TargetLowering.h revision d850ac79b57e6e0bf68ee93a94d0b3dcd9f6ca35
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/CallingConv.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/CodeGen/SelectionDAGNodes.h"
28#include "llvm/CodeGen/RuntimeLibcalls.h"
29#include "llvm/ADT/APFloat.h"
30#include "llvm/ADT/DenseMap.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/STLExtras.h"
34#include "llvm/Support/DebugLoc.h"
35#include "llvm/Target/TargetMachine.h"
36#include <climits>
37#include <map>
38#include <vector>
39
40namespace llvm {
41  class AllocaInst;
42  class CallInst;
43  class Function;
44  class FastISel;
45  class MachineBasicBlock;
46  class MachineFunction;
47  class MachineFrameInfo;
48  class MachineInstr;
49  class MachineJumpTableInfo;
50  class MachineModuleInfo;
51  class MCContext;
52  class MCExpr;
53  class SDNode;
54  class SDValue;
55  class SelectionDAG;
56  class TargetData;
57  class TargetMachine;
58  class TargetRegisterClass;
59  class TargetSubtarget;
60  class TargetLoweringObjectFile;
61  class Value;
62
63  // FIXME: should this be here?
64  namespace TLSModel {
65    enum Model {
66      GeneralDynamic,
67      LocalDynamic,
68      InitialExec,
69      LocalExec
70    };
71  }
72  TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc);
73
74
75//===----------------------------------------------------------------------===//
76/// TargetLowering - This class defines information used to lower LLVM code to
77/// legal SelectionDAG operators that the target instruction selector can accept
78/// natively.
79///
80/// This class also defines callbacks that targets must implement to lower
81/// target-specific constructs to SelectionDAG operators.
82///
83class TargetLowering {
84  TargetLowering(const TargetLowering&);  // DO NOT IMPLEMENT
85  void operator=(const TargetLowering&);  // DO NOT IMPLEMENT
86public:
87  /// LegalizeAction - This enum indicates whether operations are valid for a
88  /// target, and if not, what action should be used to make them valid.
89  enum LegalizeAction {
90    Legal,      // The target natively supports this operation.
91    Promote,    // This operation should be executed in a larger type.
92    Expand,     // Try to expand this to other ops, otherwise use a libcall.
93    Custom      // Use the LowerOperation hook to implement custom lowering.
94  };
95
96  enum BooleanContent { // How the target represents true/false values.
97    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
98    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
99    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
100  };
101
102  enum SchedPreference {
103    SchedulingForLatency,          // Scheduling for shortest total latency.
104    SchedulingForRegPressure       // Scheduling for lowest register pressure.
105  };
106
107  /// NOTE: The constructor takes ownership of TLOF.
108  explicit TargetLowering(TargetMachine &TM, TargetLoweringObjectFile *TLOF);
109  virtual ~TargetLowering();
110
111  TargetMachine &getTargetMachine() const { return TM; }
112  const TargetData *getTargetData() const { return TD; }
113  TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
114
115  bool isBigEndian() const { return !IsLittleEndian; }
116  bool isLittleEndian() const { return IsLittleEndian; }
117  MVT getPointerTy() const { return PointerTy; }
118  MVT getShiftAmountTy() const { return ShiftAmountTy; }
119
120  /// isSelectExpensive - Return true if the select operation is expensive for
121  /// this target.
122  bool isSelectExpensive() const { return SelectIsExpensive; }
123
124  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
125  /// a sequence of several shifts, adds, and multiplies for this target.
126  bool isIntDivCheap() const { return IntDivIsCheap; }
127
128  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
129  /// srl/add/sra.
130  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
131
132  /// getSetCCResultType - Return the ValueType of the result of SETCC
133  /// operations.  Also used to obtain the target's preferred type for
134  /// the condition operand of SELECT and BRCOND nodes.  In the case of
135  /// BRCOND the argument passed is MVT::Other since there are no other
136  /// operands to get a type hint from.
137  virtual
138  MVT::SimpleValueType getSetCCResultType(EVT VT) const;
139
140  /// getCmpLibcallReturnType - Return the ValueType for comparison
141  /// libcalls. Comparions libcalls include floating point comparion calls,
142  /// and Ordered/Unordered check calls on floating point numbers.
143  virtual
144  MVT::SimpleValueType getCmpLibcallReturnType() const;
145
146  /// getBooleanContents - For targets without i1 registers, this gives the
147  /// nature of the high-bits of boolean values held in types wider than i1.
