TargetLowering.h revision aafe626c7fa9f99150cccd27d0151a2cf7c8c00b
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/CallingConv.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Attributes.h"
28#include "llvm/CodeGen/SelectionDAGNodes.h"
29#include "llvm/CodeGen/RuntimeLibcalls.h"
30#include "llvm/ADT/APFloat.h"
31#include "llvm/ADT/DenseMap.h"
32#include "llvm/ADT/SmallSet.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/ADT/STLExtras.h"
35#include "llvm/Support/DebugLoc.h"
36#include "llvm/Target/TargetCallingConv.h"
37#include "llvm/Target/TargetMachine.h"
38#include <climits>
39#include <map>
40#include <vector>
41
42namespace llvm {
43  class AllocaInst;
44  class CallInst;
45  class Function;
46  class FastISel;
47  class FunctionLoweringInfo;
48  class MachineBasicBlock;
49  class MachineFunction;
50  class MachineFrameInfo;
51  class MachineInstr;
52  class MachineJumpTableInfo;
53  class MCContext;
54  class MCExpr;
55  class SDNode;
56  class SDValue;
57  class SelectionDAG;
58  class TargetData;
59  class TargetMachine;
60  class TargetRegisterClass;
61  class TargetLoweringObjectFile;
62  class Value;
63
64  // FIXME: should this be here?
65  namespace TLSModel {
66    enum Model {
67      GeneralDynamic,
68      LocalDynamic,
69      InitialExec,
70      LocalExec
71    };
72  }
73  TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc);
74
75
76//===----------------------------------------------------------------------===//
77/// TargetLowering - This class defines information used to lower LLVM code to
78/// legal SelectionDAG operators that the target instruction selector can accept
79/// natively.
80///
81/// This class also defines callbacks that targets must implement to lower
82/// target-specific constructs to SelectionDAG operators.
83///
84class TargetLowering {
85  TargetLowering(const TargetLowering&);  // DO NOT IMPLEMENT
86  void operator=(const TargetLowering&);  // DO NOT IMPLEMENT
87public:
88  /// LegalizeAction - This enum indicates whether operations are valid for a
89  /// target, and if not, what action should be used to make them valid.
90  enum LegalizeAction {
91    Legal,      // The target natively supports this operation.
92    Promote,    // This operation should be executed in a larger type.
93    Expand,     // Try to expand this to other ops, otherwise use a libcall.
94    Custom      // Use the LowerOperation hook to implement custom lowering.
95  };
96
97  enum BooleanContent { // How the target represents true/false values.
98    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
99    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
100    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
101  };
102
103  /// NOTE: The constructor takes ownership of TLOF.
104  explicit TargetLowering(const TargetMachine &TM,
105                          const TargetLoweringObjectFile *TLOF);
106  virtual ~TargetLowering();
107
108  const TargetMachine &getTargetMachine() const { return TM; }
109  const TargetData *getTargetData() const { return TD; }
110  const TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
111
112  bool isBigEndian() const { return !IsLittleEndian; }
113  bool isLittleEndian() const { return IsLittleEndian; }
114  MVT getPointerTy() const { return PointerTy; }
115  MVT getShiftAmountTy() const { return ShiftAmountTy; }
116
117  /// isSelectExpensive - Return true if the select operation is expensive for
118  /// this target.
119  bool isSelectExpensive() const { return SelectIsExpensive; }
120
121  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
122  /// a sequence of several shifts, adds, and multiplies for this target.
123  bool isIntDivCheap() const { return IntDivIsCheap; }
124
125  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
126  /// srl/add/sra.
127  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
128
129  /// getSetCCResultType - Return the ValueType of the result of SETCC
130  /// operations.  Also used to obtain the target's preferred type for
131  /// the condition operand of SELECT and BRCOND nodes.  In the case of
132  /// BRCOND the argument passed is MVT::Other since there are no other
133  /// operands to get a type hint from.
134  virtual
135  MVT::SimpleValueType getSetCCResultType(EVT VT) const;
136
137  /// getCmpLibcallReturnType - Return the ValueType for comparison
138  /// libcalls. Comparions libcalls include floating point comparion calls,
139  /// and Ordered/Unordered check calls on floating point numbers.
140  virtual
141  MVT::SimpleValueType getCmpLibcallReturnType() const;
142
143  /// getBooleanContents - For targets without i1 registers, this gives the
144  /// nature of the high-bits of boolean values held in types wider than i1.
145  /// "Boolean values" are special true/false values produced by nodes like
146  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
147  /// Not to be confused with general values promoted from i1.
148  BooleanContent getBooleanContents() const { return BooleanContents;}
149
150  /// getSchedulingPreference - Return target scheduling preference.
151  Sched::Preference getSchedulingPreference() const {
152    return SchedPreferenceInfo;
153  }
154
155  /// getSchedulingPreference - Some scheduler, e.g. hybrid, can switch to
156  /// different scheduling heuristics for different nodes. This function returns
157  /// the preference (or none) for the given node.
158  virtual Sched::Preference getSchedulingPreference(SDNode *N) const {
159    return Sched::None;
160  }
161
162  /// getRegClassFor - Return the register class that should be used for the
163  /// specified value type.
164  virtual TargetRegisterClass *getRegClassFor(EVT VT) const {
165    assert(VT.isSimple() && "getRegClassFor called on illegal type!");
166    TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
167    assert(RC && "This value type is not natively supported!");
168    return RC;
169  }
170
171  /// getRepRegClassFor - Return the 'representative' register class for the
172  /// specified value type. The 'representative' register class is the largest
173  /// legal super-reg register class for the register class of the value type.
174  /// For example, on i386 the rep register class for i8, i16, and i32 are GR32;
175  /// while the rep register class is GR64 on x86_64.
176  virtual const TargetRegisterClass *getRepRegClassFor(EVT VT) const {
177    assert(VT.isSimple() && "getRepRegClassFor called on illegal type!");
178    const TargetRegisterClass *RC = RepRegClassForVT[VT.getSimpleVT().SimpleTy];
179    return RC;
180  }
181
182  /// getRepRegClassCostFor - Return the cost of the 'representative' register
183  /// class for the specified value type.
184  virtual uint8_t getRepRegClassCostFor(EVT VT) const {
185    assert(VT.isSimple() && "getRepRegClassCostFor called on illegal type!");
186    return RepRegClassCostForVT[VT.getSimpleVT().SimpleTy];
187  }
188
189  /// getRegPressureLimit - Return the register pressure "high water mark" for
190  /// the specific register class. The scheduler is in high register pressure
191  /// mode (for the specific register class) if it goes over the limit.
192  virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC,
193                                       MachineFunction &MF) const {
194    return 0;
195  }
196
197  /// isTypeLegal - Return true if the target has native support for the
198  /// specified value type.  This means that it has a register that directly
199  /// holds it without promotions or expansions.
200  bool isTypeLegal(EVT VT) const {
201    assert(!VT.isSimple() ||
202           (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
203    return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0;
204  }
205
206  /// isTypeSynthesizable - Return true if it's OK for the compiler to create
207  /// new operations of this type.  All Legal types are synthesizable except
208  /// MMX vector types on X86.  Non-Legal types are not synthesizable.
209  bool isTypeSynthesizable(EVT VT) const {
210    return isTypeLegal(VT) && Synthesizable[VT.getSimpleVT().SimpleTy];
211  }
212
213  class ValueTypeActionImpl {
214    /// ValueTypeActions - For each value type, keep a LegalizeAction enum
215    /// that indicates how instruction selection should deal with the type.
216    uint8_t ValueTypeActions[MVT::LAST_VALUETYPE];
217
218    LegalizeAction getExtendedTypeAction(EVT VT) const {
219      // Handle non-vector integers.
220      if (!VT.isVector()) {
221        assert(VT.isInteger() && "Unsupported extended type!");
222        unsigned BitSize = VT.getSizeInBits();
223        // First promote to a power-of-two size, then expand if necessary.
224        if (BitSize < 8 || !isPowerOf2_32(BitSize))
225          return Promote;
226        return Expand;
227      }
228
229      // If this is a type smaller than a legal vector type, promote to that
230      // type, e.g. <2 x float> -> <4 x float>.
231      if (VT.getVectorElementType().isSimple() &&
232          VT.getVectorNumElements() != 1) {
233        MVT EltType = VT.getVectorElementType().getSimpleVT();
234        unsigned NumElts = VT.getVectorNumElements();
235        while (1) {
236          // Round up to the nearest power of 2.
237          NumElts = (unsigned)NextPowerOf2(NumElts);
238
239          MVT LargerVector = MVT::getVectorVT(EltType, NumElts);
240          if (LargerVector == MVT()) break;
241
242          // If this the larger type is legal, promote to it.
