<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
164      return (LegalizeAction)((ValueTypeActions[VT>>4] >> ((2*VT) & 31)) & 3);
165    }
166    void setTypeAction(MVT::ValueType VT, LegalizeAction Action) {
167      assert(VT<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
168      ValueTypeActions[VT>>4] |= Action << ((VT*2) & 31);
169    }
170  };
171
172  const ValueTypeActionImpl &getValueTypeActions() const {
173    return ValueTypeActions;
174  }
175
176  /// getTypeAction - Return how we should legalize values of this type, either
177  /// it is already legal (return 'Legal') or we need to promote it to a larger
178  /// type (return 'Promote'), or we need to expand it into multiple registers
179  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
180  LegalizeAction getTypeAction(MVT::ValueType VT) const {
181    return ValueTypeActions.getTypeAction(VT);
182  }
183
184  /// getTypeToTransformTo - For types supported by the target, this is an
185  /// identity function.  For types that must be promoted to larger types, this
186  /// returns the larger type to promote to.  For integer types that are larger
187  /// than the largest integer register, this contains one step in the expansion
188  /// to get to the smaller register. For illegal floating point types, this
189  /// returns the integer type to transform to.
190  MVT::ValueType getTypeToTransformTo(MVT::ValueType VT) const {
191    if (!MVT::isExtendedVT(VT)) {
192      assert(VT < array_lengthof(TransformToType));
193      MVT::ValueType NVT = TransformToType[VT];
194      assert(getTypeAction(NVT) != Promote &&
195             "Promote may not follow Expand or Promote");
196      return NVT;
197    }
198
199    if (MVT::isVector(VT))
200      return MVT::getVectorType(MVT::getVectorElementType(VT),
201                                MVT::getVectorNumElements(VT) / 2);
202    if (MVT::isInteger(VT)) {
203      MVT::ValueType NVT = MVT::RoundIntegerType(VT);
204      if (NVT == VT)
205        // Size is a power of two - expand to half the size.
206        return MVT::getIntegerType(MVT::getSizeInBits(VT) / 2);
207      else
208        // Promote to a power of two size, avoiding multi-step promotion.
209        return getTypeAction(NVT) == Promote ? getTypeToTransformTo(NVT) : NVT;
210    }
211    assert(0 && "Unsupported extended type!");
212  }
213
214  /// getTypeToExpandTo - For types supported by the target, this is an
215  /// identity function.  For types that must be expanded (i.e. integer types
216  /// that are larger than the largest integer register or illegal floating
217  /// point types), this returns the largest legal type it will be expanded to.
218  MVT::ValueType getTypeToExpandTo(MVT::ValueType VT) const {
219    assert(!MVT::isVector(VT));
220    while (true) {
221      switch (getTypeAction(VT)) {
222      case Legal:
223        return VT;
224      case Expand:
225        VT = getTypeToTransformTo(VT);
226        break;
227      default:
228        assert(false && "Type is not legal nor is it to be expanded!");
229        return VT;
230      }
231    }
232    return VT;
233  }
234
235  /// getVectorTypeBreakdown - Vector types are broken down into some number of
236  /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
237  /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
238  /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
239  ///
240  /// This method returns the number of registers needed, and the VT for each
241  /// register.  It also returns the VT and quantity of the intermediate values
242  /// before they are promoted/expanded.
243  ///
244  unsigned getVectorTypeBreakdown(MVT::ValueType VT,
245                                  MVT::ValueType &IntermediateVT,
246                                  unsigned &NumIntermediates,
247                                  MVT::ValueType &RegisterVT) const;
248
249  typedef std::vector<APFloat>::const_iterator legal_fpimm_iterator;
250  legal_fpimm_iterator legal_fpimm_begin() const {
251    return LegalFPImmediates.begin();
252  }
253  legal_fpimm_iterator legal_fpimm_end() const {
254    return LegalFPImmediates.end();
255  }
256
257  /// isShuffleMaskLegal - Targets can use this to indicate that they only
258  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
259  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
260  /// are assumed to be legal.
261  virtual bool isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
262    return true;
263  }
264
265  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
266  /// used by Targets can use this to indicate if there is a suitable
267  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
268  /// pool entry.
269  virtual bool isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
270                                      MVT::ValueType EVT,
271                                      SelectionDAG &DAG) const {
272    return false;
273  }
274
275  /// getOperationAction - Return how this operation should be treated: either
276  /// it is legal, needs to be promoted to a larger size, needs to be
277  /// expanded to some other code sequence, or the target has a custom expander
278  /// for it.
279  LegalizeAction getOperationAction(unsigned Op, MVT::ValueType VT) const {
280    if (MVT::isExtendedVT(VT)) return Expand;
281    assert(Op < array_lengthof(OpActions) &&
282           VT < sizeof(OpActions[0])*4 && "Table isn't big enough!");
283    return (LegalizeAction)((OpActions[Op] >> (2*VT)) & 3);
284  }
285
286  /// isOperationLegal - Return true if the specified operation is legal on this
287  /// target.
288  bool isOperationLegal(unsigned Op, MVT::ValueType VT) const {
289    return getOperationAction(Op, VT) == Legal ||
290           getOperationAction(Op, VT) == Custom;
291  }
292
293  /// getLoadXAction - Return how this load with extension should be treated:
294  /// either it is legal, needs to be promoted to a larger size, needs to be
295  /// expanded to some other code sequence, or the target has a custom expander
296  /// for it.
297  LegalizeAction getLoadXAction(unsigned LType, MVT::ValueType VT) const {
298    assert(LType < array_lengthof(LoadXActions) &&
299           VT < sizeof(LoadXActions[0])*4 && "Table isn't big enough!");
300    return (LegalizeAction)((LoadXActions[LType] >> (2*VT)) & 3);
301  }
302
303  /// isLoadXLegal - Return true if the specified load with extension is legal
304  /// on this target.
