TargetLowering.h revision cf2adb945ab8b86996424d7e6d3f742d78c91e1e
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/CallingConv.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Attributes.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/CodeGen/SelectionDAGNodes.h"
30#include "llvm/CodeGen/RuntimeLibcalls.h"
31#include "llvm/Support/DebugLoc.h"
32#include "llvm/Target/TargetCallingConv.h"
33#include "llvm/Target/TargetMachine.h"
34#include <climits>
35#include <map>
36#include <vector>
37
38namespace llvm {
39  class AllocaInst;
40  class APFloat;
41  class CallInst;
42  class CCState;
43  class Function;
44  class FastISel;
45  class FunctionLoweringInfo;
46  class ImmutableCallSite;
47  class MachineBasicBlock;
48  class MachineFunction;
49  class MachineFrameInfo;
50  class MachineInstr;
51  class MachineJumpTableInfo;
52  class MCContext;
53  class MCExpr;
54  class SDNode;
55  class SDValue;
56  class SelectionDAG;
57  template<typename T> class SmallVectorImpl;
58  class TargetData;
59  class TargetMachine;
60  class TargetRegisterClass;
61  class TargetLoweringObjectFile;
62  class Value;
63
64  // FIXME: should this be here?
65  namespace TLSModel {
66    enum Model {
67      GeneralDynamic,
68      LocalDynamic,
69      InitialExec,
70      LocalExec
71    };
72  }
73  TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc);
74
75
76//===----------------------------------------------------------------------===//
77/// TargetLowering - This class defines information used to lower LLVM code to
78/// legal SelectionDAG operators that the target instruction selector can accept
79/// natively.
80///
81/// This class also defines callbacks that targets must implement to lower
82/// target-specific constructs to SelectionDAG operators.
83///
84class TargetLowering {
85  TargetLowering(const TargetLowering&);  // DO NOT IMPLEMENT
86  void operator=(const TargetLowering&);  // DO NOT IMPLEMENT
87public:
88  /// LegalizeAction - This enum indicates whether operations are valid for a
89  /// target, and if not, what action should be used to make them valid.
90  enum LegalizeAction {
91    Legal,      // The target natively supports this operation.
92    Promote,    // This operation should be executed in a larger type.
93    Expand,     // Try to expand this to other ops, otherwise use a libcall.
94    Custom      // Use the LowerOperation hook to implement custom lowering.
95  };
96
97  /// LegalizeAction - This enum indicates whether a types are legal for a
98  /// target, and if not, what action should be used to make them valid.
99  enum LegalizeTypeAction {
100    TypeLegal,           // The target natively supports this type.
101    TypePromoteInteger,  // Replace this integer with a larger one.
102    TypeExpandInteger,   // Split this integer into two of half the size.
103    TypeSoftenFloat,     // Convert this float to a same size integer type.
104    TypeExpandFloat,     // Split this float into two of half the size.
105    TypeScalarizeVector, // Replace this one-element vector with its element.
106    TypeSplitVector,     // Split this vector into two of half the size.
107    TypeWidenVector      // This vector should be widened into a larger vector.
108  };
109
110  enum BooleanContent { // How the target represents true/false values.
111    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
112    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
113    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
114  };
115
116  static ISD::NodeType getExtendForContent(BooleanContent Content) {
117    switch (Content) {
118    default:
119      assert(false && "Unknown BooleanContent!");
120    case UndefinedBooleanContent:
121      // Extend by adding rubbish bits.
122      return ISD::ANY_EXTEND;
123    case ZeroOrOneBooleanContent:
124      // Extend by adding zero bits.
125      return ISD::ZERO_EXTEND;
126    case ZeroOrNegativeOneBooleanContent:
127      // Extend by copying the sign bit.
128      return ISD::SIGN_EXTEND;
129    }
130  }
131
132  /// NOTE: The constructor takes ownership of TLOF.
133  explicit TargetLowering(const TargetMachine &TM,
134                          const TargetLoweringObjectFile *TLOF);
135  virtual ~TargetLowering();
136
137  const TargetMachine &getTargetMachine() const { return TM; }
138  const TargetData *getTargetData() const { return TD; }
139  const TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
140
141  bool isBigEndian() const { return !IsLittleEndian; }
142  bool isLittleEndian() const { return IsLittleEndian; }
143  MVT getPointerTy() const { return PointerTy; }
144  virtual MVT getShiftAmountTy(EVT LHSTy) const;
145
146  /// isSelectExpensive - Return true if the select operation is expensive for
147  /// this target.
148  bool isSelectExpensive() const { return SelectIsExpensive; }
149
150  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
151  /// a sequence of several shifts, adds, and multiplies for this target.
152  bool isIntDivCheap() const { return IntDivIsCheap; }
153
154  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
155  /// srl/add/sra.
156  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
157
158  /// isJumpExpensive() - Return true if Flow Control is an expensive operation
159  /// that should be avoided.
160  bool isJumpExpensive() const { return JumpIsExpensive; }
161
162  /// getSetCCResultType - Return the ValueType of the result of SETCC
163  /// operations.  Also used to obtain the target's preferred type for
164  /// the condition operand of SELECT and BRCOND nodes.  In the case of
165  /// BRCOND the argument passed is MVT::Other since there are no other
166  /// operands to get a type hint from.
167  virtual EVT getSetCCResultType(EVT VT) const;
168
169  /// getCmpLibcallReturnType - Return the ValueType for comparison
170  /// libcalls. Comparions libcalls include floating point comparion calls,
171  /// and Ordered/Unordered check calls on floating point numbers.
172  virtual
173  MVT::SimpleValueType getCmpLibcallReturnType() const;
174
175  /// getBooleanContents - For targets without i1 registers, this gives the
176  /// nature of the high-bits of boolean values held in types wider than i1.
177  /// "Boolean values" are special true/false values produced by nodes like
178  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
179  /// Not to be confused with general values promoted from i1.
180  /// Some cpus distinguish between vectors of boolean and scalars; the isVec
181  /// parameter selects between the two kinds.  For example on X86 a scalar
182  /// boolean should be zero extended from i1, while the elements of a vector
183  /// of booleans should be sign extended from i1.
184  BooleanContent getBooleanContents(bool isVec) const {
185    return isVec ? BooleanVectorContents : BooleanContents;
186  }
187
188  /// getSchedulingPreference - Return target scheduling preference.
189  Sched::Preference getSchedulingPreference() const {
190    return SchedPreferenceInfo;
191  }
192
193  /// getSchedulingPreference - Some scheduler, e.g. hybrid, can switch to
194  /// different scheduling heuristics for different nodes. This function returns
195  /// the preference (or none) for the given node.
196  virtual Sched::Preference getSchedulingPreference(SDNode *N) const {
197    return Sched::None;
198  }
199
200  /// getRegClassFor - Return the register class that should be used for the
201  /// specified value type.
202  virtual TargetRegisterClass *getRegClassFor(EVT VT) const {
203    assert(VT.isSimple() && "getRegClassFor called on illegal type!");
204    TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
205    assert(RC && "This value type is not natively supported!");
206    return RC;
207  }
208
209  /// getRepRegClassFor - Return the 'representative' register class for the
210  /// specified value type. The 'representative' register class is the largest
211  /// legal super-reg register class for the register class of the value type.
212  /// For example, on i386 the rep register class for i8, i16, and i32 are GR32;
213  /// while the rep register class is GR64 on x86_64.
214  virtual const TargetRegisterClass *getRepRegClassFor(EVT VT) const {
215    assert(VT.isSimple() && "getRepRegClassFor called on illegal type!");
216    const TargetRegisterClass *RC = RepRegClassForVT[VT.getSimpleVT().SimpleTy];
217    return RC;
218  }
219
220  /// getRepRegClassCostFor - Return the cost of the 'representative' register
221  /// class for the specified value type.
222  virtual uint8_t getRepRegClassCostFor(EVT VT) const {
223    assert(VT.isSimple() && "getRepRegClassCostFor called on illegal type!");
224    return RepRegClassCostForVT[VT.getSimpleVT().SimpleTy];
225  }
226
227  /// isTypeLegal - Return true if the target has native support for the
228  /// specified value type.  This means that it has a register that directly
229  /// holds it without promotions or expansions.
230  bool isTypeLegal(EVT VT) const {
231    assert(!VT.isSimple() ||
232           (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
233    return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0;
234  }
235
236  class ValueTypeActionImpl {
237    /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
238    /// that indicates how instruction selection should deal with the type.
239    uint8_t ValueTypeActions[MVT::LAST_VALUETYPE];
240
241  public:
242    ValueTypeActionImpl() {
243      std::fill(ValueTypeActions, array_endof(ValueTypeActions), 0);
244    }
245
246    LegalizeTypeAction getTypeAction(MVT VT) const {
247      return (LegalizeTypeAction)ValueTypeActions[VT.SimpleTy];
248    }
249
250    void setTypeAction(EVT VT, LegalizeTypeAction Action) {
251      unsigned I = VT.getSimpleVT().SimpleTy;
252      ValueTypeActions[I] = Action;
253    }
254  };
255
256  const ValueTypeActionImpl &getValueTypeActions() const {
257    return ValueTypeActions;
258  }
259
260  /// getTypeAction - Return how we should legalize values of this type, either
261  /// it is already legal (return 'Legal') or we need to promote it to a larger
262  /// type (return 'Promote'), or we need to expand it into multiple registers
263  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
264  LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
265    return getTypeConversion(Context, VT).first;
266  }
267  LegalizeTypeAction getTypeAction(MVT VT) const {
268    return ValueTypeActions.getTypeAction(VT);
269  }
270
271  /// getTypeToTransformTo - For types supported by the target, this is an
272  /// identity function.  For types that must be promoted to larger types, this
273  /// returns the larger type to promote to.  For integer types that are larger
274  /// than the largest integer register, this contains one step in the expansion
275  /// to get to the smaller register. For illegal floating point types, this
276  /// returns the integer type to transform to.