243          if (getTypeAction(LargerVector) == Legal) return Promote;
244        }
245      }
246
247      return VT.isPow2VectorType() ? Expand : Promote;
248    }
249  public:
250    ValueTypeActionImpl() {
251      std::fill(ValueTypeActions, array_endof(ValueTypeActions), 0);
252    }
253
254    LegalizeAction getTypeAction(EVT VT) const {
255      if (!VT.isExtended())
256        return getTypeAction(VT.getSimpleVT());
257      return getExtendedTypeAction(VT);
258    }
259
260    LegalizeAction getTypeAction(MVT VT) const {
261      return (LegalizeAction)ValueTypeActions[VT.SimpleTy];
262    }
263
264
265    void setTypeAction(EVT VT, LegalizeAction Action) {
266      unsigned I = VT.getSimpleVT().SimpleTy;
267      ValueTypeActions[I] = Action;
268    }
269  };
270
271  const ValueTypeActionImpl &getValueTypeActions() const {
272    return ValueTypeActions;
273  }
274
275  /// getTypeAction - Return how we should legalize values of this type, either
276  /// it is already legal (return 'Legal') or we need to promote it to a larger
277  /// type (return 'Promote'), or we need to expand it into multiple registers
278  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
279  LegalizeAction getTypeAction(EVT VT) const {
280    return ValueTypeActions.getTypeAction(VT);
281  }
282
283  /// getTypeToTransformTo - For types supported by the target, this is an
284  /// identity function.  For types that must be promoted to larger types, this
285  /// returns the larger type to promote to.  For integer types that are larger
286  /// than the largest integer register, this contains one step in the expansion
287  /// to get to the smaller register. For illegal floating point types, this
288  /// returns the integer type to transform to.
289  EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
290    if (VT.isSimple()) {
291      assert((unsigned)VT.getSimpleVT().SimpleTy <
292             array_lengthof(TransformToType));
293      EVT NVT = TransformToType[VT.getSimpleVT().SimpleTy];
294      assert(getTypeAction(NVT) != Promote &&
295             "Promote may not follow Expand or Promote");
296      return NVT;
297    }
298
299    if (VT.isVector()) {
300      EVT NVT = VT.getPow2VectorType(Context);
301      if (NVT == VT) {
302        // Vector length is a power of 2 - split to half the size.
303        unsigned NumElts = VT.getVectorNumElements();
304        EVT EltVT = VT.getVectorElementType();
305        return (NumElts == 1) ?
306          EltVT : EVT::getVectorVT(Context, EltVT, NumElts / 2);
307      }
308      // Promote to a power of two size, avoiding multi-step promotion.
309      return getTypeAction(NVT) == Promote ?
310        getTypeToTransformTo(Context, NVT) : NVT;
311    } else if (VT.isInteger()) {
312      EVT NVT = VT.getRoundIntegerType(Context);
313      if (NVT == VT)      // Size is a power of two - expand to half the size.
314        return EVT::getIntegerVT(Context, VT.getSizeInBits() / 2);
315
316      // Promote to a power of two size, avoiding multi-step promotion.
317      return getTypeAction(NVT) == Promote ?
318        getTypeToTransformTo(Context, NVT) : NVT;
319    }
320    assert(0 && "Unsupported extended type!");
321    return MVT(MVT::Other); // Not reached
322  }
323
324  /// getTypeToExpandTo - For types supported by the target, this is an
325  /// identity function.  For types that must be expanded (i.e. integer types
326  /// that are larger than the largest integer register or illegal floating
327  /// point types), this returns the largest legal type it will be expanded to.
328  EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
329    assert(!VT.isVector());
330    while (true) {
331      switch (getTypeAction(VT)) {
332      case Legal:
333        return VT;
334      case Expand:
335        VT = getTypeToTransformTo(Context, VT);
336        break;
337      default:
338        assert(false && "Type is not legal nor is it to be expanded!");
339        return VT;
340      }
341    }
342    return VT;
343  }
344
345  /// getVectorTypeBreakdown - Vector types are broken down into some number of
346  /// legal first class types.  For example, EVT::v8f32 maps to 2 EVT::v4f32
347  /// with Altivec or SSE1, or 8 promoted EVT::f64 values with the X86 FP stack.
348  /// Similarly, EVT::v2i64 turns into 4 EVT::i32 values with both PPC and X86.
349  ///
350  /// This method returns the number of registers needed, and the VT for each
351  /// register.  It also returns the VT and quantity of the intermediate values
352  /// before they are promoted/expanded.
353  ///
354  unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
355                                  EVT &IntermediateVT,
356                                  unsigned &NumIntermediates,
357                                  EVT &RegisterVT) const;
358
359  /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
360  /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
361  /// this is the case, it returns true and store the intrinsic
362  /// information into the IntrinsicInfo that was passed to the function.
363  struct IntrinsicInfo {
364    unsigned     opc;         // target opcode
365    EVT          memVT;       // memory VT
366    const Value* ptrVal;      // value representing memory location
367    int          offset;      // offset off of ptrVal
368    unsigned     align;       // alignment
369    bool         vol;         // is volatile?
370    bool         readMem;     // reads memory?
371    bool         writeMem;    // writes memory?
372  };
373
374  virtual bool getTgtMemIntrinsic(IntrinsicInfo &Info,
375                                  const CallInst &I, unsigned Intrinsic) const {
376    return false;
377  }
378
379  /// isFPImmLegal - Returns true if the target can instruction select the
380  /// specified FP immediate natively. If false, the legalizer will materialize
381  /// the FP immediate as a load from a constant pool.
382  virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const {
383    return false;
384  }
385
386  /// isShuffleMaskLegal - Targets can use this to indicate that they only
387  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
388  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
389  /// are assumed to be legal.
390  virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
391                                  EVT VT) const {
392    return true;
393  }
394
395  /// canOpTrap - Returns true if the operation can trap for the value type.
396  /// VT must be a legal type. By default, we optimistically assume most
397  /// operations don't trap except for divide and remainder.
398  virtual bool canOpTrap(unsigned Op, EVT VT) const;
399
400  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
401  /// used by Targets can use this to indicate if there is a suitable
402  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
403  /// pool entry.
404  virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
405                                      EVT VT) const {
406    return false;
407  }
408
409  /// getOperationAction - Return how this operation should be treated: either
410  /// it is legal, needs to be promoted to a larger size, needs to be
411  /// expanded to some other code sequence, or the target has a custom expander
412  /// for it.
413  LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
414    if (VT.isExtended()) return Expand;
415    assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
416    unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
417    return (LegalizeAction)OpActions[I][Op];
418  }
419
420  /// isOperationLegalOrCustom - Return true if the specified operation is
421  /// legal on this target or can be made legal with custom lowering. This
422  /// is used to help guide high-level lowering decisions.
423  bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
424    return (VT == MVT::Other || isTypeLegal(VT)) &&
425      (getOperationAction(Op, VT) == Legal ||
426       getOperationAction(Op, VT) == Custom);
427  }
428
429  /// isOperationLegal - Return true if the specified operation is legal on this
430  /// target.
431  bool isOperationLegal(unsigned Op, EVT VT) const {
432    return (VT == MVT::Other || isTypeLegal(VT)) &&
433           getOperationAction(Op, VT) == Legal;
434  }
435
436  /// getLoadExtAction - Return how this load with extension should be treated:
437  /// either it is legal, needs to be promoted to a larger size, needs to be
438  /// expanded to some other code sequence, or the target has a custom expander
439  /// for it.
440  LegalizeAction getLoadExtAction(unsigned ExtType, EVT VT) const {
441    assert(ExtType < ISD::LAST_LOADEXT_TYPE &&
442           (unsigned)VT.getSimpleVT().SimpleTy < MVT::LAST_VALUETYPE &&
443           "Table isn't big enough!");
444    return (LegalizeAction)LoadExtActions[VT.getSimpleVT().SimpleTy][ExtType];
445  }
446
447  /// isLoadExtLegal - Return true if the specified load with extension is legal
448  /// on this target.
449  bool isLoadExtLegal(unsigned ExtType, EVT VT) const {
450    return VT.isSimple() &&
451      (getLoadExtAction(ExtType, VT) == Legal ||
452       getLoadExtAction(ExtType, VT) == Custom);
453  }
454
455  /// getTruncStoreAction - Return how this store with truncation should be
456  /// treated: either it is legal, needs to be promoted to a larger size, needs
457  /// to be expanded to some other code sequence, or the target has a custom
458  /// expander for it.