305  bool isLoadXLegal(unsigned LType, MVT::ValueType VT) const {
306    return !MVT::isExtendedVT(VT) &&
307      (getLoadXAction(LType, VT) == Legal ||
308       getLoadXAction(LType, VT) == Custom);
309  }
310
311  /// getTruncStoreAction - Return how this store with truncation should be
312  /// treated: either it is legal, needs to be promoted to a larger size, needs
313  /// to be expanded to some other code sequence, or the target has a custom
314  /// expander for it.
315  LegalizeAction getTruncStoreAction(MVT::ValueType ValVT,
316                                     MVT::ValueType MemVT) const {
317    assert(ValVT < array_lengthof(TruncStoreActions) &&
318           MemVT < sizeof(TruncStoreActions[0])*4 && "Table isn't big enough!");
319    return (LegalizeAction)((TruncStoreActions[ValVT] >> (2*MemVT)) & 3);
320  }
321
322  /// isTruncStoreLegal - Return true if the specified store with truncation is
323  /// legal on this target.
324  bool isTruncStoreLegal(MVT::ValueType ValVT, MVT::ValueType MemVT) const {
325    return !MVT::isExtendedVT(MemVT) &&
326      (getTruncStoreAction(ValVT, MemVT) == Legal ||
327       getTruncStoreAction(ValVT, MemVT) == Custom);
328  }
329
330  /// getIndexedLoadAction - Return how the indexed load should be treated:
331  /// either it is legal, needs to be promoted to a larger size, needs to be
332  /// expanded to some other code sequence, or the target has a custom expander
333  /// for it.
334  LegalizeAction
335  getIndexedLoadAction(unsigned IdxMode, MVT::ValueType VT) const {
336    assert(IdxMode < array_lengthof(IndexedModeActions[0]) &&
337           VT < sizeof(IndexedModeActions[0][0])*4 &&
338           "Table isn't big enough!");
339    return (LegalizeAction)((IndexedModeActions[0][IdxMode] >> (2*VT)) & 3);
340  }
341
342  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
343  /// on this target.
344  bool isIndexedLoadLegal(unsigned IdxMode, MVT::ValueType VT) const {
345    return getIndexedLoadAction(IdxMode, VT) == Legal ||
346           getIndexedLoadAction(IdxMode, VT) == Custom;
347  }
348
349  /// getIndexedStoreAction - Return how the indexed store should be treated:
350  /// either it is legal, needs to be promoted to a larger size, needs to be
351  /// expanded to some other code sequence, or the target has a custom expander
352  /// for it.
353  LegalizeAction
354  getIndexedStoreAction(unsigned IdxMode, MVT::ValueType VT) const {
355    assert(IdxMode < array_lengthof(IndexedModeActions[1]) &&
356           VT < sizeof(IndexedModeActions[1][0])*4 &&
357           "Table isn't big enough!");
358    return (LegalizeAction)((IndexedModeActions[1][IdxMode] >> (2*VT)) & 3);
359  }
360
361  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
362  /// on this target.
363  bool isIndexedStoreLegal(unsigned IdxMode, MVT::ValueType VT) const {
364    return getIndexedStoreAction(IdxMode, VT) == Legal ||
365           getIndexedStoreAction(IdxMode, VT) == Custom;
366  }
367
368  /// getConvertAction - Return how the conversion should be treated:
369  /// either it is legal, needs to be promoted to a larger size, needs to be
370  /// expanded to some other code sequence, or the target has a custom expander
371  /// for it.
372  LegalizeAction
373  getConvertAction(MVT::ValueType FromVT, MVT::ValueType ToVT) const {
374    assert(FromVT < array_lengthof(ConvertActions) &&
375           ToVT < sizeof(ConvertActions[0])*4 && "Table isn't big enough!");
376    return (LegalizeAction)((ConvertActions[FromVT] >> (2*ToVT)) & 3);
377  }
378
379  /// isConvertLegal - Return true if the specified conversion is legal
380  /// on this target.
381  bool isConvertLegal(MVT::ValueType FromVT, MVT::ValueType ToVT) const {
382    return getConvertAction(FromVT, ToVT) == Legal ||
383           getConvertAction(FromVT, ToVT) == Custom;
384  }
385
386  /// getTypeToPromoteTo - If the action for this operation is to promote, this
387  /// method returns the ValueType to promote to.
388  MVT::ValueType getTypeToPromoteTo(unsigned Op, MVT::ValueType VT) const {
389    assert(getOperationAction(Op, VT) == Promote &&
390           "This operation isn't promoted!");
391
392    // See if this has an explicit type specified.
393    std::map<std::pair<unsigned, MVT::ValueType>,
394             MVT::ValueType>::const_iterator PTTI =
395      PromoteToType.find(std::make_pair(Op, VT));
396    if (PTTI != PromoteToType.end()) return PTTI->second;
397
398    assert((MVT::isInteger(VT) || MVT::isFloatingPoint(VT)) &&
399           "Cannot autopromote this type, add it with AddPromotedToType.");
400
401    MVT::ValueType NVT = VT;
402    do {
403      NVT = (MVT::ValueType)(NVT+1);
404      assert(MVT::isInteger(NVT) == MVT::isInteger(VT) && NVT != MVT::isVoid &&
405             "Didn't find type to promote to!");
406    } while (!isTypeLegal(NVT) ||
407              getOperationAction(Op, NVT) == Promote);
408    return NVT;
409  }
410
411  /// getValueType - Return the MVT::ValueType corresponding to this LLVM type.
412  /// This is fixed by the LLVM operations except for the pointer size.  If
413  /// AllowUnknown is true, this will return MVT::Other for types with no MVT
414  /// counterpart (e.g. structs), otherwise it will assert.
415  MVT::ValueType getValueType(const Type *Ty, bool AllowUnknown = false) const {
416    MVT::ValueType VT = MVT::getValueType(Ty, AllowUnknown);
417    return VT == MVT::iPTR ? PointerTy : VT;
418  }
419
420  /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
421  /// function arguments in the caller parameter area.
422  virtual unsigned getByValTypeAlignment(const Type *Ty) const;
423
424  /// getRegisterType - Return the type of registers that this ValueType will
425  /// eventually require.