277  EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
278    return getTypeConversion(Context, VT).second;
279  }
280
281  /// getTypeToExpandTo - For types supported by the target, this is an
282  /// identity function.  For types that must be expanded (i.e. integer types
283  /// that are larger than the largest integer register or illegal floating
284  /// point types), this returns the largest legal type it will be expanded to.
285  EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
286    assert(!VT.isVector());
287    while (true) {
288      switch (getTypeAction(Context, VT)) {
289      case TypeLegal:
290        return VT;
291      case TypeExpandInteger:
292        VT = getTypeToTransformTo(Context, VT);
293        break;
294      default:
295        assert(false && "Type is not legal nor is it to be expanded!");
296        return VT;
297      }
298    }
299    return VT;
300  }
301
302  /// getVectorTypeBreakdown - Vector types are broken down into some number of
303  /// legal first class types.  For example, EVT::v8f32 maps to 2 EVT::v4f32
304  /// with Altivec or SSE1, or 8 promoted EVT::f64 values with the X86 FP stack.
305  /// Similarly, EVT::v2i64 turns into 4 EVT::i32 values with both PPC and X86.
306  ///
307  /// This method returns the number of registers needed, and the VT for each
308  /// register.  It also returns the VT and quantity of the intermediate values
309  /// before they are promoted/expanded.
310  ///
311  unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
312                                  EVT &IntermediateVT,
313                                  unsigned &NumIntermediates,
314                                  EVT &RegisterVT) const;
315
316  /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
317  /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
318  /// this is the case, it returns true and store the intrinsic
319  /// information into the IntrinsicInfo that was passed to the function.
320  struct IntrinsicInfo {
321    unsigned     opc;         // target opcode
322    EVT          memVT;       // memory VT
323    const Value* ptrVal;      // value representing memory location
324    int          offset;      // offset off of ptrVal
325    unsigned     align;       // alignment
326    bool         vol;         // is volatile?
327    bool         readMem;     // reads memory?
328    bool         writeMem;    // writes memory?
329  };
330
331  virtual bool getTgtMemIntrinsic(IntrinsicInfo &Info,
332                                  const CallInst &I, unsigned Intrinsic) const {
333    return false;
334  }
335
336  /// isFPImmLegal - Returns true if the target can instruction select the
337  /// specified FP immediate natively. If false, the legalizer will materialize
338  /// the FP immediate as a load from a constant pool.
339  virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const {
340    return false;
341  }
342
343  /// isShuffleMaskLegal - Targets can use this to indicate that they only
344  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
345  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
346  /// are assumed to be legal.
347  virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
348                                  EVT VT) const {
349    return true;
350  }
351
352  /// canOpTrap - Returns true if the operation can trap for the value type.
353  /// VT must be a legal type. By default, we optimistically assume most
354  /// operations don't trap except for divide and remainder.
355  virtual bool canOpTrap(unsigned Op, EVT VT) const;
356
357  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
358  /// used by Targets can use this to indicate if there is a suitable
359  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
360  /// pool entry.
361  virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
362                                      EVT VT) const {
363    return false;
364  }
365
366  /// getOperationAction - Return how this operation should be treated: either
367  /// it is legal, needs to be promoted to a larger size, needs to be
368  /// expanded to some other code sequence, or the target has a custom expander
369  /// for it.
370  LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
371    if (VT.isExtended()) return Expand;
372    assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
373    unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
374    return (LegalizeAction)OpActions[I][Op];
375  }
376
377  /// isOperationLegalOrCustom - Return true if the specified operation is
378  /// legal on this target or can be made legal with custom lowering. This
379  /// is used to help guide high-level lowering decisions.
380  bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
381    return (VT == MVT::Other || isTypeLegal(VT)) &&
382      (getOperationAction(Op, VT) == Legal ||
383       getOperationAction(Op, VT) == Custom);
384  }
385
386  /// isOperationLegal - Return true if the specified operation is legal on this
387  /// target.
388  bool isOperationLegal(unsigned Op, EVT VT) const {
389    return (VT == MVT::Other || isTypeLegal(VT)) &&
390           getOperationAction(Op, VT) == Legal;
391  }
392
393  /// getLoadExtAction - Return how this load with extension should be treated:
394  /// either it is legal, needs to be promoted to a larger size, needs to be
395  /// expanded to some other code sequence, or the target has a custom expander
396  /// for it.
397  LegalizeAction getLoadExtAction(unsigned ExtType, EVT VT) const {
398    assert(ExtType < ISD::LAST_LOADEXT_TYPE &&
399           VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
400           "Table isn't big enough!");
401    return (LegalizeAction)LoadExtActions[VT.getSimpleVT().SimpleTy][ExtType];
402  }
403
404  /// isLoadExtLegal - Return true if the specified load with extension is legal
405  /// on this target.
406  bool isLoadExtLegal(unsigned ExtType, EVT VT) const {
407    return VT.isSimple() && getLoadExtAction(ExtType, VT) == Legal;
408  }
409
410  /// getTruncStoreAction - Return how this store with truncation should be
411  /// treated: either it is legal, needs to be promoted to a larger size, needs
412  /// to be expanded to some other code sequence, or the target has a custom
413  /// expander for it.
414  LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const {
415    assert(ValVT.getSimpleVT() < MVT::LAST_VALUETYPE &&
416           MemVT.getSimpleVT() < MVT::LAST_VALUETYPE &&
417           "Table isn't big enough!");
418    return (LegalizeAction)TruncStoreActions[ValVT.getSimpleVT().SimpleTy]
419                                            [MemVT.getSimpleVT().SimpleTy];
420  }
421
422  /// isTruncStoreLegal - Return true if the specified store with truncation is
423  /// legal on this target.
424  bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
425    return isTypeLegal(ValVT) && MemVT.isSimple() &&
426           getTruncStoreAction(ValVT, MemVT) == Legal;
427  }
428
429  /// getIndexedLoadAction - Return how the indexed load should be treated:
430  /// either it is legal, needs to be promoted to a larger size, needs to be
431  /// expanded to some other code sequence, or the target has a custom expander
432  /// for it.
433  LegalizeAction
434  getIndexedLoadAction(unsigned IdxMode, EVT VT) const {
435    assert(IdxMode < ISD::LAST_INDEXED_MODE &&
436           VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
437           "Table isn't big enough!");
438    unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
439    return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
440  }
441
442  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
443  /// on this target.
444  bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
445    return VT.isSimple() &&
446      (getIndexedLoadAction(IdxMode, VT) == Legal ||
447       getIndexedLoadAction(IdxMode, VT) == Custom);
448  }
449
450  /// getIndexedStoreAction - Return how the indexed store should be treated:
451  /// either it is legal, needs to be promoted to a larger size, needs to be
452  /// expanded to some other code sequence, or the target has a custom expander
453  /// for it.
454  LegalizeAction
455  getIndexedStoreAction(unsigned IdxMode, EVT VT) const {
456    assert(IdxMode < ISD::LAST_INDEXED_MODE &&
457           VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
458           "Table isn't big enough!");
459    unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
460    return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
461  }
462
463  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
464  /// on this target.
465  bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
466    return VT.isSimple() &&
467      (getIndexedStoreAction(IdxMode, VT) == Legal ||
468       getIndexedStoreAction(IdxMode, VT) == Custom);
469  }
470
471  /// getCondCodeAction - Return how the condition code should be treated:
472  /// either it is legal, needs to be expanded to some other code sequence,
473  /// or the target has a custom expander for it.
474  LegalizeAction
475  getCondCodeAction(ISD::CondCode CC, EVT VT) const {
476    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
477           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(CondCodeActions[0])*4 &&
478           "Table isn't big enough!");
479    LegalizeAction Action = (LegalizeAction)
480      ((CondCodeActions[CC] >> (2*VT.getSimpleVT().SimpleTy)) & 3);
481    assert(Action != Promote && "Can't promote condition code!");
482    return Action;
483  }
484
485  /// isCondCodeLegal - Return true if the specified condition code is legal
486  /// on this target.
487  bool isCondCodeLegal(ISD::CondCode CC, EVT VT) const {
488    return getCondCodeAction(CC, VT) == Legal ||
489           getCondCodeAction(CC, VT) == Custom;
490  }
491
492
493  /// getTypeToPromoteTo - If the action for this operation is to promote, this
494  /// method returns the ValueType to promote to.
495  EVT getTypeToPromoteTo(unsigned Op, EVT VT) const {
496    assert(getOperationAction(Op, VT) == Promote &&
497           "This operation isn't promoted!");
498
499    // See if this has an explicit type specified.
500    std::map<std::pair<unsigned, MVT::SimpleValueType>,
501             MVT::SimpleValueType>::const_iterator PTTI =
502      PromoteToType.find(std::make_pair(Op, VT.getSimpleVT().SimpleTy));
503    if (PTTI != PromoteToType.end()) return PTTI->second;
504
505    assert((VT.isInteger() || VT.isFloatingPoint()) &&
506           "Cannot autopromote this type, add it with AddPromotedToType.");
507
508    EVT NVT = VT;
509    do {
510      NVT = (MVT::SimpleValueType)(NVT.getSimpleVT().SimpleTy+1);
511      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
512             "Didn't find type to promote to!");
513    } while (!isTypeLegal(NVT) ||
514              getOperationAction(Op, NVT) == Promote);
515    return NVT;
516  }
517
518  /// getValueType - Return the EVT corresponding to this LLVM type.
519  /// This is fixed by the LLVM operations except for the pointer size.  If
520  /// AllowUnknown is true, this will return MVT::Other for types with no EVT
521  /// counterpart (e.g. structs), otherwise it will assert.
522  EVT getValueType(Type *Ty, bool AllowUnknown = false) const {
523    EVT VT = EVT::getEVT(Ty, AllowUnknown);
524    return VT == MVT::iPTR ? PointerTy : VT;
525  }
526
527  /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
528  /// function arguments in the caller parameter area.  This is the actual
529  /// alignment, not its logarithm.
530  virtual unsigned getByValTypeAlignment(Type *Ty) const;
531
532  /// getRegisterType - Return the type of registers that this ValueType will
533  /// eventually require.