459  LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const {
460    assert((unsigned)ValVT.getSimpleVT().SimpleTy < MVT::LAST_VALUETYPE &&
461           (unsigned)MemVT.getSimpleVT().SimpleTy < MVT::LAST_VALUETYPE &&
462           "Table isn't big enough!");
463    return (LegalizeAction)TruncStoreActions[ValVT.getSimpleVT().SimpleTy]
464                                            [MemVT.getSimpleVT().SimpleTy];
465  }
466
467  /// isTruncStoreLegal - Return true if the specified store with truncation is
468  /// legal on this target.
469  bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
470    return isTypeLegal(ValVT) && MemVT.isSimple() &&
471      (getTruncStoreAction(ValVT, MemVT) == Legal ||
472       getTruncStoreAction(ValVT, MemVT) == Custom);
473  }
474
475  /// getIndexedLoadAction - Return how the indexed load should be treated:
476  /// either it is legal, needs to be promoted to a larger size, needs to be
477  /// expanded to some other code sequence, or the target has a custom expander
478  /// for it.
479  LegalizeAction
480  getIndexedLoadAction(unsigned IdxMode, EVT VT) const {
481    assert( IdxMode < ISD::LAST_INDEXED_MODE &&
482           ((unsigned)VT.getSimpleVT().SimpleTy) < MVT::LAST_VALUETYPE &&
483           "Table isn't big enough!");
484    unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
485    return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
486  }
487
488  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
489  /// on this target.
490  bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
491    return VT.isSimple() &&
492      (getIndexedLoadAction(IdxMode, VT) == Legal ||
493       getIndexedLoadAction(IdxMode, VT) == Custom);
494  }
495
496  /// getIndexedStoreAction - Return how the indexed store should be treated:
497  /// either it is legal, needs to be promoted to a larger size, needs to be
498  /// expanded to some other code sequence, or the target has a custom expander
499  /// for it.
500  LegalizeAction
501  getIndexedStoreAction(unsigned IdxMode, EVT VT) const {
502    assert( IdxMode < ISD::LAST_INDEXED_MODE &&
503           ((unsigned)VT.getSimpleVT().SimpleTy) < MVT::LAST_VALUETYPE &&
504           "Table isn't big enough!");
505    unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
506    return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
507  }
508
509  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
510  /// on this target.
511  bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
512    return VT.isSimple() &&
513      (getIndexedStoreAction(IdxMode, VT) == Legal ||
514       getIndexedStoreAction(IdxMode, VT) == Custom);
515  }
516
517  /// getCondCodeAction - Return how the condition code should be treated:
518  /// either it is legal, needs to be expanded to some other code sequence,
519  /// or the target has a custom expander for it.
520  LegalizeAction
521  getCondCodeAction(ISD::CondCode CC, EVT VT) const {
522    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
523           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(CondCodeActions[0])*4 &&
524           "Table isn't big enough!");
525    LegalizeAction Action = (LegalizeAction)
526      ((CondCodeActions[CC] >> (2*VT.getSimpleVT().SimpleTy)) & 3);
527    assert(Action != Promote && "Can't promote condition code!");
528    return Action;
529  }
530
531  /// isCondCodeLegal - Return true if the specified condition code is legal
532  /// on this target.
533  bool isCondCodeLegal(ISD::CondCode CC, EVT VT) const {
534    return getCondCodeAction(CC, VT) == Legal ||
535           getCondCodeAction(CC, VT) == Custom;
536  }
537
538
539  /// getTypeToPromoteTo - If the action for this operation is to promote, this
540  /// method returns the ValueType to promote to.
541  EVT getTypeToPromoteTo(unsigned Op, EVT VT) const {
542    assert(getOperationAction(Op, VT) == Promote &&
543           "This operation isn't promoted!");
544
545    // See if this has an explicit type specified.
546    std::map<std::pair<unsigned, MVT::SimpleValueType>,
547             MVT::SimpleValueType>::const_iterator PTTI =
548      PromoteToType.find(std::make_pair(Op, VT.getSimpleVT().SimpleTy));
549    if (PTTI != PromoteToType.end()) return PTTI->second;
550
551    assert((VT.isInteger() || VT.isFloatingPoint()) &&
552           "Cannot autopromote this type, add it with AddPromotedToType.");
553
554    EVT NVT = VT;
555    do {
556      NVT = (MVT::SimpleValueType)(NVT.getSimpleVT().SimpleTy+1);
557      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
558             "Didn't find type to promote to!");
559    } while (!isTypeLegal(NVT) ||
560              getOperationAction(Op, NVT) == Promote);
561    return NVT;
562  }
563
564  /// getValueType - Return the EVT corresponding to this LLVM type.
565  /// This is fixed by the LLVM operations except for the pointer size.  If
566  /// AllowUnknown is true, this will return MVT::Other for types with no EVT
567  /// counterpart (e.g. structs), otherwise it will assert.
568  EVT getValueType(const Type *Ty, bool AllowUnknown = false) const {
569    EVT VT = EVT::getEVT(Ty, AllowUnknown);
570    return VT == MVT::iPTR ? PointerTy : VT;
571  }
572
573  /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
574  /// function arguments in the caller parameter area.  This is the actual
575  /// alignment, not its logarithm.
576  virtual unsigned getByValTypeAlignment(const Type *Ty) const;
577
578  /// getRegisterType - Return the type of registers that this ValueType will
579  /// eventually require.
580  EVT getRegisterType(MVT VT) const {
581    assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
582    return RegisterTypeForVT[VT.SimpleTy];
583  }
584
585  /// getRegisterType - Return the type of registers that this ValueType will
586  /// eventually require.
587  EVT getRegisterType(LLVMContext &Context, EVT VT) const {
588    if (VT.isSimple()) {
589      assert((unsigned)VT.getSimpleVT().SimpleTy <
590                array_lengthof(RegisterTypeForVT));
591      return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
592    }
593    if (VT.isVector()) {
594      EVT VT1, RegisterVT;
595      unsigned NumIntermediates;
596      (void)getVectorTypeBreakdown(Context, VT, VT1,
597                                   NumIntermediates, RegisterVT);
598      return RegisterVT;
599    }
600    if (VT.isInteger()) {
601      return getRegisterType(Context, getTypeToTransformTo(Context, VT));
602    }
603    assert(0 && "Unsupported extended type!");
604    return EVT(MVT::Other); // Not reached
605  }
606
607  /// getNumRegisters - Return the number of registers that this ValueType will
608  /// eventually require.  This is one for any types promoted to live in larger
609  /// registers, but may be more than one for types (like i64) that are split
610  /// into pieces.  For types like i140, which are first promoted then expanded,
611  /// it is the number of registers needed to hold all the bits of the original
612  /// type.  For an i140 on a 32 bit machine this means 5 registers.
613  unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
614    if (VT.isSimple()) {
615      assert((unsigned)VT.getSimpleVT().SimpleTy <
616                array_lengthof(NumRegistersForVT));
617      return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
618    }
619    if (VT.isVector()) {
620      EVT VT1, VT2;
621      unsigned NumIntermediates;
622      return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
623    }
624    if (VT.isInteger()) {
625      unsigned BitWidth = VT.getSizeInBits();
626      unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
627      return (BitWidth + RegWidth - 1) / RegWidth;
628    }
629    assert(0 && "Unsupported extended type!");
630    return 0; // Not reached
631  }
632
633  /// ShouldShrinkFPConstant - If true, then instruction selection should
634  /// seek to shrink the FP constant of the specified type to a smaller type
635  /// in order to save space and / or reduce runtime.
636  virtual bool ShouldShrinkFPConstant(EVT VT) const { return true; }
637
638  /// hasTargetDAGCombine - If true, the target has custom DAG combine
639  /// transformations that it can perform for the specified node.
640  bool hasTargetDAGCombine(ISD::NodeType NT) const {
641    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
642    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
643  }
644
645  /// This function returns the maximum number of store operations permitted
646  /// to replace a call to llvm.memset. The value is set by the target at the
647  /// performance threshold for such a replacement.
648  /// @brief Get maximum # of store operations permitted for llvm.memset
649  unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; }
650
651  /// This function returns the maximum number of store operations permitted
652  /// to replace a call to llvm.memcpy. The value is set by the target at the
653  /// performance threshold for such a replacement.
654  /// @brief Get maximum # of store operations permitted for llvm.memcpy
655  unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; }
656
657  /// This function returns the maximum number of store operations permitted
658  /// to replace a call to llvm.memmove. The value is set by the target at the
659  /// performance threshold for such a replacement.
660  /// @brief Get maximum # of store operations permitted for llvm.memmove
661  unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; }
662
663  /// This function returns true if the target allows unaligned memory accesses.