426  MVT::ValueType getRegisterType(MVT::ValueType VT) const {
427    if (!MVT::isExtendedVT(VT)) {
428      assert(VT < array_lengthof(RegisterTypeForVT));
429      return RegisterTypeForVT[VT];
430    }
431    if (MVT::isVector(VT)) {
432      MVT::ValueType VT1, RegisterVT;
433      unsigned NumIntermediates;
434      (void)getVectorTypeBreakdown(VT, VT1, NumIntermediates, RegisterVT);
435      return RegisterVT;
436    }
437    if (MVT::isInteger(VT)) {
438      return getRegisterType(getTypeToTransformTo(VT));
439    }
440    assert(0 && "Unsupported extended type!");
441  }
442
443  /// getNumRegisters - Return the number of registers that this ValueType will
444  /// eventually require.  This is one for any types promoted to live in larger
445  /// registers, but may be more than one for types (like i64) that are split
446  /// into pieces.  For types like i140, which are first promoted then expanded,
447  /// it is the number of registers needed to hold all the bits of the original
448  /// type.  For an i140 on a 32 bit machine this means 5 registers.
449  unsigned getNumRegisters(MVT::ValueType VT) const {
450    if (!MVT::isExtendedVT(VT)) {
451      assert(VT < array_lengthof(NumRegistersForVT));
452      return NumRegistersForVT[VT];
453    }
454    if (MVT::isVector(VT)) {
455      MVT::ValueType VT1, VT2;
456      unsigned NumIntermediates;
457      return getVectorTypeBreakdown(VT, VT1, NumIntermediates, VT2);
458    }
459    if (MVT::isInteger(VT)) {
460      unsigned BitWidth = MVT::getSizeInBits(VT);
461      unsigned RegWidth = MVT::getSizeInBits(getRegisterType(VT));
462      return (BitWidth + RegWidth - 1) / RegWidth;
463    }
464    assert(0 && "Unsupported extended type!");
465  }
466
467  /// hasTargetDAGCombine - If true, the target has custom DAG combine
468  /// transformations that it can perform for the specified node.
469  bool hasTargetDAGCombine(ISD::NodeType NT) const {
470    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
471    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
472  }
473
474  /// This function returns the maximum number of store operations permitted
475  /// to replace a call to llvm.memset. The value is set by the target at the
476  /// performance threshold for such a replacement.
477  /// @brief Get maximum # of store operations permitted for llvm.memset
478  unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; }
479
480  /// This function returns the maximum number of store operations permitted
481  /// to replace a call to llvm.memcpy. The value is set by the target at the
482  /// performance threshold for such a replacement.
483  /// @brief Get maximum # of store operations permitted for llvm.memcpy
484  unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; }
485
486  /// This function returns the maximum number of store operations permitted
487  /// to replace a call to llvm.memmove. The value is set by the target at the
488  /// performance threshold for such a replacement.
489  /// @brief Get maximum # of store operations permitted for llvm.memmove
490  unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; }
491
492  /// This function returns true if the target allows unaligned memory accesses.
493  /// This is used, for example, in situations where an array copy/move/set is
494  /// converted to a sequence of store operations. It's use helps to ensure that
495  /// such replacements don't generate code that causes an alignment error
496  /// (trap) on the target machine.
497  /// @brief Determine if the target supports unaligned memory accesses.
498  bool allowsUnalignedMemoryAccesses() const {
499    return allowUnalignedMemoryAccesses;
500  }
501
502  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
503  /// to implement llvm.setjmp.
504  bool usesUnderscoreSetJmp() const {
505    return UseUnderscoreSetJmp;
506  }
507
508  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
509  /// to implement llvm.longjmp.
510  bool usesUnderscoreLongJmp() const {
511    return UseUnderscoreLongJmp;
512  }
513
514  /// getStackPointerRegisterToSaveRestore - If a physical register, this
515  /// specifies the register that llvm.savestack/llvm.restorestack should save
516  /// and restore.
517  unsigned getStackPointerRegisterToSaveRestore() const {
518    return StackPointerRegisterToSaveRestore;
519  }
520
521  /// getExceptionAddressRegister - If a physical register, this returns
522  /// the register that receives the exception address on entry to a landing
523  /// pad.
524  unsigned getExceptionAddressRegister() const {
525    return ExceptionPointerRegister;
526  }
527
528  /// getExceptionSelectorRegister - If a physical register, this returns
529  /// the register that receives the exception typeid on entry to a landing
530  /// pad.
531  unsigned getExceptionSelectorRegister() const {
532    return ExceptionSelectorRegister;
533  }
534
535  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
536  /// set, the default is 200)
537  unsigned getJumpBufSize() const {
538    return JumpBufSize;
539  }
540
541  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
542  /// (if never set, the default is 0)
543  unsigned getJumpBufAlignment() const {
544    return JumpBufAlignment;
545  }
546
547  /// getIfCvtBlockLimit - returns the target specific if-conversion block size
548  /// limit. Any block whose size is greater should not be predicated.
549  virtual unsigned getIfCvtBlockSizeLimit() const {
550    return IfCvtBlockSizeLimit;
551  }
552
553  /// getIfCvtDupBlockLimit - returns the target specific size limit for a
554  /// block to be considered for duplication. Any block whose size is greater
555  /// should not be duplicated to facilitate its predication.
556  virtual unsigned getIfCvtDupBlockSizeLimit() const {
557    return IfCvtDupBlockSizeLimit;
558  }
559
560  /// getPreIndexedAddressParts - returns true by value, base pointer and
561  /// offset pointer and addressing mode by reference if the node's address
562  /// can be legally represented as pre-indexed load / store address.
563  virtual bool getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
564                                         SDOperand &Offset,
565                                         ISD::MemIndexedMode &AM,
566                                         SelectionDAG &DAG) {
567    return false;
568  }
569
570  /// getPostIndexedAddressParts - returns true by value, base pointer and
571  /// offset pointer and addressing mode by reference if this node can be
572  /// combined with a load / store to form a post-indexed load / store.
573  virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
574                                          SDOperand &Base, SDOperand &Offset,
575                                          ISD::MemIndexedMode &AM,
576                                          SelectionDAG &DAG) {
577    return false;
578  }
579
580  /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
581  /// jumptable.
