TargetLowering.h revision a18e6af1712fd41c4a705a19ad71f6e9ac7a4e68
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// This file describes how to lower LLVM code to machine code.  This has two
12/// main components:
13///
14///  1. Which ValueTypes are natively supported by the target.
15///  2. Which operations are supported for supported ValueTypes.
16///  3. Cost thresholds for alternative implementations of certain operations.
17///
18/// In addition it has a few other components, like information about FP
19/// immediates.
20///
21//===----------------------------------------------------------------------===//
22
23#ifndef LLVM_TARGET_TARGETLOWERING_H
24#define LLVM_TARGET_TARGETLOWERING_H
25
26#include "llvm/ADT/DenseMap.h"
27#include "llvm/CodeGen/DAGCombine.h"
28#include "llvm/CodeGen/RuntimeLibcalls.h"
29#include "llvm/CodeGen/SelectionDAGNodes.h"
30#include "llvm/IR/Attributes.h"
31#include "llvm/IR/CallSite.h"
32#include "llvm/IR/CallingConv.h"
33#include "llvm/IR/IRBuilder.h"
34#include "llvm/IR/InlineAsm.h"
35#include "llvm/IR/Instructions.h"
36#include "llvm/MC/MCRegisterInfo.h"
37#include "llvm/Target/TargetCallingConv.h"
38#include "llvm/Target/TargetMachine.h"
39#include <climits>
40#include <map>
41#include <vector>
42
43namespace llvm {
44  class CallInst;
45  class CCState;
46  class FastISel;
47  class FunctionLoweringInfo;
48  class ImmutableCallSite;
49  class IntrinsicInst;
50  class MachineBasicBlock;
51  class MachineFunction;
52  class MachineInstr;
53  class MachineJumpTableInfo;
54  class MachineLoop;
55  class Mangler;
56  class MCContext;
57  class MCExpr;
58  class MCSymbol;
59  template<typename T> class SmallVectorImpl;
60  class DataLayout;
61  class TargetRegisterClass;
62  class TargetLibraryInfo;
63  class TargetLoweringObjectFile;
64  class Value;
65
66  namespace Sched {
67    enum Preference {
68      None,             // No preference
69      Source,           // Follow source order.
70      RegPressure,      // Scheduling for lowest register pressure.
71      Hybrid,           // Scheduling for both latency and register pressure.
72      ILP,              // Scheduling for ILP in low register pressure mode.
73      VLIW              // Scheduling for VLIW targets.
74    };
75  }
76
77/// This base class for TargetLowering contains the SelectionDAG-independent
78/// parts that can be used from the rest of CodeGen.
79class TargetLoweringBase {
80  TargetLoweringBase(const TargetLoweringBase&) = delete;
81  void operator=(const TargetLoweringBase&) = delete;
82
83public:
84  /// This enum indicates whether operations are valid for a target, and if not,
85  /// what action should be used to make them valid.
86  enum LegalizeAction {
87    Legal,      // The target natively supports this operation.
88    Promote,    // This operation should be executed in a larger type.
89    Expand,     // Try to expand this to other ops, otherwise use a libcall.
90    Custom      // Use the LowerOperation hook to implement custom lowering.
91  };
92
93  /// This enum indicates whether a types are legal for a target, and if not,
94  /// what action should be used to make them valid.
95  enum LegalizeTypeAction {
96    TypeLegal,           // The target natively supports this type.
97    TypePromoteInteger,  // Replace this integer with a larger one.
98    TypeExpandInteger,   // Split this integer into two of half the size.
99    TypeSoftenFloat,     // Convert this float to a same size integer type.
100    TypeExpandFloat,     // Split this float into two of half the size.
101    TypeScalarizeVector, // Replace this one-element vector with its element.
102    TypeSplitVector,     // Split this vector into two of half the size.
103    TypeWidenVector,     // This vector should be widened into a larger vector.
104    TypePromoteFloat     // Replace this float with a larger one.
105  };
106
107  /// LegalizeKind holds the legalization kind that needs to happen to EVT
108  /// in order to type-legalize it.
109  typedef std::pair<LegalizeTypeAction, EVT> LegalizeKind;
110
111  /// Enum that describes how the target represents true/false values.
112  enum BooleanContent {
113    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
114    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
115    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
116  };
117
118  /// Enum that describes what type of support for selects the target has.
119  enum SelectSupportKind {
120    ScalarValSelect,      // The target supports scalar selects (ex: cmov).
121    ScalarCondVectorVal,  // The target supports selects with a scalar condition
122                          // and vector values (ex: cmov).
123    VectorMaskSelect      // The target supports vector selects with a vector
124                          // mask (ex: x86 blends).
125  };
126
127  /// Enum that specifies what a AtomicRMWInst is expanded to, if at all. Exists
128  /// because different targets have different levels of support for these
129  /// atomic RMW instructions, and also have different options w.r.t. what they should
130  /// expand to.
131  enum class AtomicRMWExpansionKind {
132    None,      // Don't expand the instruction.
133    LLSC,      // Expand the instruction into loadlinked/storeconditional; used
134               // by ARM/AArch64. Implies `hasLoadLinkedStoreConditional`
135               // returns true.
136    CmpXChg,   // Expand the instruction into cmpxchg; used by at least X86.
137  };
138
139  static ISD::NodeType getExtendForContent(BooleanContent Content) {
140    switch (Content) {
141    case UndefinedBooleanContent:
142      // Extend by adding rubbish bits.
143      return ISD::ANY_EXTEND;
144    case ZeroOrOneBooleanContent:
145      // Extend by adding zero bits.
146      return ISD::ZERO_EXTEND;
147    case ZeroOrNegativeOneBooleanContent:
148      // Extend by copying the sign bit.
149      return ISD::SIGN_EXTEND;
150    }
151    llvm_unreachable("Invalid content kind");
152  }
153
154  /// NOTE: The TargetMachine owns TLOF.
155  explicit TargetLoweringBase(const TargetMachine &TM);
156  virtual ~TargetLoweringBase() {}
157
158protected:
159  /// \brief Initialize all of the actions to default values.
160  void initActions();
161
162public:
163  const TargetMachine &getTargetMachine() const { return TM; }
164  const DataLayout *getDataLayout() const { return TM.getDataLayout(); }
165
166  bool isBigEndian() const { return !IsLittleEndian; }
167  bool isLittleEndian() const { return IsLittleEndian; }
168
169  /// Return the pointer type for the given address space, defaults to
170  /// the pointer type from the data layout.
171  /// FIXME: The default needs to be removed once all the code is updated.
172  virtual MVT getPointerTy(uint32_t /*AS*/ = 0) const;
173  unsigned getPointerSizeInBits(uint32_t AS = 0) const;
174  unsigned getPointerTypeSizeInBits(Type *Ty) const;
175  virtual MVT getScalarShiftAmountTy(EVT LHSTy) const;
176
177  EVT getShiftAmountTy(EVT LHSTy) const;
178
179  /// Returns the type to be used for the index operand of:
180  /// ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT,
181  /// ISD::INSERT_SUBVECTOR, and ISD::EXTRACT_SUBVECTOR
182  virtual MVT getVectorIdxTy() const {
183    return getPointerTy();
184  }
185
186  /// Return true if the select operation is expensive for this target.
187  bool isSelectExpensive() const { return SelectIsExpensive; }
188
189  virtual bool isSelectSupported(SelectSupportKind /*kind*/) const {
190    return true;
191  }
192
193  /// Return true if multiple condition registers are available.
194  bool hasMultipleConditionRegisters() const {
195    return HasMultipleConditionRegisters;
196  }
197
198  /// Return true if the target has BitExtract instructions.
199  bool hasExtractBitsInsn() const { return HasExtractBitsInsn; }
200
201  /// Return the preferred vector type legalization action.
202  virtual TargetLoweringBase::LegalizeTypeAction
203  getPreferredVectorAction(EVT VT) const {
204    // The default action for one element vectors is to scalarize
205    if (VT.getVectorNumElements() == 1)
206      return TypeScalarizeVector;
207    // The default action for other vectors is to promote
208    return TypePromoteInteger;
209  }
210
211  // There are two general methods for expanding a BUILD_VECTOR node:
212  //  1. Use SCALAR_TO_VECTOR on the defined scalar values and then shuffle
213  //     them together.
214  //  2. Build the vector on the stack and then load it.
215  // If this function returns true, then method (1) will be used, subject to
216  // the constraint that all of the necessary shuffles are legal (as determined
217  // by isShuffleMaskLegal). If this function returns false, then method (2) is
218  // always used. The vector type, and the number of defined values, are
219  // provided.
220  virtual bool
221  shouldExpandBuildVectorWithShuffles(EVT /* VT */,
222                                      unsigned DefinedValues) const {
223    return DefinedValues < 3;
224  }
225
226  /// Return true if integer divide is usually cheaper than a sequence of
227  /// several shifts, adds, and multiplies for this target.
228  bool isIntDivCheap() const { return IntDivIsCheap; }
229
230  /// Return true if sqrt(x) is as cheap or cheaper than 1 / rsqrt(x)
231  bool isFsqrtCheap() const {
232    return FsqrtIsCheap;
233  }
234
235  /// Returns true if target has indicated at least one type should be bypassed.
236  bool isSlowDivBypassed() const { return !BypassSlowDivWidths.empty(); }
237
238  /// Returns map of slow types for division or remainder with corresponding
239  /// fast types
240  const DenseMap<unsigned int, unsigned int> &getBypassSlowDivWidths() const {
241    return BypassSlowDivWidths;
242  }
243
244  /// Return true if pow2 sdiv is cheaper than a chain of sra/srl/add/sra.
245  bool isPow2SDivCheap() const { return Pow2SDivIsCheap; }
246
247  /// Return true if Flow Control is an expensive operation that should be
248  /// avoided.
249  bool isJumpExpensive() const { return JumpIsExpensive; }
250
251  /// Return true if selects are only cheaper than branches if the branch is
252  /// unlikely to be predicted right.
253  bool isPredictableSelectExpensive() const {
254    return PredictableSelectIsExpensive;
255  }
256
257  /// isLoadBitCastBeneficial() - Return true if the following transform
258  /// is beneficial.
259  /// fold (conv (load x)) -> (load (conv*)x)
260  /// On architectures that don't natively support some vector loads efficiently,
261  /// casting the load to a smaller vector of larger types and loading
262  /// is more efficient, however, this can be undone by optimizations in
263  /// dag combiner.
264  virtual bool isLoadBitCastBeneficial(EVT /* Load */, EVT /* Bitcast */) const {
265    return true;
266  }
267
268  /// \brief Return true if it is cheap to speculate a call to intrinsic cttz.
269  virtual bool isCheapToSpeculateCttz() const {
270    return false;
271  }
272
273  /// \brief Return true if it is cheap to speculate a call to intrinsic ctlz.
274  virtual bool isCheapToSpeculateCtlz() const {
275    return false;
276  }
277
278  /// \brief Return if the target supports combining a
279  /// chain like:
280  /// \code
281  ///   %andResult = and %val1, #imm-with-one-bit-set;
282  ///   %icmpResult = icmp %andResult, 0
283  ///   br i1 %icmpResult, label %dest1, label %dest2
284  /// \endcode
285  /// into a single machine instruction of a form like:
286  /// \code
287  ///   brOnBitSet %register, #bitNumber, dest
288  /// \endcode
289  bool isMaskAndBranchFoldingLegal() const {
290    return MaskAndBranchFoldingIsLegal;
291  }
292
293  /// \brief Return true if the target wants to use the optimization that
294  /// turns ext(promotableInst1(...(promotableInstN(load)))) into
295  /// promotedInst1(...(promotedInstN(ext(load)))).
296  bool enableExtLdPromotion() const { return EnableExtLdPromotion; }
297
298  /// Return true if the target can combine store(extractelement VectorTy,
299  /// Idx).
300  /// \p Cost[out] gives the cost of that transformation when this is true.
301  virtual bool canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
302                                         unsigned &Cost) const {
303    return false;
304  }
305
306  /// Return true if target supports floating point exceptions.
307  bool hasFloatingPointExceptions() const {
308    return HasFloatingPointExceptions;
309  }
310
311  /// Return true if target always beneficiates from combining into FMA for a
312  /// given value type. This must typically return false on targets where FMA
313  /// takes more cycles to execute than FADD.
314  virtual bool enableAggressiveFMAFusion(EVT VT) const {
315    return false;
316  }
317
318  /// Return the ValueType of the result of SETCC operations.
319  virtual EVT getSetCCResultType(LLVMContext &Context, EVT VT) const;
320
321  /// Return the ValueType for comparison libcalls. Comparions libcalls include
322  /// floating point comparion calls, and Ordered/Unordered check calls on
323  /// floating point numbers.
324  virtual
325  MVT::SimpleValueType getCmpLibcallReturnType() const;
326
327  /// For targets without i1 registers, this gives the nature of the high-bits
328  /// of boolean values held in types wider than i1.
329  ///
330  /// "Boolean values" are special true/false values produced by nodes like
331  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
332  /// Not to be confused with general values promoted from i1.  Some cpus
333  /// distinguish between vectors of boolean and scalars; the isVec parameter
334  /// selects between the two kinds.  For example on X86 a scalar boolean should
335  /// be zero extended from i1, while the elements of a vector of booleans
336  /// should be sign extended from i1.
337  ///
338  /// Some cpus also treat floating point types the same way as they treat
339  /// vectors instead of the way they treat scalars.
340  BooleanContent getBooleanContents(bool isVec, bool isFloat) const {
341    if (isVec)
342      return BooleanVectorContents;
343    return isFloat ? BooleanFloatContents : BooleanContents;
344  }
345
346  BooleanContent getBooleanContents(EVT Type) const {
347    return getBooleanContents(Type.isVector(), Type.isFloatingPoint());
348  }
349
350  /// Return target scheduling preference.
351  Sched::Preference getSchedulingPreference() const {
352    return SchedPreferenceInfo;
353  }
354
355  /// Some scheduler, e.g. hybrid, can switch to different scheduling heuristics
356  /// for different nodes. This function returns the preference (or none) for
357  /// the given node.
358  virtual Sched::Preference getSchedulingPreference(SDNode *) const {
359    return Sched::None;
360  }
361
362  /// Return the register class that should be used for the specified value
363  /// type.