148  /// "Boolean values" are special true/false values produced by nodes like
149  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
150  /// Not to be confused with general values promoted from i1.
151  BooleanContent getBooleanContents() const { return BooleanContents;}
152
153  /// getSchedulingPreference - Return target scheduling preference.
154  SchedPreference getSchedulingPreference() const {
155    return SchedPreferenceInfo;
156  }
157
158  /// getRegClassFor - Return the register class that should be used for the
159  /// specified value type.  This may only be called on legal types.
160  TargetRegisterClass *getRegClassFor(EVT VT) const {
161    assert(VT.isSimple() && "getRegClassFor called on illegal type!");
162    TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
163    assert(RC && "This value type is not natively supported!");
164    return RC;
165  }
166
167  /// isTypeLegal - Return true if the target has native support for the
168  /// specified value type.  This means that it has a register that directly
169  /// holds it without promotions or expansions.
170  bool isTypeLegal(EVT VT) const {
171    assert(!VT.isSimple() ||
172           (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
173    return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0;
174  }
175
176  class ValueTypeActionImpl {
177    /// ValueTypeActions - This is a bitvector that contains two bits for each
178    /// value type, where the two bits correspond to the LegalizeAction enum.
179    /// This can be queried with "getTypeAction(VT)".
180    /// dimension by (MVT::MAX_ALLOWED_VALUETYPE/32) * 2
181    uint32_t ValueTypeActions[(MVT::MAX_ALLOWED_VALUETYPE/32)*2];
182  public:
183    ValueTypeActionImpl() {
184      ValueTypeActions[0] = ValueTypeActions[1] = 0;
185      ValueTypeActions[2] = ValueTypeActions[3] = 0;
186    }
187    ValueTypeActionImpl(const ValueTypeActionImpl &RHS) {
188      ValueTypeActions[0] = RHS.ValueTypeActions[0];
189      ValueTypeActions[1] = RHS.ValueTypeActions[1];
190      ValueTypeActions[2] = RHS.ValueTypeActions[2];
191      ValueTypeActions[3] = RHS.ValueTypeActions[3];
192    }
193
194    LegalizeAction getTypeAction(LLVMContext &Context, EVT VT) const {
195      if (VT.isExtended()) {
196        if (VT.isVector()) {
197          return VT.isPow2VectorType() ? Expand : Promote;
198        }
199        if (VT.isInteger())
200          // First promote to a power-of-two size, then expand if necessary.
201          return VT == VT.getRoundIntegerType(Context) ? Expand : Promote;
202        assert(0 && "Unsupported extended type!");
203        return Legal;
204      }
205      unsigned I = VT.getSimpleVT().SimpleTy;
206      assert(I<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
207      return (LegalizeAction)((ValueTypeActions[I>>4] >> ((2*I) & 31)) & 3);
208    }
209    void setTypeAction(EVT VT, LegalizeAction Action) {
210      unsigned I = VT.getSimpleVT().SimpleTy;
211      assert(I<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
212      ValueTypeActions[I>>4] |= Action << ((I*2) & 31);
213    }
214  };
215
216  const ValueTypeActionImpl &getValueTypeActions() const {
217    return ValueTypeActions;
218  }
219
220  /// getTypeAction - Return how we should legalize values of this type, either
221  /// it is already legal (return 'Legal') or we need to promote it to a larger
222  /// type (return 'Promote'), or we need to expand it into multiple registers
223  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
224  LegalizeAction getTypeAction(LLVMContext &Context, EVT VT) const {
225    return ValueTypeActions.getTypeAction(Context, VT);
226  }
227
228  /// getTypeToTransformTo - For types supported by the target, this is an
229  /// identity function.  For types that must be promoted to larger types, this
230  /// returns the larger type to promote to.  For integer types that are larger
231  /// than the largest integer register, this contains one step in the expansion
232  /// to get to the smaller register. For illegal floating point types, this
233  /// returns the integer type to transform to.
234  EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
235    if (VT.isSimple()) {
236      assert((unsigned)VT.getSimpleVT().SimpleTy <
237             array_lengthof(TransformToType));
238      EVT NVT = TransformToType[VT.getSimpleVT().SimpleTy];
239      assert(getTypeAction(Context, NVT) != Promote &&
240             "Promote may not follow Expand or Promote");
241      return NVT;
242    }
243
244    if (VT.isVector()) {
245      EVT NVT = VT.getPow2VectorType(Context);
246      if (NVT == VT) {
247        // Vector length is a power of 2 - split to half the size.