534  EVT getRegisterType(MVT VT) const {
535    assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
536    return RegisterTypeForVT[VT.SimpleTy];
537  }
538
539  /// getRegisterType - Return the type of registers that this ValueType will
540  /// eventually require.
541  EVT getRegisterType(LLVMContext &Context, EVT VT) const {
542    if (VT.isSimple()) {
543      assert((unsigned)VT.getSimpleVT().SimpleTy <
544                array_lengthof(RegisterTypeForVT));
545      return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
546    }
547    if (VT.isVector()) {
548      EVT VT1, RegisterVT;
549      unsigned NumIntermediates;
550      (void)getVectorTypeBreakdown(Context, VT, VT1,
551                                   NumIntermediates, RegisterVT);
552      return RegisterVT;
553    }
554    if (VT.isInteger()) {
555      return getRegisterType(Context, getTypeToTransformTo(Context, VT));
556    }
557    assert(0 && "Unsupported extended type!");
558    return EVT(MVT::Other); // Not reached
559  }
560
561  /// getNumRegisters - Return the number of registers that this ValueType will
562  /// eventually require.  This is one for any types promoted to live in larger
563  /// registers, but may be more than one for types (like i64) that are split
564  /// into pieces.  For types like i140, which are first promoted then expanded,
565  /// it is the number of registers needed to hold all the bits of the original
566  /// type.  For an i140 on a 32 bit machine this means 5 registers.
567  unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
568    if (VT.isSimple()) {
569      assert((unsigned)VT.getSimpleVT().SimpleTy <
570                array_lengthof(NumRegistersForVT));
571      return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
572    }
573    if (VT.isVector()) {
574      EVT VT1, VT2;
575      unsigned NumIntermediates;
576      return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
577    }
578    if (VT.isInteger()) {
579      unsigned BitWidth = VT.getSizeInBits();
580      unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
581      return (BitWidth + RegWidth - 1) / RegWidth;
582    }
583    assert(0 && "Unsupported extended type!");
584    return 0; // Not reached
585  }
586
587  /// ShouldShrinkFPConstant - If true, then instruction selection should
588  /// seek to shrink the FP constant of the specified type to a smaller type
589  /// in order to save space and / or reduce runtime.
590  virtual bool ShouldShrinkFPConstant(EVT VT) const { return true; }
591
592  /// hasTargetDAGCombine - If true, the target has custom DAG combine
593  /// transformations that it can perform for the specified node.
594  bool hasTargetDAGCombine(ISD::NodeType NT) const {
595    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
596    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
597  }
598
599  /// This function returns the maximum number of store operations permitted
600  /// to replace a call to llvm.memset. The value is set by the target at the
601  /// performance threshold for such a replacement. If OptSize is true,
602  /// return the limit for functions that have OptSize attribute.
603  /// @brief Get maximum # of store operations permitted for llvm.memset
604  unsigned getMaxStoresPerMemset(bool OptSize) const {
605    return OptSize ? maxStoresPerMemsetOptSize : maxStoresPerMemset;
606  }
607
608  /// This function returns the maximum number of store operations permitted
609  /// to replace a call to llvm.memcpy. The value is set by the target at the
610  /// performance threshold for such a replacement. If OptSize is true,
611  /// return the limit for functions that have OptSize attribute.
612  /// @brief Get maximum # of store operations permitted for llvm.memcpy
613  unsigned getMaxStoresPerMemcpy(bool OptSize) const {
614    return OptSize ? maxStoresPerMemcpyOptSize : maxStoresPerMemcpy;
615  }
616
617  /// This function returns the maximum number of store operations permitted
618  /// to replace a call to llvm.memmove. The value is set by the target at the
619  /// performance threshold for such a replacement. If OptSize is true,
620  /// return the limit for functions that have OptSize attribute.
621  /// @brief Get maximum # of store operations permitted for llvm.memmove
622  unsigned getMaxStoresPerMemmove(bool OptSize) const {
623    return OptSize ? maxStoresPerMemmoveOptSize : maxStoresPerMemmove;
624  }
625
626  /// This function returns true if the target allows unaligned memory accesses.
627  /// of the specified type. This is used, for example, in situations where an
628  /// array copy/move/set is  converted to a sequence of store operations. It's
629  /// use helps to ensure that such replacements don't generate code that causes
630  /// an alignment error  (trap) on the target machine.
631  /// @brief Determine if the target supports unaligned memory accesses.
632  virtual bool allowsUnalignedMemoryAccesses(EVT VT) const {
633    return false;
634  }
635
636  /// This function returns true if the target would benefit from code placement
637  /// optimization.
638  /// @brief Determine if the target should perform code placement optimization.
639  bool shouldOptimizeCodePlacement() const {
640    return benefitFromCodePlacementOpt;
641  }
642
643  /// getOptimalMemOpType - Returns the target specific optimal type for load
644  /// and store operations as a result of memset, memcpy, and memmove
645  /// lowering. If DstAlign is zero that means it's safe to destination
646  /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
647  /// means there isn't a need to check it against alignment requirement,
648  /// probably because the source does not need to be loaded. If
649  /// 'NonScalarIntSafe' is true, that means it's safe to return a
650  /// non-scalar-integer type, e.g. empty string source, constant, or loaded
651  /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
652  /// constant so it does not need to be loaded.
653  /// It returns EVT::Other if the type should be determined using generic
654  /// target-independent logic.
655  virtual EVT getOptimalMemOpType(uint64_t Size,
656                                  unsigned DstAlign, unsigned SrcAlign,
657                                  bool NonScalarIntSafe, bool MemcpyStrSrc,
658                                  MachineFunction &MF) const {
659    return MVT::Other;
660  }
661
662  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
663  /// to implement llvm.setjmp.
664  bool usesUnderscoreSetJmp() const {
665    return UseUnderscoreSetJmp;
666  }
667
668  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
669  /// to implement llvm.longjmp.
670  bool usesUnderscoreLongJmp() const {
671    return UseUnderscoreLongJmp;
672  }
673
674  /// getStackPointerRegisterToSaveRestore - If a physical register, this
675  /// specifies the register that llvm.savestack/llvm.restorestack should save
676  /// and restore.
677  unsigned getStackPointerRegisterToSaveRestore() const {
678    return StackPointerRegisterToSaveRestore;
679  }
680
681  /// getExceptionAddressRegister - If a physical register, this returns
682  /// the register that receives the exception address on entry to a landing
683  /// pad.
684  unsigned getExceptionAddressRegister() const {
685    return ExceptionPointerRegister;
686  }
687
688  /// getExceptionSelectorRegister - If a physical register, this returns
689  /// the register that receives the exception typeid on entry to a landing
690  /// pad.
691  unsigned getExceptionSelectorRegister() const {
692    return ExceptionSelectorRegister;
693  }
694
695  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
696  /// set, the default is 200)
697  unsigned getJumpBufSize() const {
698    return JumpBufSize;
699  }
700
701  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
702  /// (if never set, the default is 0)
703  unsigned getJumpBufAlignment() const {
704    return JumpBufAlignment;
705  }
706
707  /// getMinStackArgumentAlignment - return the minimum stack alignment of an
708  /// argument.
709  unsigned getMinStackArgumentAlignment() const {
710    return MinStackArgumentAlignment;
711  }
712
713  /// getMinFunctionAlignment - return the minimum function alignment.
714  ///
715  unsigned getMinFunctionAlignment() const {
716    return MinFunctionAlignment;
717  }
718
719  /// getPrefFunctionAlignment - return the preferred function alignment.
720  ///
721  unsigned getPrefFunctionAlignment() const {
722    return PrefFunctionAlignment;
723  }
724
725  /// getPrefLoopAlignment - return the preferred loop alignment.
726  ///
727  unsigned getPrefLoopAlignment() const {
728    return PrefLoopAlignment;
729  }
730
731  /// getShouldFoldAtomicFences - return whether the combiner should fold
732  /// fence MEMBARRIER instructions into the atomic intrinsic instructions.
733  ///
734  bool getShouldFoldAtomicFences() const {
735    return ShouldFoldAtomicFences;
736  }
737
738  /// getInsertFencesFor - return whether the DAG builder should automatically
739  /// insert fences and reduce ordering for atomics.
740  ///
741  bool getInsertFencesForAtomic() const {
742    return InsertFencesForAtomic;
743  }
744
745  /// getPreIndexedAddressParts - returns true by value, base pointer and
746  /// offset pointer and addressing mode by reference if the node's address
747  /// can be legally represented as pre-indexed load / store address.
748  virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
749                                         SDValue &Offset,
750                                         ISD::MemIndexedMode &AM,
751                                         SelectionDAG &DAG) const {
752    return false;
753  }
754
755  /// getPostIndexedAddressParts - returns true by value, base pointer and
756  /// offset pointer and addressing mode by reference if this node can be
757  /// combined with a load / store to form a post-indexed load / store.
758  virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
759                                          SDValue &Base, SDValue &Offset,
760                                          ISD::MemIndexedMode &AM,
761                                          SelectionDAG &DAG) const {
762    return false;
763  }
764
765  /// getJumpTableEncoding - Return the entry encoding for a jump table in the
766  /// current function.  The returned value is a member of the
767  /// MachineJumpTableInfo::JTEntryKind enum.
768  virtual unsigned getJumpTableEncoding() const;
769
770  virtual const MCExpr *
771  LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
772                            const MachineBasicBlock *MBB, unsigned uid,
773                            MCContext &Ctx) const {
774    assert(0 && "Need to implement this hook if target has custom JTIs");
775    return 0;
776  }
777
778  /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
779  /// jumptable.
780  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
781                                           SelectionDAG &DAG) const;
782
783  /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
784  /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
785  /// MCExpr.
786  virtual const MCExpr *
787  getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
788                               unsigned JTI, MCContext &Ctx) const;
789
790  /// isOffsetFoldingLegal - Return true if folding a constant offset
791  /// with the given GlobalAddress is legal.  It is frequently not legal in
792  /// PIC relocation models.