364  virtual const TargetRegisterClass *getRegClassFor(MVT VT) const {
365    const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
366    assert(RC && "This value type is not natively supported!");
367    return RC;
368  }
369
370  /// Return the 'representative' register class for the specified value
371  /// type.
372  ///
373  /// The 'representative' register class is the largest legal super-reg
374  /// register class for the register class of the value type.  For example, on
375  /// i386 the rep register class for i8, i16, and i32 are GR32; while the rep
376  /// register class is GR64 on x86_64.
377  virtual const TargetRegisterClass *getRepRegClassFor(MVT VT) const {
378    const TargetRegisterClass *RC = RepRegClassForVT[VT.SimpleTy];
379    return RC;
380  }
381
382  /// Return the cost of the 'representative' register class for the specified
383  /// value type.
384  virtual uint8_t getRepRegClassCostFor(MVT VT) const {
385    return RepRegClassCostForVT[VT.SimpleTy];
386  }
387
388  /// Return true if the target has native support for the specified value type.
389  /// This means that it has a register that directly holds it without
390  /// promotions or expansions.
391  bool isTypeLegal(EVT VT) const {
392    assert(!VT.isSimple() ||
393           (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
394    return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != nullptr;
395  }
396
397  class ValueTypeActionImpl {
398    /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
399    /// that indicates how instruction selection should deal with the type.
400    uint8_t ValueTypeActions[MVT::LAST_VALUETYPE];
401
402  public:
403    ValueTypeActionImpl() {
404      std::fill(std::begin(ValueTypeActions), std::end(ValueTypeActions), 0);
405    }
406
407    LegalizeTypeAction getTypeAction(MVT VT) const {
408      return (LegalizeTypeAction)ValueTypeActions[VT.SimpleTy];
409    }
410
411    void setTypeAction(MVT VT, LegalizeTypeAction Action) {
412      unsigned I = VT.SimpleTy;
413      ValueTypeActions[I] = Action;
414    }
415  };
416
417  const ValueTypeActionImpl &getValueTypeActions() const {
418    return ValueTypeActions;
419  }
420
421  /// Return how we should legalize values of this type, either it is already
422  /// legal (return 'Legal') or we need to promote it to a larger type (return
423  /// 'Promote'), or we need to expand it into multiple registers of smaller
424  /// integer type (return 'Expand').  'Custom' is not an option.
425  LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
426    return getTypeConversion(Context, VT).first;
427  }
428  LegalizeTypeAction getTypeAction(MVT VT) const {
429    return ValueTypeActions.getTypeAction(VT);
430  }
431
432  /// For types supported by the target, this is an identity function.  For
433  /// types that must be promoted to larger types, this returns the larger type
434  /// to promote to.  For integer types that are larger than the largest integer
435  /// register, this contains one step in the expansion to get to the smaller
436  /// register. For illegal floating point types, this returns the integer type
437  /// to transform to.
438  EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
439    return getTypeConversion(Context, VT).second;
440  }
441
442  /// For types supported by the target, this is an identity function.  For
443  /// types that must be expanded (i.e. integer types that are larger than the
444  /// largest integer register or illegal floating point types), this returns
445  /// the largest legal type it will be expanded to.
446  EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
447    assert(!VT.isVector());
448    while (true) {
449      switch (getTypeAction(Context, VT)) {
450      case TypeLegal:
451        return VT;
452      case TypeExpandInteger:
453        VT = getTypeToTransformTo(Context, VT);
454        break;
455      default:
456        llvm_unreachable("Type is not legal nor is it to be expanded!");
457      }
458    }
459  }
460
461  /// Vector types are broken down into some number of legal first class types.
462  /// For example, EVT::v8f32 maps to 2 EVT::v4f32 with Altivec or SSE1, or 8
463  /// promoted EVT::f64 values with the X86 FP stack.  Similarly, EVT::v2i64
464  /// turns into 4 EVT::i32 values with both PPC and X86.
465  ///
466  /// This method returns the number of registers needed, and the VT for each
467  /// register.  It also returns the VT and quantity of the intermediate values
468  /// before they are promoted/expanded.
469  unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
470                                  EVT &IntermediateVT,
471                                  unsigned &NumIntermediates,
472                                  MVT &RegisterVT) const;
473
474  struct IntrinsicInfo {
475    unsigned     opc;         // target opcode
476    EVT          memVT;       // memory VT
477    const Value* ptrVal;      // value representing memory location
478    int          offset;      // offset off of ptrVal
479    unsigned     size;        // the size of the memory location
480                              // (taken from memVT if zero)
481    unsigned     align;       // alignment
482    bool         vol;         // is volatile?
483    bool         readMem;     // reads memory?
484    bool         writeMem;    // writes memory?
485
486    IntrinsicInfo() : opc(0), ptrVal(nullptr), offset(0), size(0), align(1),
487                      vol(false), readMem(false), writeMem(false) {}
488  };
489
490  /// Given an intrinsic, checks if on the target the intrinsic will need to map
491  /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
492  /// true and store the intrinsic information into the IntrinsicInfo that was
493  /// passed to the function.
494  virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &,
495                                  unsigned /*Intrinsic*/) const {
496    return false;
497  }
498
499  /// Returns true if the target can instruction select the specified FP
500  /// immediate natively. If false, the legalizer will materialize the FP
501  /// immediate as a load from a constant pool.
502  virtual bool isFPImmLegal(const APFloat &/*Imm*/, EVT /*VT*/) const {
503    return false;
504  }
505
506  /// Targets can use this to indicate that they only support *some*
507  /// VECTOR_SHUFFLE operations, those with specific masks.  By default, if a
508  /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to be
509  /// legal.
510  virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
511                                  EVT /*VT*/) const {
512    return true;
513  }
514
515  /// Returns true if the operation can trap for the value type.
516  ///
517  /// VT must be a legal type. By default, we optimistically assume most
518  /// operations don't trap except for divide and remainder.
519  virtual bool canOpTrap(unsigned Op, EVT VT) const;
520
521  /// Similar to isShuffleMaskLegal. This is used by Targets can use this to
522  /// indicate if there is a suitable VECTOR_SHUFFLE that can be used to replace
523  /// a VAND with a constant pool entry.
524  virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
525                                      EVT /*VT*/) const {
526    return false;
527  }
528
529  /// Return how this operation should be treated: either it is legal, needs to
530  /// be promoted to a larger size, needs to be expanded to some other code
531  /// sequence, or the target has a custom expander for it.
532  LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
533    if (VT.isExtended()) return Expand;
534    // If a target-specific SDNode requires legalization, require the target
535    // to provide custom legalization for it.
536    if (Op > array_lengthof(OpActions[0])) return Custom;
537    unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
538    return (LegalizeAction)OpActions[I][Op];
539  }
540
541  /// Return true if the specified operation is legal on this target or can be
542  /// made legal with custom lowering. This is used to help guide high-level
543  /// lowering decisions.
544  bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
545    return (VT == MVT::Other || isTypeLegal(VT)) &&
546      (getOperationAction(Op, VT) == Legal ||
547       getOperationAction(Op, VT) == Custom);
548  }
549
550  /// Return true if the specified operation is legal on this target or can be
551  /// made legal using promotion. This is used to help guide high-level lowering
552  /// decisions.
553  bool isOperationLegalOrPromote(unsigned Op, EVT VT) const {
554    return (VT == MVT::Other || isTypeLegal(VT)) &&
555      (getOperationAction(Op, VT) == Legal ||
556       getOperationAction(Op, VT) == Promote);
557  }
558
559  /// Return true if the specified operation is illegal on this target or
560  /// unlikely to be made legal with custom lowering. This is used to help guide
561  /// high-level lowering decisions.
562  bool isOperationExpand(unsigned Op, EVT VT) const {
563    return (!isTypeLegal(VT) || getOperationAction(Op, VT) == Expand);
564  }
565
566  /// Return true if the specified operation is legal on this target.
567  bool isOperationLegal(unsigned Op, EVT VT) const {
568    return (VT == MVT::Other || isTypeLegal(VT)) &&
569           getOperationAction(Op, VT) == Legal;
570  }
571
572  /// Return how this load with extension should be treated: either it is legal,
573  /// needs to be promoted to a larger size, needs to be expanded to some other
574  /// code sequence, or the target has a custom expander for it.
575  LegalizeAction getLoadExtAction(unsigned ExtType, EVT ValVT, EVT MemVT) const {
576    if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
577    unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
578    unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
579    assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValI < MVT::LAST_VALUETYPE &&
580           MemI < MVT::LAST_VALUETYPE && "Table isn't big enough!");
581    return (LegalizeAction)LoadExtActions[ValI][MemI][ExtType];
582  }
583
584  /// Return true if the specified load with extension is legal on this target.
585  bool isLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const {
586    return ValVT.isSimple() && MemVT.isSimple() &&
587      getLoadExtAction(ExtType, ValVT, MemVT) == Legal;
588  }
589
590  /// Return true if the specified load with extension is legal or custom
591  /// on this target.
592  bool isLoadExtLegalOrCustom(unsigned ExtType, EVT ValVT, EVT MemVT) const {
593    return ValVT.isSimple() && MemVT.isSimple() &&
594      (getLoadExtAction(ExtType, ValVT, MemVT) == Legal ||
595       getLoadExtAction(ExtType, ValVT, MemVT) == Custom);
596  }
597
598  /// Return how this store with truncation should be treated: either it is
599  /// legal, needs to be promoted to a larger size, needs to be expanded to some
600  /// other code sequence, or the target has a custom expander for it.
601  LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const {
602    if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
603    unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
604    unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
605    assert(ValI < MVT::LAST_VALUETYPE && MemI < MVT::LAST_VALUETYPE &&
606           "Table isn't big enough!");
607    return (LegalizeAction)TruncStoreActions[ValI][MemI];
608  }
609
610  /// Return true if the specified store with truncation is legal on this
611  /// target.
612  bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
613    return isTypeLegal(ValVT) && MemVT.isSimple() &&
614      getTruncStoreAction(ValVT.getSimpleVT(), MemVT.getSimpleVT()) == Legal;
615  }
616
617  /// Return how the indexed load should be treated: either it is legal, needs
618  /// to be promoted to a larger size, needs to be expanded to some other code
619  /// sequence, or the target has a custom expander for it.
620  LegalizeAction
621  getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
622    assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.isValid() &&
623           "Table isn't big enough!");
624    unsigned Ty = (unsigned)VT.SimpleTy;
625    return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
626  }
627
628  /// Return true if the specified indexed load is legal on this target.
629  bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
630    return VT.isSimple() &&
631      (getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
632       getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Custom);
633  }
634
635  /// Return how the indexed store should be treated: either it is legal, needs
636  /// to be promoted to a larger size, needs to be expanded to some other code
637  /// sequence, or the target has a custom expander for it.
638  LegalizeAction
639  getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
640    assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.isValid() &&
641           "Table isn't big enough!");
642    unsigned Ty = (unsigned)VT.SimpleTy;
643    return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
644  }
645
646  /// Return true if the specified indexed load is legal on this target.
647  bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
648    return VT.isSimple() &&
649      (getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
650       getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Custom);
651  }
652
653  /// Return how the condition code should be treated: either it is legal, needs
654  /// to be expanded to some other code sequence, or the target has a custom
655  /// expander for it.
656  LegalizeAction
657  getCondCodeAction(ISD::CondCode CC, MVT VT) const {
658    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
659           ((unsigned)VT.SimpleTy >> 4) < array_lengthof(CondCodeActions[0]) &&
660           "Table isn't big enough!");
661    // See setCondCodeAction for how this is encoded.
662    uint32_t Shift = 2 * (VT.SimpleTy & 0xF);
663    uint32_t Value = CondCodeActions[CC][VT.SimpleTy >> 4];
664    LegalizeAction Action = (LegalizeAction) ((Value >> Shift) & 0x3);
665    assert(Action != Promote && "Can't promote condition code!");
666    return Action;
667  }
668
669  /// Return true if the specified condition code is legal on this target.
670  bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const {
671    return
672      getCondCodeAction(CC, VT) == Legal ||
673      getCondCodeAction(CC, VT) == Custom;
674  }
675
676
677  /// If the action for this operation is to promote, this method returns the
678  /// ValueType to promote to.
679  MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
680    assert(getOperationAction(Op, VT) == Promote &&
681           "This operation isn't promoted!");
682
683    // See if this has an explicit type specified.
684    std::map<std::pair<unsigned, MVT::SimpleValueType>,
685             MVT::SimpleValueType>::const_iterator PTTI =
686      PromoteToType.find(std::make_pair(Op, VT.SimpleTy));
687    if (PTTI != PromoteToType.end()) return PTTI->second;
688
689    assert((VT.isInteger() || VT.isFloatingPoint()) &&
690           "Cannot autopromote this type, add it with AddPromotedToType.");
691
692    MVT NVT = VT;
693    do {
694      NVT = (MVT::SimpleValueType)(NVT.SimpleTy+1);
695      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
696             "Didn't find type to promote to!");
697    } while (!isTypeLegal(NVT) ||
698              getOperationAction(Op, NVT) == Promote);
699    return NVT;
700  }
701
702  /// Return the EVT corresponding to this LLVM type.  This is fixed by the LLVM
703  /// operations except for the pointer size.  If AllowUnknown is true, this
704  /// will return MVT::Other for types with no EVT counterpart (e.g. structs),
705  /// otherwise it will assert.
706  EVT getValueType(Type *Ty, bool AllowUnknown = false) const {
707    // Lower scalar pointers to native pointer types.
708    if (PointerType *PTy = dyn_cast<PointerType>(Ty))
709      return getPointerTy(PTy->getAddressSpace());
710
711    if (Ty->isVectorTy()) {
712      VectorType *VTy = cast<VectorType>(Ty);
713      Type *Elm = VTy->getElementType();
714      // Lower vectors of pointers to native pointer types.
715      if (PointerType *PT = dyn_cast<PointerType>(Elm)) {
716        EVT PointerTy(getPointerTy(PT->getAddressSpace()));
717        Elm = PointerTy.getTypeForEVT(Ty->getContext());
718      }
719
720      return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(Elm, false),
721                       VTy->getNumElements());
722    }
723    return EVT::getEVT(Ty, AllowUnknown);
724  }
725
726  /// Return the MVT corresponding to this LLVM type. See getValueType.