248        unsigned NumElts = VT.getVectorNumElements();
249        EVT EltVT = VT.getVectorElementType();
250        return (NumElts == 1) ?
251          EltVT : EVT::getVectorVT(Context, EltVT, NumElts / 2);
252      }
253      // Promote to a power of two size, avoiding multi-step promotion.
254      return getTypeAction(Context, NVT) == Promote ?
255        getTypeToTransformTo(Context, NVT) : NVT;
256    } else if (VT.isInteger()) {
257      EVT NVT = VT.getRoundIntegerType(Context);
258      if (NVT == VT)
259        // Size is a power of two - expand to half the size.
260        return EVT::getIntegerVT(Context, VT.getSizeInBits() / 2);
261      else
262        // Promote to a power of two size, avoiding multi-step promotion.
263        return getTypeAction(Context, NVT) == Promote ?
264          getTypeToTransformTo(Context, NVT) : NVT;
265    }
266    assert(0 && "Unsupported extended type!");
267    return MVT(MVT::Other); // Not reached
268  }
269
270  /// getTypeToExpandTo - For types supported by the target, this is an
271  /// identity function.  For types that must be expanded (i.e. integer types
272  /// that are larger than the largest integer register or illegal floating
273  /// point types), this returns the largest legal type it will be expanded to.
274  EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
275    assert(!VT.isVector());
276    while (true) {
277      switch (getTypeAction(Context, VT)) {
278      case Legal:
279        return VT;
280      case Expand:
281        VT = getTypeToTransformTo(Context, VT);
282        break;
283      default:
284        assert(false && "Type is not legal nor is it to be expanded!");
285        return VT;
286      }
287    }
288    return VT;
289  }
290
291  /// getVectorTypeBreakdown - Vector types are broken down into some number of
292  /// legal first class types.  For example, EVT::v8f32 maps to 2 EVT::v4f32
293  /// with Altivec or SSE1, or 8 promoted EVT::f64 values with the X86 FP stack.
294  /// Similarly, EVT::v2i64 turns into 4 EVT::i32 values with both PPC and X86.
295  ///
296  /// This method returns the number of registers needed, and the VT for each
297  /// register.  It also returns the VT and quantity of the intermediate values
298  /// before they are promoted/expanded.
299  ///
300  unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
301                                  EVT &IntermediateVT,
302                                  unsigned &NumIntermediates,
303                                  EVT &RegisterVT) const;
304
305  /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
306  /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
307  /// this is the case, it returns true and store the intrinsic
308  /// information into the IntrinsicInfo that was passed to the function.
309  struct IntrinsicInfo {
310    unsigned     opc;         // target opcode
311    EVT          memVT;       // memory VT
312    const Value* ptrVal;      // value representing memory location
313    int          offset;      // offset off of ptrVal
314    unsigned     align;       // alignment
315    bool         vol;         // is volatile?
316    bool         readMem;     // reads memory?
317    bool         writeMem;    // writes memory?
318  };
319
320  virtual bool getTgtMemIntrinsic(IntrinsicInfo &Info,
321                                  CallInst &I, unsigned Intrinsic) {
322    return false;
323  }
324
325  /// isFPImmLegal - Returns true if the target can instruction select the
326  /// specified FP immediate natively. If false, the legalizer will materialize
327  /// the FP immediate as a load from a constant pool.
328  virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const {
329    return false;
330  }
331
332  /// isShuffleMaskLegal - Targets can use this to indicate that they only
333  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
334  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
335  /// are assumed to be legal.
336  virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
337                                  EVT VT) const {
338    return true;
339  }
340
341  /// canOpTrap - Returns true if the operation can trap for the value type.
342  /// VT must be a legal type. By default, we optimistically assume most
343  /// operations don't trap except for divide and remainder.
344  virtual bool canOpTrap(unsigned Op, EVT VT) const;
345
346  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
347  /// used by Targets can use this to indicate if there is a suitable
348  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
349  /// pool entry.
350  virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
351                                      EVT VT) const {
352    return false;
353  }
354
355  /// getOperationAction - Return how this operation should be treated: either
356  /// it is legal, needs to be promoted to a larger size, needs to be
357  /// expanded to some other code sequence, or the target has a custom expander
358  /// for it.