793  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
794
795  /// getStackCookieLocation - Return true if the target stores stack
796  /// protector cookies at a fixed offset in some non-standard address
797  /// space, and populates the address space and offset as
798  /// appropriate.
799  virtual bool getStackCookieLocation(unsigned &AddressSpace, unsigned &Offset) const {
800    return false;
801  }
802
803  /// getMaximalGlobalOffset - Returns the maximal possible offset which can be
804  /// used for loads / stores from the global.
805  virtual unsigned getMaximalGlobalOffset() const {
806    return 0;
807  }
808
809  //===--------------------------------------------------------------------===//
810  // TargetLowering Optimization Methods
811  //
812
813  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
814  /// SDValues for returning information from TargetLowering to its clients
815  /// that want to combine
816  struct TargetLoweringOpt {
817    SelectionDAG &DAG;
818    bool LegalTys;
819    bool LegalOps;
820    SDValue Old;
821    SDValue New;
822
823    explicit TargetLoweringOpt(SelectionDAG &InDAG,
824                               bool LT, bool LO) :
825      DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
826
827    bool LegalTypes() const { return LegalTys; }
828    bool LegalOperations() const { return LegalOps; }
829
830    bool CombineTo(SDValue O, SDValue N) {
831      Old = O;
832      New = N;
833      return true;
834    }
835
836    /// ShrinkDemandedConstant - Check to see if the specified operand of the
837    /// specified instruction is a constant integer.  If so, check to see if
838    /// there are any bits set in the constant that are not demanded.  If so,
839    /// shrink the constant and return true.
840    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
841
842    /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
843    /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
844    /// cast, but it could be generalized for targets with other types of
845    /// implicit widening casts.
846    bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
847                          DebugLoc dl);
848  };
849
850  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
851  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
852  /// use this information to simplify Op, create a new simplified DAG node and
853  /// return true, returning the original and new nodes in Old and New.
854  /// Otherwise, analyze the expression and return a mask of KnownOne and
855  /// KnownZero bits for the expression (used to simplify the caller).
856  /// The KnownZero/One bits may only be accurate for those bits in the
857  /// DemandedMask.
858  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
859                            APInt &KnownZero, APInt &KnownOne,
860                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
861
862  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
863  /// Mask are known to be either zero or one and return them in the
864  /// KnownZero/KnownOne bitsets.
865  virtual void computeMaskedBitsForTargetNode(const SDValue Op,
866                                              const APInt &Mask,
867                                              APInt &KnownZero,
868                                              APInt &KnownOne,
869                                              const SelectionDAG &DAG,
870                                              unsigned Depth = 0) const;
871
872  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
873  /// targets that want to expose additional information about sign bits to the
874  /// DAG Combiner.
875  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
876                                                   unsigned Depth = 0) const;
877
878  struct DAGCombinerInfo {
879    void *DC;  // The DAG Combiner object.
880    bool BeforeLegalize;
881    bool BeforeLegalizeOps;
882    bool CalledByLegalizer;
883  public:
884    SelectionDAG &DAG;
885
886    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool blo, bool cl, void *dc)
887      : DC(dc), BeforeLegalize(bl), BeforeLegalizeOps(blo),
888        CalledByLegalizer(cl), DAG(dag) {}
889
890    bool isBeforeLegalize() const { return BeforeLegalize; }
891    bool isBeforeLegalizeOps() const { return BeforeLegalizeOps; }
892    bool isCalledByLegalizer() const { return CalledByLegalizer; }
893
894    void AddToWorklist(SDNode *N);
895    void RemoveFromWorklist(SDNode *N);
896    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
897                      bool AddTo = true);
898    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
899    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
900
901    void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
902  };
903
904  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
905  /// and cc. If it is unable to simplify it, return a null SDValue.
906  SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
907                          ISD::CondCode Cond, bool foldBooleans,
908                          DAGCombinerInfo &DCI, DebugLoc dl) const;
909
910  /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
911  /// node is a GlobalAddress + offset.
912  virtual bool
913  isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
914
915  /// PerformDAGCombine - This method will be invoked for all target nodes and
916  /// for any target-independent nodes that the target has registered with
917  /// invoke it for.
918  ///
919  /// The semantics are as follows:
920  /// Return Value:
921  ///   SDValue.Val == 0   - No change was made
922  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
923  ///   otherwise          - N should be replaced by the returned Operand.
924  ///
925  /// In addition, methods provided by DAGCombinerInfo may be used to perform
926  /// more complex transformations.
927  ///
928  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
929
930  /// isTypeDesirableForOp - Return true if the target has native support for
931  /// the specified value type and it is 'desirable' to use the type for the
932  /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
933  /// instruction encodings are longer and some i16 instructions are slow.
934  virtual bool isTypeDesirableForOp(unsigned Opc, EVT VT) const {
935    // By default, assume all legal types are desirable.
936    return isTypeLegal(VT);
937  }
938
939  /// isDesirableToPromoteOp - Return true if it is profitable for dag combiner
940  /// to transform a floating point op of specified opcode to a equivalent op of
941  /// an integer type. e.g. f32 load -> i32 load can be profitable on ARM.
942  virtual bool isDesirableToTransformToIntegerOp(unsigned Opc, EVT VT) const {
943    return false;
944  }
945
946  /// IsDesirableToPromoteOp - This method query the target whether it is
947  /// beneficial for dag combiner to promote the specified node. If true, it
948  /// should return the desired promotion type by reference.
949  virtual bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
950    return false;
951  }
952
953  //===--------------------------------------------------------------------===//
954  // TargetLowering Configuration Methods - These methods should be invoked by
955  // the derived class constructor to configure this object for the target.
956  //
957
958protected:
959  /// setBooleanContents - Specify how the target extends the result of a
960  /// boolean value from i1 to a wider type.  See getBooleanContents.
961  void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
962  /// setBooleanVectorContents - Specify how the target extends the result
963  /// of a vector boolean value from a vector of i1 to a wider type.  See
964  /// getBooleanContents.
965  void setBooleanVectorContents(BooleanContent Ty) {
966    BooleanVectorContents = Ty;
967  }
968
969  /// setSchedulingPreference - Specify the target scheduling preference.
970  void setSchedulingPreference(Sched::Preference Pref) {
971    SchedPreferenceInfo = Pref;
972  }
973
974  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
975  /// use _setjmp to implement llvm.setjmp or the non _ version.
976  /// Defaults to false.
977  void setUseUnderscoreSetJmp(bool Val) {
978    UseUnderscoreSetJmp = Val;
979  }
980
981  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
982  /// use _longjmp to implement llvm.longjmp or the non _ version.
983  /// Defaults to false.
984  void setUseUnderscoreLongJmp(bool Val) {
985    UseUnderscoreLongJmp = Val;
986  }
987
988  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
989  /// specifies the register that llvm.savestack/llvm.restorestack should save
990  /// and restore.
991  void setStackPointerRegisterToSaveRestore(unsigned R) {
992    StackPointerRegisterToSaveRestore = R;
993  }
994
995  /// setExceptionPointerRegister - If set to a physical register, this sets
996  /// the register that receives the exception address on entry to a landing
997  /// pad.
998  void setExceptionPointerRegister(unsigned R) {
999    ExceptionPointerRegister = R;
1000  }
1001
1002  /// setExceptionSelectorRegister - If set to a physical register, this sets
1003  /// the register that receives the exception typeid on entry to a landing
1004  /// pad.
1005  void setExceptionSelectorRegister(unsigned R) {
1006    ExceptionSelectorRegister = R;
1007  }
1008
1009  /// SelectIsExpensive - Tells the code generator not to expand operations
1010  /// into sequences that use the select operations if possible.
1011  void setSelectIsExpensive(bool isExpensive = true) {
1012    SelectIsExpensive = isExpensive;
1013  }
1014
1015  /// JumpIsExpensive - Tells the code generator not to expand sequence of
1016  /// operations into a separate sequences that increases the amount of
1017  /// flow control.
1018  void setJumpIsExpensive(bool isExpensive = true) {
1019    JumpIsExpensive = isExpensive;
1020  }
1021
1022  /// setIntDivIsCheap - Tells the code generator that integer divide is
1023  /// expensive, and if possible, should be replaced by an alternate sequence
1024  /// of instructions not containing an integer divide.
1025  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
1026
1027  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
1028  /// srl/add/sra for a signed divide by power of two, and let the target handle
1029  /// it.
1030  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
1031
1032  /// addRegisterClass - Add the specified register class as an available
1033  /// regclass for the specified value type.  This indicates the selector can
1034  /// handle values of that class natively.
1035  void addRegisterClass(EVT VT, TargetRegisterClass *RC) {
1036    assert((unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
1037    AvailableRegClasses.push_back(std::make_pair(VT, RC));
1038    RegClassForVT[VT.getSimpleVT().SimpleTy] = RC;
1039  }
1040
1041  /// findRepresentativeClass - Return the largest legal super-reg register class
1042  /// of the register class for the specified type and its associated "cost".
1043  virtual std::pair<const TargetRegisterClass*, uint8_t>
1044  findRepresentativeClass(EVT VT) const;
1045
1046  /// computeRegisterProperties - Once all of the register classes are added,
1047  /// this allows us to compute derived properties we expose.
1048  void computeRegisterProperties();
1049
1050  /// setOperationAction - Indicate that the specified operation does not work
1051  /// with the specified type and indicate what to do about it.
1052  void setOperationAction(unsigned Op, MVT VT,
1053                          LegalizeAction Action) {
1054    assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
1055    OpActions[(unsigned)VT.SimpleTy][Op] = (uint8_t)Action;
1056  }
1057
1058  /// setLoadExtAction - Indicate that the specified load with extension does
1059  /// not work with the specified type and indicate what to do about it.
1060  void setLoadExtAction(unsigned ExtType, MVT VT,
1061                        LegalizeAction Action) {
1062    assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT < MVT::LAST_VALUETYPE &&
1063           "Table isn't big enough!");
1064    LoadExtActions[VT.SimpleTy][ExtType] = (uint8_t)Action;
1065  }
1066
1067  /// setTruncStoreAction - Indicate that the specified truncating store does
1068  /// not work with the specified type and indicate what to do about it.