727  MVT getSimpleValueType(Type *Ty, bool AllowUnknown = false) const {
728    return getValueType(Ty, AllowUnknown).getSimpleVT();
729  }
730
731  /// Return the desired alignment for ByVal or InAlloca aggregate function
732  /// arguments in the caller parameter area.  This is the actual alignment, not
733  /// its logarithm.
734  virtual unsigned getByValTypeAlignment(Type *Ty) const;
735
736  /// Return the type of registers that this ValueType will eventually require.
737  MVT getRegisterType(MVT VT) const {
738    assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
739    return RegisterTypeForVT[VT.SimpleTy];
740  }
741
742  /// Return the type of registers that this ValueType will eventually require.
743  MVT getRegisterType(LLVMContext &Context, EVT VT) const {
744    if (VT.isSimple()) {
745      assert((unsigned)VT.getSimpleVT().SimpleTy <
746                array_lengthof(RegisterTypeForVT));
747      return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
748    }
749    if (VT.isVector()) {
750      EVT VT1;
751      MVT RegisterVT;
752      unsigned NumIntermediates;
753      (void)getVectorTypeBreakdown(Context, VT, VT1,
754                                   NumIntermediates, RegisterVT);
755      return RegisterVT;
756    }
757    if (VT.isInteger()) {
758      return getRegisterType(Context, getTypeToTransformTo(Context, VT));
759    }
760    llvm_unreachable("Unsupported extended type!");
761  }
762
763  /// Return the number of registers that this ValueType will eventually
764  /// require.
765  ///
766  /// This is one for any types promoted to live in larger registers, but may be
767  /// more than one for types (like i64) that are split into pieces.  For types
768  /// like i140, which are first promoted then expanded, it is the number of
769  /// registers needed to hold all the bits of the original type.  For an i140
770  /// on a 32 bit machine this means 5 registers.
771  unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
772    if (VT.isSimple()) {
773      assert((unsigned)VT.getSimpleVT().SimpleTy <
774                array_lengthof(NumRegistersForVT));
775      return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
776    }
777    if (VT.isVector()) {
778      EVT VT1;
779      MVT VT2;
780      unsigned NumIntermediates;
781      return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
782    }
783    if (VT.isInteger()) {
784      unsigned BitWidth = VT.getSizeInBits();
785      unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
786      return (BitWidth + RegWidth - 1) / RegWidth;
787    }
788    llvm_unreachable("Unsupported extended type!");
789  }
790
791  /// If true, then instruction selection should seek to shrink the FP constant
792  /// of the specified type to a smaller type in order to save space and / or
793  /// reduce runtime.
794  virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
795
796  // Return true if it is profitable to reduce the given load node to a smaller
797  // type.
798  //
799  // e.g. (i16 (trunc (i32 (load x))) -> i16 load x should be performed
800  virtual bool shouldReduceLoadWidth(SDNode *Load,
801                                     ISD::LoadExtType ExtTy,
802                                     EVT NewVT) const {
803    return true;
804  }
805
806  /// When splitting a value of the specified type into parts, does the Lo
807  /// or Hi part come first?  This usually follows the endianness, except
808  /// for ppcf128, where the Hi part always comes first.
809  bool hasBigEndianPartOrdering(EVT VT) const {
810    return isBigEndian() || VT == MVT::ppcf128;
811  }
812
813  /// If true, the target has custom DAG combine transformations that it can
814  /// perform for the specified node.
815  bool hasTargetDAGCombine(ISD::NodeType NT) const {
816    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
817    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
818  }
819
820  /// \brief Get maximum # of store operations permitted for llvm.memset
821  ///
822  /// This function returns the maximum number of store operations permitted
823  /// to replace a call to llvm.memset. The value is set by the target at the
824  /// performance threshold for such a replacement. If OptSize is true,
825  /// return the limit for functions that have OptSize attribute.
826  unsigned getMaxStoresPerMemset(bool OptSize) const {
827    return OptSize ? MaxStoresPerMemsetOptSize : MaxStoresPerMemset;
828  }
829
830  /// \brief Get maximum # of store operations permitted for llvm.memcpy
831  ///
832  /// This function returns the maximum number of store operations permitted
833  /// to replace a call to llvm.memcpy. The value is set by the target at the
834  /// performance threshold for such a replacement. If OptSize is true,
835  /// return the limit for functions that have OptSize attribute.
836  unsigned getMaxStoresPerMemcpy(bool OptSize) const {
837    return OptSize ? MaxStoresPerMemcpyOptSize : MaxStoresPerMemcpy;
838  }
839
840  /// \brief Get maximum # of store operations permitted for llvm.memmove
841  ///
842  /// This function returns the maximum number of store operations permitted
843  /// to replace a call to llvm.memmove. The value is set by the target at the
844  /// performance threshold for such a replacement. If OptSize is true,
845  /// return the limit for functions that have OptSize attribute.
846  unsigned getMaxStoresPerMemmove(bool OptSize) const {
847    return OptSize ? MaxStoresPerMemmoveOptSize : MaxStoresPerMemmove;
848  }
849
850  /// \brief Determine if the target supports unaligned memory accesses.
851  ///
852  /// This function returns true if the target allows unaligned memory accesses
853  /// of the specified type in the given address space. If true, it also returns
854  /// whether the unaligned memory access is "fast" in the last argument by
855  /// reference. This is used, for example, in situations where an array
856  /// copy/move/set is converted to a sequence of store operations. Its use
857  /// helps to ensure that such replacements don't generate code that causes an
858  /// alignment error (trap) on the target machine.
859  virtual bool allowsMisalignedMemoryAccesses(EVT,
860                                              unsigned AddrSpace = 0,
861                                              unsigned Align = 1,
862                                              bool * /*Fast*/ = nullptr) const {
863    return false;
864  }
865
866  /// Returns the target specific optimal type for load and store operations as
867  /// a result of memset, memcpy, and memmove lowering.
868  ///
869  /// If DstAlign is zero that means it's safe to destination alignment can
870  /// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't
871  /// a need to check it against alignment requirement, probably because the
872  /// source does not need to be loaded. If 'IsMemset' is true, that means it's
873  /// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of
874  /// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it
875  /// does not need to be loaded.  It returns EVT::Other if the type should be
876  /// determined using generic target-independent logic.
877  virtual EVT getOptimalMemOpType(uint64_t /*Size*/,
878                                  unsigned /*DstAlign*/, unsigned /*SrcAlign*/,
879                                  bool /*IsMemset*/,
880                                  bool /*ZeroMemset*/,
881                                  bool /*MemcpyStrSrc*/,
882                                  MachineFunction &/*MF*/) const {
883    return MVT::Other;
884  }
885
886  /// Returns true if it's safe to use load / store of the specified type to
887  /// expand memcpy / memset inline.
888  ///
889  /// This is mostly true for all types except for some special cases. For
890  /// example, on X86 targets without SSE2 f64 load / store are done with fldl /
891  /// fstpl which also does type conversion. Note the specified type doesn't
892  /// have to be legal as the hook is used before type legalization.
893  virtual bool isSafeMemOpType(MVT /*VT*/) const { return true; }
894
895  /// Determine if we should use _setjmp or setjmp to implement llvm.setjmp.
896  bool usesUnderscoreSetJmp() const {
897    return UseUnderscoreSetJmp;
898  }
899
900  /// Determine if we should use _longjmp or longjmp to implement llvm.longjmp.
901  bool usesUnderscoreLongJmp() const {
902    return UseUnderscoreLongJmp;
903  }
904
905  /// Return integer threshold on number of blocks to use jump tables rather
906  /// than if sequence.
907  int getMinimumJumpTableEntries() const {
908    return MinimumJumpTableEntries;
909  }
910
911  /// If a physical register, this specifies the register that
912  /// llvm.savestack/llvm.restorestack should save and restore.
913  unsigned getStackPointerRegisterToSaveRestore() const {
914    return StackPointerRegisterToSaveRestore;
915  }
916
917  /// If a physical register, this returns the register that receives the
918  /// exception address on entry to a landing pad.
919  unsigned getExceptionPointerRegister() const {
920    return ExceptionPointerRegister;
921  }
922
923  /// If a physical register, this returns the register that receives the
924  /// exception typeid on entry to a landing pad.
925  unsigned getExceptionSelectorRegister() const {
926    return ExceptionSelectorRegister;
927  }
928
929  /// Returns the target's jmp_buf size in bytes (if never set, the default is
930  /// 200)
931  unsigned getJumpBufSize() const {
932    return JumpBufSize;
933  }
934
935  /// Returns the target's jmp_buf alignment in bytes (if never set, the default
936  /// is 0)
937  unsigned getJumpBufAlignment() const {
938    return JumpBufAlignment;
939  }
940
941  /// Return the minimum stack alignment of an argument.
942  unsigned getMinStackArgumentAlignment() const {
943    return MinStackArgumentAlignment;
944  }
945
946  /// Return the minimum function alignment.
947  unsigned getMinFunctionAlignment() const {
948    return MinFunctionAlignment;
949  }
950
951  /// Return the preferred function alignment.
952  unsigned getPrefFunctionAlignment() const {
953    return PrefFunctionAlignment;
954  }
955
956  /// Return the preferred loop alignment.
957  virtual unsigned getPrefLoopAlignment(MachineLoop *ML = nullptr) const {
958    return PrefLoopAlignment;
959  }
960
961  /// Return whether the DAG builder should automatically insert fences and
962  /// reduce ordering for atomics.
963  bool getInsertFencesForAtomic() const {
964    return InsertFencesForAtomic;
965  }
966
967  /// Return true if the target stores stack protector cookies at a fixed offset
968  /// in some non-standard address space, and populates the address space and
969  /// offset as appropriate.
970  virtual bool getStackCookieLocation(unsigned &/*AddressSpace*/,
971                                      unsigned &/*Offset*/) const {
972    return false;
973  }
974
975  /// Returns true if a cast between SrcAS and DestAS is a noop.
976  virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const {
977    return false;
978  }
979
980  /// Return true if the pointer arguments to CI should be aligned by aligning
981  /// the object whose address is being passed. If so then MinSize is set to the
982  /// minimum size the object must be to be aligned and PrefAlign is set to the
983  /// preferred alignment.
984  virtual bool shouldAlignPointerArgs(CallInst * /*CI*/, unsigned & /*MinSize*/,
985                                      unsigned & /*PrefAlign*/) const {
986    return false;
987  }
988
989  //===--------------------------------------------------------------------===//
990  /// \name Helpers for TargetTransformInfo implementations
991  /// @{
992
993  /// Get the ISD node that corresponds to the Instruction class opcode.
994  int InstructionOpcodeToISD(unsigned Opcode) const;
995
996  /// Estimate the cost of type-legalization and the legalized type.
997  std::pair<unsigned, MVT> getTypeLegalizationCost(Type *Ty) const;
998
999  /// @}
1000
1001  //===--------------------------------------------------------------------===//
1002  /// \name Helpers for atomic expansion.
1003  /// @{
1004
1005  /// True if AtomicExpandPass should use emitLoadLinked/emitStoreConditional
1006  /// and expand AtomicCmpXchgInst.
1007  virtual bool hasLoadLinkedStoreConditional() const { return false; }
1008
1009  /// Perform a load-linked operation on Addr, returning a "Value *" with the
1010  /// corresponding pointee type. This may entail some non-trivial operations to
1011  /// truncate or reconstruct types that will be illegal in the backend. See
1012  /// ARMISelLowering for an example implementation.
1013  virtual Value *emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
1014                                AtomicOrdering Ord) const {
1015    llvm_unreachable("Load linked unimplemented on this target");
1016  }
1017
1018  /// Perform a store-conditional operation to Addr. Return the status of the
1019  /// store. This should be 0 if the store succeeded, non-zero otherwise.
1020  virtual Value *emitStoreConditional(IRBuilder<> &Builder, Value *Val,
1021                                      Value *Addr, AtomicOrdering Ord) const {
1022    llvm_unreachable("Store conditional unimplemented on this target");
1023  }
1024
1025  /// Inserts in the IR a target-specific intrinsic specifying a fence.
1026  /// It is called by AtomicExpandPass before expanding an
1027  ///   AtomicRMW/AtomicCmpXchg/AtomicStore/AtomicLoad.
1028  /// RMW and CmpXchg set both IsStore and IsLoad to true.
1029  /// This function should either return a nullptr, or a pointer to an IR-level
1030  ///   Instruction*. Even complex fence sequences can be represented by a
1031  ///   single Instruction* through an intrinsic to be lowered later.
1032  /// Backends with !getInsertFencesForAtomic() should keep a no-op here.
1033  /// Backends should override this method to produce target-specific intrinsic
1034  ///   for their fences.
1035  /// FIXME: Please note that the default implementation here in terms of
1036  ///   IR-level fences exists for historical/compatibility reasons and is
1037  ///   *unsound* ! Fences cannot, in general, be used to restore sequential
1038  ///   consistency. For example, consider the following example:
1039  /// atomic<int> x = y = 0;
1040  /// int r1, r2, r3, r4;
1041  /// Thread 0:
1042  ///   x.store(1);
1043  /// Thread 1:
1044  ///   y.store(1);
1045  /// Thread 2:
1046  ///   r1 = x.load();
1047  ///   r2 = y.load();
1048  /// Thread 3:
1049  ///   r3 = y.load();
1050  ///   r4 = x.load();
1051  ///  r1 = r3 = 1 and r2 = r4 = 0 is impossible as long as the accesses are all
1052  ///  seq_cst. But if they are lowered to monotonic accesses, no amount of
1053  ///  IR-level fences can prevent it.
1054  /// @{
1055  virtual Instruction* emitLeadingFence(IRBuilder<> &Builder, AtomicOrdering Ord,
1056          bool IsStore, bool IsLoad) const {
1057    if (!getInsertFencesForAtomic())
1058      return nullptr;
1059
1060    if (isAtLeastRelease(Ord) && IsStore)
1061      return Builder.CreateFence(Ord);
1062    else
1063      return nullptr;
1064  }
1065
1066  virtual Instruction* emitTrailingFence(IRBuilder<> &Builder, AtomicOrdering Ord,
1067          bool IsStore, bool IsLoad) const {
1068    if (!getInsertFencesForAtomic())
1069      return nullptr;
1070
1071    if (isAtLeastAcquire(Ord))
1072      return Builder.CreateFence(Ord);
1073    else
1074      return nullptr;
1075  }
1076  /// @}
1077
1078  /// Returns true if the given (atomic) store should be expanded by the
1079  /// IR-level AtomicExpand pass into an "atomic xchg" which ignores its input.
