TargetLowering.h revision a54b7cbd452b3adb2f51346140d996b29c2cdb30
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/DerivedTypes.h"
26#include "llvm/CodeGen/SelectionDAGNodes.h"
27#include <map>
28
29namespace llvm {
30  class Value;
31  class Function;
32  class TargetMachine;
33  class TargetData;
34  class TargetRegisterClass;
35  class SDNode;
36  class SDOperand;
37  class SelectionDAG;
38  class MachineBasicBlock;
39  class MachineInstr;
40
41namespace RTLIB {
42  /// RTLIB::Libcall enum - This enum defines all of the runtime library calls
43  /// the backend can emit.
44  ///
45  enum Libcall {
46    // Integer
47    SHL_I32,
48    SHL_I64,
49    SRL_I32,
50    SRL_I64,
51    SRA_I32,
52    SRA_I64,
53    MUL_I32,
54    MUL_I64,
55    SDIV_I32,
56    SDIV_I64,
57    UDIV_I32,
58    UDIV_I64,
59    SREM_I32,
60    SREM_I64,
61    UREM_I32,
62    UREM_I64,
63    NEG_I32,
64    NEG_I64,
65
66    // FLOATING POINT
67    ADD_F32,
68    ADD_F64,
69    SUB_F32,
70    SUB_F64,
71    MUL_F32,
72    MUL_F64,
73    DIV_F32,
74    DIV_F64,
75    REM_F32,
76    REM_F64,
77    NEG_F32,
78    NEG_F64,
79    POWI_F32,
80    POWI_F64,
81    SQRT_F32,
82    SQRT_F64,
83    SIN_F32,
84    SIN_F64,
85    COS_F32,
86    COS_F64,
87
88    // CONVERSION
89    FPEXT_F32_F64,
90    FPROUND_F64_F32,
91    FPTOSINT_F32_I32,
92    FPTOSINT_F32_I64,
93    FPTOSINT_F64_I32,
94    FPTOSINT_F64_I64,
95    FPTOUINT_F32_I32,
96    FPTOUINT_F32_I64,
97    FPTOUINT_F64_I32,
98    FPTOUINT_F64_I64,
99    SINTTOFP_I32_F32,
100    SINTTOFP_I32_F64,
101    SINTTOFP_I64_F32,
102    SINTTOFP_I64_F64,
103    UINTTOFP_I32_F32,
104    UINTTOFP_I32_F64,
105    UINTTOFP_I64_F32,
106    UINTTOFP_I64_F64,
107
108    // COMPARISON
109    OEQ_F32,
110    OEQ_F64,
111    UNE_F32,
112    UNE_F64,
113    OGE_F32,
114    OGE_F64,
115    OLT_F32,
116    OLT_F64,
117    OLE_F32,
118    OLE_F64,
119    OGT_F32,
120    OGT_F64,
121    UO_F32,
122    UO_F64,
123
124    UNKNOWN_LIBCALL
125  };
126  }
127
128//===----------------------------------------------------------------------===//
129/// TargetLowering - This class defines information used to lower LLVM code to
130/// legal SelectionDAG operators that the target instruction selector can accept
131/// natively.
132///
133/// This class also defines callbacks that targets must implement to lower
134/// target-specific constructs to SelectionDAG operators.
135///
136class TargetLowering {
137public:
138  /// LegalizeAction - This enum indicates whether operations are valid for a
139  /// target, and if not, what action should be used to make them valid.
140  enum LegalizeAction {
141    Legal,      // The target natively supports this operation.
142    Promote,    // This operation should be executed in a larger type.
143    Expand,     // Try to expand this to other ops, otherwise use a libcall.
144    Custom      // Use the LowerOperation hook to implement custom lowering.
145  };
146
147  enum OutOfRangeShiftAmount {
148    Undefined,  // Oversized shift amounts are undefined (default).
149    Mask,       // Shift amounts are auto masked (anded) to value size.
150    Extend      // Oversized shift pulls in zeros or sign bits.
151  };
152
153  enum SetCCResultValue {
154    UndefinedSetCCResult,          // SetCC returns a garbage/unknown extend.
155    ZeroOrOneSetCCResult,          // SetCC returns a zero extended result.
156    ZeroOrNegativeOneSetCCResult   // SetCC returns a sign extended result.
157  };
158
159  enum SchedPreference {
160    SchedulingForLatency,          // Scheduling for shortest total latency.
161    SchedulingForRegPressure       // Scheduling for lowest register pressure.
162  };
163
164  TargetLowering(TargetMachine &TM);
165  virtual ~TargetLowering();
166
167  TargetMachine &getTargetMachine() const { return TM; }
168  const TargetData *getTargetData() const { return TD; }
169
170  bool isLittleEndian() const { return IsLittleEndian; }
171  MVT::ValueType getPointerTy() const { return PointerTy; }
172  MVT::ValueType getShiftAmountTy() const { return ShiftAmountTy; }
173  OutOfRangeShiftAmount getShiftAmountFlavor() const {return ShiftAmtHandling; }
174
175  /// usesGlobalOffsetTable - Return true if this target uses a GOT for PIC
176  /// codegen.
177  bool usesGlobalOffsetTable() const { return UsesGlobalOffsetTable; }
178
179  /// isSelectExpensive - Return true if the select operation is expensive for
180  /// this target.
181  bool isSelectExpensive() const { return SelectIsExpensive; }
182
183  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
184  /// a sequence of several shifts, adds, and multiplies for this target.
185  bool isIntDivCheap() const { return IntDivIsCheap; }
186
187  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
188  /// srl/add/sra.
189  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
190
191  /// getSetCCResultTy - Return the ValueType of the result of setcc operations.