664  /// of the specified type. This is used, for example, in situations where an
665  /// array copy/move/set is  converted to a sequence of store operations. It's
666  /// use helps to ensure that such replacements don't generate code that causes
667  /// an alignment error  (trap) on the target machine.
668  /// @brief Determine if the target supports unaligned memory accesses.
669  virtual bool allowsUnalignedMemoryAccesses(EVT VT) const {
670    return false;
671  }
672
673  /// This function returns true if the target would benefit from code placement
674  /// optimization.
675  /// @brief Determine if the target should perform code placement optimization.
676  bool shouldOptimizeCodePlacement() const {
677    return benefitFromCodePlacementOpt;
678  }
679
680  /// getOptimalMemOpType - Returns the target specific optimal type for load
681  /// and store operations as a result of memset, memcpy, and memmove
682  /// lowering. If DstAlign is zero that means it's safe to destination
683  /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
684  /// means there isn't a need to check it against alignment requirement,
685  /// probably because the source does not need to be loaded. If
686  /// 'NonScalarIntSafe' is true, that means it's safe to return a
687  /// non-scalar-integer type, e.g. empty string source, constant, or loaded
688  /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
689  /// constant so it does not need to be loaded.
690  /// It returns EVT::Other if the type should be determined using generic
691  /// target-independent logic.
692  virtual EVT getOptimalMemOpType(uint64_t Size,
693                                  unsigned DstAlign, unsigned SrcAlign,
694                                  bool NonScalarIntSafe, bool MemcpyStrSrc,
695                                  MachineFunction &MF) const {
696    return MVT::Other;
697  }
698
699  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
700  /// to implement llvm.setjmp.
701  bool usesUnderscoreSetJmp() const {
702    return UseUnderscoreSetJmp;
703  }
704
705  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
706  /// to implement llvm.longjmp.
707  bool usesUnderscoreLongJmp() const {
708    return UseUnderscoreLongJmp;
709  }
710
711  /// getStackPointerRegisterToSaveRestore - If a physical register, this
712  /// specifies the register that llvm.savestack/llvm.restorestack should save
713  /// and restore.
714  unsigned getStackPointerRegisterToSaveRestore() const {
715    return StackPointerRegisterToSaveRestore;
716  }
717
718  /// getExceptionAddressRegister - If a physical register, this returns
719  /// the register that receives the exception address on entry to a landing
720  /// pad.
721  unsigned getExceptionAddressRegister() const {
722    return ExceptionPointerRegister;
723  }
724
725  /// getExceptionSelectorRegister - If a physical register, this returns
726  /// the register that receives the exception typeid on entry to a landing
727  /// pad.
728  unsigned getExceptionSelectorRegister() const {
729    return ExceptionSelectorRegister;
730  }
731
732  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
733  /// set, the default is 200)
734  unsigned getJumpBufSize() const {
735    return JumpBufSize;
736  }
737
738  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
739  /// (if never set, the default is 0)
740  unsigned getJumpBufAlignment() const {
741    return JumpBufAlignment;
742  }
743
744  /// getMinStackArgumentAlignment - return the minimum stack alignment of an
745  /// argument.
746  unsigned getMinStackArgumentAlignment() const {
747    return MinStackArgumentAlignment;
748  }
749
750  /// getPrefLoopAlignment - return the preferred loop alignment.
751  ///
752  unsigned getPrefLoopAlignment() const {
753    return PrefLoopAlignment;
754  }
755
756  /// getShouldFoldAtomicFences - return whether the combiner should fold
757  /// fence MEMBARRIER instructions into the atomic intrinsic instructions.
758  ///
759  bool getShouldFoldAtomicFences() const {
760    return ShouldFoldAtomicFences;
761  }
762
763  /// getPreIndexedAddressParts - returns true by value, base pointer and
764  /// offset pointer and addressing mode by reference if the node's address
765  /// can be legally represented as pre-indexed load / store address.
766  virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
767                                         SDValue &Offset,
768                                         ISD::MemIndexedMode &AM,
769                                         SelectionDAG &DAG) const {
770    return false;
771  }
772
773  /// getPostIndexedAddressParts - returns true by value, base pointer and
774  /// offset pointer and addressing mode by reference if this node can be
775  /// combined with a load / store to form a post-indexed load / store.
776  virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
777                                          SDValue &Base, SDValue &Offset,
778                                          ISD::MemIndexedMode &AM,
779                                          SelectionDAG &DAG) const {
780    return false;
781  }
782
783  /// getJumpTableEncoding - Return the entry encoding for a jump table in the
784  /// current function.  The returned value is a member of the
785  /// MachineJumpTableInfo::JTEntryKind enum.
786  virtual unsigned getJumpTableEncoding() const;
787
788  virtual const MCExpr *
789  LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
790                            const MachineBasicBlock *MBB, unsigned uid,
791                            MCContext &Ctx) const {
792    assert(0 && "Need to implement this hook if target has custom JTIs");
793    return 0;
794  }
795
796  /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
797  /// jumptable.
798  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
799                                           SelectionDAG &DAG) const;
800
801  /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
802  /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
803  /// MCExpr.
804  virtual const MCExpr *
805  getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
806                               unsigned JTI, MCContext &Ctx) const;
807
808  /// isOffsetFoldingLegal - Return true if folding a constant offset
809  /// with the given GlobalAddress is legal.  It is frequently not legal in
810  /// PIC relocation models.
811  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
812
813  /// getFunctionAlignment - Return the Log2 alignment of this function.
814  virtual unsigned getFunctionAlignment(const Function *) const = 0;
815
816  /// getStackCookieLocation - Return true if the target stores stack
817  /// protector cookies at a fixed offset in some non-standard address
818  /// space, and populates the address space and offset as
819  /// appropriate.
820  virtual bool getStackCookieLocation(unsigned &AddressSpace, unsigned &Offset) const {
821    return false;
822  }
823
824  /// getMaximalGlobalOffset - Returns the maximal possible offset which can be
825  /// used for loads / stores from the global.
826  virtual unsigned getMaximalGlobalOffset() const {
827    return 0;
828  }
829
830  //===--------------------------------------------------------------------===//
831  // TargetLowering Optimization Methods
832  //
833
834  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
835  /// SDValues for returning information from TargetLowering to its clients
836  /// that want to combine
837  struct TargetLoweringOpt {
838    SelectionDAG &DAG;
839    bool LegalTys;
840    bool LegalOps;
841    SDValue Old;
842    SDValue New;
843
844    explicit TargetLoweringOpt(SelectionDAG &InDAG,
845                               bool LT, bool LO) :
846      DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
847
848    bool LegalTypes() const { return LegalTys; }
849    bool LegalOperations() const { return LegalOps; }
850
851    bool CombineTo(SDValue O, SDValue N) {
852      Old = O;
853      New = N;
854      return true;
855    }
856
857    /// ShrinkDemandedConstant - Check to see if the specified operand of the
858    /// specified instruction is a constant integer.  If so, check to see if
859    /// there are any bits set in the constant that are not demanded.  If so,
860    /// shrink the constant and return true.
861    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
862
863    /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
864    /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
865    /// cast, but it could be generalized for targets with other types of
866    /// implicit widening casts.
867    bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
868                          DebugLoc dl);
869  };
870
871  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
872  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
873  /// use this information to simplify Op, create a new simplified DAG node and
874  /// return true, returning the original and new nodes in Old and New.
875  /// Otherwise, analyze the expression and return a mask of KnownOne and
876  /// KnownZero bits for the expression (used to simplify the caller).
877  /// The KnownZero/One bits may only be accurate for those bits in the
878  /// DemandedMask.
879  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
880                            APInt &KnownZero, APInt &KnownOne,
881                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
882
883  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
884  /// Mask are known to be either zero or one and return them in the
885  /// KnownZero/KnownOne bitsets.
886  virtual void computeMaskedBitsForTargetNode(const SDValue Op,
887                                              const APInt &Mask,
888                                              APInt &KnownZero,
889                                              APInt &KnownOne,
890                                              const SelectionDAG &DAG,
891                                              unsigned Depth = 0) const;
892
893  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
894  /// targets that want to expose additional information about sign bits to the
895  /// DAG Combiner.
896  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
897                                                   unsigned Depth = 0) const;
898
899  struct DAGCombinerInfo {
900    void *DC;  // The DAG Combiner object.