1080  virtual bool shouldExpandAtomicStoreInIR(StoreInst *SI) const {
1081    return false;
1082  }
1083
1084  /// Returns true if arguments should be sign-extended in lib calls.
1085  virtual bool shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
1086    return IsSigned;
1087 }
1088
1089  /// Returns true if the given (atomic) load should be expanded by the
1090  /// IR-level AtomicExpand pass into a load-linked instruction
1091  /// (through emitLoadLinked()).
1092  virtual bool shouldExpandAtomicLoadInIR(LoadInst *LI) const { return false; }
1093
1094  /// Returns how the IR-level AtomicExpand pass should expand the given
1095  /// AtomicRMW, if at all. Default is to never expand.
1096  virtual AtomicRMWExpansionKind
1097  shouldExpandAtomicRMWInIR(AtomicRMWInst *) const {
1098    return AtomicRMWExpansionKind::None;
1099  }
1100
1101  /// On some platforms, an AtomicRMW that never actually modifies the value
1102  /// (such as fetch_add of 0) can be turned into a fence followed by an
1103  /// atomic load. This may sound useless, but it makes it possible for the
1104  /// processor to keep the cacheline shared, dramatically improving
1105  /// performance. And such idempotent RMWs are useful for implementing some
1106  /// kinds of locks, see for example (justification + benchmarks):
1107  /// http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf
1108  /// This method tries doing that transformation, returning the atomic load if
1109  /// it succeeds, and nullptr otherwise.
1110  /// If shouldExpandAtomicLoadInIR returns true on that load, it will undergo
1111  /// another round of expansion.
1112  virtual LoadInst *lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *RMWI) const {
1113    return nullptr;
1114  }
1115
1116  /// Returns true if we should normalize
1117  /// select(N0&N1, X, Y) => select(N0, select(N1, X, Y), Y) and
1118  /// select(N0|N1, X, Y) => select(N0, select(N1, X, Y, Y)) if it is likely
1119  /// that it saves us from materializing N0 and N1 in an integer register.
1120  /// Targets that are able to perform and/or on flags should return false here.
1121  virtual bool shouldNormalizeToSelectSequence(LLVMContext &Context,
1122                                               EVT VT) const {
1123    // If a target has multiple condition registers, then it likely has logical
1124    // operations on those registers.
1125    if (hasMultipleConditionRegisters())
1126      return false;
1127    // Only do the transform if the value won't be split into multiple
1128    // registers.
1129    LegalizeTypeAction Action = getTypeAction(Context, VT);
1130    return Action != TypeExpandInteger && Action != TypeExpandFloat &&
1131      Action != TypeSplitVector;
1132  }
1133
1134  //===--------------------------------------------------------------------===//
1135  // TargetLowering Configuration Methods - These methods should be invoked by
1136  // the derived class constructor to configure this object for the target.
1137  //
1138protected:
1139  /// Specify how the target extends the result of integer and floating point
1140  /// boolean values from i1 to a wider type.  See getBooleanContents.
1141  void setBooleanContents(BooleanContent Ty) {
1142    BooleanContents = Ty;
1143    BooleanFloatContents = Ty;
1144  }
1145
1146  /// Specify how the target extends the result of integer and floating point
1147  /// boolean values from i1 to a wider type.  See getBooleanContents.
1148  void setBooleanContents(BooleanContent IntTy, BooleanContent FloatTy) {
1149    BooleanContents = IntTy;
1150    BooleanFloatContents = FloatTy;
1151  }
1152
1153  /// Specify how the target extends the result of a vector boolean value from a
1154  /// vector of i1 to a wider type.  See getBooleanContents.
1155  void setBooleanVectorContents(BooleanContent Ty) {
1156    BooleanVectorContents = Ty;
1157  }
1158
1159  /// Specify the target scheduling preference.
1160  void setSchedulingPreference(Sched::Preference Pref) {
1161    SchedPreferenceInfo = Pref;
1162  }
1163
1164  /// Indicate whether this target prefers to use _setjmp to implement
1165  /// llvm.setjmp or the version without _.  Defaults to false.
1166  void setUseUnderscoreSetJmp(bool Val) {
1167    UseUnderscoreSetJmp = Val;
1168  }
1169
1170  /// Indicate whether this target prefers to use _longjmp to implement
1171  /// llvm.longjmp or the version without _.  Defaults to false.
1172  void setUseUnderscoreLongJmp(bool Val) {
1173    UseUnderscoreLongJmp = Val;
1174  }
1175
1176  /// Indicate the number of blocks to generate jump tables rather than if
1177  /// sequence.
1178  void setMinimumJumpTableEntries(int Val) {
1179    MinimumJumpTableEntries = Val;
1180  }
1181
1182  /// If set to a physical register, this specifies the register that
1183  /// llvm.savestack/llvm.restorestack should save and restore.
1184  void setStackPointerRegisterToSaveRestore(unsigned R) {
1185    StackPointerRegisterToSaveRestore = R;
1186  }
1187
1188  /// If set to a physical register, this sets the register that receives the
1189  /// exception address on entry to a landing pad.
1190  void setExceptionPointerRegister(unsigned R) {
1191    ExceptionPointerRegister = R;
1192  }
1193
1194  /// If set to a physical register, this sets the register that receives the
1195  /// exception typeid on entry to a landing pad.
1196  void setExceptionSelectorRegister(unsigned R) {
1197    ExceptionSelectorRegister = R;
1198  }
1199
1200  /// Tells the code generator not to expand operations into sequences that use
1201  /// the select operations if possible.
1202  void setSelectIsExpensive(bool isExpensive = true) {
1203    SelectIsExpensive = isExpensive;
1204  }
1205
1206  /// Tells the code generator that the target has multiple (allocatable)
1207  /// condition registers that can be used to store the results of comparisons
1208  /// for use by selects and conditional branches. With multiple condition
1209  /// registers, the code generator will not aggressively sink comparisons into
1210  /// the blocks of their users.
1211  void setHasMultipleConditionRegisters(bool hasManyRegs = true) {
1212    HasMultipleConditionRegisters = hasManyRegs;
1213  }
1214
1215  /// Tells the code generator that the target has BitExtract instructions.
1216  /// The code generator will aggressively sink "shift"s into the blocks of
1217  /// their users if the users will generate "and" instructions which can be
1218  /// combined with "shift" to BitExtract instructions.
1219  void setHasExtractBitsInsn(bool hasExtractInsn = true) {
1220    HasExtractBitsInsn = hasExtractInsn;
1221  }
1222
1223  /// Tells the code generator not to expand sequence of operations into a
1224  /// separate sequences that increases the amount of flow control.
1225  void setJumpIsExpensive(bool isExpensive = true) {
1226    JumpIsExpensive = isExpensive;
1227  }
1228
1229  /// Tells the code generator that integer divide is expensive, and if
1230  /// possible, should be replaced by an alternate sequence of instructions not
1231  /// containing an integer divide.
1232  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
1233
1234  /// Tells the code generator that fsqrt is cheap, and should not be replaced
1235  /// with an alternative sequence of instructions.
1236  void setFsqrtIsCheap(bool isCheap = true) { FsqrtIsCheap = isCheap; }
1237
1238  /// Tells the code generator that this target supports floating point
1239  /// exceptions and cares about preserving floating point exception behavior.
1240  void setHasFloatingPointExceptions(bool FPExceptions = true) {
1241    HasFloatingPointExceptions = FPExceptions;
1242  }
1243
1244  /// Tells the code generator which bitwidths to bypass.
1245  void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth) {
1246    BypassSlowDivWidths[SlowBitWidth] = FastBitWidth;
1247  }
1248
1249  /// Tells the code generator that it shouldn't generate sra/srl/add/sra for a
1250  /// signed divide by power of two; let the target handle it.
1251  void setPow2SDivIsCheap(bool isCheap = true) { Pow2SDivIsCheap = isCheap; }
1252
1253  /// Add the specified register class as an available regclass for the
1254  /// specified value type. This indicates the selector can handle values of
1255  /// that class natively.
1256  void addRegisterClass(MVT VT, const TargetRegisterClass *RC) {
1257    assert((unsigned)VT.SimpleTy < array_lengthof(RegClassForVT));
1258    AvailableRegClasses.push_back(std::make_pair(VT, RC));
1259    RegClassForVT[VT.SimpleTy] = RC;
1260  }
1261
1262  /// Remove all register classes.
1263  void clearRegisterClasses() {
1264    memset(RegClassForVT, 0,MVT::LAST_VALUETYPE * sizeof(TargetRegisterClass*));
1265
1266    AvailableRegClasses.clear();
1267  }
1268
1269  /// \brief Remove all operation actions.
1270  void clearOperationActions() {
1271  }
1272
1273  /// Return the largest legal super-reg register class of the register class
1274  /// for the specified type and its associated "cost".
1275  virtual std::pair<const TargetRegisterClass *, uint8_t>
1276  findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const;
1277
1278  /// Once all of the register classes are added, this allows us to compute
1279  /// derived properties we expose.
1280  void computeRegisterProperties(const TargetRegisterInfo *TRI);
1281
1282  /// Indicate that the specified operation does not work with the specified
1283  /// type and indicate what to do about it.
1284  void setOperationAction(unsigned Op, MVT VT,
1285                          LegalizeAction Action) {
1286    assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
1287    OpActions[(unsigned)VT.SimpleTy][Op] = (uint8_t)Action;
1288  }
1289
1290  /// Indicate that the specified load with extension does not work with the
1291  /// specified type and indicate what to do about it.
1292  void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT,
1293                        LegalizeAction Action) {
1294    assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValVT.isValid() &&
1295           MemVT.isValid() && "Table isn't big enough!");
1296    LoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy][ExtType] = (uint8_t)Action;
1297  }
1298
1299  /// Indicate that the specified truncating store does not work with the
1300  /// specified type and indicate what to do about it.
1301  void setTruncStoreAction(MVT ValVT, MVT MemVT,
1302                           LegalizeAction Action) {
1303    assert(ValVT.isValid() && MemVT.isValid() && "Table isn't big enough!");
1304    TruncStoreActions[ValVT.SimpleTy][MemVT.SimpleTy] = (uint8_t)Action;
1305  }
1306
1307  /// Indicate that the specified indexed load does or does not work with the
1308  /// specified type and indicate what to do abort it.
1309  ///
1310  /// NOTE: All indexed mode loads are initialized to Expand in
1311  /// TargetLowering.cpp
1312  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
1313                            LegalizeAction Action) {
1314    assert(VT.isValid() && IdxMode < ISD::LAST_INDEXED_MODE &&
1315           (unsigned)Action < 0xf && "Table isn't big enough!");
1316    // Load action are kept in the upper half.
1317    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
1318    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
1319  }
1320
1321  /// Indicate that the specified indexed store does or does not work with the
1322  /// specified type and indicate what to do about it.
1323  ///
1324  /// NOTE: All indexed mode stores are initialized to Expand in
1325  /// TargetLowering.cpp
1326  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
1327                             LegalizeAction Action) {
1328    assert(VT.isValid() && IdxMode < ISD::LAST_INDEXED_MODE &&
1329           (unsigned)Action < 0xf && "Table isn't big enough!");
1330    // Store action are kept in the lower half.
1331    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
1332    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
1333  }
1334
1335  /// Indicate that the specified condition code is or isn't supported on the
1336  /// target and indicate what to do about it.
1337  void setCondCodeAction(ISD::CondCode CC, MVT VT,
1338                         LegalizeAction Action) {
1339    assert(VT.isValid() && (unsigned)CC < array_lengthof(CondCodeActions) &&
1340           "Table isn't big enough!");
1341    /// The lower 5 bits of the SimpleTy index into Nth 2bit set from the 32-bit
1342    /// value and the upper 27 bits index into the second dimension of the array
1343    /// to select what 32-bit value to use.
1344    uint32_t Shift = 2 * (VT.SimpleTy & 0xF);
1345    CondCodeActions[CC][VT.SimpleTy >> 4] &= ~((uint32_t)0x3 << Shift);
1346    CondCodeActions[CC][VT.SimpleTy >> 4] |= (uint32_t)Action << Shift;
1347  }
1348
1349  /// If Opc/OrigVT is specified as being promoted, the promotion code defaults
1350  /// to trying a larger integer/fp until it can find one that works. If that
1351  /// default is insufficient, this method can be used by the target to override
1352  /// the default.
1353  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1354    PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
1355  }
1356
1357  /// Targets should invoke this method for each target independent node that
1358  /// they want to provide a custom DAG combiner for by implementing the
1359  /// PerformDAGCombine virtual method.
1360  void setTargetDAGCombine(ISD::NodeType NT) {
1361    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1362    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1363  }
1364
1365  /// Set the target's required jmp_buf buffer size (in bytes); default is 200
1366  void setJumpBufSize(unsigned Size) {
1367    JumpBufSize = Size;
1368  }
1369
1370  /// Set the target's required jmp_buf buffer alignment (in bytes); default is
1371  /// 0
1372  void setJumpBufAlignment(unsigned Align) {
1373    JumpBufAlignment = Align;
1374  }
1375
1376  /// Set the target's minimum function alignment (in log2(bytes))
1377  void setMinFunctionAlignment(unsigned Align) {
1378    MinFunctionAlignment = Align;
1379  }
1380
1381  /// Set the target's preferred function alignment.  This should be set if
1382  /// there is a performance benefit to higher-than-minimum alignment (in
1383  /// log2(bytes))
1384  void setPrefFunctionAlignment(unsigned Align) {
1385    PrefFunctionAlignment = Align;
1386  }
1387
1388  /// Set the target's preferred loop alignment. Default alignment is zero, it
1389  /// means the target does not care about loop alignment.  The alignment is
1390  /// specified in log2(bytes). The target may also override
1391  /// getPrefLoopAlignment to provide per-loop values.
1392  void setPrefLoopAlignment(unsigned Align) {
1393    PrefLoopAlignment = Align;
1394  }
1395
1396  /// Set the minimum stack alignment of an argument (in log2(bytes)).
1397  void setMinStackArgumentAlignment(unsigned Align) {
1398    MinStackArgumentAlignment = Align;
1399  }
1400
1401  /// Set if the DAG builder should automatically insert fences and reduce the
1402  /// order of atomic memory operations to Monotonic.