1069  void setTruncStoreAction(MVT ValVT, MVT MemVT,
1070                           LegalizeAction Action) {
1071    assert(ValVT < MVT::LAST_VALUETYPE && MemVT < MVT::LAST_VALUETYPE &&
1072           "Table isn't big enough!");
1073    TruncStoreActions[ValVT.SimpleTy][MemVT.SimpleTy] = (uint8_t)Action;
1074  }
1075
1076  /// setIndexedLoadAction - Indicate that the specified indexed load does or
1077  /// does not work with the specified type and indicate what to do abort
1078  /// it. NOTE: All indexed mode loads are initialized to Expand in
1079  /// TargetLowering.cpp
1080  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
1081                            LegalizeAction Action) {
1082    assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
1083           (unsigned)Action < 0xf && "Table isn't big enough!");
1084    // Load action are kept in the upper half.
1085    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
1086    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
1087  }
1088
1089  /// setIndexedStoreAction - Indicate that the specified indexed store does or
1090  /// does not work with the specified type and indicate what to do about
1091  /// it. NOTE: All indexed mode stores are initialized to Expand in
1092  /// TargetLowering.cpp
1093  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
1094                             LegalizeAction Action) {
1095    assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
1096           (unsigned)Action < 0xf && "Table isn't big enough!");
1097    // Store action are kept in the lower half.
1098    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
1099    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
1100  }
1101
1102  /// setCondCodeAction - Indicate that the specified condition code is or isn't
1103  /// supported on the target and indicate what to do about it.
1104  void setCondCodeAction(ISD::CondCode CC, MVT VT,
1105                         LegalizeAction Action) {
1106    assert(VT < MVT::LAST_VALUETYPE &&
1107           (unsigned)CC < array_lengthof(CondCodeActions) &&
1108           "Table isn't big enough!");
1109    CondCodeActions[(unsigned)CC] &= ~(uint64_t(3UL)  << VT.SimpleTy*2);
1110    CondCodeActions[(unsigned)CC] |= (uint64_t)Action << VT.SimpleTy*2;
1111  }
1112
1113  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
1114  /// promotion code defaults to trying a larger integer/fp until it can find
1115  /// one that works.  If that default is insufficient, this method can be used
1116  /// by the target to override the default.
1117  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1118    PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
1119  }
1120
1121  /// setTargetDAGCombine - Targets should invoke this method for each target
1122  /// independent node that they want to provide a custom DAG combiner for by
1123  /// implementing the PerformDAGCombine virtual method.
1124  void setTargetDAGCombine(ISD::NodeType NT) {
1125    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1126    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1127  }
1128
1129  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
1130  /// bytes); default is 200
1131  void setJumpBufSize(unsigned Size) {
1132    JumpBufSize = Size;
1133  }
1134
1135  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
1136  /// alignment (in bytes); default is 0
1137  void setJumpBufAlignment(unsigned Align) {
1138    JumpBufAlignment = Align;
1139  }
1140
1141  /// setMinFunctionAlignment - Set the target's minimum function alignment.
1142  void setMinFunctionAlignment(unsigned Align) {
1143    MinFunctionAlignment = Align;
1144  }
1145
1146  /// setPrefFunctionAlignment - Set the target's preferred function alignment.
1147  /// This should be set if there is a performance benefit to
1148  /// higher-than-minimum alignment
1149  void setPrefFunctionAlignment(unsigned Align) {
1150    PrefFunctionAlignment = Align;
1151  }
1152
1153  /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
1154  /// alignment is zero, it means the target does not care about loop alignment.
1155  void setPrefLoopAlignment(unsigned Align) {
1156    PrefLoopAlignment = Align;
1157  }
1158
1159  /// setMinStackArgumentAlignment - Set the minimum stack alignment of an
1160  /// argument.
1161  void setMinStackArgumentAlignment(unsigned Align) {
1162    MinStackArgumentAlignment = Align;
1163  }
1164
1165  /// setShouldFoldAtomicFences - Set if the target's implementation of the
1166  /// atomic operation intrinsics includes locking. Default is false.
1167  void setShouldFoldAtomicFences(bool fold) {
1168    ShouldFoldAtomicFences = fold;
1169  }
1170
1171  /// setInsertFencesForAtomic - Set if the the DAG builder should
1172  /// automatically insert fences and reduce the order of atomic memory
1173  /// operations to Monotonic.
1174  void setInsertFencesForAtomic(bool fence) {
1175    InsertFencesForAtomic = fence;
1176  }
1177
1178public:
1179  //===--------------------------------------------------------------------===//
1180  // Lowering methods - These methods must be implemented by targets so that
1181  // the SelectionDAGLowering code knows how to lower these.
1182  //
1183
1184  /// LowerFormalArguments - This hook must be implemented to lower the
1185  /// incoming (formal) arguments, described by the Ins array, into the
1186  /// specified DAG. The implementation should fill in the InVals array
1187  /// with legal-type argument values, and return the resulting token
1188  /// chain value.
1189  ///
1190  virtual SDValue
1191    LowerFormalArguments(SDValue Chain,
1192                         CallingConv::ID CallConv, bool isVarArg,
1193                         const SmallVectorImpl<ISD::InputArg> &Ins,
1194                         DebugLoc dl, SelectionDAG &DAG,
1195                         SmallVectorImpl<SDValue> &InVals) const {
1196    assert(0 && "Not Implemented");
1197    return SDValue();    // this is here to silence compiler errors
1198  }
1199
1200  /// LowerCallTo - This function lowers an abstract call to a function into an
1201  /// actual call.  This returns a pair of operands.  The first element is the
1202  /// return value for the function (if RetTy is not VoidTy).  The second
1203  /// element is the outgoing token chain. It calls LowerCall to do the actual
1204  /// lowering.
1205  struct ArgListEntry {
1206    SDValue Node;
1207    Type* Ty;
1208    bool isSExt  : 1;
1209    bool isZExt  : 1;
1210    bool isInReg : 1;
1211    bool isSRet  : 1;
1212    bool isNest  : 1;
1213    bool isByVal : 1;
1214    uint16_t Alignment;
1215
1216    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
1217      isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
1218  };
1219  typedef std::vector<ArgListEntry> ArgListTy;
1220  std::pair<SDValue, SDValue>
1221  LowerCallTo(SDValue Chain, Type *RetTy, bool RetSExt, bool RetZExt,
1222              bool isVarArg, bool isInreg, unsigned NumFixedArgs,
1223              CallingConv::ID CallConv, bool isTailCall,
1224              bool isReturnValueUsed, SDValue Callee, ArgListTy &Args,
1225              SelectionDAG &DAG, DebugLoc dl) const;
1226
1227  /// LowerCall - This hook must be implemented to lower calls into the
1228  /// the specified DAG. The outgoing arguments to the call are described
1229  /// by the Outs array, and the values to be returned by the call are
1230  /// described by the Ins array. The implementation should fill in the
1231  /// InVals array with legal-type return values from the call, and return
1232  /// the resulting token chain value.
1233  virtual SDValue
1234    LowerCall(SDValue Chain, SDValue Callee,
1235              CallingConv::ID CallConv, bool isVarArg, bool &isTailCall,
1236              const SmallVectorImpl<ISD::OutputArg> &Outs,
1237              const SmallVectorImpl<SDValue> &OutVals,
1238              const SmallVectorImpl<ISD::InputArg> &Ins,
1239              DebugLoc dl, SelectionDAG &DAG,
1240              SmallVectorImpl<SDValue> &InVals) const {
1241    assert(0 && "Not Implemented");
1242    return SDValue();    // this is here to silence compiler errors
1243  }
1244
1245  /// HandleByVal - Target-specific cleanup for formal ByVal parameters.
1246  virtual void HandleByVal(CCState *, unsigned &) const {}
1247
1248  /// CanLowerReturn - This hook should be implemented to check whether the
1249  /// return values described by the Outs array can fit into the return
1250  /// registers.  If false is returned, an sret-demotion is performed.
1251  ///
1252  virtual bool CanLowerReturn(CallingConv::ID CallConv,
1253			      MachineFunction &MF, bool isVarArg,
1254               const SmallVectorImpl<ISD::OutputArg> &Outs,
1255               LLVMContext &Context) const
1256  {
1257    // Return true by default to get preexisting behavior.
1258    return true;
1259  }
1260
1261  /// LowerReturn - This hook must be implemented to lower outgoing
1262  /// return values, described by the Outs array, into the specified
1263  /// DAG. The implementation should return the resulting token chain
1264  /// value.
1265  ///
1266  virtual SDValue
1267    LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1268                const SmallVectorImpl<ISD::OutputArg> &Outs,
1269                const SmallVectorImpl<SDValue> &OutVals,
1270                DebugLoc dl, SelectionDAG &DAG) const {
1271    assert(0 && "Not Implemented");
1272    return SDValue();    // this is here to silence compiler errors
1273  }
1274
1275  /// isUsedByReturnOnly - Return true if result of the specified node is used
1276  /// by a return node only. This is used to determine whether it is possible
1277  /// to codegen a libcall as tail call at legalization time.
1278  virtual bool isUsedByReturnOnly(SDNode *N) const {
1279    return false;
1280  }
1281
1282  /// mayBeEmittedAsTailCall - Return true if the target may be able emit the
1283  /// call instruction as a tail call. This is used by optimization passes to
1284  /// determine if it's profitable to duplicate return instructions to enable
1285  /// tailcall optimization.
1286  virtual bool mayBeEmittedAsTailCall(CallInst *CI) const {
1287    return false;
1288  }
1289
1290  /// getTypeForExtArgOrReturn - Return the type that should be used to zero or
1291  /// sign extend a zeroext/signext integer argument or return value.
1292  /// FIXME: Most C calling convention requires the return type to be promoted,
1293  /// but this is not true all the time, e.g. i1 on x86-64. It is also not
1294  /// necessary for non-C calling conventions. The frontend should handle this
1295  /// and include all of the necessary information.