901    bool BeforeLegalize;
902    bool BeforeLegalizeOps;
903    bool CalledByLegalizer;
904  public:
905    SelectionDAG &DAG;
906
907    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool blo, bool cl, void *dc)
908      : DC(dc), BeforeLegalize(bl), BeforeLegalizeOps(blo),
909        CalledByLegalizer(cl), DAG(dag) {}
910
911    bool isBeforeLegalize() const { return BeforeLegalize; }
912    bool isBeforeLegalizeOps() const { return BeforeLegalizeOps; }
913    bool isCalledByLegalizer() const { return CalledByLegalizer; }
914
915    void AddToWorklist(SDNode *N);
916    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
917                      bool AddTo = true);
918    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
919    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
920
921    void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
922  };
923
924  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
925  /// and cc. If it is unable to simplify it, return a null SDValue.
926  SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
927                          ISD::CondCode Cond, bool foldBooleans,
928                          DAGCombinerInfo &DCI, DebugLoc dl) const;
929
930  /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
931  /// node is a GlobalAddress + offset.
932  virtual bool
933  isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
934
935  /// PerformDAGCombine - This method will be invoked for all target nodes and
936  /// for any target-independent nodes that the target has registered with
937  /// invoke it for.
938  ///
939  /// The semantics are as follows:
940  /// Return Value:
941  ///   SDValue.Val == 0   - No change was made
942  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
943  ///   otherwise          - N should be replaced by the returned Operand.
944  ///
945  /// In addition, methods provided by DAGCombinerInfo may be used to perform
946  /// more complex transformations.
947  ///
948  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
949
950  /// isTypeDesirableForOp - Return true if the target has native support for
951  /// the specified value type and it is 'desirable' to use the type for the
952  /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
953  /// instruction encodings are longer and some i16 instructions are slow.
954  virtual bool isTypeDesirableForOp(unsigned Opc, EVT VT) const {
955    // By default, assume all legal types are desirable.
956    return isTypeLegal(VT);
957  }
958
959  /// IsDesirableToPromoteOp - This method query the target whether it is
960  /// beneficial for dag combiner to promote the specified node. If true, it
961  /// should return the desired promotion type by reference.
962  virtual bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
963    return false;
964  }
965
966  //===--------------------------------------------------------------------===//
967  // TargetLowering Configuration Methods - These methods should be invoked by
968  // the derived class constructor to configure this object for the target.
969  //
970
971protected:
972  /// setShiftAmountType - Describe the type that should be used for shift
973  /// amounts.  This type defaults to the pointer type.
974  void setShiftAmountType(MVT VT) { ShiftAmountTy = VT; }
975
976  /// setBooleanContents - Specify how the target extends the result of a
977  /// boolean value from i1 to a wider type.  See getBooleanContents.
978  void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
979
980  /// setSchedulingPreference - Specify the target scheduling preference.
981  void setSchedulingPreference(Sched::Preference Pref) {
982    SchedPreferenceInfo = Pref;
983  }
984
985  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
986  /// use _setjmp to implement llvm.setjmp or the non _ version.
987  /// Defaults to false.
988  void setUseUnderscoreSetJmp(bool Val) {
989    UseUnderscoreSetJmp = Val;
990  }
991
992  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
993  /// use _longjmp to implement llvm.longjmp or the non _ version.
994  /// Defaults to false.
995  void setUseUnderscoreLongJmp(bool Val) {
996    UseUnderscoreLongJmp = Val;
997  }
998
999  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
1000  /// specifies the register that llvm.savestack/llvm.restorestack should save
1001  /// and restore.
1002  void setStackPointerRegisterToSaveRestore(unsigned R) {
1003    StackPointerRegisterToSaveRestore = R;
1004  }
1005
1006  /// setExceptionPointerRegister - If set to a physical register, this sets
1007  /// the register that receives the exception address on entry to a landing
1008  /// pad.
1009  void setExceptionPointerRegister(unsigned R) {
1010    ExceptionPointerRegister = R;
1011  }
1012
1013  /// setExceptionSelectorRegister - If set to a physical register, this sets
1014  /// the register that receives the exception typeid on entry to a landing
1015  /// pad.
1016  void setExceptionSelectorRegister(unsigned R) {
1017    ExceptionSelectorRegister = R;
1018  }
1019
1020  /// SelectIsExpensive - Tells the code generator not to expand operations
1021  /// into sequences that use the select operations if possible.
1022  void setSelectIsExpensive() { SelectIsExpensive = true; }
1023
1024  /// setIntDivIsCheap - Tells the code generator that integer divide is
1025  /// expensive, and if possible, should be replaced by an alternate sequence
1026  /// of instructions not containing an integer divide.
1027  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
1028
1029  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
1030  /// srl/add/sra for a signed divide by power of two, and let the target handle
1031  /// it.
1032  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
1033
1034  /// addRegisterClass - Add the specified register class as an available
1035  /// regclass for the specified value type.  This indicates the selector can
1036  /// handle values of that class natively.
1037  void addRegisterClass(EVT VT, TargetRegisterClass *RC,
1038                        bool isSynthesizable = true) {
1039    assert((unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
1040    AvailableRegClasses.push_back(std::make_pair(VT, RC));
1041    RegClassForVT[VT.getSimpleVT().SimpleTy] = RC;
1042    Synthesizable[VT.getSimpleVT().SimpleTy] = isSynthesizable;
1043  }
1044
1045  /// findRepresentativeClass - Return the largest legal super-reg register class
1046  /// of the register class for the specified type and its associated "cost".
1047  virtual std::pair<const TargetRegisterClass*, uint8_t>
1048  findRepresentativeClass(EVT VT) const;
1049
1050  /// computeRegisterProperties - Once all of the register classes are added,
1051  /// this allows us to compute derived properties we expose.
1052  void computeRegisterProperties();
1053
1054  /// setOperationAction - Indicate that the specified operation does not work
1055  /// with the specified type and indicate what to do about it.
1056  void setOperationAction(unsigned Op, MVT VT,
1057                          LegalizeAction Action) {
1058    assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
1059    OpActions[(unsigned)VT.SimpleTy][Op] = (uint8_t)Action;
1060  }
1061
1062  /// setLoadExtAction - Indicate that the specified load with extension does
1063  /// not work with the specified type and indicate what to do about it.
1064  void setLoadExtAction(unsigned ExtType, MVT VT,
1065                        LegalizeAction Action) {
1066    assert(ExtType < ISD::LAST_LOADEXT_TYPE &&
1067           (unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1068           "Table isn't big enough!");
1069    LoadExtActions[VT.SimpleTy][ExtType] = (uint8_t)Action;
1070  }
1071
1072  /// setTruncStoreAction - Indicate that the specified truncating store does
1073  /// not work with the specified type and indicate what to do about it.
1074  void setTruncStoreAction(MVT ValVT, MVT MemVT,
1075                           LegalizeAction Action) {
1076    assert((unsigned)ValVT.SimpleTy < MVT::LAST_VALUETYPE &&
1077           (unsigned)MemVT.SimpleTy < MVT::LAST_VALUETYPE &&
1078           "Table isn't big enough!");
1079    TruncStoreActions[ValVT.SimpleTy][MemVT.SimpleTy] = (uint8_t)Action;
1080  }
1081
1082  /// setIndexedLoadAction - Indicate that the specified indexed load does or
1083  /// does not work with the specified type and indicate what to do abort
1084  /// it. NOTE: All indexed mode loads are initialized to Expand in
1085  /// TargetLowering.cpp
1086  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
1087                            LegalizeAction Action) {
1088    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1089           IdxMode < ISD::LAST_INDEXED_MODE &&
1090           (unsigned)Action < 0xf &&
1091           "Table isn't big enough!");
1092    // Load action are kept in the upper half.
1093    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
1094    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
1095  }
1096
1097  /// setIndexedStoreAction - Indicate that the specified indexed store does or
1098  /// does not work with the specified type and indicate what to do about
1099  /// it. NOTE: All indexed mode stores are initialized to Expand in
1100  /// TargetLowering.cpp
1101  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
1102                             LegalizeAction Action) {
1103    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1104           IdxMode < ISD::LAST_INDEXED_MODE &&
1105           (unsigned)Action < 0xf &&
1106           "Table isn't big enough!");
1107    // Store action are kept in the lower half.
1108    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
1109    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
1110  }
1111
1112  /// setCondCodeAction - Indicate that the specified condition code is or isn't
1113  /// supported on the target and indicate what to do about it.
1114  void setCondCodeAction(ISD::CondCode CC, MVT VT,
1115                         LegalizeAction Action) {
1116    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1117           (unsigned)CC < array_lengthof(CondCodeActions) &&
1118           "Table isn't big enough!");
1119    CondCodeActions[(unsigned)CC] &= ~(uint64_t(3UL)  << VT.SimpleTy*2);
1120    CondCodeActions[(unsigned)CC] |= (uint64_t)Action << VT.SimpleTy*2;
1121  }
1122
1123  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
1124  /// promotion code defaults to trying a larger integer/fp until it can find
1125  /// one that works.  If that default is insufficient, this method can be used
1126  /// by the target to override the default.