1403  void setInsertFencesForAtomic(bool fence) {
1404    InsertFencesForAtomic = fence;
1405  }
1406
1407public:
1408  //===--------------------------------------------------------------------===//
1409  // Addressing mode description hooks (used by LSR etc).
1410  //
1411
1412  /// CodeGenPrepare sinks address calculations into the same BB as Load/Store
1413  /// instructions reading the address. This allows as much computation as
1414  /// possible to be done in the address mode for that operand. This hook lets
1415  /// targets also pass back when this should be done on intrinsics which
1416  /// load/store.
1417  virtual bool GetAddrModeArguments(IntrinsicInst * /*I*/,
1418                                    SmallVectorImpl<Value*> &/*Ops*/,
1419                                    Type *&/*AccessTy*/) const {
1420    return false;
1421  }
1422
1423  /// This represents an addressing mode of:
1424  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1425  /// If BaseGV is null,  there is no BaseGV.
1426  /// If BaseOffs is zero, there is no base offset.
1427  /// If HasBaseReg is false, there is no base register.
1428  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1429  /// no scale.
1430  struct AddrMode {
1431    GlobalValue *BaseGV;
1432    int64_t      BaseOffs;
1433    bool         HasBaseReg;
1434    int64_t      Scale;
1435    AddrMode() : BaseGV(nullptr), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1436  };
1437
1438  /// Return true if the addressing mode represented by AM is legal for this
1439  /// target, for a load/store of the specified type.
1440  ///
1441  /// The type may be VoidTy, in which case only return true if the addressing
1442  /// mode is legal for a load/store of any legal type.  TODO: Handle
1443  /// pre/postinc as well.
1444  virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const;
1445
1446  /// \brief Return the cost of the scaling factor used in the addressing mode
1447  /// represented by AM for this target, for a load/store of the specified type.
1448  ///
1449  /// If the AM is supported, the return value must be >= 0.
1450  /// If the AM is not supported, it returns a negative value.
1451  /// TODO: Handle pre/postinc as well.
1452  virtual int getScalingFactorCost(const AddrMode &AM, Type *Ty) const {
1453    // Default: assume that any scaling factor used in a legal AM is free.
1454    if (isLegalAddressingMode(AM, Ty)) return 0;
1455    return -1;
1456  }
1457
1458  /// Return true if the specified immediate is legal icmp immediate, that is
1459  /// the target has icmp instructions which can compare a register against the
1460  /// immediate without having to materialize the immediate into a register.
1461  virtual bool isLegalICmpImmediate(int64_t) const {
1462    return true;
1463  }
1464
1465  /// Return true if the specified immediate is legal add immediate, that is the
1466  /// target has add instructions which can add a register with the immediate
1467  /// without having to materialize the immediate into a register.
1468  virtual bool isLegalAddImmediate(int64_t) const {
1469    return true;
1470  }
1471
1472  /// Return true if it's significantly cheaper to shift a vector by a uniform
1473  /// scalar than by an amount which will vary across each lane. On x86, for
1474  /// example, there is a "psllw" instruction for the former case, but no simple
1475  /// instruction for a general "a << b" operation on vectors.
1476  virtual bool isVectorShiftByScalarCheap(Type *Ty) const {
1477    return false;
1478  }
1479
1480  /// Return true if it's free to truncate a value of type Ty1 to type
1481  /// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
1482  /// by referencing its sub-register AX.
1483  virtual bool isTruncateFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
1484    return false;
1485  }
1486
1487  /// Return true if a truncation from Ty1 to Ty2 is permitted when deciding
1488  /// whether a call is in tail position. Typically this means that both results
1489  /// would be assigned to the same register or stack slot, but it could mean
1490  /// the target performs adequate checks of its own before proceeding with the
1491  /// tail call.
1492  virtual bool allowTruncateForTailCall(Type * /*Ty1*/, Type * /*Ty2*/) const {
1493    return false;
1494  }
1495
1496  virtual bool isTruncateFree(EVT /*VT1*/, EVT /*VT2*/) const {
1497    return false;
1498  }
1499
1500  virtual bool isProfitableToHoist(Instruction *I) const { return true; }
1501
1502  /// Return true if the extension represented by \p I is free.
1503  /// Unlikely the is[Z|FP]ExtFree family which is based on types,
1504  /// this method can use the context provided by \p I to decide
1505  /// whether or not \p I is free.
1506  /// This method extends the behavior of the is[Z|FP]ExtFree family.
1507  /// In other words, if is[Z|FP]Free returns true, then this method
1508  /// returns true as well. The converse is not true.
1509  /// The target can perform the adequate checks by overriding isExtFreeImpl.
1510  /// \pre \p I must be a sign, zero, or fp extension.
1511  bool isExtFree(const Instruction *I) const {
1512    switch (I->getOpcode()) {
1513    case Instruction::FPExt:
1514      if (isFPExtFree(EVT::getEVT(I->getType())))
1515        return true;
1516      break;
1517    case Instruction::ZExt:
1518      if (isZExtFree(I->getOperand(0)->getType(), I->getType()))
1519        return true;
1520      break;
1521    case Instruction::SExt:
1522      break;
1523    default:
1524      llvm_unreachable("Instruction is not an extension");
1525    }
1526    return isExtFreeImpl(I);
1527  }
1528
1529  /// Return true if any actual instruction that defines a value of type Ty1
1530  /// implicitly zero-extends the value to Ty2 in the result register.
1531  ///
1532  /// This does not necessarily include registers defined in unknown ways, such
1533  /// as incoming arguments, or copies from unknown virtual registers. Also, if
1534  /// isTruncateFree(Ty2, Ty1) is true, this does not necessarily apply to
1535  /// truncate instructions. e.g. on x86-64, all instructions that define 32-bit
1536  /// values implicit zero-extend the result out to 64 bits.
1537  virtual bool isZExtFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
1538    return false;
1539  }
1540
1541  virtual bool isZExtFree(EVT /*VT1*/, EVT /*VT2*/) const {
1542    return false;
1543  }
1544
1545  /// Return true if the target supplies and combines to a paired load
1546  /// two loaded values of type LoadedType next to each other in memory.
1547  /// RequiredAlignment gives the minimal alignment constraints that must be met
1548  /// to be able to select this paired load.
1549  ///
1550  /// This information is *not* used to generate actual paired loads, but it is
1551  /// used to generate a sequence of loads that is easier to combine into a
1552  /// paired load.
1553  /// For instance, something like this:
1554  /// a = load i64* addr
1555  /// b = trunc i64 a to i32
1556  /// c = lshr i64 a, 32
1557  /// d = trunc i64 c to i32
1558  /// will be optimized into:
1559  /// b = load i32* addr1
1560  /// d = load i32* addr2
1561  /// Where addr1 = addr2 +/- sizeof(i32).
1562  ///
1563  /// In other words, unless the target performs a post-isel load combining,
1564  /// this information should not be provided because it will generate more
1565  /// loads.
1566  virtual bool hasPairedLoad(Type * /*LoadedType*/,
1567                             unsigned & /*RequiredAligment*/) const {
1568    return false;
1569  }
1570
1571  virtual bool hasPairedLoad(EVT /*LoadedType*/,
1572                             unsigned & /*RequiredAligment*/) const {
1573    return false;
1574  }
1575
1576  /// Return true if zero-extending the specific node Val to type VT2 is free
1577  /// (either because it's implicitly zero-extended such as ARM ldrb / ldrh or
1578  /// because it's folded such as X86 zero-extending loads).
1579  virtual bool isZExtFree(SDValue Val, EVT VT2) const {
1580    return isZExtFree(Val.getValueType(), VT2);
1581  }
1582
1583  /// Return true if an fpext operation is free (for instance, because
1584  /// single-precision floating-point numbers are implicitly extended to
1585  /// double-precision).
1586  virtual bool isFPExtFree(EVT VT) const {
1587    assert(VT.isFloatingPoint());
1588    return false;
1589  }
1590
1591  /// Return true if folding a vector load into ExtVal (a sign, zero, or any
1592  /// extend node) is profitable.
1593  virtual bool isVectorLoadExtDesirable(SDValue ExtVal) const { return false; }
1594
1595  /// Return true if an fneg operation is free to the point where it is never
1596  /// worthwhile to replace it with a bitwise operation.
1597  virtual bool isFNegFree(EVT VT) const {
1598    assert(VT.isFloatingPoint());
1599    return false;
1600  }
1601
1602  /// Return true if an fabs operation is free to the point where it is never
1603  /// worthwhile to replace it with a bitwise operation.
1604  virtual bool isFAbsFree(EVT VT) const {
1605    assert(VT.isFloatingPoint());
1606    return false;
1607  }
1608
1609  /// Return true if an FMA operation is faster than a pair of fmul and fadd
1610  /// instructions. fmuladd intrinsics will be expanded to FMAs when this method
1611  /// returns true, otherwise fmuladd is expanded to fmul + fadd.
1612  ///
1613  /// NOTE: This may be called before legalization on types for which FMAs are
1614  /// not legal, but should return true if those types will eventually legalize
1615  /// to types that support FMAs. After legalization, it will only be called on
1616  /// types that support FMAs (via Legal or Custom actions)
1617  virtual bool isFMAFasterThanFMulAndFAdd(EVT) const {
1618    return false;
1619  }
1620
1621  /// Return true if it's profitable to narrow operations of type VT1 to
1622  /// VT2. e.g. on x86, it's profitable to narrow from i32 to i8 but not from
1623  /// i32 to i16.
1624  virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const {
1625    return false;
1626  }
1627
1628  /// \brief Return true if it is beneficial to convert a load of a constant to
1629  /// just the constant itself.
1630  /// On some targets it might be more efficient to use a combination of
1631  /// arithmetic instructions to materialize the constant instead of loading it
1632  /// from a constant pool.
1633  virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
1634                                                 Type *Ty) const {
1635    return false;
1636  }
1637
1638  /// Return true if EXTRACT_SUBVECTOR is cheap for this result type
1639  /// with this index. This is needed because EXTRACT_SUBVECTOR usually
1640  /// has custom lowering that depends on the index of the first element,
1641  /// and only the target knows which lowering is cheap.
1642  virtual bool isExtractSubvectorCheap(EVT ResVT, unsigned Index) const {
1643    return false;
1644  }
1645
1646  //===--------------------------------------------------------------------===//
1647  // Runtime Library hooks
1648  //
1649
1650  /// Rename the default libcall routine name for the specified libcall.
1651  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1652    LibcallRoutineNames[Call] = Name;
1653  }
1654
1655  /// Get the libcall routine name for the specified libcall.
1656  const char *getLibcallName(RTLIB::Libcall Call) const {
1657    return LibcallRoutineNames[Call];
1658  }
1659
1660  /// Override the default CondCode to be used to test the result of the
1661  /// comparison libcall against zero.
1662  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1663    CmpLibcallCCs[Call] = CC;
1664  }
1665
1666  /// Get the CondCode that's to be used to test the result of the comparison
1667  /// libcall against zero.
1668  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1669    return CmpLibcallCCs[Call];
1670  }
1671
1672  /// Set the CallingConv that should be used for the specified libcall.
1673  void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
1674    LibcallCallingConvs[Call] = CC;
1675  }
1676
1677  /// Get the CallingConv that should be used for the specified libcall.
1678  CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
1679    return LibcallCallingConvs[Call];
1680  }
1681
1682private:
1683  const TargetMachine &TM;
1684
1685  /// True if this is a little endian target.
1686  bool IsLittleEndian;
1687
1688  /// Tells the code generator not to expand operations into sequences that use
1689  /// the select operations if possible.
1690  bool SelectIsExpensive;
1691
1692  /// Tells the code generator that the target has multiple (allocatable)
1693  /// condition registers that can be used to store the results of comparisons
1694  /// for use by selects and conditional branches. With multiple condition
1695  /// registers, the code generator will not aggressively sink comparisons into
1696  /// the blocks of their users.
1697  bool HasMultipleConditionRegisters;
1698
1699  /// Tells the code generator that the target has BitExtract instructions.
1700  /// The code generator will aggressively sink "shift"s into the blocks of
1701  /// their users if the users will generate "and" instructions which can be
1702  /// combined with "shift" to BitExtract instructions.
1703  bool HasExtractBitsInsn;
1704
1705  /// Tells the code generator not to expand integer divides by constants into a
1706  /// sequence of muls, adds, and shifts.  This is a hack until a real cost
1707  /// model is in place.  If we ever optimize for size, this will be set to true
1708  /// unconditionally.
1709  bool IntDivIsCheap;
1710
1711  // Don't expand fsqrt with an approximation based on the inverse sqrt.
1712  bool FsqrtIsCheap;
1713
1714  /// Tells the code generator to bypass slow divide or remainder
1715  /// instructions. For example, BypassSlowDivWidths[32,8] tells the code
1716  /// generator to bypass 32-bit integer div/rem with an 8-bit unsigned integer
1717  /// div/rem when the operands are positive and less than 256.
1718  DenseMap <unsigned int, unsigned int> BypassSlowDivWidths;
1719
1720  /// Tells the code generator that it shouldn't generate sra/srl/add/sra for a
1721  /// signed divide by power of two; let the target handle it.
1722  bool Pow2SDivIsCheap;
1723
1724  /// Tells the code generator that it shouldn't generate extra flow control
1725  /// instructions and should attempt to combine flow control instructions via
1726  /// predication.
1727  bool JumpIsExpensive;
1728
1729  /// Whether the target supports or cares about preserving floating point
1730  /// exception behavior.
1731  bool HasFloatingPointExceptions;
1732
1733  /// This target prefers to use _setjmp to implement llvm.setjmp.
1734  ///
1735  /// Defaults to false.
1736  bool UseUnderscoreSetJmp;
1737
1738  /// This target prefers to use _longjmp to implement llvm.longjmp.
1739  ///
1740  /// Defaults to false.
1741  bool UseUnderscoreLongJmp;
1742
1743  /// Number of blocks threshold to use jump tables.
1744  int MinimumJumpTableEntries;
1745
1746  /// Information about the contents of the high-bits in boolean values held in
1747  /// a type wider than i1. See getBooleanContents.
1748  BooleanContent BooleanContents;
1749
1750  /// Information about the contents of the high-bits in boolean values held in
1751  /// a type wider than i1. See getBooleanContents.
1752  BooleanContent BooleanFloatContents;
1753
1754  /// Information about the contents of the high-bits in boolean vector values
1755  /// when the element type is wider than i1. See getBooleanContents.