582  virtual SDOperand getPICJumpTableRelocBase(SDOperand Table,
583                                             SelectionDAG &DAG) const;
584
585  //===--------------------------------------------------------------------===//
586  // TargetLowering Optimization Methods
587  //
588
589  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
590  /// SDOperands for returning information from TargetLowering to its clients
591  /// that want to combine
592  struct TargetLoweringOpt {
593    SelectionDAG &DAG;
594    bool AfterLegalize;
595    SDOperand Old;
596    SDOperand New;
597
598    explicit TargetLoweringOpt(SelectionDAG &InDAG, bool afterLegalize)
599      : DAG(InDAG), AfterLegalize(afterLegalize) {}
600
601    bool CombineTo(SDOperand O, SDOperand N) {
602      Old = O;
603      New = N;
604      return true;
605    }
606
607    /// ShrinkDemandedConstant - Check to see if the specified operand of the
608    /// specified instruction is a constant integer.  If so, check to see if
609    /// there are any bits set in the constant that are not demanded.  If so,
610    /// shrink the constant and return true.
611    bool ShrinkDemandedConstant(SDOperand Op, uint64_t Demanded);
612  };
613
614  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
615  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
616  /// use this information to simplify Op, create a new simplified DAG node and
617  /// return true, returning the original and new nodes in Old and New.
618  /// Otherwise, analyze the expression and return a mask of KnownOne and
619  /// KnownZero bits for the expression (used to simplify the caller).
620  /// The KnownZero/One bits may only be accurate for those bits in the
621  /// DemandedMask.
622  bool SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
623                            uint64_t &KnownZero, uint64_t &KnownOne,
624                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
625
626  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
627  /// Mask are known to be either zero or one and return them in the
628  /// KnownZero/KnownOne bitsets.
629  virtual void computeMaskedBitsForTargetNode(const SDOperand Op,
630                                              const APInt &Mask,
631                                              APInt &KnownZero,
632                                              APInt &KnownOne,
633                                              const SelectionDAG &DAG,
634                                              unsigned Depth = 0) const;
635
636  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
637  /// targets that want to expose additional information about sign bits to the
638  /// DAG Combiner.
639  virtual unsigned ComputeNumSignBitsForTargetNode(SDOperand Op,
640                                                   unsigned Depth = 0) const;
641
642  struct DAGCombinerInfo {
643    void *DC;  // The DAG Combiner object.
644    bool BeforeLegalize;
645    bool CalledByLegalizer;
646  public:
647    SelectionDAG &DAG;
648
649    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool cl, void *dc)
650      : DC(dc), BeforeLegalize(bl), CalledByLegalizer(cl), DAG(dag) {}
651
652    bool isBeforeLegalize() const { return BeforeLegalize; }
653    bool isCalledByLegalizer() const { return CalledByLegalizer; }
654
655    void AddToWorklist(SDNode *N);
656    SDOperand CombineTo(SDNode *N, const std::vector<SDOperand> &To);
657    SDOperand CombineTo(SDNode *N, SDOperand Res);
658    SDOperand CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1);
659  };
660
661  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
662  /// and cc. If it is unable to simplify it, return a null SDOperand.
663  SDOperand SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
664                          ISD::CondCode Cond, bool foldBooleans,
665                          DAGCombinerInfo &DCI) const;
666
667  /// PerformDAGCombine - This method will be invoked for all target nodes and
668  /// for any target-independent nodes that the target has registered with
669  /// invoke it for.
670  ///
671  /// The semantics are as follows:
672  /// Return Value:
673  ///   SDOperand.Val == 0   - No change was made
674  ///   SDOperand.Val == N   - N was replaced, is dead, and is already handled.
675  ///   otherwise            - N should be replaced by the returned Operand.
676  ///
677  /// In addition, methods provided by DAGCombinerInfo may be used to perform
678  /// more complex transformations.
679  ///
680  virtual SDOperand PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
681
682  //===--------------------------------------------------------------------===//
683  // TargetLowering Configuration Methods - These methods should be invoked by
684  // the derived class constructor to configure this object for the target.
685  //
686
687protected:
688  /// setUsesGlobalOffsetTable - Specify that this target does or doesn't use a
689  /// GOT for PC-relative code.
690  void setUsesGlobalOffsetTable(bool V) { UsesGlobalOffsetTable = V; }
691
692  /// setShiftAmountType - Describe the type that should be used for shift
693  /// amounts.  This type defaults to the pointer type.
694  void setShiftAmountType(MVT::ValueType VT) { ShiftAmountTy = VT; }
695
696  /// setSetCCResultType - Describe the type that shoudl be used as the result
697  /// of a setcc operation.  This defaults to the pointer type.
698  void setSetCCResultType(MVT::ValueType VT) { SetCCResultTy = VT; }
699
700  /// setSetCCResultContents - Specify how the target extends the result of a
701  /// setcc operation in a register.
702  void setSetCCResultContents(SetCCResultValue Ty) { SetCCResultContents = Ty; }
703
704  /// setSchedulingPreference - Specify the target scheduling preference.
705  void setSchedulingPreference(SchedPreference Pref) {
706    SchedPreferenceInfo = Pref;
707  }
708
709  /// setShiftAmountFlavor - Describe how the target handles out of range shift
710  /// amounts.
711  void setShiftAmountFlavor(OutOfRangeShiftAmount OORSA) {
712    ShiftAmtHandling = OORSA;
713  }
714
715  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
716  /// use _setjmp to implement llvm.setjmp or the non _ version.
717  /// Defaults to false.
718  void setUseUnderscoreSetJmp(bool Val) {
719    UseUnderscoreSetJmp = Val;
720  }
721
722  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
723  /// use _longjmp to implement llvm.longjmp or the non _ version.
724  /// Defaults to false.
725  void setUseUnderscoreLongJmp(bool Val) {
726    UseUnderscoreLongJmp = Val;
727  }
728
729  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
730  /// specifies the register that llvm.savestack/llvm.restorestack should save
731  /// and restore.