1127  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1128    PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
1129  }
1130
1131  /// setTargetDAGCombine - Targets should invoke this method for each target
1132  /// independent node that they want to provide a custom DAG combiner for by
1133  /// implementing the PerformDAGCombine virtual method.
1134  void setTargetDAGCombine(ISD::NodeType NT) {
1135    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1136    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1137  }
1138
1139  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
1140  /// bytes); default is 200
1141  void setJumpBufSize(unsigned Size) {
1142    JumpBufSize = Size;
1143  }
1144
1145  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
1146  /// alignment (in bytes); default is 0
1147  void setJumpBufAlignment(unsigned Align) {
1148    JumpBufAlignment = Align;
1149  }
1150
1151  /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
1152  /// alignment is zero, it means the target does not care about loop alignment.
1153  void setPrefLoopAlignment(unsigned Align) {
1154    PrefLoopAlignment = Align;
1155  }
1156
1157  /// setMinStackArgumentAlignment - Set the minimum stack alignment of an
1158  /// argument.
1159  void setMinStackArgumentAlignment(unsigned Align) {
1160    MinStackArgumentAlignment = Align;
1161  }
1162
1163  /// setShouldFoldAtomicFences - Set if the target's implementation of the
1164  /// atomic operation intrinsics includes locking. Default is false.
1165  void setShouldFoldAtomicFences(bool fold) {
1166    ShouldFoldAtomicFences = fold;
1167  }
1168
1169public:
1170  //===--------------------------------------------------------------------===//
1171  // Lowering methods - These methods must be implemented by targets so that
1172  // the SelectionDAGLowering code knows how to lower these.
1173  //
1174
1175  /// LowerFormalArguments - This hook must be implemented to lower the
1176  /// incoming (formal) arguments, described by the Ins array, into the
1177  /// specified DAG. The implementation should fill in the InVals array
1178  /// with legal-type argument values, and return the resulting token
1179  /// chain value.
1180  ///
1181  virtual SDValue
1182    LowerFormalArguments(SDValue Chain,
1183                         CallingConv::ID CallConv, bool isVarArg,
1184                         const SmallVectorImpl<ISD::InputArg> &Ins,
1185                         DebugLoc dl, SelectionDAG &DAG,
1186                         SmallVectorImpl<SDValue> &InVals) const {
1187    assert(0 && "Not Implemented");
1188    return SDValue();    // this is here to silence compiler errors
1189  }
1190
1191  /// LowerCallTo - This function lowers an abstract call to a function into an
1192  /// actual call.  This returns a pair of operands.  The first element is the
1193  /// return value for the function (if RetTy is not VoidTy).  The second
1194  /// element is the outgoing token chain. It calls LowerCall to do the actual
1195  /// lowering.
1196  struct ArgListEntry {
1197    SDValue Node;
1198    const Type* Ty;
1199    bool isSExt  : 1;
1200    bool isZExt  : 1;
1201    bool isInReg : 1;
1202    bool isSRet  : 1;
1203    bool isNest  : 1;
1204    bool isByVal : 1;
1205    uint16_t Alignment;
1206
1207    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
1208      isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
1209  };
1210  typedef std::vector<ArgListEntry> ArgListTy;
1211  std::pair<SDValue, SDValue>
1212  LowerCallTo(SDValue Chain, const Type *RetTy, bool RetSExt, bool RetZExt,
1213              bool isVarArg, bool isInreg, unsigned NumFixedArgs,
1214              CallingConv::ID CallConv, bool isTailCall,
1215              bool isReturnValueUsed, SDValue Callee, ArgListTy &Args,
1216              SelectionDAG &DAG, DebugLoc dl) const;
1217
1218  /// LowerCall - This hook must be implemented to lower calls into the
1219  /// the specified DAG. The outgoing arguments to the call are described
1220  /// by the Outs array, and the values to be returned by the call are
1221  /// described by the Ins array. The implementation should fill in the
1222  /// InVals array with legal-type return values from the call, and return
1223  /// the resulting token chain value.
1224  virtual SDValue
1225    LowerCall(SDValue Chain, SDValue Callee,
1226              CallingConv::ID CallConv, bool isVarArg, bool &isTailCall,
1227              const SmallVectorImpl<ISD::OutputArg> &Outs,
1228              const SmallVectorImpl<SDValue> &OutVals,
1229              const SmallVectorImpl<ISD::InputArg> &Ins,
1230              DebugLoc dl, SelectionDAG &DAG,
1231              SmallVectorImpl<SDValue> &InVals) const {
1232    assert(0 && "Not Implemented");
1233    return SDValue();    // this is here to silence compiler errors
1234  }
1235
1236  /// CanLowerReturn - This hook should be implemented to check whether the
1237  /// return values described by the Outs array can fit into the return
1238  /// registers.  If false is returned, an sret-demotion is performed.
1239  ///
1240  virtual bool CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1241               const SmallVectorImpl<ISD::OutputArg> &Outs,
1242               LLVMContext &Context) const
1243  {
1244    // Return true by default to get preexisting behavior.
1245    return true;
1246  }
1247
1248  /// LowerReturn - This hook must be implemented to lower outgoing
1249  /// return values, described by the Outs array, into the specified
1250  /// DAG. The implementation should return the resulting token chain
1251  /// value.
1252  ///
1253  virtual SDValue
1254    LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1255                const SmallVectorImpl<ISD::OutputArg> &Outs,
1256                const SmallVectorImpl<SDValue> &OutVals,
1257                DebugLoc dl, SelectionDAG &DAG) const {
1258    assert(0 && "Not Implemented");
1259    return SDValue();    // this is here to silence compiler errors
1260  }
1261
1262  /// LowerOperationWrapper - This callback is invoked by the type legalizer
1263  /// to legalize nodes with an illegal operand type but legal result types.
1264  /// It replaces the LowerOperation callback in the type Legalizer.
1265  /// The reason we can not do away with LowerOperation entirely is that
1266  /// LegalizeDAG isn't yet ready to use this callback.
1267  /// TODO: Consider merging with ReplaceNodeResults.
1268
1269  /// The target places new result values for the node in Results (their number
1270  /// and types must exactly match those of the original return values of
1271  /// the node), or leaves Results empty, which indicates that the node is not
1272  /// to be custom lowered after all.
1273  /// The default implementation calls LowerOperation.
1274  virtual void LowerOperationWrapper(SDNode *N,
1275                                     SmallVectorImpl<SDValue> &Results,
1276                                     SelectionDAG &DAG) const;
1277
1278  /// LowerOperation - This callback is invoked for operations that are
1279  /// unsupported by the target, which are registered to use 'custom' lowering,
1280  /// and whose defined values are all legal.
1281  /// If the target has no operations that require custom lowering, it need not
1282  /// implement this.  The default implementation of this aborts.
1283  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
1284
1285  /// ReplaceNodeResults - This callback is invoked when a node result type is
1286  /// illegal for the target, and the operation was registered to use 'custom'
1287  /// lowering for that result type.  The target places new result values for
1288  /// the node in Results (their number and types must exactly match those of
1289  /// the original return values of the node), or leaves Results empty, which
1290  /// indicates that the node is not to be custom lowered after all.
1291  ///
1292  /// If the target has no operations that require custom lowering, it need not
1293  /// implement this.  The default implementation aborts.
1294  virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
1295                                  SelectionDAG &DAG) const {
1296    assert(0 && "ReplaceNodeResults not implemented for this target!");
1297  }
1298
1299  /// getTargetNodeName() - This method returns the name of a target specific
1300  /// DAG node.
1301  virtual const char *getTargetNodeName(unsigned Opcode) const;
1302
1303  /// createFastISel - This method returns a target specific FastISel object,
1304  /// or null if the target does not support "fast" ISel.
1305  virtual FastISel *createFastISel(FunctionLoweringInfo &funcInfo) const {
1306    return 0;
1307  }
1308
1309  //===--------------------------------------------------------------------===//
1310  // Inline Asm Support hooks
1311  //
1312
1313  /// ExpandInlineAsm - This hook allows the target to expand an inline asm
1314  /// call to be explicit llvm code if it wants to.  This is useful for
1315  /// turning simple inline asms into LLVM intrinsics, which gives the
1316  /// compiler more information about the behavior of the code.
1317  virtual bool ExpandInlineAsm(CallInst *CI) const {
1318    return false;
1319  }
1320
1321  enum ConstraintType {
1322    C_Register,            // Constraint represents specific register(s).
1323    C_RegisterClass,       // Constraint represents any of register(s) in class.
1324    C_Memory,              // Memory constraint.
1325    C_Other,               // Something else.
1326    C_Unknown              // Unsupported constraint.
1327  };
1328
1329  /// AsmOperandInfo - This contains information for each constraint that we are
1330  /// lowering.