192  ///
193  MVT::ValueType getSetCCResultTy() const { return SetCCResultTy; }
194
195  /// getSetCCResultContents - For targets without boolean registers, this flag
196  /// returns information about the contents of the high-bits in the setcc
197  /// result register.
198  SetCCResultValue getSetCCResultContents() const { return SetCCResultContents;}
199
200  /// getSchedulingPreference - Return target scheduling preference.
201  SchedPreference getSchedulingPreference() const {
202    return SchedPreferenceInfo;
203  }
204
205  /// getRegClassFor - Return the register class that should be used for the
206  /// specified value type.  This may only be called on legal types.
207  TargetRegisterClass *getRegClassFor(MVT::ValueType VT) const {
208    TargetRegisterClass *RC = RegClassForVT[VT];
209    assert(RC && "This value type is not natively supported!");
210    return RC;
211  }
212
213  /// isTypeLegal - Return true if the target has native support for the
214  /// specified value type.  This means that it has a register that directly
215  /// holds it without promotions or expansions.
216  bool isTypeLegal(MVT::ValueType VT) const {
217    return RegClassForVT[VT] != 0;
218  }
219
220  class ValueTypeActionImpl {
221    /// ValueTypeActions - This is a bitvector that contains two bits for each
222    /// value type, where the two bits correspond to the LegalizeAction enum.
223    /// This can be queried with "getTypeAction(VT)".
224    uint32_t ValueTypeActions[2];
225  public:
226    ValueTypeActionImpl() {
227      ValueTypeActions[0] = ValueTypeActions[1] = 0;
228    }
229    ValueTypeActionImpl(const ValueTypeActionImpl &RHS) {
230      ValueTypeActions[0] = RHS.ValueTypeActions[0];
231      ValueTypeActions[1] = RHS.ValueTypeActions[1];
232    }
233
234    LegalizeAction getTypeAction(MVT::ValueType VT) const {
235      return (LegalizeAction)((ValueTypeActions[VT>>4] >> ((2*VT) & 31)) & 3);
236    }
237    void setTypeAction(MVT::ValueType VT, LegalizeAction Action) {
238      assert(unsigned(VT >> 4) <
239             sizeof(ValueTypeActions)/sizeof(ValueTypeActions[0]));
240      ValueTypeActions[VT>>4] |= Action << ((VT*2) & 31);
241    }
242  };
243
244  const ValueTypeActionImpl &getValueTypeActions() const {
245    return ValueTypeActions;
246  }
247
248  /// getTypeAction - Return how we should legalize values of this type, either
249  /// it is already legal (return 'Legal') or we need to promote it to a larger
250  /// type (return 'Promote'), or we need to expand it into multiple registers
251  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
252  LegalizeAction getTypeAction(MVT::ValueType VT) const {
253    return ValueTypeActions.getTypeAction(VT);
254  }
255
256  /// getTypeToTransformTo - For types supported by the target, this is an
257  /// identity function.  For types that must be promoted to larger types, this
258  /// returns the larger type to promote to.  For integer types that are larger
259  /// than the largest integer register, this contains one step in the expansion
260  /// to get to the smaller register. For illegal floating point types, this
261  /// returns the integer type to transform to.
262  MVT::ValueType getTypeToTransformTo(MVT::ValueType VT) const {
263    return TransformToType[VT];
264  }
265
266  /// getTypeToExpandTo - For types supported by the target, this is an
267  /// identity function.  For types that must be expanded (i.e. integer types
268  /// that are larger than the largest integer register or illegal floating
269  /// point types), this returns the largest legal type it will be expanded to.
270  MVT::ValueType getTypeToExpandTo(MVT::ValueType VT) const {
271    while (true) {
272      switch (getTypeAction(VT)) {
273      case Legal:
274        return VT;
275      case Expand:
276        VT = TransformToType[VT];
277        break;
278      default:
279        assert(false && "Type is not legal nor is it to be expanded!");
280        return VT;
281      }
282    }
283    return VT;
284  }
285
286  /// getPackedTypeBreakdown - Packed types are broken down into some number of
287  /// legal first class types.  For example, <8 x float> maps to 2 MVT::v4f32
288  /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
289  /// Similarly, <2 x long> turns into 4 MVT::i32 values with both PPC and X86.
290  ///
291  /// This method returns the number of registers needed, and the VT for each
292  /// register.  It also returns the VT of the PackedType elements before they
293  /// are promoted/expanded.
294  ///
295  unsigned getPackedTypeBreakdown(const PackedType *PTy,
296                                  MVT::ValueType &PTyElementVT,
297                                  MVT::ValueType &PTyLegalElementVT) const;
298
299  typedef std::vector<double>::const_iterator legal_fpimm_iterator;
300  legal_fpimm_iterator legal_fpimm_begin() const {
301    return LegalFPImmediates.begin();
302  }
303  legal_fpimm_iterator legal_fpimm_end() const {
304    return LegalFPImmediates.end();
305  }
306
307  /// isShuffleMaskLegal - Targets can use this to indicate that they only
308  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
309  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
310  /// are assumed to be legal.
311  virtual bool isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
312    return true;
313  }
314
315  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
316  /// used by Targets can use this to indicate if there is a suitable
317  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
318  /// pool entry.
319  virtual bool isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
320                                      MVT::ValueType EVT,
321                                      SelectionDAG &DAG) const {
322    return false;
323  }
324
325  /// getOperationAction - Return how this operation should be treated: either
326  /// it is legal, needs to be promoted to a larger size, needs to be
327  /// expanded to some other code sequence, or the target has a custom expander
328  /// for it.
329  LegalizeAction getOperationAction(unsigned Op, MVT::ValueType VT) const {
330    return (LegalizeAction)((OpActions[Op] >> (2*VT)) & 3);
331  }
332
333  /// isOperationLegal - Return true if the specified operation is legal on this
334  /// target.