732  void setStackPointerRegisterToSaveRestore(unsigned R) {
733    StackPointerRegisterToSaveRestore = R;
734  }
735
736  /// setExceptionPointerRegister - If set to a physical register, this sets
737  /// the register that receives the exception address on entry to a landing
738  /// pad.
739  void setExceptionPointerRegister(unsigned R) {
740    ExceptionPointerRegister = R;
741  }
742
743  /// setExceptionSelectorRegister - If set to a physical register, this sets
744  /// the register that receives the exception typeid on entry to a landing
745  /// pad.
746  void setExceptionSelectorRegister(unsigned R) {
747    ExceptionSelectorRegister = R;
748  }
749
750  /// SelectIsExpensive - Tells the code generator not to expand operations
751  /// into sequences that use the select operations if possible.
752  void setSelectIsExpensive() { SelectIsExpensive = true; }
753
754  /// setIntDivIsCheap - Tells the code generator that integer divide is
755  /// expensive, and if possible, should be replaced by an alternate sequence
756  /// of instructions not containing an integer divide.
757  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
758
759  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
760  /// srl/add/sra for a signed divide by power of two, and let the target handle
761  /// it.
762  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
763
764  /// addRegisterClass - Add the specified register class as an available
765  /// regclass for the specified value type.  This indicates the selector can
766  /// handle values of that class natively.
767  void addRegisterClass(MVT::ValueType VT, TargetRegisterClass *RC) {
768    assert(VT < array_lengthof(RegClassForVT));
769    AvailableRegClasses.push_back(std::make_pair(VT, RC));
770    RegClassForVT[VT] = RC;
771  }
772
773  /// computeRegisterProperties - Once all of the register classes are added,
774  /// this allows us to compute derived properties we expose.
775  void computeRegisterProperties();
776
777  /// setOperationAction - Indicate that the specified operation does not work
778  /// with the specified type and indicate what to do about it.
779  void setOperationAction(unsigned Op, MVT::ValueType VT,
780                          LegalizeAction Action) {
781    assert(VT < sizeof(OpActions[0])*4 && Op < array_lengthof(OpActions) &&
782           "Table isn't big enough!");
783    OpActions[Op] &= ~(uint64_t(3UL) << VT*2);
784    OpActions[Op] |= (uint64_t)Action << VT*2;
785  }
786
787  /// setLoadXAction - Indicate that the specified load with extension does not
788  /// work with the with specified type and indicate what to do about it.
789  void setLoadXAction(unsigned ExtType, MVT::ValueType VT,
790                      LegalizeAction Action) {
791    assert(VT < sizeof(LoadXActions[0])*4 &&
792           ExtType < array_lengthof(LoadXActions) &&
793           "Table isn't big enough!");
794    LoadXActions[ExtType] &= ~(uint64_t(3UL) << VT*2);
795    LoadXActions[ExtType] |= (uint64_t)Action << VT*2;
796  }
797
798  /// setTruncStoreAction - Indicate that the specified truncating store does
799  /// not work with the with specified type and indicate what to do about it.
800  void setTruncStoreAction(MVT::ValueType ValVT, MVT::ValueType MemVT,
801                           LegalizeAction Action) {
802    assert(ValVT < array_lengthof(TruncStoreActions) &&
803           MemVT < sizeof(TruncStoreActions[0])*4 && "Table isn't big enough!");
804    TruncStoreActions[ValVT] &= ~(uint64_t(3UL) << MemVT*2);
805    TruncStoreActions[ValVT] |= (uint64_t)Action << MemVT*2;
806  }
807
808  /// setIndexedLoadAction - Indicate that the specified indexed load does or
809  /// does not work with the with specified type and indicate what to do abort
810  /// it. NOTE: All indexed mode loads are initialized to Expand in
811  /// TargetLowering.cpp
812  void setIndexedLoadAction(unsigned IdxMode, MVT::ValueType VT,
813                            LegalizeAction Action) {
814    assert(VT < sizeof(IndexedModeActions[0])*4 && IdxMode <
815           array_lengthof(IndexedModeActions[0]) &&
816           "Table isn't big enough!");
817    IndexedModeActions[0][IdxMode] &= ~(uint64_t(3UL) << VT*2);
818    IndexedModeActions[0][IdxMode] |= (uint64_t)Action << VT*2;
819  }
820
821  /// setIndexedStoreAction - Indicate that the specified indexed store does or
822  /// does not work with the with specified type and indicate what to do about
823  /// it. NOTE: All indexed mode stores are initialized to Expand in
824  /// TargetLowering.cpp
825  void setIndexedStoreAction(unsigned IdxMode, MVT::ValueType VT,
826                             LegalizeAction Action) {
827    assert(VT < sizeof(IndexedModeActions[1][0])*4 &&
828           IdxMode < array_lengthof(IndexedModeActions[1]) &&
829           "Table isn't big enough!");
830    IndexedModeActions[1][IdxMode] &= ~(uint64_t(3UL) << VT*2);
831    IndexedModeActions[1][IdxMode] |= (uint64_t)Action << VT*2;
832  }
833
834  /// setConvertAction - Indicate that the specified conversion does or does
835  /// not work with the with specified type and indicate what to do about it.
836  void setConvertAction(MVT::ValueType FromVT, MVT::ValueType ToVT,
837                        LegalizeAction Action) {
838    assert(FromVT < array_lengthof(ConvertActions) &&
839           ToVT < sizeof(ConvertActions[0])*4 && "Table isn't big enough!");
840    ConvertActions[FromVT] &= ~(uint64_t(3UL) << ToVT*2);
841    ConvertActions[FromVT] |= (uint64_t)Action << ToVT*2;
842  }
843
844  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
845  /// promotion code defaults to trying a larger integer/fp until it can find
846  /// one that works.  If that default is insufficient, this method can be used
847  /// by the target to override the default.
848  void AddPromotedToType(unsigned Opc, MVT::ValueType OrigVT,
849                         MVT::ValueType DestVT) {
850    PromoteToType[std::make_pair(Opc, OrigVT)] = DestVT;
851  }
852
853  /// addLegalFPImmediate - Indicate that this target can instruction select
854  /// the specified FP immediate natively.