1331  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
1332    /// ConstraintCode - This contains the actual string for the code, like "m".
1333    /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
1334    /// most closely matches the operand.
1335    std::string ConstraintCode;
1336
1337    /// ConstraintType - Information about the constraint code, e.g. Register,
1338    /// RegisterClass, Memory, Other, Unknown.
1339    TargetLowering::ConstraintType ConstraintType;
1340
1341    /// CallOperandval - If this is the result output operand or a
1342    /// clobber, this is null, otherwise it is the incoming operand to the
1343    /// CallInst.  This gets modified as the asm is processed.
1344    Value *CallOperandVal;
1345
1346    /// ConstraintVT - The ValueType for the operand value.
1347    EVT ConstraintVT;
1348
1349    /// isMatchingInputConstraint - Return true of this is an input operand that
1350    /// is a matching constraint like "4".
1351    bool isMatchingInputConstraint() const;
1352
1353    /// getMatchedOperand - If this is an input matching constraint, this method
1354    /// returns the output operand it matches.
1355    unsigned getMatchedOperand() const;
1356
1357    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
1358      : InlineAsm::ConstraintInfo(info),
1359        ConstraintType(TargetLowering::C_Unknown),
1360        CallOperandVal(0), ConstraintVT(MVT::Other) {
1361    }
1362  };
1363
1364  /// ComputeConstraintToUse - Determines the constraint code and constraint
1365  /// type to use for the specific AsmOperandInfo, setting
1366  /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
1367  /// being passed in is available, it can be passed in as Op, otherwise an
1368  /// empty SDValue can be passed.
1369  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1370                                      SDValue Op,
1371                                      SelectionDAG *DAG = 0) const;
1372
1373  /// getConstraintType - Given a constraint, return the type of constraint it
1374  /// is for this target.
1375  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
1376
1377  /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
1378  /// return a list of registers that can be used to satisfy the constraint.
1379  /// This should only be used for C_RegisterClass constraints.
1380  virtual std::vector<unsigned>
1381  getRegClassForInlineAsmConstraint(const std::string &Constraint,
1382                                    EVT VT) const;
1383
1384  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
1385  /// {edx}), return the register number and the register class for the
1386  /// register.
1387  ///
1388  /// Given a register class constraint, like 'r', if this corresponds directly
1389  /// to an LLVM register class, return a register of 0 and the register class
1390  /// pointer.
1391  ///
1392  /// This should only be used for C_Register constraints.  On error,
1393  /// this returns a register number of 0 and a null register class pointer..
1394  virtual std::pair<unsigned, const TargetRegisterClass*>
1395    getRegForInlineAsmConstraint(const std::string &Constraint,
1396                                 EVT VT) const;
1397
1398  /// LowerXConstraint - try to replace an X constraint, which matches anything,
1399  /// with another that has more specific requirements based on the type of the
1400  /// corresponding operand.  This returns null if there is no replacement to
1401  /// make.
1402  virtual const char *LowerXConstraint(EVT ConstraintVT) const;
1403
1404  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1405  /// vector.  If it is invalid, don't add anything to Ops.
1406  virtual void LowerAsmOperandForConstraint(SDValue Op, char ConstraintLetter,
1407                                            std::vector<SDValue> &Ops,
1408                                            SelectionDAG &DAG) const;
1409
1410  //===--------------------------------------------------------------------===//
1411  // Instruction Emitting Hooks
1412  //
1413
1414  // EmitInstrWithCustomInserter - This method should be implemented by targets
1415  // that mark instructions with the 'usesCustomInserter' flag.  These
1416  // instructions are special in various ways, which require special support to
1417  // insert.  The specified MachineInstr is created but not inserted into any
1418  // basic blocks, and this method is called to expand it into a sequence of
1419  // instructions, potentially also creating new basic blocks and control flow.
1420  virtual MachineBasicBlock *
1421    EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;
1422
1423  //===--------------------------------------------------------------------===//
1424  // Addressing mode description hooks (used by LSR etc).
1425  //
1426
1427  /// AddrMode - This represents an addressing mode of:
1428  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1429  /// If BaseGV is null,  there is no BaseGV.
1430  /// If BaseOffs is zero, there is no base offset.
1431  /// If HasBaseReg is false, there is no base register.
1432  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1433  /// no scale.
1434  ///
1435  struct AddrMode {
1436    GlobalValue *BaseGV;
1437    int64_t      BaseOffs;
1438    bool         HasBaseReg;
1439    int64_t      Scale;
1440    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1441  };
1442
1443  /// isLegalAddressingMode - Return true if the addressing mode represented by
1444  /// AM is legal for this target, for a load/store of the specified type.
1445  /// The type may be VoidTy, in which case only return true if the addressing
1446  /// mode is legal for a load/store of any legal type.
1447  /// TODO: Handle pre/postinc as well.
1448  virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const;
1449
1450  /// isTruncateFree - Return true if it's free to truncate a value of
1451  /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1452  /// register EAX to i16 by referencing its sub-register AX.
1453  virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const {
1454    return false;
1455  }
1456
1457  virtual bool isTruncateFree(EVT VT1, EVT VT2) const {
1458    return false;
1459  }
1460
1461  /// isZExtFree - Return true if any actual instruction that defines a
1462  /// value of type Ty1 implicitly zero-extends the value to Ty2 in the result
1463  /// register. This does not necessarily include registers defined in
1464  /// unknown ways, such as incoming arguments, or copies from unknown
1465  /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1466  /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1467  /// all instructions that define 32-bit values implicit zero-extend the
1468  /// result out to 64 bits.
1469  virtual bool isZExtFree(const Type *Ty1, const Type *Ty2) const {
1470    return false;
1471  }
1472
1473  virtual bool isZExtFree(EVT VT1, EVT VT2) const {
1474    return false;
1475  }
1476
1477  /// isNarrowingProfitable - Return true if it's profitable to narrow
1478  /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
1479  /// from i32 to i8 but not from i32 to i16.
1480  virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const {
1481    return false;
1482  }
1483
1484  /// isLegalICmpImmediate - Return true if the specified immediate is legal
1485  /// icmp immediate, that is the target has icmp instructions which can compare
1486  /// a register against the immediate without having to materialize the
1487  /// immediate into a register.
1488  virtual bool isLegalICmpImmediate(int64_t Imm) const {
1489    return true;
1490  }
1491
1492  //===--------------------------------------------------------------------===//
1493  // Div utility functions
1494  //
1495  SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG,
1496                      std::vector<SDNode*>* Created) const;
1497  SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG,
1498                      std::vector<SDNode*>* Created) const;
1499
1500
1501  //===--------------------------------------------------------------------===//
1502  // Runtime Library hooks
1503  //
1504
1505  /// setLibcallName - Rename the default libcall routine name for the specified
1506  /// libcall.
1507  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1508    LibcallRoutineNames[Call] = Name;
1509  }
1510
1511  /// getLibcallName - Get the libcall routine name for the specified libcall.
1512  ///
1513  const char *getLibcallName(RTLIB::Libcall Call) const {
1514    return LibcallRoutineNames[Call];
1515  }
1516
1517  /// setCmpLibcallCC - Override the default CondCode to be used to test the
1518  /// result of the comparison libcall against zero.
1519  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1520    CmpLibcallCCs[Call] = CC;
1521  }
1522
1523  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1524  /// the comparison libcall against zero.
1525  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1526    return CmpLibcallCCs[Call];
1527  }
1528
1529  /// setLibcallCallingConv - Set the CallingConv that should be used for the
1530  /// specified libcall.
1531  void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
1532    LibcallCallingConvs[Call] = CC;
1533  }
1534
1535  /// getLibcallCallingConv - Get the CallingConv that should be used for the
1536  /// specified libcall.
1537  CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
1538    return LibcallCallingConvs[Call];
1539  }
1540
1541private:
1542  const TargetMachine &TM;
1543  const TargetData *TD;
1544  const TargetLoweringObjectFile &TLOF;
1545
1546  /// PointerTy - The type to use for pointers, usually i32 or i64.
1547  ///
1548  MVT PointerTy;
1549
1550  /// IsLittleEndian - True if this is a little endian target.
1551  ///
1552  bool IsLittleEndian;
1553
1554  /// SelectIsExpensive - Tells the code generator not to expand operations
1555  /// into sequences that use the select operations if possible.
1556  bool SelectIsExpensive;
1557
1558  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1559  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1560  /// a real cost model is in place.  If we ever optimize for size, this will be
1561  /// set to true unconditionally.