335  bool isOperationLegal(unsigned Op, MVT::ValueType VT) const {
336    return getOperationAction(Op, VT) == Legal ||
337           getOperationAction(Op, VT) == Custom;
338  }
339
340  /// getLoadXAction - Return how this load with extension should be treated:
341  /// either it is legal, needs to be promoted to a larger size, needs to be
342  /// expanded to some other code sequence, or the target has a custom expander
343  /// for it.
344  LegalizeAction getLoadXAction(unsigned LType, MVT::ValueType VT) const {
345    return (LegalizeAction)((LoadXActions[LType] >> (2*VT)) & 3);
346  }
347
348  /// isLoadXLegal - Return true if the specified load with extension is legal
349  /// on this target.
350  bool isLoadXLegal(unsigned LType, MVT::ValueType VT) const {
351    return getLoadXAction(LType, VT) == Legal ||
352           getLoadXAction(LType, VT) == Custom;
353  }
354
355  /// getStoreXAction - Return how this store with truncation should be treated:
356  /// either it is legal, needs to be promoted to a larger size, needs to be
357  /// expanded to some other code sequence, or the target has a custom expander
358  /// for it.
359  LegalizeAction getStoreXAction(MVT::ValueType VT) const {
360    return (LegalizeAction)((StoreXActions >> (2*VT)) & 3);
361  }
362
363  /// isStoreXLegal - Return true if the specified store with truncation is
364  /// legal on this target.
365  bool isStoreXLegal(MVT::ValueType VT) const {
366    return getStoreXAction(VT) == Legal || getStoreXAction(VT) == Custom;
367  }
368
369  /// getIndexedLoadAction - Return how the indexed load should be treated:
370  /// either it is legal, needs to be promoted to a larger size, needs to be
371  /// expanded to some other code sequence, or the target has a custom expander
372  /// for it.
373  LegalizeAction
374  getIndexedLoadAction(unsigned IdxMode, MVT::ValueType VT) const {
375    return (LegalizeAction)((IndexedModeActions[0][IdxMode] >> (2*VT)) & 3);
376  }
377
378  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
379  /// on this target.
380  bool isIndexedLoadLegal(unsigned IdxMode, MVT::ValueType VT) const {
381    return getIndexedLoadAction(IdxMode, VT) == Legal ||
382           getIndexedLoadAction(IdxMode, VT) == Custom;
383  }
384
385  /// getIndexedStoreAction - Return how the indexed store should be treated:
386  /// either it is legal, needs to be promoted to a larger size, needs to be
387  /// expanded to some other code sequence, or the target has a custom expander
388  /// for it.
389  LegalizeAction
390  getIndexedStoreAction(unsigned IdxMode, MVT::ValueType VT) const {
391    return (LegalizeAction)((IndexedModeActions[1][IdxMode] >> (2*VT)) & 3);
392  }
393
394  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
395  /// on this target.
396  bool isIndexedStoreLegal(unsigned IdxMode, MVT::ValueType VT) const {
397    return getIndexedStoreAction(IdxMode, VT) == Legal ||
398           getIndexedStoreAction(IdxMode, VT) == Custom;
399  }
400
401  /// getTypeToPromoteTo - If the action for this operation is to promote, this
402  /// method returns the ValueType to promote to.
403  MVT::ValueType getTypeToPromoteTo(unsigned Op, MVT::ValueType VT) const {
404    assert(getOperationAction(Op, VT) == Promote &&
405           "This operation isn't promoted!");
406
407    // See if this has an explicit type specified.
408    std::map<std::pair<unsigned, MVT::ValueType>,
409             MVT::ValueType>::const_iterator PTTI =
410      PromoteToType.find(std::make_pair(Op, VT));
411    if (PTTI != PromoteToType.end()) return PTTI->second;
412
413    assert((MVT::isInteger(VT) || MVT::isFloatingPoint(VT)) &&
414           "Cannot autopromote this type, add it with AddPromotedToType.");
415
416    MVT::ValueType NVT = VT;
417    do {
418      NVT = (MVT::ValueType)(NVT+1);
419      assert(MVT::isInteger(NVT) == MVT::isInteger(VT) && NVT != MVT::isVoid &&
420             "Didn't find type to promote to!");
421    } while (!isTypeLegal(NVT) ||
422              getOperationAction(Op, NVT) == Promote);
423    return NVT;
424  }
425
426  /// getValueType - Return the MVT::ValueType corresponding to this LLVM type.
427  /// This is fixed by the LLVM operations except for the pointer size.
428  MVT::ValueType getValueType(const Type *Ty) const {
429    switch (Ty->getTypeID()) {
430    default: assert(0 && "Unknown type!");
431    case Type::VoidTyID:    return MVT::isVoid;
432    case Type::IntegerTyID:
433      switch (cast<IntegerType>(Ty)->getBitWidth()) {
434        default: assert(0 && "Invalid width for value type");
435        case 1:    return MVT::i1;
436        case 8:    return MVT::i8;
437        case 16:   return MVT::i16;
438        case 32:   return MVT::i32;
439        case 64:   return MVT::i64;
440      }
441      break;
442    case Type::FloatTyID:   return MVT::f32;
443    case Type::DoubleTyID:  return MVT::f64;
444    case Type::PointerTyID: return PointerTy;
445    case Type::PackedTyID:  return MVT::Vector;
446    }
447  }
448
449  /// getNumElements - Return the number of registers that this ValueType will
450  /// eventually require.  This is one for any types promoted to live in larger
451  /// registers, but may be more than one for types (like i64) that are split
452  /// into pieces.
453  unsigned getNumElements(MVT::ValueType VT) const {
454    return NumElementsForVT[VT];
455  }
456
457  /// hasTargetDAGCombine - If true, the target has custom DAG combine
458  /// transformations that it can perform for the specified node.