855  void addLegalFPImmediate(const APFloat& Imm) {
856    LegalFPImmediates.push_back(Imm);
857  }
858
859  /// setTargetDAGCombine - Targets should invoke this method for each target
860  /// independent node that they want to provide a custom DAG combiner for by
861  /// implementing the PerformDAGCombine virtual method.
862  void setTargetDAGCombine(ISD::NodeType NT) {
863    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
864    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
865  }
866
867  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
868  /// bytes); default is 200
869  void setJumpBufSize(unsigned Size) {
870    JumpBufSize = Size;
871  }
872
873  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
874  /// alignment (in bytes); default is 0
875  void setJumpBufAlignment(unsigned Align) {
876    JumpBufAlignment = Align;
877  }
878
879  /// setIfCvtBlockSizeLimit - Set the target's if-conversion block size
880  /// limit (in number of instructions); default is 2.
881  void setIfCvtBlockSizeLimit(unsigned Limit) {
882    IfCvtBlockSizeLimit = Limit;
883  }
884
885  /// setIfCvtDupBlockSizeLimit - Set the target's block size limit (in number
886  /// of instructions) to be considered for code duplication during
887  /// if-conversion; default is 2.
888  void setIfCvtDupBlockSizeLimit(unsigned Limit) {
889    IfCvtDupBlockSizeLimit = Limit;
890  }
891
892public:
893
894  virtual const TargetSubtarget *getSubtarget() {
895    assert(0 && "Not Implemented");
896    return NULL;    // this is here to silence compiler errors
897  }
898  //===--------------------------------------------------------------------===//
899  // Lowering methods - These methods must be implemented by targets so that
900  // the SelectionDAGLowering code knows how to lower these.
901  //
902
903  /// LowerArguments - This hook must be implemented to indicate how we should
904  /// lower the arguments for the specified function, into the specified DAG.
905  virtual std::vector<SDOperand>
906  LowerArguments(Function &F, SelectionDAG &DAG);
907
908  /// LowerCallTo - This hook lowers an abstract call to a function into an
909  /// actual call.  This returns a pair of operands.  The first element is the
910  /// return value for the function (if RetTy is not VoidTy).  The second
911  /// element is the outgoing token chain.
912  struct ArgListEntry {
913    SDOperand Node;
914    const Type* Ty;
915    bool isSExt;
916    bool isZExt;
917    bool isInReg;
918    bool isSRet;
919    bool isNest;
920    bool isByVal;
921
922    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
923      isSRet(false), isNest(false), isByVal(false) { }
924  };
925  typedef std::vector<ArgListEntry> ArgListTy;
926  virtual std::pair<SDOperand, SDOperand>
927  LowerCallTo(SDOperand Chain, const Type *RetTy, bool RetTyIsSigned,
928              bool isVarArg, unsigned CallingConv, bool isTailCall,
929              SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG);
930
931
932  virtual SDOperand LowerMEMCPY(SDOperand Op, SelectionDAG &DAG);
933  virtual SDOperand LowerMEMCPYCall(SDOperand Chain, SDOperand Dest,
934                                    SDOperand Source, SDOperand Count,
935                                    SelectionDAG &DAG);
936  virtual SDOperand LowerMEMCPYInline(SDOperand Chain, SDOperand Dest,
937                                      SDOperand Source, unsigned Size,
938                                      unsigned Align, SelectionDAG &DAG) {
939    assert(0 && "Not Implemented");
940    return SDOperand();   // this is here to silence compiler errors
941  }
942
943
944  /// LowerOperation - This callback is invoked for operations that are
945  /// unsupported by the target, which are registered to use 'custom' lowering,
946  /// and whose defined values are all legal.
947  /// If the target has no operations that require custom lowering, it need not
948  /// implement this.  The default implementation of this aborts.
949  virtual SDOperand LowerOperation(SDOperand Op, SelectionDAG &DAG);
950
951  /// ExpandOperationResult - This callback is invoked for operations that are
952  /// unsupported by the target, which are registered to use 'custom' lowering,
953  /// and whose result type needs to be expanded.  This must return a node whose
954  /// results precisely match the results of the input node.  This typically
955  /// involves a MERGE_VALUES node and/or BUILD_PAIR.
956  ///
957  /// If the target has no operations that require custom lowering, it need not
958  /// implement this.  The default implementation of this aborts.
959  virtual SDNode *ExpandOperationResult(SDNode *N, SelectionDAG &DAG) {
960    assert(0 && "ExpandOperationResult not implemented for this target!");
961    return 0;
962  }
963
964  /// IsEligibleForTailCallOptimization - Check whether the call is eligible for
965  /// tail call optimization. Targets which want to do tail call optimization
966  /// should override this function.
967  virtual bool IsEligibleForTailCallOptimization(SDOperand Call,
968                                                 SDOperand Ret,
969                                                 SelectionDAG &DAG) const {
970    return false;
971  }
972
973  /// CustomPromoteOperation - This callback is invoked for operations that are
974  /// unsupported by the target, are registered to use 'custom' lowering, and
975  /// whose type needs to be promoted.
976  virtual SDOperand CustomPromoteOperation(SDOperand Op, SelectionDAG &DAG);
977
978  /// getTargetNodeName() - This method returns the name of a target specific
979  /// DAG node.
980  virtual const char *getTargetNodeName(unsigned Opcode) const;
981
982  //===--------------------------------------------------------------------===//
983  // Inline Asm Support hooks
984  //
985
986  enum ConstraintType {
987    C_Register,            // Constraint represents a single register.
988    C_RegisterClass,       // Constraint represents one or more registers.
989    C_Memory,              // Memory constraint.
990    C_Other,               // Something else.
991    C_Unknown              // Unsupported constraint.
992  };
993
994  /// getConstraintType - Given a constraint, return the type of constraint it
995  /// is for this target.
996  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
997
998
999  /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
1000  /// return a list of registers that can be used to satisfy the constraint.
1001  /// This should only be used for C_RegisterClass constraints.
1002  virtual std::vector<unsigned>
1003  getRegClassForInlineAsmConstraint(const std::string &Constraint,
1004                                    MVT::ValueType VT) const;
1005
1006  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
1007  /// {edx}), return the register number and the register class for the
1008  /// register.