359  LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
360    if (VT.isExtended()) return Expand;
361    assert(Op < array_lengthof(OpActions[0]) &&
362           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(OpActions[0][0])*8 &&
363           "Table isn't big enough!");
364    unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
365    unsigned J = I & 31;
366    I = I >> 5;
367    return (LegalizeAction)((OpActions[I][Op] >> (J*2) ) & 3);
368  }
369
370  /// isOperationLegalOrCustom - Return true if the specified operation is
371  /// legal on this target or can be made legal with custom lowering. This
372  /// is used to help guide high-level lowering decisions.
373  bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
374    return (VT == MVT::Other || isTypeLegal(VT)) &&
375      (getOperationAction(Op, VT) == Legal ||
376       getOperationAction(Op, VT) == Custom);
377  }
378
379  /// isOperationLegal - Return true if the specified operation is legal on this
380  /// target.
381  bool isOperationLegal(unsigned Op, EVT VT) const {
382    return (VT == MVT::Other || isTypeLegal(VT)) &&
383           getOperationAction(Op, VT) == Legal;
384  }
385
386  /// getLoadExtAction - Return how this load with extension should be treated:
387  /// either it is legal, needs to be promoted to a larger size, needs to be
388  /// expanded to some other code sequence, or the target has a custom expander
389  /// for it.
390  LegalizeAction getLoadExtAction(unsigned LType, EVT VT) const {
391    assert(LType < array_lengthof(LoadExtActions) &&
392           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(LoadExtActions[0])*4 &&
393           "Table isn't big enough!");
394    return (LegalizeAction)((LoadExtActions[LType] >>
395              (2*VT.getSimpleVT().SimpleTy)) & 3);
396  }
397
398  /// isLoadExtLegal - Return true if the specified load with extension is legal
399  /// on this target.
400  bool isLoadExtLegal(unsigned LType, EVT VT) const {
401    return VT.isSimple() &&
402      (getLoadExtAction(LType, VT) == Legal ||
403       getLoadExtAction(LType, VT) == Custom);
404  }
405
406  /// getTruncStoreAction - Return how this store with truncation should be
407  /// treated: either it is legal, needs to be promoted to a larger size, needs
408  /// to be expanded to some other code sequence, or the target has a custom
409  /// expander for it.
410  LegalizeAction getTruncStoreAction(EVT ValVT,
411                                     EVT MemVT) const {
412    assert((unsigned)ValVT.getSimpleVT().SimpleTy <
413             array_lengthof(TruncStoreActions) &&
414           (unsigned)MemVT.getSimpleVT().SimpleTy <
415             sizeof(TruncStoreActions[0])*4 &&
416           "Table isn't big enough!");
417    return (LegalizeAction)((TruncStoreActions[ValVT.getSimpleVT().SimpleTy] >>
418                             (2*MemVT.getSimpleVT().SimpleTy)) & 3);
419  }
420
421  /// isTruncStoreLegal - Return true if the specified store with truncation is
422  /// legal on this target.
423  bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
424    return isTypeLegal(ValVT) && MemVT.isSimple() &&
425      (getTruncStoreAction(ValVT, MemVT) == Legal ||
426       getTruncStoreAction(ValVT, MemVT) == Custom);
427  }
428
429  /// getIndexedLoadAction - Return how the indexed load should be treated:
430  /// either it is legal, needs to be promoted to a larger size, needs to be
431  /// expanded to some other code sequence, or the target has a custom expander
432  /// for it.
433  LegalizeAction
434  getIndexedLoadAction(unsigned IdxMode, EVT VT) const {
435    assert( IdxMode < array_lengthof(IndexedModeActions[0][0]) &&
436           ((unsigned)VT.getSimpleVT().SimpleTy) < MVT::LAST_VALUETYPE &&
437           "Table isn't big enough!");
438    return (LegalizeAction)((IndexedModeActions[
439                             (unsigned)VT.getSimpleVT().SimpleTy][0][IdxMode]));
440  }
441
442  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
443  /// on this target.
444  bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
445    return VT.isSimple() &&
446      (getIndexedLoadAction(IdxMode, VT) == Legal ||
447       getIndexedLoadAction(IdxMode, VT) == Custom);
448  }
449
450  /// getIndexedStoreAction - Return how the indexed store should be treated:
451  /// either it is legal, needs to be promoted to a larger size, needs to be
452  /// expanded to some other code sequence, or the target has a custom expander
453  /// for it.