1756  BooleanContent BooleanVectorContents;
1757
1758  /// The target scheduling preference: shortest possible total cycles or lowest
1759  /// register usage.
1760  Sched::Preference SchedPreferenceInfo;
1761
1762  /// The size, in bytes, of the target's jmp_buf buffers
1763  unsigned JumpBufSize;
1764
1765  /// The alignment, in bytes, of the target's jmp_buf buffers
1766  unsigned JumpBufAlignment;
1767
1768  /// The minimum alignment that any argument on the stack needs to have.
1769  unsigned MinStackArgumentAlignment;
1770
1771  /// The minimum function alignment (used when optimizing for size, and to
1772  /// prevent explicitly provided alignment from leading to incorrect code).
1773  unsigned MinFunctionAlignment;
1774
1775  /// The preferred function alignment (used when alignment unspecified and
1776  /// optimizing for speed).
1777  unsigned PrefFunctionAlignment;
1778
1779  /// The preferred loop alignment.
1780  unsigned PrefLoopAlignment;
1781
1782  /// Whether the DAG builder should automatically insert fences and reduce
1783  /// ordering for atomics.  (This will be set for for most architectures with
1784  /// weak memory ordering.)
1785  bool InsertFencesForAtomic;
1786
1787  /// If set to a physical register, this specifies the register that
1788  /// llvm.savestack/llvm.restorestack should save and restore.
1789  unsigned StackPointerRegisterToSaveRestore;
1790
1791  /// If set to a physical register, this specifies the register that receives
1792  /// the exception address on entry to a landing pad.
1793  unsigned ExceptionPointerRegister;
1794
1795  /// If set to a physical register, this specifies the register that receives
1796  /// the exception typeid on entry to a landing pad.
1797  unsigned ExceptionSelectorRegister;
1798
1799  /// This indicates the default register class to use for each ValueType the
1800  /// target supports natively.
1801  const TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1802  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1803  MVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1804
1805  /// This indicates the "representative" register class to use for each
1806  /// ValueType the target supports natively. This information is used by the
1807  /// scheduler to track register pressure. By default, the representative
1808  /// register class is the largest legal super-reg register class of the
1809  /// register class of the specified type. e.g. On x86, i8, i16, and i32's
1810  /// representative class would be GR32.
1811  const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
1812
1813  /// This indicates the "cost" of the "representative" register class for each
1814  /// ValueType. The cost is used by the scheduler to approximate register
1815  /// pressure.
1816  uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
1817
1818  /// For any value types we are promoting or expanding, this contains the value
1819  /// type that we are changing to.  For Expanded types, this contains one step
1820  /// of the expand (e.g. i64 -> i32), even if there are multiple steps required
1821  /// (e.g. i64 -> i16).  For types natively supported by the system, this holds
1822  /// the same type (e.g. i32 -> i32).
1823  MVT TransformToType[MVT::LAST_VALUETYPE];
1824
1825  /// For each operation and each value type, keep a LegalizeAction that
1826  /// indicates how instruction selection should deal with the operation.  Most
1827  /// operations are Legal (aka, supported natively by the target), but
1828  /// operations that are not should be described.  Note that operations on
1829  /// non-legal value types are not described here.
1830  uint8_t OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
1831
1832  /// For each load extension type and each value type, keep a LegalizeAction
1833  /// that indicates how instruction selection should deal with a load of a
1834  /// specific value type and extension type.
1835  uint8_t LoadExtActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE]
1836                        [ISD::LAST_LOADEXT_TYPE];
1837
1838  /// For each value type pair keep a LegalizeAction that indicates whether a
1839  /// truncating store of a specific value type and truncating type is legal.
1840  uint8_t TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
1841
1842  /// For each indexed mode and each value type, keep a pair of LegalizeAction
1843  /// that indicates how instruction selection should deal with the load /
1844  /// store.
1845  ///
1846  /// The first dimension is the value_type for the reference. The second
1847  /// dimension represents the various modes for load store.
1848  uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
1849
1850  /// For each condition code (ISD::CondCode) keep a LegalizeAction that
1851  /// indicates how instruction selection should deal with the condition code.
1852  ///
1853  /// Because each CC action takes up 2 bits, we need to have the array size be
1854  /// large enough to fit all of the value types. This can be done by rounding
1855  /// up the MVT::LAST_VALUETYPE value to the next multiple of 16.
1856  uint32_t CondCodeActions[ISD::SETCC_INVALID][(MVT::LAST_VALUETYPE + 15) / 16];
1857
1858  ValueTypeActionImpl ValueTypeActions;
1859
1860private:
1861  LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const;
1862
1863private:
1864  std::vector<std::pair<MVT, const TargetRegisterClass*> > AvailableRegClasses;
1865
1866  /// Targets can specify ISD nodes that they would like PerformDAGCombine
1867  /// callbacks for by calling setTargetDAGCombine(), which sets a bit in this
1868  /// array.
1869  unsigned char
1870  TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
1871
1872  /// For operations that must be promoted to a specific type, this holds the
1873  /// destination type.  This map should be sparse, so don't hold it as an
1874  /// array.
1875  ///
1876  /// Targets add entries to this map with AddPromotedToType(..), clients access
1877  /// this with getTypeToPromoteTo(..).
1878  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
1879    PromoteToType;
1880
1881  /// Stores the name each libcall.
1882  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1883
1884  /// The ISD::CondCode that should be used to test the result of each of the
1885  /// comparison libcall against zero.
1886  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1887
1888  /// Stores the CallingConv that should be used for each libcall.
1889  CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
1890
1891protected:
1892  /// Return true if the extension represented by \p I is free.
1893  /// \pre \p I is a sign, zero, or fp extension and
1894  ///      is[Z|FP]ExtFree of the related types is not true.
1895  virtual bool isExtFreeImpl(const Instruction *I) const { return false; }
1896
1897  /// \brief Specify maximum number of store instructions per memset call.
1898  ///
1899  /// When lowering \@llvm.memset this field specifies the maximum number of
1900  /// store operations that may be substituted for the call to memset. Targets
1901  /// must set this value based on the cost threshold for that target. Targets
1902  /// should assume that the memset will be done using as many of the largest
1903  /// store operations first, followed by smaller ones, if necessary, per
1904  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1905  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1906  /// store.  This only applies to setting a constant array of a constant size.
1907  unsigned MaxStoresPerMemset;
1908
1909  /// Maximum number of stores operations that may be substituted for the call
1910  /// to memset, used for functions with OptSize attribute.
1911  unsigned MaxStoresPerMemsetOptSize;
1912
1913  /// \brief Specify maximum bytes of store instructions per memcpy call.
1914  ///
1915  /// When lowering \@llvm.memcpy this field specifies the maximum number of
1916  /// store operations that may be substituted for a call to memcpy. Targets
1917  /// must set this value based on the cost threshold for that target. Targets
1918  /// should assume that the memcpy will be done using as many of the largest
1919  /// store operations first, followed by smaller ones, if necessary, per
1920  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1921  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1922  /// and one 1-byte store. This only applies to copying a constant array of
1923  /// constant size.
1924  unsigned MaxStoresPerMemcpy;
1925
1926  /// Maximum number of store operations that may be substituted for a call to
1927  /// memcpy, used for functions with OptSize attribute.
1928  unsigned MaxStoresPerMemcpyOptSize;
1929
1930  /// \brief Specify maximum bytes of store instructions per memmove call.
1931  ///
1932  /// When lowering \@llvm.memmove this field specifies the maximum number of
1933  /// store instructions that may be substituted for a call to memmove. Targets
1934  /// must set this value based on the cost threshold for that target. Targets
1935  /// should assume that the memmove will be done using as many of the largest
1936  /// store operations first, followed by smaller ones, if necessary, per
1937  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1938  /// with 8-bit alignment would result in nine 1-byte stores.  This only
1939  /// applies to copying a constant array of constant size.
1940  unsigned MaxStoresPerMemmove;
1941
1942  /// Maximum number of store instructions that may be substituted for a call to
1943  /// memmove, used for functions with OpSize attribute.
1944  unsigned MaxStoresPerMemmoveOptSize;
1945
1946  /// Tells the code generator that select is more expensive than a branch if
1947  /// the branch is usually predicted right.
1948  bool PredictableSelectIsExpensive;
1949
1950  /// MaskAndBranchFoldingIsLegal - Indicates if the target supports folding
1951  /// a mask of a single bit, a compare, and a branch into a single instruction.
1952  bool MaskAndBranchFoldingIsLegal;
1953
1954  /// \see enableExtLdPromotion.
1955  bool EnableExtLdPromotion;
1956
1957protected:
1958  /// Return true if the value types that can be represented by the specified
1959  /// register class are all legal.
1960  bool isLegalRC(const TargetRegisterClass *RC) const;
1961
1962  /// Replace/modify any TargetFrameIndex operands with a targte-dependent
1963  /// sequence of memory operands that is recognized by PrologEpilogInserter.
1964  MachineBasicBlock *emitPatchPoint(MachineInstr *MI, MachineBasicBlock *MBB) const;
1965};
1966
1967/// This class defines information used to lower LLVM code to legal SelectionDAG
1968/// operators that the target instruction selector can accept natively.
1969///
1970/// This class also defines callbacks that targets must implement to lower
1971/// target-specific constructs to SelectionDAG operators.
1972class TargetLowering : public TargetLoweringBase {
1973  TargetLowering(const TargetLowering&) = delete;
1974  void operator=(const TargetLowering&) = delete;
1975
1976public:
1977  /// NOTE: The TargetMachine owns TLOF.
1978  explicit TargetLowering(const TargetMachine &TM);
1979
1980  /// Returns true by value, base pointer and offset pointer and addressing mode
1981  /// by reference if the node's address can be legally represented as
1982  /// pre-indexed load / store address.
1983  virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
1984                                         SDValue &/*Offset*/,
1985                                         ISD::MemIndexedMode &/*AM*/,
1986                                         SelectionDAG &/*DAG*/) const {
1987    return false;
1988  }
1989
1990  /// Returns true by value, base pointer and offset pointer and addressing mode
1991  /// by reference if this node can be combined with a load / store to form a
1992  /// post-indexed load / store.
1993  virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
1994                                          SDValue &/*Base*/,
1995                                          SDValue &/*Offset*/,
1996                                          ISD::MemIndexedMode &/*AM*/,
1997                                          SelectionDAG &/*DAG*/) const {
1998    return false;
1999  }
2000
2001  /// Return the entry encoding for a jump table in the current function.  The
2002  /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
2003  virtual unsigned getJumpTableEncoding() const;
2004
2005  virtual const MCExpr *
2006  LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/,
2007                            const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
2008                            MCContext &/*Ctx*/) const {
2009    llvm_unreachable("Need to implement this hook if target has custom JTIs");
2010  }
2011
2012  /// Returns relocation base for the given PIC jumptable.
2013  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
2014                                           SelectionDAG &DAG) const;
2015
2016  /// This returns the relocation base for the given PIC jumptable, the same as
2017  /// getPICJumpTableRelocBase, but as an MCExpr.
2018  virtual const MCExpr *
2019  getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
2020                               unsigned JTI, MCContext &Ctx) const;
2021
2022  /// Return true if folding a constant offset with the given GlobalAddress is
2023  /// legal.  It is frequently not legal in PIC relocation models.
2024  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
2025
2026  bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
2027                            SDValue &Chain) const;
2028
2029  void softenSetCCOperands(SelectionDAG &DAG, EVT VT,
2030                           SDValue &NewLHS, SDValue &NewRHS,
2031                           ISD::CondCode &CCCode, SDLoc DL) const;
2032
2033  /// Returns a pair of (return value, chain).
2034  /// It is an error to pass RTLIB::UNKNOWN_LIBCALL as \p LC.
2035  std::pair<SDValue, SDValue> makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC,
2036                                          EVT RetVT, const SDValue *Ops,
2037                                          unsigned NumOps, bool isSigned,
2038                                          SDLoc dl, bool doesNotReturn = false,
2039                                          bool isReturnValueUsed = true) const;
2040
2041  //===--------------------------------------------------------------------===//
2042  // TargetLowering Optimization Methods
2043  //
2044
2045  /// A convenience struct that encapsulates a DAG, and two SDValues for
2046  /// returning information from TargetLowering to its clients that want to
2047  /// combine.
2048  struct TargetLoweringOpt {
2049    SelectionDAG &DAG;
2050    bool LegalTys;
2051    bool LegalOps;
2052    SDValue Old;
2053    SDValue New;
2054
2055    explicit TargetLoweringOpt(SelectionDAG &InDAG,
2056                               bool LT, bool LO) :
2057      DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
2058
2059    bool LegalTypes() const { return LegalTys; }
2060    bool LegalOperations() const { return LegalOps; }
2061
2062    bool CombineTo(SDValue O, SDValue N) {
2063      Old = O;
2064      New = N;
2065      return true;
2066    }
2067
2068    /// Check to see if the specified operand of the specified instruction is a
2069    /// constant integer.  If so, check to see if there are any bits set in the
2070    /// constant that are not demanded.  If so, shrink the constant and return
2071    /// true.
2072    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
2073
2074    /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.  This
2075    /// uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
2076    /// generalized for targets with other types of implicit widening casts.
2077    bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
2078                          SDLoc dl);
2079  };
2080
2081  /// Look at Op.  At this point, we know that only the DemandedMask bits of the
2082  /// result of Op are ever used downstream.  If we can use this information to
2083  /// simplify Op, create a new simplified DAG node and return true, returning
2084  /// the original and new nodes in Old and New.  Otherwise, analyze the
2085  /// expression and return a mask of KnownOne and KnownZero bits for the
2086  /// expression (used to simplify the caller).  The KnownZero/One bits may only
2087  /// be accurate for those bits in the DemandedMask.
2088  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
2089                            APInt &KnownZero, APInt &KnownOne,
2090                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
2091
2092  /// Determine which of the bits specified in Mask are known to be either zero
2093  /// or one and return them in the KnownZero/KnownOne bitsets.
2094  virtual void computeKnownBitsForTargetNode(const SDValue Op,
2095                                             APInt &KnownZero,
2096                                             APInt &KnownOne,
2097                                             const SelectionDAG &DAG,
2098                                             unsigned Depth = 0) const;
2099
2100  /// This method can be implemented by targets that want to expose additional
2101  /// information about sign bits to the DAG Combiner.