1009  ///
1010  /// Given a register class constraint, like 'r', if this corresponds directly
1011  /// to an LLVM register class, return a register of 0 and the register class
1012  /// pointer.
1013  ///
1014  /// This should only be used for C_Register constraints.  On error,
1015  /// this returns a register number of 0 and a null register class pointer..
1016  virtual std::pair<unsigned, const TargetRegisterClass*>
1017    getRegForInlineAsmConstraint(const std::string &Constraint,
1018                                 MVT::ValueType VT) const;
1019
1020  /// LowerXConstraint - try to replace an X constraint, which matches anything,
1021  /// with another that has more specific requirements based on the type of the
1022  /// corresponding operand.
1023  virtual void lowerXConstraint(MVT::ValueType ConstraintVT,
1024                                std::string&) const;
1025
1026  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1027  /// vector.  If it is invalid, don't add anything to Ops.
1028  virtual void LowerAsmOperandForConstraint(SDOperand Op, char ConstraintLetter,
1029                                            std::vector<SDOperand> &Ops,
1030                                            SelectionDAG &DAG);
1031
1032  //===--------------------------------------------------------------------===//
1033  // Scheduler hooks
1034  //
1035
1036  // EmitInstrWithCustomInserter - This method should be implemented by targets
1037  // that mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
1038  // instructions are special in various ways, which require special support to
1039  // insert.  The specified MachineInstr is created but not inserted into any
1040  // basic blocks, and the scheduler passes ownership of it to this method.
1041  virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
1042                                                         MachineBasicBlock *MBB);
1043
1044  //===--------------------------------------------------------------------===//
1045  // Addressing mode description hooks (used by LSR etc).
1046  //
1047
1048  /// AddrMode - This represents an addressing mode of:
1049  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1050  /// If BaseGV is null,  there is no BaseGV.
1051  /// If BaseOffs is zero, there is no base offset.
1052  /// If HasBaseReg is false, there is no base register.
1053  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1054  /// no scale.
1055  ///
1056  struct AddrMode {
1057    GlobalValue *BaseGV;
1058    int64_t      BaseOffs;
1059    bool         HasBaseReg;
1060    int64_t      Scale;
1061    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1062  };
1063
1064  /// isLegalAddressingMode - Return true if the addressing mode represented by
1065  /// AM is legal for this target, for a load/store of the specified type.
1066  /// TODO: Handle pre/postinc as well.
1067  virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const;
1068
1069  /// isTruncateFree - Return true if it's free to truncate a value of
1070  /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1071  /// register EAX to i16 by referencing its sub-register AX.
1072  virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const {
1073    return false;
1074  }
1075
1076  virtual bool isTruncateFree(MVT::ValueType VT1, MVT::ValueType VT2) const {
1077    return false;
1078  }
1079
1080  //===--------------------------------------------------------------------===//
1081  // Div utility functions
1082  //
1083  SDOperand BuildSDIV(SDNode *N, SelectionDAG &DAG,
1084                      std::vector<SDNode*>* Created) const;
1085  SDOperand BuildUDIV(SDNode *N, SelectionDAG &DAG,
1086                      std::vector<SDNode*>* Created) const;
1087
1088
1089  //===--------------------------------------------------------------------===//
1090  // Runtime Library hooks
1091  //
1092
1093  /// setLibcallName - Rename the default libcall routine name for the specified
1094  /// libcall.
1095  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1096    LibcallRoutineNames[Call] = Name;
1097  }
1098
1099  /// getLibcallName - Get the libcall routine name for the specified libcall.
1100  ///
1101  const char *getLibcallName(RTLIB::Libcall Call) const {
1102    return LibcallRoutineNames[Call];
1103  }
1104
1105  /// setCmpLibcallCC - Override the default CondCode to be used to test the
1106  /// result of the comparison libcall against zero.
1107  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1108    CmpLibcallCCs[Call] = CC;
1109  }
1110
1111  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1112  /// the comparison libcall against zero.
1113  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1114    return CmpLibcallCCs[Call];
1115  }
1116
1117private:
1118  TargetMachine &TM;
1119  const TargetData *TD;
1120
1121  /// IsLittleEndian - True if this is a little endian target.
1122  ///
1123  bool IsLittleEndian;
1124
1125  /// PointerTy - The type to use for pointers, usually i32 or i64.
1126  ///
1127  MVT::ValueType PointerTy;
1128
1129  /// UsesGlobalOffsetTable - True if this target uses a GOT for PIC codegen.
1130  ///
1131  bool UsesGlobalOffsetTable;
1132
1133  /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
1134  /// PointerTy is.
1135  MVT::ValueType ShiftAmountTy;
1136
1137  OutOfRangeShiftAmount ShiftAmtHandling;
1138
1139  /// SelectIsExpensive - Tells the code generator not to expand operations
1140  /// into sequences that use the select operations if possible.
1141  bool SelectIsExpensive;
1142
1143  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1144  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1145  /// a real cost model is in place.  If we ever optimize for size, this will be
1146  /// set to true unconditionally.
1147  bool IntDivIsCheap;
1148
1149  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1150  /// srl/add/sra for a signed divide by power of two, and let the target handle
1151  /// it.
1152  bool Pow2DivIsCheap;
1153
1154  /// SetCCResultTy - The type that SetCC operations use.  This defaults to the
1155  /// PointerTy.
1156  MVT::ValueType SetCCResultTy;
1157
1158  /// SetCCResultContents - Information about the contents of the high-bits in
1159  /// the result of a setcc comparison operation.
1160  SetCCResultValue SetCCResultContents;
1161
1162  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1163  /// total cycles or lowest register usage.
1164  SchedPreference SchedPreferenceInfo;
1165
1166  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1167  /// llvm.setjmp.  Defaults to false.
1168  bool UseUnderscoreSetJmp;
1169
1170  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1171  /// llvm.longjmp.  Defaults to false.
1172  bool UseUnderscoreLongJmp;
1173
1174  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1175  unsigned JumpBufSize;
1176
1177  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1178  /// buffers
1179  unsigned JumpBufAlignment;
1180
1181  /// IfCvtBlockSizeLimit - The maximum allowed size for a block to be
1182  /// if-converted.