459  bool hasTargetDAGCombine(ISD::NodeType NT) const {
460    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
461  }
462
463  /// This function returns the maximum number of store operations permitted
464  /// to replace a call to llvm.memset. The value is set by the target at the
465  /// performance threshold for such a replacement.
466  /// @brief Get maximum # of store operations permitted for llvm.memset
467  unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; }
468
469  /// This function returns the maximum number of store operations permitted
470  /// to replace a call to llvm.memcpy. The value is set by the target at the
471  /// performance threshold for such a replacement.
472  /// @brief Get maximum # of store operations permitted for llvm.memcpy
473  unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; }
474
475  /// This function returns the maximum number of store operations permitted
476  /// to replace a call to llvm.memmove. The value is set by the target at the
477  /// performance threshold for such a replacement.
478  /// @brief Get maximum # of store operations permitted for llvm.memmove
479  unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; }
480
481  /// This function returns true if the target allows unaligned memory accesses.
482  /// This is used, for example, in situations where an array copy/move/set is
483  /// converted to a sequence of store operations. It's use helps to ensure that
484  /// such replacements don't generate code that causes an alignment error
485  /// (trap) on the target machine.
486  /// @brief Determine if the target supports unaligned memory accesses.
487  bool allowsUnalignedMemoryAccesses() const {
488    return allowUnalignedMemoryAccesses;
489  }
490
491  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
492  /// to implement llvm.setjmp.
493  bool usesUnderscoreSetJmp() const {
494    return UseUnderscoreSetJmp;
495  }
496
497  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
498  /// to implement llvm.longjmp.
499  bool usesUnderscoreLongJmp() const {
500    return UseUnderscoreLongJmp;
501  }
502
503  /// getStackPointerRegisterToSaveRestore - If a physical register, this
504  /// specifies the register that llvm.savestack/llvm.restorestack should save
505  /// and restore.
506  unsigned getStackPointerRegisterToSaveRestore() const {
507    return StackPointerRegisterToSaveRestore;
508  }
509
510  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
511  /// set, the default is 200)
512  unsigned getJumpBufSize() const {
513    return JumpBufSize;
514  }
515
516  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
517  /// (if never set, the default is 0)
518  unsigned getJumpBufAlignment() const {
519    return JumpBufAlignment;
520  }
521
522  /// getPreIndexedAddressParts - returns true by value, base pointer and
523  /// offset pointer and addressing mode by reference if the node's address
524  /// can be legally represented as pre-indexed load / store address.
525  virtual bool getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
526                                         SDOperand &Offset,
527                                         ISD::MemIndexedMode &AM,
528                                         SelectionDAG &DAG) {
529    return false;
530  }
531
532  /// getPostIndexedAddressParts - returns true by value, base pointer and
533  /// offset pointer and addressing mode by reference if this node can be
534  /// combined with a load / store to form a post-indexed load / store.
535  virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
536                                          SDOperand &Base, SDOperand &Offset,
537                                          ISD::MemIndexedMode &AM,
538                                          SelectionDAG &DAG) {
539    return false;
540  }
541
542  //===--------------------------------------------------------------------===//
543  // TargetLowering Optimization Methods
544  //
545
546  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
547  /// SDOperands for returning information from TargetLowering to its clients
548  /// that want to combine
549  struct TargetLoweringOpt {
550    SelectionDAG &DAG;
551    SDOperand Old;
552    SDOperand New;
553
554    TargetLoweringOpt(SelectionDAG &InDAG) : DAG(InDAG) {}
555
556    bool CombineTo(SDOperand O, SDOperand N) {
557      Old = O;
558      New = N;
559      return true;
560    }
561
562    /// ShrinkDemandedConstant - Check to see if the specified operand of the
563    /// specified instruction is a constant integer.  If so, check to see if there
564    /// are any bits set in the constant that are not demanded.  If so, shrink the
565    /// constant and return true.
566    bool ShrinkDemandedConstant(SDOperand Op, uint64_t Demanded);
567  };
568
569  /// MaskedValueIsZero - Return true if 'Op & Mask' is known to be zero.  We
570  /// use this predicate to simplify operations downstream.  Op and Mask are
571  /// known to be the same type.
572  bool MaskedValueIsZero(SDOperand Op, uint64_t Mask, unsigned Depth = 0)
573    const;
574
575  /// ComputeMaskedBits - Determine which of the bits specified in Mask are
576  /// known to be either zero or one and return them in the KnownZero/KnownOne
577  /// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
578  /// processing.  Targets can implement the computeMaskedBitsForTargetNode
579  /// method, to allow target nodes to be understood.
580  void ComputeMaskedBits(SDOperand Op, uint64_t Mask, uint64_t &KnownZero,
581                         uint64_t &KnownOne, unsigned Depth = 0) const;
582
583  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
584  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
585  /// use this information to simplify Op, create a new simplified DAG node and
586  /// return true, returning the original and new nodes in Old and New.
587  /// Otherwise, analyze the expression and return a mask of KnownOne and
588  /// KnownZero bits for the expression (used to simplify the caller).
589  /// The KnownZero/One bits may only be accurate for those bits in the
590  /// DemandedMask.
591  bool SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
592                            uint64_t &KnownZero, uint64_t &KnownOne,
593                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
594
595  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
596  /// Mask are known to be either zero or one and return them in the
597  /// KnownZero/KnownOne bitsets.
598  virtual void computeMaskedBitsForTargetNode(const SDOperand Op,
599                                              uint64_t Mask,
600                                              uint64_t &KnownZero,
601                                              uint64_t &KnownOne,
602                                              unsigned Depth = 0) const;
603
604  /// ComputeNumSignBits - Return the number of times the sign bit of the
605  /// register is replicated into the other bits.  We know that at least 1 bit
606  /// is always equal to the sign bit (itself), but other cases can give us
607  /// information.  For example, immediately after an "SRA X, 2", we know that
608  /// the top 3 bits are all equal to each other, so we return 3.