1562  bool IntDivIsCheap;
1563
1564  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1565  /// srl/add/sra for a signed divide by power of two, and let the target handle
1566  /// it.
1567  bool Pow2DivIsCheap;
1568
1569  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1570  /// llvm.setjmp.  Defaults to false.
1571  bool UseUnderscoreSetJmp;
1572
1573  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1574  /// llvm.longjmp.  Defaults to false.
1575  bool UseUnderscoreLongJmp;
1576
1577  /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
1578  /// PointerTy is.
1579  MVT ShiftAmountTy;
1580
1581  /// BooleanContents - Information about the contents of the high-bits in
1582  /// boolean values held in a type wider than i1.  See getBooleanContents.
1583  BooleanContent BooleanContents;
1584
1585  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1586  /// total cycles or lowest register usage.
1587  Sched::Preference SchedPreferenceInfo;
1588
1589  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1590  unsigned JumpBufSize;
1591
1592  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1593  /// buffers
1594  unsigned JumpBufAlignment;
1595
1596  /// MinStackArgumentAlignment - The minimum alignment that any argument
1597  /// on the stack needs to have.
1598  ///
1599  unsigned MinStackArgumentAlignment;
1600
1601  /// PrefLoopAlignment - The perferred loop alignment.
1602  ///
1603  unsigned PrefLoopAlignment;
1604
1605  /// ShouldFoldAtomicFences - Whether fencing MEMBARRIER instructions should
1606  /// be folded into the enclosed atomic intrinsic instruction by the
1607  /// combiner.
1608  bool ShouldFoldAtomicFences;
1609
1610  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1611  /// specifies the register that llvm.savestack/llvm.restorestack should save
1612  /// and restore.
1613  unsigned StackPointerRegisterToSaveRestore;
1614
1615  /// ExceptionPointerRegister - If set to a physical register, this specifies
1616  /// the register that receives the exception address on entry to a landing
1617  /// pad.
1618  unsigned ExceptionPointerRegister;
1619
1620  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1621  /// the register that receives the exception typeid on entry to a landing
1622  /// pad.
1623  unsigned ExceptionSelectorRegister;
1624
1625  /// RegClassForVT - This indicates the default register class to use for
1626  /// each ValueType the target supports natively.
1627  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1628  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1629  EVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1630
1631  /// RepRegClassForVT - This indicates the "representative" register class to
1632  /// use for each ValueType the target supports natively. This information is
1633  /// used by the scheduler to track register pressure. By default, the
1634  /// representative register class is the largest legal super-reg register
1635  /// class of the register class of the specified type. e.g. On x86, i8, i16,
1636  /// and i32's representative class would be GR32.
1637  const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
1638
1639  /// RepRegClassCostForVT - This indicates the "cost" of the "representative"
1640  /// register class for each ValueType. The cost is used by the scheduler to
1641  /// approximate register pressure.
1642  uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
1643
1644  /// Synthesizable indicates whether it is OK for the compiler to create new
1645  /// operations using this type.  All Legal types are Synthesizable except
1646  /// MMX types on X86.  Non-Legal types are not Synthesizable.
1647  bool Synthesizable[MVT::LAST_VALUETYPE];
1648
1649  /// TransformToType - For any value types we are promoting or expanding, this
1650  /// contains the value type that we are changing to.  For Expanded types, this
1651  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1652  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1653  /// by the system, this holds the same type (e.g. i32 -> i32).
1654  EVT TransformToType[MVT::LAST_VALUETYPE];
1655
1656  /// OpActions - For each operation and each value type, keep a LegalizeAction
1657  /// that indicates how instruction selection should deal with the operation.
1658  /// Most operations are Legal (aka, supported natively by the target), but
1659  /// operations that are not should be described.  Note that operations on
1660  /// non-legal value types are not described here.
1661  uint8_t OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
1662
1663  /// LoadExtActions - For each load extension type and each value type,
1664  /// keep a LegalizeAction that indicates how instruction selection should deal
1665  /// with a load of a specific value type and extension type.
1666  uint8_t LoadExtActions[MVT::LAST_VALUETYPE][ISD::LAST_LOADEXT_TYPE];
1667
1668  /// TruncStoreActions - For each value type pair keep a LegalizeAction that
1669  /// indicates whether a truncating store of a specific value type and
1670  /// truncating type is legal.
1671  uint8_t TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
1672
1673  /// IndexedModeActions - For each indexed mode and each value type,
1674  /// keep a pair of LegalizeAction that indicates how instruction
1675  /// selection should deal with the load / store.  The first dimension is the
1676  /// value_type for the reference. The second dimension represents the various
1677  /// modes for load store.
1678  uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
1679
1680  /// CondCodeActions - For each condition code (ISD::CondCode) keep a
1681  /// LegalizeAction that indicates how instruction selection should
1682  /// deal with the condition code.
1683  uint64_t CondCodeActions[ISD::SETCC_INVALID];
1684
1685  ValueTypeActionImpl ValueTypeActions;
1686
1687  std::vector<std::pair<EVT, TargetRegisterClass*> > AvailableRegClasses;
1688
1689  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
1690  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
1691  /// which sets a bit in this array.
1692  unsigned char
1693  TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
1694
1695  /// PromoteToType - For operations that must be promoted to a specific type,
1696  /// this holds the destination type.  This map should be sparse, so don't hold
1697  /// it as an array.
1698  ///
1699  /// Targets add entries to this map with AddPromotedToType(..), clients access
1700  /// this with getTypeToPromoteTo(..).
1701  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
1702    PromoteToType;
1703
1704  /// LibcallRoutineNames - Stores the name each libcall.
1705  ///
1706  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1707
1708  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
1709  /// of each of the comparison libcall against zero.
1710  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1711
1712  /// LibcallCallingConvs - Stores the CallingConv that should be used for each
1713  /// libcall.
1714  CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
1715
1716protected:
1717  /// When lowering \@llvm.memset this field specifies the maximum number of
1718  /// store operations that may be substituted for the call to memset. Targets
1719  /// must set this value based on the cost threshold for that target. Targets
1720  /// should assume that the memset will be done using as many of the largest
1721  /// store operations first, followed by smaller ones, if necessary, per
1722  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1723  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1724  /// store.  This only applies to setting a constant array of a constant size.
1725  /// @brief Specify maximum number of store instructions per memset call.
1726  unsigned maxStoresPerMemset;
1727
1728  /// When lowering \@llvm.memcpy this field specifies the maximum number of
1729  /// store operations that may be substituted for a call to memcpy. Targets
1730  /// must set this value based on the cost threshold for that target. Targets
1731  /// should assume that the memcpy will be done using as many of the largest
1732  /// store operations first, followed by smaller ones, if necessary, per
1733  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1734  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1735  /// and one 1-byte store. This only applies to copying a constant array of
1736  /// constant size.
1737  /// @brief Specify maximum bytes of store instructions per memcpy call.
1738  unsigned maxStoresPerMemcpy;
1739
1740  /// When lowering \@llvm.memmove this field specifies the maximum number of
1741  /// store instructions that may be substituted for a call to memmove. Targets
1742  /// must set this value based on the cost threshold for that target. Targets
1743  /// should assume that the memmove will be done using as many of the largest
1744  /// store operations first, followed by smaller ones, if necessary, per
1745  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1746  /// with 8-bit alignment would result in nine 1-byte stores.  This only
1747  /// applies to copying a constant array of constant size.
1748  /// @brief Specify maximum bytes of store instructions per memmove call.
1749  unsigned maxStoresPerMemmove;
1750
1751  /// This field specifies whether the target can benefit from code placement
1752  /// optimization.
1753  bool benefitFromCodePlacementOpt;
1754
1755private:
1756  /// isLegalRC - Return true if the value types that can be represented by the
1757  /// specified register class are all legal.
1758  bool isLegalRC(const TargetRegisterClass *RC) const;
1759
1760  /// hasLegalSuperRegRegClasses - Return true if the specified register class
1761  /// has one or more super-reg register classes that are legal.
1762  bool hasLegalSuperRegRegClasses(const TargetRegisterClass *RC) const;
1763};
1764
1765/// GetReturnInfo - Given an LLVM IR type and return type attributes,
1766/// compute the return value EVTs and flags, and optionally also
1767/// the offsets, if the return value is being lowered to memory.
1768void GetReturnInfo(const Type* ReturnType, Attributes attr,
1769                   SmallVectorImpl<ISD::OutputArg> &Outs,
1770                   const TargetLowering &TLI,
1771                   SmallVectorImpl<uint64_t> *Offsets = 0);
1772
1773} // end llvm namespace
1774
1775#endif
1776