1296  virtual EVT getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1297                                       ISD::NodeType ExtendKind) const {
1298    EVT MinVT = getRegisterType(Context, MVT::i32);
1299    return VT.bitsLT(MinVT) ? MinVT : VT;
1300  }
1301
1302  /// LowerOperationWrapper - This callback is invoked by the type legalizer
1303  /// to legalize nodes with an illegal operand type but legal result types.
1304  /// It replaces the LowerOperation callback in the type Legalizer.
1305  /// The reason we can not do away with LowerOperation entirely is that
1306  /// LegalizeDAG isn't yet ready to use this callback.
1307  /// TODO: Consider merging with ReplaceNodeResults.
1308
1309  /// The target places new result values for the node in Results (their number
1310  /// and types must exactly match those of the original return values of
1311  /// the node), or leaves Results empty, which indicates that the node is not
1312  /// to be custom lowered after all.
1313  /// The default implementation calls LowerOperation.
1314  virtual void LowerOperationWrapper(SDNode *N,
1315                                     SmallVectorImpl<SDValue> &Results,
1316                                     SelectionDAG &DAG) const;
1317
1318  /// LowerOperation - This callback is invoked for operations that are
1319  /// unsupported by the target, which are registered to use 'custom' lowering,
1320  /// and whose defined values are all legal.
1321  /// If the target has no operations that require custom lowering, it need not
1322  /// implement this.  The default implementation of this aborts.
1323  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
1324
1325  /// ReplaceNodeResults - This callback is invoked when a node result type is
1326  /// illegal for the target, and the operation was registered to use 'custom'
1327  /// lowering for that result type.  The target places new result values for
1328  /// the node in Results (their number and types must exactly match those of
1329  /// the original return values of the node), or leaves Results empty, which
1330  /// indicates that the node is not to be custom lowered after all.
1331  ///
1332  /// If the target has no operations that require custom lowering, it need not
1333  /// implement this.  The default implementation aborts.
1334  virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
1335                                  SelectionDAG &DAG) const {
1336    assert(0 && "ReplaceNodeResults not implemented for this target!");
1337  }
1338
1339  /// getTargetNodeName() - This method returns the name of a target specific
1340  /// DAG node.
1341  virtual const char *getTargetNodeName(unsigned Opcode) const;
1342
1343  /// createFastISel - This method returns a target specific FastISel object,
1344  /// or null if the target does not support "fast" ISel.
1345  virtual FastISel *createFastISel(FunctionLoweringInfo &funcInfo) const {
1346    return 0;
1347  }
1348
1349  //===--------------------------------------------------------------------===//
1350  // Inline Asm Support hooks
1351  //
1352
1353  /// ExpandInlineAsm - This hook allows the target to expand an inline asm
1354  /// call to be explicit llvm code if it wants to.  This is useful for
1355  /// turning simple inline asms into LLVM intrinsics, which gives the
1356  /// compiler more information about the behavior of the code.
1357  virtual bool ExpandInlineAsm(CallInst *CI) const {
1358    return false;
1359  }
1360
1361  enum ConstraintType {
1362    C_Register,            // Constraint represents specific register(s).
1363    C_RegisterClass,       // Constraint represents any of register(s) in class.
1364    C_Memory,              // Memory constraint.
1365    C_Other,               // Something else.
1366    C_Unknown              // Unsupported constraint.
1367  };
1368
1369  enum ConstraintWeight {
1370    // Generic weights.
1371    CW_Invalid  = -1,     // No match.
1372    CW_Okay     = 0,      // Acceptable.
1373    CW_Good     = 1,      // Good weight.
1374    CW_Better   = 2,      // Better weight.
1375    CW_Best     = 3,      // Best weight.
1376
1377    // Well-known weights.
1378    CW_SpecificReg  = CW_Okay,    // Specific register operands.
1379    CW_Register     = CW_Good,    // Register operands.
1380    CW_Memory       = CW_Better,  // Memory operands.
1381    CW_Constant     = CW_Best,    // Constant operand.
1382    CW_Default      = CW_Okay     // Default or don't know type.
1383  };
1384
1385  /// AsmOperandInfo - This contains information for each constraint that we are
1386  /// lowering.
1387  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
1388    /// ConstraintCode - This contains the actual string for the code, like "m".
1389    /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
1390    /// most closely matches the operand.
1391    std::string ConstraintCode;
1392
1393    /// ConstraintType - Information about the constraint code, e.g. Register,
1394    /// RegisterClass, Memory, Other, Unknown.
1395    TargetLowering::ConstraintType ConstraintType;
1396
1397    /// CallOperandval - If this is the result output operand or a
1398    /// clobber, this is null, otherwise it is the incoming operand to the
1399    /// CallInst.  This gets modified as the asm is processed.
1400    Value *CallOperandVal;
1401
1402    /// ConstraintVT - The ValueType for the operand value.
1403    EVT ConstraintVT;
1404
1405    /// isMatchingInputConstraint - Return true of this is an input operand that
1406    /// is a matching constraint like "4".
1407    bool isMatchingInputConstraint() const;
1408
1409    /// getMatchedOperand - If this is an input matching constraint, this method
1410    /// returns the output operand it matches.
1411    unsigned getMatchedOperand() const;
1412
1413    /// Copy constructor for copying from an AsmOperandInfo.
1414    AsmOperandInfo(const AsmOperandInfo &info)
1415      : InlineAsm::ConstraintInfo(info),
1416        ConstraintCode(info.ConstraintCode),
1417        ConstraintType(info.ConstraintType),
1418        CallOperandVal(info.CallOperandVal),
1419        ConstraintVT(info.ConstraintVT) {
1420    }
1421
1422    /// Copy constructor for copying from a ConstraintInfo.
1423    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
1424      : InlineAsm::ConstraintInfo(info),
1425        ConstraintType(TargetLowering::C_Unknown),
1426        CallOperandVal(0), ConstraintVT(MVT::Other) {
1427    }
1428  };
1429
1430  typedef std::vector<AsmOperandInfo> AsmOperandInfoVector;
1431
1432  /// ParseConstraints - Split up the constraint string from the inline
1433  /// assembly value into the specific constraints and their prefixes,
1434  /// and also tie in the associated operand values.
1435  /// If this returns an empty vector, and if the constraint string itself
1436  /// isn't empty, there was an error parsing.
1437  virtual AsmOperandInfoVector ParseConstraints(ImmutableCallSite CS) const;
1438
1439  /// Examine constraint type and operand type and determine a weight value.
1440  /// The operand object must already have been set up with the operand type.
1441  virtual ConstraintWeight getMultipleConstraintMatchWeight(
1442      AsmOperandInfo &info, int maIndex) const;
1443
1444  /// Examine constraint string and operand type and determine a weight value.
1445  /// The operand object must already have been set up with the operand type.
1446  virtual ConstraintWeight getSingleConstraintMatchWeight(
1447      AsmOperandInfo &info, const char *constraint) const;
1448
1449  /// ComputeConstraintToUse - Determines the constraint code and constraint
1450  /// type to use for the specific AsmOperandInfo, setting
1451  /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
1452  /// being passed in is available, it can be passed in as Op, otherwise an
1453  /// empty SDValue can be passed.
1454  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1455                                      SDValue Op,
1456                                      SelectionDAG *DAG = 0) const;
1457
1458  /// getConstraintType - Given a constraint, return the type of constraint it
1459  /// is for this target.
1460  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
1461
1462  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
1463  /// {edx}), return the register number and the register class for the
1464  /// register.
1465  ///
1466  /// Given a register class constraint, like 'r', if this corresponds directly
1467  /// to an LLVM register class, return a register of 0 and the register class
1468  /// pointer.
1469  ///
1470  /// This should only be used for C_Register constraints.  On error,
1471  /// this returns a register number of 0 and a null register class pointer..
1472  virtual std::pair<unsigned, const TargetRegisterClass*>
1473    getRegForInlineAsmConstraint(const std::string &Constraint,
1474                                 EVT VT) const;
1475
1476  /// LowerXConstraint - try to replace an X constraint, which matches anything,
1477  /// with another that has more specific requirements based on the type of the
1478  /// corresponding operand.  This returns null if there is no replacement to
1479  /// make.
1480  virtual const char *LowerXConstraint(EVT ConstraintVT) const;
1481
1482  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1483  /// vector.  If it is invalid, don't add anything to Ops.
1484  virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
1485                                            std::vector<SDValue> &Ops,
1486                                            SelectionDAG &DAG) const;
1487
1488  //===--------------------------------------------------------------------===//
1489  // Instruction Emitting Hooks
1490  //
1491
1492  // EmitInstrWithCustomInserter - This method should be implemented by targets
1493  // that mark instructions with the 'usesCustomInserter' flag.  These
1494  // instructions are special in various ways, which require special support to
1495  // insert.  The specified MachineInstr is created but not inserted into any
1496  // basic blocks, and this method is called to expand it into a sequence of
1497  // instructions, potentially also creating new basic blocks and control flow.
1498  virtual MachineBasicBlock *
1499    EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;
1500
1501  /// AdjustInstrPostInstrSelection - This method should be implemented by
1502  /// targets that mark instructions with the 'hasPostISelHook' flag. These
1503  /// instructions must be adjusted after instruction selection by target hooks.
1504  /// e.g. To fill in optional defs for ARM 's' setting instructions.
1505  virtual void
1506  AdjustInstrPostInstrSelection(MachineInstr *MI, SDNode *Node) const;
1507
1508  //===--------------------------------------------------------------------===//
1509  // Addressing mode description hooks (used by LSR etc).
1510  //
1511
1512  /// AddrMode - This represents an addressing mode of:
1513  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1514  /// If BaseGV is null,  there is no BaseGV.
1515  /// If BaseOffs is zero, there is no base offset.
1516  /// If HasBaseReg is false, there is no base register.
1517  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1518  /// no scale.