609  unsigned ComputeNumSignBits(SDOperand Op, unsigned Depth = 0) const;
610
611  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
612  /// targets that want to expose additional information about sign bits to the
613  /// DAG Combiner.
614  virtual unsigned ComputeNumSignBitsForTargetNode(SDOperand Op,
615                                                   unsigned Depth = 0) const;
616
617  struct DAGCombinerInfo {
618    void *DC;  // The DAG Combiner object.
619    bool BeforeLegalize;
620  public:
621    SelectionDAG &DAG;
622
623    DAGCombinerInfo(SelectionDAG &dag, bool bl, void *dc)
624      : DC(dc), BeforeLegalize(bl), DAG(dag) {}
625
626    bool isBeforeLegalize() const { return BeforeLegalize; }
627
628    void AddToWorklist(SDNode *N);
629    SDOperand CombineTo(SDNode *N, const std::vector<SDOperand> &To);
630    SDOperand CombineTo(SDNode *N, SDOperand Res);
631    SDOperand CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1);
632  };
633
634  /// PerformDAGCombine - This method will be invoked for all target nodes and
635  /// for any target-independent nodes that the target has registered with
636  /// invoke it for.
637  ///
638  /// The semantics are as follows:
639  /// Return Value:
640  ///   SDOperand.Val == 0   - No change was made
641  ///   SDOperand.Val == N   - N was replaced, is dead, and is already handled.
642  ///   otherwise            - N should be replaced by the returned Operand.
643  ///
644  /// In addition, methods provided by DAGCombinerInfo may be used to perform
645  /// more complex transformations.
646  ///
647  virtual SDOperand PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
648
649  //===--------------------------------------------------------------------===//
650  // TargetLowering Configuration Methods - These methods should be invoked by
651  // the derived class constructor to configure this object for the target.
652  //
653
654protected:
655  /// setUsesGlobalOffsetTable - Specify that this target does or doesn't use a
656  /// GOT for PC-relative code.
657  void setUsesGlobalOffsetTable(bool V) { UsesGlobalOffsetTable = V; }
658
659  /// setShiftAmountType - Describe the type that should be used for shift
660  /// amounts.  This type defaults to the pointer type.
661  void setShiftAmountType(MVT::ValueType VT) { ShiftAmountTy = VT; }
662
663  /// setSetCCResultType - Describe the type that shoudl be used as the result
664  /// of a setcc operation.  This defaults to the pointer type.
665  void setSetCCResultType(MVT::ValueType VT) { SetCCResultTy = VT; }
666
667  /// setSetCCResultContents - Specify how the target extends the result of a
668  /// setcc operation in a register.
669  void setSetCCResultContents(SetCCResultValue Ty) { SetCCResultContents = Ty; }
670
671  /// setSchedulingPreference - Specify the target scheduling preference.
672  void setSchedulingPreference(SchedPreference Pref) {
673    SchedPreferenceInfo = Pref;
674  }
675
676  /// setShiftAmountFlavor - Describe how the target handles out of range shift
677  /// amounts.
678  void setShiftAmountFlavor(OutOfRangeShiftAmount OORSA) {
679    ShiftAmtHandling = OORSA;
680  }
681
682  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
683  /// use _setjmp to implement llvm.setjmp or the non _ version.
684  /// Defaults to false.
685  void setUseUnderscoreSetJmp(bool Val) {
686    UseUnderscoreSetJmp = Val;
687  }
688
689  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
690  /// use _longjmp to implement llvm.longjmp or the non _ version.
691  /// Defaults to false.
692  void setUseUnderscoreLongJmp(bool Val) {
693    UseUnderscoreLongJmp = Val;
694  }
695
696  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
697  /// specifies the register that llvm.savestack/llvm.restorestack should save
698  /// and restore.
699  void setStackPointerRegisterToSaveRestore(unsigned R) {
700    StackPointerRegisterToSaveRestore = R;
701  }
702
703  /// SelectIsExpensive - Tells the code generator not to expand operations
704  /// into sequences that use the select operations if possible.
705  void setSelectIsExpensive() { SelectIsExpensive = true; }
706
707  /// setIntDivIsCheap - Tells the code generator that integer divide is
708  /// expensive, and if possible, should be replaced by an alternate sequence
709  /// of instructions not containing an integer divide.
710  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
711
712  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
713  /// srl/add/sra for a signed divide by power of two, and let the target handle
714  /// it.
715  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
716
717  /// addRegisterClass - Add the specified register class as an available
718  /// regclass for the specified value type.  This indicates the selector can
719  /// handle values of that class natively.
720  void addRegisterClass(MVT::ValueType VT, TargetRegisterClass *RC) {
721    AvailableRegClasses.push_back(std::make_pair(VT, RC));
722    RegClassForVT[VT] = RC;
723  }
724
725  /// computeRegisterProperties - Once all of the register classes are added,
726  /// this allows us to compute derived properties we expose.
727  void computeRegisterProperties();
728
729  /// setOperationAction - Indicate that the specified operation does not work
730  /// with the specified type and indicate what to do about it.
731  void setOperationAction(unsigned Op, MVT::ValueType VT,
732                          LegalizeAction Action) {
733    assert(VT < 32 && Op < sizeof(OpActions)/sizeof(OpActions[0]) &&
734           "Table isn't big enough!");
735    OpActions[Op] &= ~(uint64_t(3UL) << VT*2);
736    OpActions[Op] |= (uint64_t)Action << VT*2;
737  }
738
739  /// setLoadXAction - Indicate that the specified load with extension does not
740  /// work with the with specified type and indicate what to do about it.