454  LegalizeAction
455  getIndexedStoreAction(unsigned IdxMode, EVT VT) const {
456    assert(IdxMode < array_lengthof(IndexedModeActions[0][1]) &&
457           (unsigned)VT.getSimpleVT().SimpleTy < MVT::LAST_VALUETYPE &&
458           "Table isn't big enough!");
459    return (LegalizeAction)((IndexedModeActions[
460              (unsigned)VT.getSimpleVT().SimpleTy][1][IdxMode]));
461  }
462
463  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
464  /// on this target.
465  bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
466    return VT.isSimple() &&
467      (getIndexedStoreAction(IdxMode, VT) == Legal ||
468       getIndexedStoreAction(IdxMode, VT) == Custom);
469  }
470
471  /// getCondCodeAction - Return how the condition code should be treated:
472  /// either it is legal, needs to be expanded to some other code sequence,
473  /// or the target has a custom expander for it.
474  LegalizeAction
475  getCondCodeAction(ISD::CondCode CC, EVT VT) const {
476    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
477           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(CondCodeActions[0])*4 &&
478           "Table isn't big enough!");
479    LegalizeAction Action = (LegalizeAction)
480      ((CondCodeActions[CC] >> (2*VT.getSimpleVT().SimpleTy)) & 3);
481    assert(Action != Promote && "Can't promote condition code!");
482    return Action;
483  }
484
485  /// isCondCodeLegal - Return true if the specified condition code is legal
486  /// on this target.
487  bool isCondCodeLegal(ISD::CondCode CC, EVT VT) const {
488    return getCondCodeAction(CC, VT) == Legal ||
489           getCondCodeAction(CC, VT) == Custom;
490  }
491
492
493  /// getTypeToPromoteTo - If the action for this operation is to promote, this
494  /// method returns the ValueType to promote to.
495  EVT getTypeToPromoteTo(unsigned Op, EVT VT) const {
496    assert(getOperationAction(Op, VT) == Promote &&
497           "This operation isn't promoted!");
498
499    // See if this has an explicit type specified.
500    std::map<std::pair<unsigned, MVT::SimpleValueType>,
501             MVT::SimpleValueType>::const_iterator PTTI =
502      PromoteToType.find(std::make_pair(Op, VT.getSimpleVT().SimpleTy));
503    if (PTTI != PromoteToType.end()) return PTTI->second;
504
505    assert((VT.isInteger() || VT.isFloatingPoint()) &&
506           "Cannot autopromote this type, add it with AddPromotedToType.");
507
508    EVT NVT = VT;
509    do {
510      NVT = (MVT::SimpleValueType)(NVT.getSimpleVT().SimpleTy+1);
511      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
512             "Didn't find type to promote to!");
513    } while (!isTypeLegal(NVT) ||
514              getOperationAction(Op, NVT) == Promote);
515    return NVT;
516  }
517
518  /// getValueType - Return the EVT corresponding to this LLVM type.
519  /// This is fixed by the LLVM operations except for the pointer size.  If
520  /// AllowUnknown is true, this will return MVT::Other for types with no EVT
521  /// counterpart (e.g. structs), otherwise it will assert.
522  EVT getValueType(const Type *Ty, bool AllowUnknown = false) const {
523    EVT VT = EVT::getEVT(Ty, AllowUnknown);
524    return VT == MVT::iPTR ? PointerTy : VT;
525  }
526
527  /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
528  /// function arguments in the caller parameter area.  This is the actual
529  /// alignment, not its logarithm.
530  virtual unsigned getByValTypeAlignment(const Type *Ty) const;
531
532  /// getRegisterType - Return the type of registers that this ValueType will
533  /// eventually require.
534  EVT getRegisterType(MVT VT) const {
535    assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
536    return RegisterTypeForVT[VT.SimpleTy];
537  }
538
539  /// getRegisterType - Return the type of registers that this ValueType will
540  /// eventually require.