1519  ///
1520  struct AddrMode {
1521    GlobalValue *BaseGV;
1522    int64_t      BaseOffs;
1523    bool         HasBaseReg;
1524    int64_t      Scale;
1525    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1526  };
1527
1528  /// isLegalAddressingMode - Return true if the addressing mode represented by
1529  /// AM is legal for this target, for a load/store of the specified type.
1530  /// The type may be VoidTy, in which case only return true if the addressing
1531  /// mode is legal for a load/store of any legal type.
1532  /// TODO: Handle pre/postinc as well.
1533  virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const;
1534
1535  /// isLegalICmpImmediate - Return true if the specified immediate is legal
1536  /// icmp immediate, that is the target has icmp instructions which can compare
1537  /// a register against the immediate without having to materialize the
1538  /// immediate into a register.
1539  virtual bool isLegalICmpImmediate(int64_t Imm) const {
1540    return true;
1541  }
1542
1543  /// isLegalAddImmediate - Return true if the specified immediate is legal
1544  /// add immediate, that is the target has add instructions which can add
1545  /// a register with the immediate without having to materialize the
1546  /// immediate into a register.
1547  virtual bool isLegalAddImmediate(int64_t Imm) const {
1548    return true;
1549  }
1550
1551  /// isTruncateFree - Return true if it's free to truncate a value of
1552  /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1553  /// register EAX to i16 by referencing its sub-register AX.
1554  virtual bool isTruncateFree(Type *Ty1, Type *Ty2) const {
1555    return false;
1556  }
1557
1558  virtual bool isTruncateFree(EVT VT1, EVT VT2) const {
1559    return false;
1560  }
1561
1562  /// isZExtFree - Return true if any actual instruction that defines a
1563  /// value of type Ty1 implicitly zero-extends the value to Ty2 in the result
1564  /// register. This does not necessarily include registers defined in
1565  /// unknown ways, such as incoming arguments, or copies from unknown
1566  /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1567  /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1568  /// all instructions that define 32-bit values implicit zero-extend the
1569  /// result out to 64 bits.
1570  virtual bool isZExtFree(Type *Ty1, Type *Ty2) const {
1571    return false;
1572  }
1573
1574  virtual bool isZExtFree(EVT VT1, EVT VT2) const {
1575    return false;
1576  }
1577
1578  /// isNarrowingProfitable - Return true if it's profitable to narrow
1579  /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
1580  /// from i32 to i8 but not from i32 to i16.
1581  virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const {
1582    return false;
1583  }
1584
1585  //===--------------------------------------------------------------------===//
1586  // Div utility functions
1587  //
1588  SDValue BuildExactSDIV(SDValue Op1, SDValue Op2, DebugLoc dl,
1589                         SelectionDAG &DAG) const;
1590  SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG,
1591                      std::vector<SDNode*>* Created) const;
1592  SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG,
1593                      std::vector<SDNode*>* Created) const;
1594
1595
1596  //===--------------------------------------------------------------------===//
1597  // Runtime Library hooks
1598  //
1599
1600  /// setLibcallName - Rename the default libcall routine name for the specified
1601  /// libcall.
1602  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1603    LibcallRoutineNames[Call] = Name;
1604  }
1605
1606  /// getLibcallName - Get the libcall routine name for the specified libcall.
1607  ///
1608  const char *getLibcallName(RTLIB::Libcall Call) const {
1609    return LibcallRoutineNames[Call];
1610  }
1611
1612  /// setCmpLibcallCC - Override the default CondCode to be used to test the
1613  /// result of the comparison libcall against zero.
1614  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1615    CmpLibcallCCs[Call] = CC;
1616  }
1617
1618  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1619  /// the comparison libcall against zero.
1620  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1621    return CmpLibcallCCs[Call];
1622  }
1623
1624  /// setLibcallCallingConv - Set the CallingConv that should be used for the
1625  /// specified libcall.
1626  void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
1627    LibcallCallingConvs[Call] = CC;
1628  }
1629
1630  /// getLibcallCallingConv - Get the CallingConv that should be used for the
1631  /// specified libcall.
1632  CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
1633    return LibcallCallingConvs[Call];
1634  }
1635
1636private:
1637  const TargetMachine &TM;
1638  const TargetData *TD;
1639  const TargetLoweringObjectFile &TLOF;
1640
1641  /// We are in the process of implementing a new TypeLegalization action
1642  /// which is the promotion of vector elements. This feature is under
1643  /// development. Until this feature is complete, it is only enabled using a
1644  /// flag. We pass this flag using a member because of circular dep issues.
1645  /// This member will be removed with the flag once we complete the transition.
1646  bool mayPromoteElements;
1647
1648  /// PointerTy - The type to use for pointers, usually i32 or i64.
1649  ///
1650  MVT PointerTy;
1651
1652  /// IsLittleEndian - True if this is a little endian target.
1653  ///
1654  bool IsLittleEndian;
1655
1656  /// SelectIsExpensive - Tells the code generator not to expand operations
1657  /// into sequences that use the select operations if possible.
1658  bool SelectIsExpensive;
1659
1660  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1661  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1662  /// a real cost model is in place.  If we ever optimize for size, this will be
1663  /// set to true unconditionally.
1664  bool IntDivIsCheap;
1665
1666  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1667  /// srl/add/sra for a signed divide by power of two, and let the target handle
1668  /// it.
1669  bool Pow2DivIsCheap;
1670
1671  /// JumpIsExpensive - Tells the code generator that it shouldn't generate
1672  /// extra flow control instructions and should attempt to combine flow
1673  /// control instructions via predication.
1674  bool JumpIsExpensive;
1675
1676  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1677  /// llvm.setjmp.  Defaults to false.
1678  bool UseUnderscoreSetJmp;
1679
1680  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1681  /// llvm.longjmp.  Defaults to false.
1682  bool UseUnderscoreLongJmp;
1683
1684  /// BooleanContents - Information about the contents of the high-bits in
1685  /// boolean values held in a type wider than i1.  See getBooleanContents.
1686  BooleanContent BooleanContents;
1687  /// BooleanVectorContents - Information about the contents of the high-bits
1688  /// in boolean vector values when the element type is wider than i1.  See
1689  /// getBooleanContents.
1690  BooleanContent BooleanVectorContents;
1691
1692  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1693  /// total cycles or lowest register usage.
1694  Sched::Preference SchedPreferenceInfo;
1695
1696  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1697  unsigned JumpBufSize;
1698
1699  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1700  /// buffers
1701  unsigned JumpBufAlignment;
1702
1703  /// MinStackArgumentAlignment - The minimum alignment that any argument
1704  /// on the stack needs to have.
1705  ///
1706  unsigned MinStackArgumentAlignment;
1707
1708  /// MinFunctionAlignment - The minimum function alignment (used when
1709  /// optimizing for size, and to prevent explicitly provided alignment
1710  /// from leading to incorrect code).
1711  ///
1712  unsigned MinFunctionAlignment;
1713
1714  /// PrefFunctionAlignment - The preferred function alignment (used when
1715  /// alignment unspecified and optimizing for speed).
1716  ///
1717  unsigned PrefFunctionAlignment;
1718
1719  /// PrefLoopAlignment - The preferred loop alignment.
1720  ///
1721  unsigned PrefLoopAlignment;
1722
1723  /// ShouldFoldAtomicFences - Whether fencing MEMBARRIER instructions should
1724  /// be folded into the enclosed atomic intrinsic instruction by the
1725  /// combiner.
1726  bool ShouldFoldAtomicFences;
1727
1728  /// InsertFencesForAtomic - Whether the DAG builder should automatically
1729  /// insert fences and reduce ordering for atomics.  (This will be set for
1730  /// for most architectures with weak memory ordering.)
1731  bool InsertFencesForAtomic;
1732
1733  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1734  /// specifies the register that llvm.savestack/llvm.restorestack should save
1735  /// and restore.
1736  unsigned StackPointerRegisterToSaveRestore;
1737
1738  /// ExceptionPointerRegister - If set to a physical register, this specifies
1739  /// the register that receives the exception address on entry to a landing
1740  /// pad.
1741  unsigned ExceptionPointerRegister;
1742
1743  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1744  /// the register that receives the exception typeid on entry to a landing
1745  /// pad.
1746  unsigned ExceptionSelectorRegister;
1747
1748  /// RegClassForVT - This indicates the default register class to use for
1749  /// each ValueType the target supports natively.
1750  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1751  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1752  EVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1753
1754  /// RepRegClassForVT - This indicates the "representative" register class to
1755  /// use for each ValueType the target supports natively. This information is
1756  /// used by the scheduler to track register pressure. By default, the
1757  /// representative register class is the largest legal super-reg register
1758  /// class of the register class of the specified type. e.g. On x86, i8, i16,
1759  /// and i32's representative class would be GR32.
1760  const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
1761
1762  /// RepRegClassCostForVT - This indicates the "cost" of the "representative"
1763  /// register class for each ValueType. The cost is used by the scheduler to
1764  /// approximate register pressure.
1765  uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
1766
1767  /// TransformToType - For any value types we are promoting or expanding, this
1768  /// contains the value type that we are changing to.  For Expanded types, this
1769  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1770  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1771  /// by the system, this holds the same type (e.g. i32 -> i32).
1772  EVT TransformToType[MVT::LAST_VALUETYPE];
1773
1774  /// OpActions - For each operation and each value type, keep a LegalizeAction
1775  /// that indicates how instruction selection should deal with the operation.
1776  /// Most operations are Legal (aka, supported natively by the target), but
1777  /// operations that are not should be described.  Note that operations on
1778  /// non-legal value types are not described here.
1779  uint8_t OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
1780
1781  /// LoadExtActions - For each load extension type and each value type,
1782  /// keep a LegalizeAction that indicates how instruction selection should deal
1783  /// with a load of a specific value type and extension type.
1784  uint8_t LoadExtActions[MVT::LAST_VALUETYPE][ISD::LAST_LOADEXT_TYPE];
1785
1786  /// TruncStoreActions - For each value type pair keep a LegalizeAction that
1787  /// indicates whether a truncating store of a specific value type and
1788  /// truncating type is legal.