741  void setLoadXAction(unsigned ExtType, MVT::ValueType VT,
742                      LegalizeAction Action) {
743    assert(VT < 32 && ExtType < sizeof(LoadXActions)/sizeof(LoadXActions[0]) &&
744           "Table isn't big enough!");
745    LoadXActions[ExtType] &= ~(uint64_t(3UL) << VT*2);
746    LoadXActions[ExtType] |= (uint64_t)Action << VT*2;
747  }
748
749  /// setStoreXAction - Indicate that the specified store with truncation does
750  /// not work with the with specified type and indicate what to do about it.
751  void setStoreXAction(MVT::ValueType VT, LegalizeAction Action) {
752    assert(VT < 32 && "Table isn't big enough!");
753    StoreXActions &= ~(uint64_t(3UL) << VT*2);
754    StoreXActions |= (uint64_t)Action << VT*2;
755  }
756
757  /// setIndexedLoadAction - Indicate that the specified indexed load does or
758  /// does not work with the with specified type and indicate what to do abort
759  /// it. NOTE: All indexed mode loads are initialized to Expand in
760  /// TargetLowering.cpp
761  void setIndexedLoadAction(unsigned IdxMode, MVT::ValueType VT,
762                            LegalizeAction Action) {
763    assert(VT < 32 && IdxMode <
764           sizeof(IndexedModeActions[0]) / sizeof(IndexedModeActions[0][0]) &&
765           "Table isn't big enough!");
766    IndexedModeActions[0][IdxMode] &= ~(uint64_t(3UL) << VT*2);
767    IndexedModeActions[0][IdxMode] |= (uint64_t)Action << VT*2;
768  }
769
770  /// setIndexedStoreAction - Indicate that the specified indexed store does or
771  /// does not work with the with specified type and indicate what to do about
772  /// it. NOTE: All indexed mode stores are initialized to Expand in
773  /// TargetLowering.cpp
774  void setIndexedStoreAction(unsigned IdxMode, MVT::ValueType VT,
775                             LegalizeAction Action) {
776    assert(VT < 32 && IdxMode <
777           sizeof(IndexedModeActions[1]) / sizeof(IndexedModeActions[1][0]) &&
778           "Table isn't big enough!");
779    IndexedModeActions[1][IdxMode] &= ~(uint64_t(3UL) << VT*2);
780    IndexedModeActions[1][IdxMode] |= (uint64_t)Action << VT*2;
781  }
782
783  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
784  /// promotion code defaults to trying a larger integer/fp until it can find
785  /// one that works.  If that default is insufficient, this method can be used
786  /// by the target to override the default.
787  void AddPromotedToType(unsigned Opc, MVT::ValueType OrigVT,
788                         MVT::ValueType DestVT) {
789    PromoteToType[std::make_pair(Opc, OrigVT)] = DestVT;
790  }
791
792  /// addLegalFPImmediate - Indicate that this target can instruction select
793  /// the specified FP immediate natively.
794  void addLegalFPImmediate(double Imm) {
795    LegalFPImmediates.push_back(Imm);
796  }
797
798  /// setTargetDAGCombine - Targets should invoke this method for each target
799  /// independent node that they want to provide a custom DAG combiner for by
800  /// implementing the PerformDAGCombine virtual method.
801  void setTargetDAGCombine(ISD::NodeType NT) {
802    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
803  }
804
805  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
806  /// bytes); default is 200
807  void setJumpBufSize(unsigned Size) {
808    JumpBufSize = Size;
809  }
810
811  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
812  /// alignment (in bytes); default is 0
813  void setJumpBufAlignment(unsigned Align) {
814    JumpBufAlignment = Align;
815  }
816
817public:
818
819  //===--------------------------------------------------------------------===//
820  // Lowering methods - These methods must be implemented by targets so that
821  // the SelectionDAGLowering code knows how to lower these.
822  //
823
824  /// LowerArguments - This hook must be implemented to indicate how we should
825  /// lower the arguments for the specified function, into the specified DAG.
826  virtual std::vector<SDOperand>
827  LowerArguments(Function &F, SelectionDAG &DAG);
828
829  /// LowerCallTo - This hook lowers an abstract call to a function into an
830  /// actual call.  This returns a pair of operands.  The first element is the
831  /// return value for the function (if RetTy is not VoidTy).  The second
832  /// element is the outgoing token chain.
833  struct ArgListEntry {
834    SDOperand Node;
835    const Type* Ty;
836    bool isSigned;
837  };
838  typedef std::vector<ArgListEntry> ArgListTy;
839  virtual std::pair<SDOperand, SDOperand>
840  LowerCallTo(SDOperand Chain, const Type *RetTy, bool RetTyIsSigned,
841              bool isVarArg, unsigned CallingConv, bool isTailCall,
842              SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG);
843
844  /// LowerFrameReturnAddress - This hook lowers a call to llvm.returnaddress or
845  /// llvm.frameaddress (depending on the value of the first argument).  The
846  /// return values are the result pointer and the resultant token chain.  If
847  /// not implemented, both of these intrinsics will return null.
848  virtual std::pair<SDOperand, SDOperand>
849  LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain, unsigned Depth,
850                          SelectionDAG &DAG);
851
852  /// LowerOperation - This callback is invoked for operations that are
853  /// unsupported by the target, which are registered to use 'custom' lowering,
854  /// and whose defined values are all legal.
855  /// If the target has no operations that require custom lowering, it need not
856  /// implement this.  The default implementation of this aborts.
857  virtual SDOperand LowerOperation(SDOperand Op, SelectionDAG &DAG);
858
859  /// CustomPromoteOperation - This callback is invoked for operations that are
860  /// unsupported by the target, are registered to use 'custom' lowering, and
861  /// whose type needs to be promoted.