2102  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
2103                                                   const SelectionDAG &DAG,
2104                                                   unsigned Depth = 0) const;
2105
2106  struct DAGCombinerInfo {
2107    void *DC;  // The DAG Combiner object.
2108    CombineLevel Level;
2109    bool CalledByLegalizer;
2110  public:
2111    SelectionDAG &DAG;
2112
2113    DAGCombinerInfo(SelectionDAG &dag, CombineLevel level,  bool cl, void *dc)
2114      : DC(dc), Level(level), CalledByLegalizer(cl), DAG(dag) {}
2115
2116    bool isBeforeLegalize() const { return Level == BeforeLegalizeTypes; }
2117    bool isBeforeLegalizeOps() const { return Level < AfterLegalizeVectorOps; }
2118    bool isAfterLegalizeVectorOps() const {
2119      return Level == AfterLegalizeDAG;
2120    }
2121    CombineLevel getDAGCombineLevel() { return Level; }
2122    bool isCalledByLegalizer() const { return CalledByLegalizer; }
2123
2124    void AddToWorklist(SDNode *N);
2125    void RemoveFromWorklist(SDNode *N);
2126    SDValue CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo = true);
2127    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
2128    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
2129
2130    void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
2131  };
2132
2133  /// Return if the N is a constant or constant vector equal to the true value
2134  /// from getBooleanContents().
2135  bool isConstTrueVal(const SDNode *N) const;
2136
2137  /// Return if the N is a constant or constant vector equal to the false value
2138  /// from getBooleanContents().
2139  bool isConstFalseVal(const SDNode *N) const;
2140
2141  /// Try to simplify a setcc built with the specified operands and cc. If it is
2142  /// unable to simplify it, return a null SDValue.
2143  SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
2144                          ISD::CondCode Cond, bool foldBooleans,
2145                          DAGCombinerInfo &DCI, SDLoc dl) const;
2146
2147  /// Returns true (and the GlobalValue and the offset) if the node is a
2148  /// GlobalAddress + offset.
2149  virtual bool
2150  isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
2151
2152  /// This method will be invoked for all target nodes and for any
2153  /// target-independent nodes that the target has registered with invoke it
2154  /// for.
2155  ///
2156  /// The semantics are as follows:
2157  /// Return Value:
2158  ///   SDValue.Val == 0   - No change was made
2159  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
2160  ///   otherwise          - N should be replaced by the returned Operand.
2161  ///
2162  /// In addition, methods provided by DAGCombinerInfo may be used to perform
2163  /// more complex transformations.
2164  ///
2165  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
2166
2167  /// Return true if it is profitable to move a following shift through this
2168  //  node, adjusting any immediate operands as necessary to preserve semantics.
2169  //  This transformation may not be desirable if it disrupts a particularly
2170  //  auspicious target-specific tree (e.g. bitfield extraction in AArch64).
2171  //  By default, it returns true.
2172  virtual bool isDesirableToCommuteWithShift(const SDNode *N /*Op*/) const {
2173    return true;
2174  }
2175
2176  /// Return true if the target has native support for the specified value type
2177  /// and it is 'desirable' to use the type for the given node type. e.g. On x86
2178  /// i16 is legal, but undesirable since i16 instruction encodings are longer
2179  /// and some i16 instructions are slow.
2180  virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
2181    // By default, assume all legal types are desirable.
2182    return isTypeLegal(VT);
2183  }
2184
2185  /// Return true if it is profitable for dag combiner to transform a floating
2186  /// point op of specified opcode to a equivalent op of an integer
2187  /// type. e.g. f32 load -> i32 load can be profitable on ARM.
2188  virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
2189                                                 EVT /*VT*/) const {
2190    return false;
2191  }
2192
2193  /// This method query the target whether it is beneficial for dag combiner to
2194  /// promote the specified node. If true, it should return the desired
2195  /// promotion type by reference.
2196  virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
2197    return false;
2198  }
2199
2200  //===--------------------------------------------------------------------===//
2201  // Lowering methods - These methods must be implemented by targets so that
2202  // the SelectionDAGBuilder code knows how to lower these.
2203  //
2204
2205  /// This hook must be implemented to lower the incoming (formal) arguments,
2206  /// described by the Ins array, into the specified DAG. The implementation
2207  /// should fill in the InVals array with legal-type argument values, and
2208  /// return the resulting token chain value.
2209  ///
2210  virtual SDValue
2211    LowerFormalArguments(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
2212                         bool /*isVarArg*/,
2213                         const SmallVectorImpl<ISD::InputArg> &/*Ins*/,
2214                         SDLoc /*dl*/, SelectionDAG &/*DAG*/,
2215                         SmallVectorImpl<SDValue> &/*InVals*/) const {
2216    llvm_unreachable("Not Implemented");
2217  }
2218
2219  struct ArgListEntry {
2220    SDValue Node;
2221    Type* Ty;
2222    bool isSExt     : 1;
2223    bool isZExt     : 1;
2224    bool isInReg    : 1;
2225    bool isSRet     : 1;
2226    bool isNest     : 1;
2227    bool isByVal    : 1;
2228    bool isInAlloca : 1;
2229    bool isReturned : 1;
2230    uint16_t Alignment;
2231
2232    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
2233      isSRet(false), isNest(false), isByVal(false), isInAlloca(false),
2234      isReturned(false), Alignment(0) { }
2235
2236    void setAttributes(ImmutableCallSite *CS, unsigned AttrIdx);
2237  };
2238  typedef std::vector<ArgListEntry> ArgListTy;
2239
2240  /// This structure contains all information that is necessary for lowering
2241  /// calls. It is passed to TLI::LowerCallTo when the SelectionDAG builder
2242  /// needs to lower a call, and targets will see this struct in their LowerCall
2243  /// implementation.
2244  struct CallLoweringInfo {
2245    SDValue Chain;
2246    Type *RetTy;
2247    bool RetSExt           : 1;
2248    bool RetZExt           : 1;
2249    bool IsVarArg          : 1;
2250    bool IsInReg           : 1;
2251    bool DoesNotReturn     : 1;
2252    bool IsReturnValueUsed : 1;
2253
2254    // IsTailCall should be modified by implementations of
2255    // TargetLowering::LowerCall that perform tail call conversions.
2256    bool IsTailCall;
2257
2258    unsigned NumFixedArgs;
2259    CallingConv::ID CallConv;
2260    SDValue Callee;
2261    ArgListTy Args;
2262    SelectionDAG &DAG;
2263    SDLoc DL;
2264    ImmutableCallSite *CS;
2265    bool IsPatchPoint;
2266    SmallVector<ISD::OutputArg, 32> Outs;
2267    SmallVector<SDValue, 32> OutVals;
2268    SmallVector<ISD::InputArg, 32> Ins;
2269
2270    CallLoweringInfo(SelectionDAG &DAG)
2271      : RetTy(nullptr), RetSExt(false), RetZExt(false), IsVarArg(false),
2272        IsInReg(false), DoesNotReturn(false), IsReturnValueUsed(true),
2273        IsTailCall(false), NumFixedArgs(-1), CallConv(CallingConv::C),
2274        DAG(DAG), CS(nullptr), IsPatchPoint(false) {}
2275
2276    CallLoweringInfo &setDebugLoc(SDLoc dl) {
2277      DL = dl;
2278      return *this;
2279    }
2280
2281    CallLoweringInfo &setChain(SDValue InChain) {
2282      Chain = InChain;
2283      return *this;
2284    }
2285
2286    CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultType,
2287                                SDValue Target, ArgListTy &&ArgsList,
2288                                unsigned FixedArgs = -1) {
2289      RetTy = ResultType;
2290      Callee = Target;
2291      CallConv = CC;
2292      NumFixedArgs =
2293        (FixedArgs == static_cast<unsigned>(-1) ? Args.size() : FixedArgs);
2294      Args = std::move(ArgsList);
2295      return *this;
2296    }
2297
2298    CallLoweringInfo &setCallee(Type *ResultType, FunctionType *FTy,
2299                                SDValue Target, ArgListTy &&ArgsList,
2300                                ImmutableCallSite &Call) {
2301      RetTy = ResultType;
2302
2303      IsInReg = Call.paramHasAttr(0, Attribute::InReg);
2304      DoesNotReturn = Call.doesNotReturn();
2305      IsVarArg = FTy->isVarArg();
2306      IsReturnValueUsed = !Call.getInstruction()->use_empty();
2307      RetSExt = Call.paramHasAttr(0, Attribute::SExt);
2308      RetZExt = Call.paramHasAttr(0, Attribute::ZExt);
2309
2310      Callee = Target;
2311
2312      CallConv = Call.getCallingConv();
2313      NumFixedArgs = FTy->getNumParams();
2314      Args = std::move(ArgsList);
2315
2316      CS = &Call;
2317
2318      return *this;
2319    }
2320
2321    CallLoweringInfo &setInRegister(bool Value = true) {
2322      IsInReg = Value;
2323      return *this;
2324    }
2325
2326    CallLoweringInfo &setNoReturn(bool Value = true) {
2327      DoesNotReturn = Value;
2328      return *this;
2329    }
2330
2331    CallLoweringInfo &setVarArg(bool Value = true) {
2332      IsVarArg = Value;
2333      return *this;
2334    }
2335
2336    CallLoweringInfo &setTailCall(bool Value = true) {
2337      IsTailCall = Value;
2338      return *this;
2339    }
2340
2341    CallLoweringInfo &setDiscardResult(bool Value = true) {
2342      IsReturnValueUsed = !Value;
2343      return *this;
2344    }
2345
2346    CallLoweringInfo &setSExtResult(bool Value = true) {
2347      RetSExt = Value;
2348      return *this;
2349    }
2350
2351    CallLoweringInfo &setZExtResult(bool Value = true) {
2352      RetZExt = Value;
2353      return *this;
2354    }
2355
2356    CallLoweringInfo &setIsPatchPoint(bool Value = true) {
2357      IsPatchPoint = Value;
2358      return *this;
2359    }
2360
2361    ArgListTy &getArgs() {
2362      return Args;
2363    }
2364  };
2365
2366  /// This function lowers an abstract call to a function into an actual call.
2367  /// This returns a pair of operands.  The first element is the return value
2368  /// for the function (if RetTy is not VoidTy).  The second element is the
2369  /// outgoing token chain. It calls LowerCall to do the actual lowering.
2370  std::pair<SDValue, SDValue> LowerCallTo(CallLoweringInfo &CLI) const;
2371
2372  /// This hook must be implemented to lower calls into the the specified
2373  /// DAG. The outgoing arguments to the call are described by the Outs array,
2374  /// and the values to be returned by the call are described by the Ins
2375  /// array. The implementation should fill in the InVals array with legal-type
2376  /// return values from the call, and return the resulting token chain value.
2377  virtual SDValue
2378    LowerCall(CallLoweringInfo &/*CLI*/,
2379              SmallVectorImpl<SDValue> &/*InVals*/) const {
2380    llvm_unreachable("Not Implemented");
2381  }
2382
2383  /// Target-specific cleanup for formal ByVal parameters.
2384  virtual void HandleByVal(CCState *, unsigned &, unsigned) const {}
2385
2386  /// This hook should be implemented to check whether the return values
2387  /// described by the Outs array can fit into the return registers.  If false
2388  /// is returned, an sret-demotion is performed.
2389  virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
2390                              MachineFunction &/*MF*/, bool /*isVarArg*/,
2391               const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
2392               LLVMContext &/*Context*/) const
2393  {
2394    // Return true by default to get preexisting behavior.
2395    return true;
2396  }
2397
2398  /// This hook must be implemented to lower outgoing return values, described
2399  /// by the Outs array, into the specified DAG. The implementation should
2400  /// return the resulting token chain value.
2401  virtual SDValue
2402    LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
2403                bool /*isVarArg*/,
2404                const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
2405                const SmallVectorImpl<SDValue> &/*OutVals*/,
2406                SDLoc /*dl*/, SelectionDAG &/*DAG*/) const {
2407    llvm_unreachable("Not Implemented");
2408  }
2409
2410  /// Return true if result of the specified node is used by a return node
2411  /// only. It also compute and return the input chain for the tail call.
2412  ///
2413  /// This is used to determine whether it is possible to codegen a libcall as
2414  /// tail call at legalization time.
2415  virtual bool isUsedByReturnOnly(SDNode *, SDValue &/*Chain*/) const {
2416    return false;
2417  }
2418
2419  /// Return true if the target may be able emit the call instruction as a tail
2420  /// call. This is used by optimization passes to determine if it's profitable
2421  /// to duplicate return instructions to enable tailcall optimization.
2422  virtual bool mayBeEmittedAsTailCall(CallInst *) const {
2423    return false;
2424  }
2425
2426  /// Return the builtin name for the __builtin___clear_cache intrinsic
2427  /// Default is to invoke the clear cache library call
2428  virtual const char * getClearCacheBuiltinName() const {
2429    return "__clear_cache";
2430  }
2431
2432  /// Return the register ID of the name passed in. Used by named register
2433  /// global variables extension. There is no target-independent behaviour
2434  /// so the default action is to bail.
2435  virtual unsigned getRegisterByName(const char* RegName, EVT VT) const {
2436    report_fatal_error("Named registers not implemented for this target");
2437  }
2438
2439  /// Return the type that should be used to zero or sign extend a
2440  /// zeroext/signext integer argument or return value.  FIXME: Most C calling
2441  /// convention requires the return type to be promoted, but this is not true
2442  /// all the time, e.g. i1 on x86-64. It is also not necessary for non-C
2443  /// calling conventions. The frontend should handle this and include all of
2444  /// the necessary information.
2445  virtual EVT getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
2446                                       ISD::NodeType /*ExtendKind*/) const {
2447    EVT MinVT = getRegisterType(Context, MVT::i32);
2448    return VT.bitsLT(MinVT) ? MinVT : VT;
2449  }
2450
2451  /// For some targets, an LLVM struct type must be broken down into multiple
2452  /// simple types, but the calling convention specifies that the entire struct
2453  /// must be passed in a block of consecutive registers.
2454  virtual bool
2455  functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv,
2456                                            bool isVarArg) const {
2457    return false;
2458  }
2459
2460  /// Returns a 0 terminated array of registers that can be safely used as
2461  /// scratch registers.