1789  uint8_t TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
1790
1791  /// IndexedModeActions - For each indexed mode and each value type,
1792  /// keep a pair of LegalizeAction that indicates how instruction
1793  /// selection should deal with the load / store.  The first dimension is the
1794  /// value_type for the reference. The second dimension represents the various
1795  /// modes for load store.
1796  uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
1797
1798  /// CondCodeActions - For each condition code (ISD::CondCode) keep a
1799  /// LegalizeAction that indicates how instruction selection should
1800  /// deal with the condition code.
1801  uint64_t CondCodeActions[ISD::SETCC_INVALID];
1802
1803  ValueTypeActionImpl ValueTypeActions;
1804
1805  typedef std::pair<LegalizeTypeAction, EVT> LegalizeKind;
1806
1807  LegalizeKind
1808  getTypeConversion(LLVMContext &Context, EVT VT) const {
1809    // If this is a simple type, use the ComputeRegisterProp mechanism.
1810    if (VT.isSimple()) {
1811      assert((unsigned)VT.getSimpleVT().SimpleTy <
1812             array_lengthof(TransformToType));
1813      EVT NVT = TransformToType[VT.getSimpleVT().SimpleTy];
1814      LegalizeTypeAction LA = ValueTypeActions.getTypeAction(VT.getSimpleVT());
1815
1816      assert(
1817        (!(NVT.isSimple() && LA != TypeLegal) ||
1818         ValueTypeActions.getTypeAction(NVT.getSimpleVT()) != TypePromoteInteger)
1819         && "Promote may not follow Expand or Promote");
1820
1821      return LegalizeKind(LA, NVT);
1822    }
1823
1824    // Handle Extended Scalar Types.
1825    if (!VT.isVector()) {
1826      assert(VT.isInteger() && "Float types must be simple");
1827      unsigned BitSize = VT.getSizeInBits();
1828      // First promote to a power-of-two size, then expand if necessary.
1829      if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
1830        EVT NVT = VT.getRoundIntegerType(Context);
1831        assert(NVT != VT && "Unable to round integer VT");
1832        LegalizeKind NextStep = getTypeConversion(Context, NVT);
1833        // Avoid multi-step promotion.
1834        if (NextStep.first == TypePromoteInteger) return NextStep;
1835        // Return rounded integer type.
1836        return LegalizeKind(TypePromoteInteger, NVT);
1837      }
1838
1839      return LegalizeKind(TypeExpandInteger,
1840                          EVT::getIntegerVT(Context, VT.getSizeInBits()/2));
1841    }
1842
1843    // Handle vector types.
1844    unsigned NumElts = VT.getVectorNumElements();
1845    EVT EltVT = VT.getVectorElementType();
1846
1847    // Vectors with only one element are always scalarized.
1848    if (NumElts == 1)
1849      return LegalizeKind(TypeScalarizeVector, EltVT);
1850
1851    // If we allow the promotion of vector elements using a flag,
1852    // then try to widen vector elements until a legal type is found.
1853    if (mayPromoteElements && EltVT.isInteger()) {
1854      // Vectors with a number of elements that is not a power of two are always
1855      // widened, for example <3 x float> -> <4 x float>.
1856      if (!VT.isPow2VectorType()) {
1857        NumElts = (unsigned)NextPowerOf2(NumElts);
1858        EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
1859        return LegalizeKind(TypeWidenVector, NVT);
1860      }
1861
1862      // Examine the element type.
1863      LegalizeKind LK = getTypeConversion(Context, EltVT);
1864
1865      // If type is to be expanded, split the vector.
1866      //  <4 x i140> -> <2 x i140>
1867      if (LK.first == TypeExpandInteger)
1868        return LegalizeKind(TypeSplitVector,
1869                            EVT::getVectorVT(Context, EltVT, NumElts / 2));
1870
1871      // Promote the integer element types until a legal vector type is found
1872      // or until the element integer type is too big. If a legal type was not
1873      // found, fallback to the usual mechanism of widening/splitting the
1874      // vector.
1875      while (1) {
1876        // Increase the bitwidth of the element to the next pow-of-two
1877        // (which is greater than 8 bits).
1878        EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()
1879                                 ).getRoundIntegerType(Context);
1880
1881        // Stop trying when getting a non-simple element type.
1882        // Note that vector elements may be greater than legal vector element
1883        // types. Example: X86 XMM registers hold 64bit element on 32bit systems.
1884        if (!EltVT.isSimple()) break;
1885
1886        // Build a new vector type and check if it is legal.
1887        MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1888        // Found a legal promoted vector type.
1889        if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
1890          return LegalizeKind(TypePromoteInteger,
1891                              EVT::getVectorVT(Context, EltVT, NumElts));
1892      }
1893    }
1894
1895    // Try to widen the vector until a legal type is found.
1896    // If there is no wider legal type, split the vector.
1897    while (1) {
1898      // Round up to the next power of 2.
1899      NumElts = (unsigned)NextPowerOf2(NumElts);
1900
1901      // If there is no simple vector type with this many elements then there
1902      // cannot be a larger legal vector type.  Note that this assumes that
1903      // there are no skipped intermediate vector types in the simple types.
1904      if (!EltVT.isSimple()) break;
1905      MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1906      if (LargerVector == MVT()) break;
1907
1908      // If this type is legal then widen the vector.
1909      if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
1910        return LegalizeKind(TypeWidenVector, LargerVector);
1911    }
1912
1913    // Widen odd vectors to next power of two.
1914    if (!VT.isPow2VectorType()) {
1915      EVT NVT = VT.getPow2VectorType(Context);
1916      return LegalizeKind(TypeWidenVector, NVT);
1917    }
1918
1919    // Vectors with illegal element types are expanded.
1920    EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
1921    return LegalizeKind(TypeSplitVector, NVT);
1922
1923    assert(false && "Unable to handle this kind of vector type");
1924    return LegalizeKind(TypeLegal, VT);
1925  }
1926
1927  std::vector<std::pair<EVT, TargetRegisterClass*> > AvailableRegClasses;
1928
1929  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
1930  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
1931  /// which sets a bit in this array.
1932  unsigned char
1933  TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
1934
1935  /// PromoteToType - For operations that must be promoted to a specific type,
1936  /// this holds the destination type.  This map should be sparse, so don't hold
1937  /// it as an array.
1938  ///
1939  /// Targets add entries to this map with AddPromotedToType(..), clients access
1940  /// this with getTypeToPromoteTo(..).
1941  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
1942    PromoteToType;
1943
1944  /// LibcallRoutineNames - Stores the name each libcall.
1945  ///
1946  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1947
1948  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
1949  /// of each of the comparison libcall against zero.
1950  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1951
1952  /// LibcallCallingConvs - Stores the CallingConv that should be used for each
1953  /// libcall.
1954  CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
1955
1956protected:
1957  /// When lowering \@llvm.memset this field specifies the maximum number of
1958  /// store operations that may be substituted for the call to memset. Targets
1959  /// must set this value based on the cost threshold for that target. Targets
1960  /// should assume that the memset will be done using as many of the largest
1961  /// store operations first, followed by smaller ones, if necessary, per
1962  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1963  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1964  /// store.  This only applies to setting a constant array of a constant size.
1965  /// @brief Specify maximum number of store instructions per memset call.
1966  unsigned maxStoresPerMemset;
1967
1968  /// Maximum number of stores operations that may be substituted for the call
1969  /// to memset, used for functions with OptSize attribute.
1970  unsigned maxStoresPerMemsetOptSize;
1971
1972  /// When lowering \@llvm.memcpy this field specifies the maximum number of
1973  /// store operations that may be substituted for a call to memcpy. Targets
1974  /// must set this value based on the cost threshold for that target. Targets
1975  /// should assume that the memcpy will be done using as many of the largest
1976  /// store operations first, followed by smaller ones, if necessary, per
1977  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1978  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1979  /// and one 1-byte store. This only applies to copying a constant array of
1980  /// constant size.
1981  /// @brief Specify maximum bytes of store instructions per memcpy call.
1982  unsigned maxStoresPerMemcpy;
1983
1984  /// Maximum number of store operations that may be substituted for a call
1985  /// to memcpy, used for functions with OptSize attribute.
1986  unsigned maxStoresPerMemcpyOptSize;
1987
1988  /// When lowering \@llvm.memmove this field specifies the maximum number of
1989  /// store instructions that may be substituted for a call to memmove. Targets
1990  /// must set this value based on the cost threshold for that target. Targets
1991  /// should assume that the memmove will be done using as many of the largest
1992  /// store operations first, followed by smaller ones, if necessary, per
1993  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1994  /// with 8-bit alignment would result in nine 1-byte stores.  This only
1995  /// applies to copying a constant array of constant size.
1996  /// @brief Specify maximum bytes of store instructions per memmove call.
1997  unsigned maxStoresPerMemmove;
1998
1999  /// Maximum number of store instructions that may be substituted for a call
2000  /// to memmove, used for functions with OpSize attribute.
2001  unsigned maxStoresPerMemmoveOptSize;
2002
2003  /// This field specifies whether the target can benefit from code placement
2004  /// optimization.
2005  bool benefitFromCodePlacementOpt;
2006
2007private:
2008  /// isLegalRC - Return true if the value types that can be represented by the
2009  /// specified register class are all legal.
2010  bool isLegalRC(const TargetRegisterClass *RC) const;
2011
2012  /// hasLegalSuperRegRegClasses - Return true if the specified register class
2013  /// has one or more super-reg register classes that are legal.
2014  bool hasLegalSuperRegRegClasses(const TargetRegisterClass *RC) const;
2015};
2016
2017/// GetReturnInfo - Given an LLVM IR type and return type attributes,
2018/// compute the return value EVTs and flags, and optionally also
2019/// the offsets, if the return value is being lowered to memory.
2020void GetReturnInfo(Type* ReturnType, Attributes attr,
2021                   SmallVectorImpl<ISD::OutputArg> &Outs,
2022                   const TargetLowering &TLI,
2023                   SmallVectorImpl<uint64_t> *Offsets = 0);
2024
2025} // end llvm namespace
2026
2027#endif
2028