862  virtual SDOperand CustomPromoteOperation(SDOperand Op, SelectionDAG &DAG);
863
864  /// getTargetNodeName() - This method returns the name of a target specific
865  /// DAG node.
866  virtual const char *getTargetNodeName(unsigned Opcode) const;
867
868  //===--------------------------------------------------------------------===//
869  // Inline Asm Support hooks
870  //
871
872  enum ConstraintType {
873    C_Register,            // Constraint represents a single register.
874    C_RegisterClass,       // Constraint represents one or more registers.
875    C_Memory,              // Memory constraint.
876    C_Other,               // Something else.
877    C_Unknown              // Unsupported constraint.
878  };
879
880  /// getConstraintType - Given a constraint letter, return the type of
881  /// constraint it is for this target.
882  virtual ConstraintType getConstraintType(char ConstraintLetter) const;
883
884
885  /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
886  /// return a list of registers that can be used to satisfy the constraint.
887  /// This should only be used for C_RegisterClass constraints.
888  virtual std::vector<unsigned>
889  getRegClassForInlineAsmConstraint(const std::string &Constraint,
890                                    MVT::ValueType VT) const;
891
892  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
893  /// {edx}), return the register number and the register class for the
894  /// register.
895  ///
896  /// Given a register class constraint, like 'r', if this corresponds directly
897  /// to an LLVM register class, return a register of 0 and the register class
898  /// pointer.
899  ///
900  /// This should only be used for C_Register constraints.  On error,
901  /// this returns a register number of 0 and a null register class pointer..
902  virtual std::pair<unsigned, const TargetRegisterClass*>
903    getRegForInlineAsmConstraint(const std::string &Constraint,
904                                 MVT::ValueType VT) const;
905
906
907  /// isOperandValidForConstraint - Return the specified operand (possibly
908  /// modified) if the specified SDOperand is valid for the specified target
909  /// constraint letter, otherwise return null.
910  virtual SDOperand
911    isOperandValidForConstraint(SDOperand Op, char ConstraintLetter,
912                                SelectionDAG &DAG);
913
914  //===--------------------------------------------------------------------===//
915  // Scheduler hooks
916  //
917
918  // InsertAtEndOfBasicBlock - This method should be implemented by targets that
919  // mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
920  // instructions are special in various ways, which require special support to
921  // insert.  The specified MachineInstr is created but not inserted into any
922  // basic blocks, and the scheduler passes ownership of it to this method.
923  virtual MachineBasicBlock *InsertAtEndOfBasicBlock(MachineInstr *MI,
924                                                     MachineBasicBlock *MBB);
925
926  //===--------------------------------------------------------------------===//
927  // Loop Strength Reduction hooks
928  //
929
930  /// isLegalAddressImmediate - Return true if the integer value or GlobalValue
931  /// can be used as the offset of the target addressing mode.
932  virtual bool isLegalAddressImmediate(int64_t V) const;
933  virtual bool isLegalAddressImmediate(GlobalValue *GV) const;
934
935  typedef std::vector<unsigned>::const_iterator legal_am_scale_iterator;
936  legal_am_scale_iterator legal_am_scale_begin() const {
937    return LegalAddressScales.begin();
938  }
939  legal_am_scale_iterator legal_am_scale_end() const {
940    return LegalAddressScales.end();
941  }
942
943  //===--------------------------------------------------------------------===//
944  // Div utility functions
945  //
946  SDOperand BuildSDIV(SDNode *N, SelectionDAG &DAG,
947		      std::vector<SDNode*>* Created) const;
948  SDOperand BuildUDIV(SDNode *N, SelectionDAG &DAG,
949		      std::vector<SDNode*>* Created) const;
950
951
952  //===--------------------------------------------------------------------===//
953  // Runtime Library hooks
954  //
955
956  /// setLibcallName - Rename the default libcall routine name for the specified
957  /// libcall.
958  void setLibcallName(RTLIB::Libcall Call, std::string Name) {
959    LibcallRoutineNames[Call] = Name;
960  }
961
962  /// getLibcallName - Get the libcall routine name for the specified libcall.
963  ///
964  const char *getLibcallName(RTLIB::Libcall Call) const {
965    return LibcallRoutineNames[Call].c_str();
966  }
967
968protected:
969  /// addLegalAddressScale - Add a integer (> 1) value which can be used as
970  /// scale in the target addressing mode. Note: the ordering matters so the
971  /// least efficient ones should be entered first.
972  void addLegalAddressScale(unsigned Scale) {
973    LegalAddressScales.push_back(Scale);
974  }
975
976private:
977  std::vector<unsigned> LegalAddressScales;
978
979  TargetMachine &TM;
980  const TargetData *TD;
981
982  /// IsLittleEndian - True if this is a little endian target.
983  ///
984  bool IsLittleEndian;
985
986  /// PointerTy - The type to use for pointers, usually i32 or i64.
987  ///
988  MVT::ValueType PointerTy;
989
990  /// UsesGlobalOffsetTable - True if this target uses a GOT for PIC codegen.
991  ///
992  bool UsesGlobalOffsetTable;
993
994  /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
995  /// PointerTy is.
996  MVT::ValueType ShiftAmountTy;
997
998  OutOfRangeShiftAmount ShiftAmtHandling;
999
1000  /// SelectIsExpensive - Tells the code generator not to expand operations
1001  /// into sequences that use the select operations if possible.
1002  bool SelectIsExpensive;
1003
1004  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1005  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1006  /// a real cost model is in place.  If we ever optimize for size, this will be
1007  /// set to true unconditionally.
1008  bool IntDivIsCheap;
1009
1010  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1011  /// srl/add/sra for a signed divide by power of two, and let the target handle
1012  /// it.