2462  virtual const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const {
2463    return nullptr;
2464  }
2465
2466  /// This callback is used to prepare for a volatile or atomic load.
2467  /// It takes a chain node as input and returns the chain for the load itself.
2468  ///
2469  /// Having a callback like this is necessary for targets like SystemZ,
2470  /// which allows a CPU to reuse the result of a previous load indefinitely,
2471  /// even if a cache-coherent store is performed by another CPU.  The default
2472  /// implementation does nothing.
2473  virtual SDValue prepareVolatileOrAtomicLoad(SDValue Chain, SDLoc DL,
2474                                              SelectionDAG &DAG) const {
2475    return Chain;
2476  }
2477
2478  /// This callback is invoked by the type legalizer to legalize nodes with an
2479  /// illegal operand type but legal result types.  It replaces the
2480  /// LowerOperation callback in the type Legalizer.  The reason we can not do
2481  /// away with LowerOperation entirely is that LegalizeDAG isn't yet ready to
2482  /// use this callback.
2483  ///
2484  /// TODO: Consider merging with ReplaceNodeResults.
2485  ///
2486  /// The target places new result values for the node in Results (their number
2487  /// and types must exactly match those of the original return values of
2488  /// the node), or leaves Results empty, which indicates that the node is not
2489  /// to be custom lowered after all.
2490  /// The default implementation calls LowerOperation.
2491  virtual void LowerOperationWrapper(SDNode *N,
2492                                     SmallVectorImpl<SDValue> &Results,
2493                                     SelectionDAG &DAG) const;
2494
2495  /// This callback is invoked for operations that are unsupported by the
2496  /// target, which are registered to use 'custom' lowering, and whose defined
2497  /// values are all legal.  If the target has no operations that require custom
2498  /// lowering, it need not implement this.  The default implementation of this
2499  /// aborts.
2500  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
2501
2502  /// This callback is invoked when a node result type is illegal for the
2503  /// target, and the operation was registered to use 'custom' lowering for that
2504  /// result type.  The target places new result values for the node in Results
2505  /// (their number and types must exactly match those of the original return
2506  /// values of the node), or leaves Results empty, which indicates that the
2507  /// node is not to be custom lowered after all.
2508  ///
2509  /// If the target has no operations that require custom lowering, it need not
2510  /// implement this.  The default implementation aborts.
2511  virtual void ReplaceNodeResults(SDNode * /*N*/,
2512                                  SmallVectorImpl<SDValue> &/*Results*/,
2513                                  SelectionDAG &/*DAG*/) const {
2514    llvm_unreachable("ReplaceNodeResults not implemented for this target!");
2515  }
2516
2517  /// This method returns the name of a target specific DAG node.
2518  virtual const char *getTargetNodeName(unsigned Opcode) const;
2519
2520  /// This method returns a target specific FastISel object, or null if the
2521  /// target does not support "fast" ISel.
2522  virtual FastISel *createFastISel(FunctionLoweringInfo &,
2523                                   const TargetLibraryInfo *) const {
2524    return nullptr;
2525  }
2526
2527
2528  bool verifyReturnAddressArgumentIsConstant(SDValue Op,
2529                                             SelectionDAG &DAG) const;
2530
2531  //===--------------------------------------------------------------------===//
2532  // Inline Asm Support hooks
2533  //
2534
2535  /// This hook allows the target to expand an inline asm call to be explicit
2536  /// llvm code if it wants to.  This is useful for turning simple inline asms
2537  /// into LLVM intrinsics, which gives the compiler more information about the
2538  /// behavior of the code.
2539  virtual bool ExpandInlineAsm(CallInst *) const {
2540    return false;
2541  }
2542
2543  enum ConstraintType {
2544    C_Register,            // Constraint represents specific register(s).
2545    C_RegisterClass,       // Constraint represents any of register(s) in class.
2546    C_Memory,              // Memory constraint.
2547    C_Other,               // Something else.
2548    C_Unknown              // Unsupported constraint.
2549  };
2550
2551  enum ConstraintWeight {
2552    // Generic weights.
2553    CW_Invalid  = -1,     // No match.
2554    CW_Okay     = 0,      // Acceptable.
2555    CW_Good     = 1,      // Good weight.
2556    CW_Better   = 2,      // Better weight.
2557    CW_Best     = 3,      // Best weight.
2558
2559    // Well-known weights.
2560    CW_SpecificReg  = CW_Okay,    // Specific register operands.
2561    CW_Register     = CW_Good,    // Register operands.
2562    CW_Memory       = CW_Better,  // Memory operands.
2563    CW_Constant     = CW_Best,    // Constant operand.
2564    CW_Default      = CW_Okay     // Default or don't know type.
2565  };
2566
2567  /// This contains information for each constraint that we are lowering.
2568  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
2569    /// This contains the actual string for the code, like "m".  TargetLowering
2570    /// picks the 'best' code from ConstraintInfo::Codes that most closely
2571    /// matches the operand.
2572    std::string ConstraintCode;
2573
2574    /// Information about the constraint code, e.g. Register, RegisterClass,
2575    /// Memory, Other, Unknown.
2576    TargetLowering::ConstraintType ConstraintType;
2577
2578    /// If this is the result output operand or a clobber, this is null,
2579    /// otherwise it is the incoming operand to the CallInst.  This gets
2580    /// modified as the asm is processed.
2581    Value *CallOperandVal;
2582
2583    /// The ValueType for the operand value.
2584    MVT ConstraintVT;
2585
2586    /// Return true of this is an input operand that is a matching constraint
2587    /// like "4".
2588    bool isMatchingInputConstraint() const;
2589
2590    /// If this is an input matching constraint, this method returns the output
2591    /// operand it matches.
2592    unsigned getMatchedOperand() const;
2593
2594    /// Copy constructor for copying from a ConstraintInfo.
2595    AsmOperandInfo(InlineAsm::ConstraintInfo Info)
2596        : InlineAsm::ConstraintInfo(std::move(Info)),
2597          ConstraintType(TargetLowering::C_Unknown), CallOperandVal(nullptr),
2598          ConstraintVT(MVT::Other) {}
2599  };
2600
2601  typedef std::vector<AsmOperandInfo> AsmOperandInfoVector;
2602
2603  /// Split up the constraint string from the inline assembly value into the
2604  /// specific constraints and their prefixes, and also tie in the associated
2605  /// operand values.  If this returns an empty vector, and if the constraint
2606  /// string itself isn't empty, there was an error parsing.
2607  virtual AsmOperandInfoVector ParseConstraints(const TargetRegisterInfo *TRI,
2608                                                ImmutableCallSite CS) const;
2609
2610  /// Examine constraint type and operand type and determine a weight value.
2611  /// The operand object must already have been set up with the operand type.
2612  virtual ConstraintWeight getMultipleConstraintMatchWeight(
2613      AsmOperandInfo &info, int maIndex) const;
2614
2615  /// Examine constraint string and operand type and determine a weight value.
2616  /// The operand object must already have been set up with the operand type.
2617  virtual ConstraintWeight getSingleConstraintMatchWeight(
2618      AsmOperandInfo &info, const char *constraint) const;
2619
2620  /// Determines the constraint code and constraint type to use for the specific
2621  /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
2622  /// If the actual operand being passed in is available, it can be passed in as
2623  /// Op, otherwise an empty SDValue can be passed.
2624  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2625                                      SDValue Op,
2626                                      SelectionDAG *DAG = nullptr) const;
2627
2628  /// Given a constraint, return the type of constraint it is for this target.
2629  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
2630
2631  /// Given a physical register constraint (e.g.  {edx}), return the register
2632  /// number and the register class for the register.
2633  ///
2634  /// Given a register class constraint, like 'r', if this corresponds directly
2635  /// to an LLVM register class, return a register of 0 and the register class
2636  /// pointer.
2637  ///
2638  /// This should only be used for C_Register constraints.  On error, this
2639  /// returns a register number of 0 and a null register class pointer.
2640  virtual std::pair<unsigned, const TargetRegisterClass *>
2641  getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
2642                               const std::string &Constraint, MVT VT) const;
2643
2644  virtual unsigned
2645  getInlineAsmMemConstraint(const std::string &ConstraintCode) const {
2646    if (ConstraintCode == "i")
2647      return InlineAsm::Constraint_i;
2648    else if (ConstraintCode == "m")
2649      return InlineAsm::Constraint_m;
2650    return InlineAsm::Constraint_Unknown;
2651  }
2652
2653  /// Try to replace an X constraint, which matches anything, with another that
2654  /// has more specific requirements based on the type of the corresponding
2655  /// operand.  This returns null if there is no replacement to make.
2656  virtual const char *LowerXConstraint(EVT ConstraintVT) const;
2657
2658  /// Lower the specified operand into the Ops vector.  If it is invalid, don't
2659  /// add anything to Ops.
2660  virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
2661                                            std::vector<SDValue> &Ops,
2662                                            SelectionDAG &DAG) const;
2663
2664  //===--------------------------------------------------------------------===//
2665  // Div utility functions
2666  //
2667  SDValue BuildExactSDIV(SDValue Op1, SDValue Op2, SDLoc dl,
2668                         SelectionDAG &DAG) const;
2669  SDValue BuildSDIV(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
2670                    bool IsAfterLegalization,
2671                    std::vector<SDNode *> *Created) const;
2672  SDValue BuildUDIV(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
2673                    bool IsAfterLegalization,
2674                    std::vector<SDNode *> *Created) const;
2675  virtual SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor,
2676                                SelectionDAG &DAG,
2677                                std::vector<SDNode *> *Created) const {
2678    return SDValue();
2679  }
2680
2681  /// Indicate whether this target prefers to combine the given number of FDIVs
2682  /// with the same divisor.
2683  virtual bool combineRepeatedFPDivisors(unsigned NumUsers) const {
2684    return false;
2685  }
2686
2687  /// Hooks for building estimates in place of slower divisions and square
2688  /// roots.
2689
2690  /// Return a reciprocal square root estimate value for the input operand.
2691  /// The RefinementSteps output is the number of Newton-Raphson refinement
2692  /// iterations required to generate a sufficient (though not necessarily
2693  /// IEEE-754 compliant) estimate for the value type.
2694  /// The boolean UseOneConstNR output is used to select a Newton-Raphson
2695  /// algorithm implementation that uses one constant or two constants.
2696  /// A target may choose to implement its own refinement within this function.
2697  /// If that's true, then return '0' as the number of RefinementSteps to avoid
2698  /// any further refinement of the estimate.
2699  /// An empty SDValue return means no estimate sequence can be created.
2700  virtual SDValue getRsqrtEstimate(SDValue Operand,
2701                              DAGCombinerInfo &DCI,
2702                              unsigned &RefinementSteps,
2703                              bool &UseOneConstNR) const {
2704    return SDValue();
2705  }
2706
2707  /// Return a reciprocal estimate value for the input operand.
2708  /// The RefinementSteps output is the number of Newton-Raphson refinement
2709  /// iterations required to generate a sufficient (though not necessarily
2710  /// IEEE-754 compliant) estimate for the value type.
2711  /// A target may choose to implement its own refinement within this function.
2712  /// If that's true, then return '0' as the number of RefinementSteps to avoid
2713  /// any further refinement of the estimate.
2714  /// An empty SDValue return means no estimate sequence can be created.
2715  virtual SDValue getRecipEstimate(SDValue Operand,
2716                                   DAGCombinerInfo &DCI,
2717                                   unsigned &RefinementSteps) const {
2718    return SDValue();
2719  }
2720
2721  //===--------------------------------------------------------------------===//
2722  // Legalization utility functions
2723  //
2724
2725  /// Expand a MUL into two nodes.  One that computes the high bits of
2726  /// the result and one that computes the low bits.
2727  /// \param HiLoVT The value type to use for the Lo and Hi nodes.
2728  /// \param LL Low bits of the LHS of the MUL.  You can use this parameter
2729  ///        if you want to control how low bits are extracted from the LHS.
2730  /// \param LH High bits of the LHS of the MUL.  See LL for meaning.
2731  /// \param RL Low bits of the RHS of the MUL.  See LL for meaning
2732  /// \param RH High bits of the RHS of the MUL.  See LL for meaning.
2733  /// \returns true if the node has been expanded. false if it has not
2734  bool expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
2735                 SelectionDAG &DAG, SDValue LL = SDValue(),
2736                 SDValue LH = SDValue(), SDValue RL = SDValue(),
2737                 SDValue RH = SDValue()) const;
2738
2739  /// Expand float(f32) to SINT(i64) conversion
2740  /// \param N Node to expand
2741  /// \param Result output after conversion
2742  /// \returns True, if the expansion was successful, false otherwise
2743  bool expandFP_TO_SINT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
2744
2745  //===--------------------------------------------------------------------===//
2746  // Instruction Emitting Hooks
2747  //
2748
2749  /// This method should be implemented by targets that mark instructions with
2750  /// the 'usesCustomInserter' flag.  These instructions are special in various
2751  /// ways, which require special support to insert.  The specified MachineInstr
2752  /// is created but not inserted into any basic blocks, and this method is
2753  /// called to expand it into a sequence of instructions, potentially also
2754  /// creating new basic blocks and control flow.
2755  /// As long as the returned basic block is different (i.e., we created a new
2756  /// one), the custom inserter is free to modify the rest of \p MBB.
2757  virtual MachineBasicBlock *
2758    EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;
2759
2760  /// This method should be implemented by targets that mark instructions with
2761  /// the 'hasPostISelHook' flag. These instructions must be adjusted after
2762  /// instruction selection by target hooks.  e.g. To fill in optional defs for
2763  /// ARM 's' setting instructions.
2764  virtual void
2765  AdjustInstrPostInstrSelection(MachineInstr *MI, SDNode *Node) const;
2766
2767  /// If this function returns true, SelectionDAGBuilder emits a
2768  /// LOAD_STACK_GUARD node when it is lowering Intrinsic::stackprotector.
2769  virtual bool useLoadStackGuardNode() const {
2770    return false;
2771  }
2772};
2773
2774/// Given an LLVM IR type and return type attributes, compute the return value
2775/// EVTs and flags, and optionally also the offsets, if the return value is
2776/// being lowered to memory.
2777void GetReturnInfo(Type* ReturnType, AttributeSet attr,
2778                   SmallVectorImpl<ISD::OutputArg> &Outs,
2779                   const TargetLowering &TLI);
2780
2781} // end llvm namespace
2782
2783#endif
2784