1183  unsigned IfCvtBlockSizeLimit;
1184
1185  /// IfCvtDupBlockSizeLimit - The maximum allowed size for a block to be
1186  /// duplicated during if-conversion.
1187  unsigned IfCvtDupBlockSizeLimit;
1188
1189  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1190  /// specifies the register that llvm.savestack/llvm.restorestack should save
1191  /// and restore.
1192  unsigned StackPointerRegisterToSaveRestore;
1193
1194  /// ExceptionPointerRegister - If set to a physical register, this specifies
1195  /// the register that receives the exception address on entry to a landing
1196  /// pad.
1197  unsigned ExceptionPointerRegister;
1198
1199  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1200  /// the register that receives the exception typeid on entry to a landing
1201  /// pad.
1202  unsigned ExceptionSelectorRegister;
1203
1204  /// RegClassForVT - This indicates the default register class to use for
1205  /// each ValueType the target supports natively.
1206  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1207  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1208  MVT::ValueType RegisterTypeForVT[MVT::LAST_VALUETYPE];
1209
1210  /// TransformToType - For any value types we are promoting or expanding, this
1211  /// contains the value type that we are changing to.  For Expanded types, this
1212  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1213  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1214  /// by the system, this holds the same type (e.g. i32 -> i32).
1215  MVT::ValueType TransformToType[MVT::LAST_VALUETYPE];
1216
1217  /// OpActions - For each operation and each value type, keep a LegalizeAction
1218  /// that indicates how instruction selection should deal with the operation.
1219  /// Most operations are Legal (aka, supported natively by the target), but
1220  /// operations that are not should be described.  Note that operations on
1221  /// non-legal value types are not described here.
1222  uint64_t OpActions[156];
1223
1224  /// LoadXActions - For each load of load extension type and each value type,
1225  /// keep a LegalizeAction that indicates how instruction selection should deal
1226  /// with the load.
1227  uint64_t LoadXActions[ISD::LAST_LOADX_TYPE];
1228
1229  /// TruncStoreActions - For each truncating store, keep a LegalizeAction that
1230  /// indicates how instruction selection should deal with the store.
1231  uint64_t TruncStoreActions[MVT::LAST_VALUETYPE];
1232
1233  /// IndexedModeActions - For each indexed mode and each value type, keep a
1234  /// pair of LegalizeAction that indicates how instruction selection should
1235  /// deal with the load / store.
1236  uint64_t IndexedModeActions[2][ISD::LAST_INDEXED_MODE];
1237
1238  /// ConvertActions - For each conversion from source type to destination type,
1239  /// keep a LegalizeAction that indicates how instruction selection should
1240  /// deal with the conversion.
1241  /// Currently, this is used only for floating->floating conversions
1242  /// (FP_EXTEND and FP_ROUND).
1243  uint64_t ConvertActions[MVT::LAST_VALUETYPE];
1244
1245  ValueTypeActionImpl ValueTypeActions;
1246
1247  std::vector<APFloat> LegalFPImmediates;
1248
1249  std::vector<std::pair<MVT::ValueType,
1250                        TargetRegisterClass*> > AvailableRegClasses;
1251
1252  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
1253  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
1254  /// which sets a bit in this array.
1255  unsigned char TargetDAGCombineArray[156/(sizeof(unsigned char)*8)];
1256
1257  /// PromoteToType - For operations that must be promoted to a specific type,
1258  /// this holds the destination type.  This map should be sparse, so don't hold
1259  /// it as an array.
1260  ///
1261  /// Targets add entries to this map with AddPromotedToType(..), clients access
1262  /// this with getTypeToPromoteTo(..).
1263  std::map<std::pair<unsigned, MVT::ValueType>, MVT::ValueType> PromoteToType;
1264
1265  /// LibcallRoutineNames - Stores the name each libcall.
1266  ///
1267  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1268
1269  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
1270  /// of each of the comparison libcall against zero.
1271  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1272
1273protected:
1274  /// When lowering %llvm.memset this field specifies the maximum number of
1275  /// store operations that may be substituted for the call to memset. Targets
1276  /// must set this value based on the cost threshold for that target. Targets
1277  /// should assume that the memset will be done using as many of the largest
1278  /// store operations first, followed by smaller ones, if necessary, per
1279  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1280  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1281  /// store.  This only applies to setting a constant array of a constant size.
1282  /// @brief Specify maximum number of store instructions per memset call.
1283  unsigned maxStoresPerMemset;
1284
1285  /// When lowering %llvm.memcpy this field specifies the maximum number of
1286  /// store operations that may be substituted for a call to memcpy. Targets
1287  /// must set this value based on the cost threshold for that target. Targets
1288  /// should assume that the memcpy will be done using as many of the largest
1289  /// store operations first, followed by smaller ones, if necessary, per
1290  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1291  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1292  /// and one 1-byte store. This only applies to copying a constant array of
1293  /// constant size.
1294  /// @brief Specify maximum bytes of store instructions per memcpy call.
1295  unsigned maxStoresPerMemcpy;
1296
1297  /// When lowering %llvm.memmove this field specifies the maximum number of
1298  /// store instructions that may be substituted for a call to memmove. Targets
1299  /// must set this value based on the cost threshold for that target. Targets
1300  /// should assume that the memmove will be done using as many of the largest
1301  /// store operations first, followed by smaller ones, if necessary, per
1302  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1303  /// with 8-bit alignment would result in nine 1-byte stores.  This only
1304  /// applies to copying a constant array of constant size.
1305  /// @brief Specify maximum bytes of store instructions per memmove call.
1306  unsigned maxStoresPerMemmove;
1307
1308  /// This field specifies whether the target machine permits unaligned memory
1309  /// accesses.  This is used, for example, to determine the size of store
1310  /// operations when copying small arrays and other similar tasks.
1311  /// @brief Indicate whether the target permits unaligned memory accesses.
1312  bool allowUnalignedMemoryAccesses;
1313};
1314} // end llvm namespace
1315
1316#endif
1317