1013  bool Pow2DivIsCheap;
1014
1015  /// SetCCResultTy - The type that SetCC operations use.  This defaults to the
1016  /// PointerTy.
1017  MVT::ValueType SetCCResultTy;
1018
1019  /// SetCCResultContents - Information about the contents of the high-bits in
1020  /// the result of a setcc comparison operation.
1021  SetCCResultValue SetCCResultContents;
1022
1023  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1024  /// total cycles or lowest register usage.
1025  SchedPreference SchedPreferenceInfo;
1026
1027  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1028  /// llvm.setjmp.  Defaults to false.
1029  bool UseUnderscoreSetJmp;
1030
1031  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1032  /// llvm.longjmp.  Defaults to false.
1033  bool UseUnderscoreLongJmp;
1034
1035  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1036  unsigned JumpBufSize;
1037
1038  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1039  /// buffers
1040  unsigned JumpBufAlignment;
1041
1042  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1043  /// specifies the register that llvm.savestack/llvm.restorestack should save
1044  /// and restore.
1045  unsigned StackPointerRegisterToSaveRestore;
1046
1047  /// RegClassForVT - This indicates the default register class to use for
1048  /// each ValueType the target supports natively.
1049  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1050  unsigned char NumElementsForVT[MVT::LAST_VALUETYPE];
1051
1052  /// TransformToType - For any value types we are promoting or expanding, this
1053  /// contains the value type that we are changing to.  For Expanded types, this
1054  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1055  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1056  /// by the system, this holds the same type (e.g. i32 -> i32).
1057  MVT::ValueType TransformToType[MVT::LAST_VALUETYPE];
1058
1059  /// OpActions - For each operation and each value type, keep a LegalizeAction
1060  /// that indicates how instruction selection should deal with the operation.
1061  /// Most operations are Legal (aka, supported natively by the target), but
1062  /// operations that are not should be described.  Note that operations on
1063  /// non-legal value types are not described here.
1064  uint64_t OpActions[156];
1065
1066  /// LoadXActions - For each load of load extension type and each value type,
1067  /// keep a LegalizeAction that indicates how instruction selection should deal
1068  /// with the load.
1069  uint64_t LoadXActions[ISD::LAST_LOADX_TYPE];
1070
1071  /// StoreXActions - For each store with truncation of each value type, keep a
1072  /// LegalizeAction that indicates how instruction selection should deal with
1073  /// the store.
1074  uint64_t StoreXActions;
1075
1076  /// IndexedModeActions - For each indexed mode and each value type, keep a
1077  /// pair of LegalizeAction that indicates how instruction selection should
1078  /// deal with the load / store.
1079  uint64_t IndexedModeActions[2][ISD::LAST_INDEXED_MODE];
1080
1081  ValueTypeActionImpl ValueTypeActions;
1082
1083  std::vector<double> LegalFPImmediates;
1084
1085  std::vector<std::pair<MVT::ValueType,
1086                        TargetRegisterClass*> > AvailableRegClasses;
1087
1088  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
1089  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
1090  /// which sets a bit in this array.
1091  unsigned char TargetDAGCombineArray[156/(sizeof(unsigned char)*8)];
1092
1093  /// PromoteToType - For operations that must be promoted to a specific type,
1094  /// this holds the destination type.  This map should be sparse, so don't hold
1095  /// it as an array.
1096  ///
1097  /// Targets add entries to this map with AddPromotedToType(..), clients access
1098  /// this with getTypeToPromoteTo(..).
1099  std::map<std::pair<unsigned, MVT::ValueType>, MVT::ValueType> PromoteToType;
1100
1101  /// LibcallRoutineNames - Stores the name each libcall.
1102  ///
1103  std::string LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1104
1105protected:
1106  /// When lowering %llvm.memset this field specifies the maximum number of
1107  /// store operations that may be substituted for the call to memset. Targets
1108  /// must set this value based on the cost threshold for that target. Targets
1109  /// should assume that the memset will be done using as many of the largest
1110  /// store operations first, followed by smaller ones, if necessary, per
1111  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1112  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1113  /// store.  This only applies to setting a constant array of a constant size.
1114  /// @brief Specify maximum number of store instructions per memset call.
1115  unsigned maxStoresPerMemset;
1116
1117  /// When lowering %llvm.memcpy this field specifies the maximum number of
1118  /// store operations that may be substituted for a call to memcpy. Targets
1119  /// must set this value based on the cost threshold for that target. Targets
1120  /// should assume that the memcpy will be done using as many of the largest
1121  /// store operations first, followed by smaller ones, if necessary, per
1122  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1123  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1124  /// and one 1-byte store. This only applies to copying a constant array of
1125  /// constant size.
1126  /// @brief Specify maximum bytes of store instructions per memcpy call.
1127  unsigned maxStoresPerMemcpy;
1128
1129  /// When lowering %llvm.memmove this field specifies the maximum number of
1130  /// store instructions that may be substituted for a call to memmove. Targets
1131  /// must set this value based on the cost threshold for that target. Targets
1132  /// should assume that the memmove will be done using as many of the largest
1133  /// store operations first, followed by smaller ones, if necessary, per
1134  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1135  /// with 8-bit alignment would result in nine 1-byte stores.  This only
1136  /// applies to copying a constant array of constant size.
1137  /// @brief Specify maximum bytes of store instructions per memmove call.
1138  unsigned maxStoresPerMemmove;
1139
1140  /// This field specifies whether the target machine permits unaligned memory
1141  /// accesses.  This is used, for example, to determine the size of store
1142  /// operations when copying small arrays and other similar tasks.
1143  /// @brief Indicate whether the target permits unaligned memory accesses.
1144  bool allowUnalignedMemoryAccesses;
1145};
1146} // end llvm namespace
1147
1148#endif
1149