541  EVT getRegisterType(LLVMContext &Context, EVT VT) const {
542    if (VT.isSimple()) {
543      assert((unsigned)VT.getSimpleVT().SimpleTy <
544                array_lengthof(RegisterTypeForVT));
545      return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
546    }
547    if (VT.isVector()) {
548      EVT VT1, RegisterVT;
549      unsigned NumIntermediates;
550      (void)getVectorTypeBreakdown(Context, VT, VT1,
551                                   NumIntermediates, RegisterVT);
552      return RegisterVT;
553    }
554    if (VT.isInteger()) {
555      return getRegisterType(Context, getTypeToTransformTo(Context, VT));
556    }
557    assert(0 && "Unsupported extended type!");
558    return EVT(MVT::Other); // Not reached
559  }
560
561  /// getNumRegisters - Return the number of registers that this ValueType will
562  /// eventually require.  This is one for any types promoted to live in larger
563  /// registers, but may be more than one for types (like i64) that are split
564  /// into pieces.  For types like i140, which are first promoted then expanded,
565  /// it is the number of registers needed to hold all the bits of the original
566  /// type.  For an i140 on a 32 bit machine this means 5 registers.
567  unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
568    if (VT.isSimple()) {
569      assert((unsigned)VT.getSimpleVT().SimpleTy <
570                array_lengthof(NumRegistersForVT));
571      return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
572    }
573    if (VT.isVector()) {
574      EVT VT1, VT2;
575      unsigned NumIntermediates;
576      return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
577    }
578    if (VT.isInteger()) {
579      unsigned BitWidth = VT.getSizeInBits();
580      unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
581      return (BitWidth + RegWidth - 1) / RegWidth;
582    }
583    assert(0 && "Unsupported extended type!");
584    return 0; // Not reached
585  }
586
587  /// ShouldShrinkFPConstant - If true, then instruction selection should
588  /// seek to shrink the FP constant of the specified type to a smaller type
589  /// in order to save space and / or reduce runtime.
590  virtual bool ShouldShrinkFPConstant(EVT VT) const { return true; }
591
592  /// hasTargetDAGCombine - If true, the target has custom DAG combine
593  /// transformations that it can perform for the specified node.
594  bool hasTargetDAGCombine(ISD::NodeType NT) const {
595    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
596    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
597  }
598
599  /// This function returns the maximum number of store operations permitted
600  /// to replace a call to llvm.memset. The value is set by the target at the
601  /// performance threshold for such a replacement.
602  /// @brief Get maximum # of store operations permitted for llvm.memset
603  unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; }
604
605  /// This function returns the maximum number of store operations permitted
606  /// to replace a call to llvm.memcpy. The value is set by the target at the
607  /// performance threshold for such a replacement.
608  /// @brief Get maximum # of store operations permitted for llvm.memcpy
609  unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; }
610
611  /// This function returns the maximum number of store operations permitted
612  /// to replace a call to llvm.memmove. The value is set by the target at the
613  /// performance threshold for such a replacement.
614  /// @brief Get maximum # of store operations permitted for llvm.memmove
615  unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; }
616
617  /// This function returns true if the target allows unaligned memory accesses.
618  /// of the specified type. This is used, for example, in situations where an
619  /// array copy/move/set is  converted to a sequence of store operations. It's
620  /// use helps to ensure that such replacements don't generate code that causes
621  /// an alignment error  (trap) on the target machine.
622  /// @brief Determine if the target supports unaligned memory accesses.
623  virtual bool allowsUnalignedMemoryAccesses(EVT VT) const {
624    return false;
625  }
626
627  /// This function returns true if the target would benefit from code placement
628  /// optimization.
629  /// @brief Determine if the target should perform code placement optimization.
630  bool shouldOptimizeCodePlacement() const {
631    return benefitFromCodePlacementOpt;
632  }
633
634  /// getOptimalMemOpType - Returns the target specific optimal type for load
635  /// and store operations as a result of memset, memcpy, and memmove
636  /// lowering. If DstAlign is zero that means it's safe to destination
637  /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
638  /// means there isn't a need to check it against alignment requirement,
639  /// probably because the source does not need to be loaded. If
640  /// 'NonScalarIntSafe' is true, that means it's safe to return a
641  /// non-scalar-integer type, e.g. empty string source, constant, or loaded
642  /// from memory. It returns EVT::Other if SelectionDAG should be responsible
643  /// for determining it.
644  virtual EVT getOptimalMemOpType(uint64_t Size,
645                                  unsigned DstAlign, unsigned SrcAlign,
646                                  bool NonScalarIntSafe,
647                                  SelectionDAG &DAG) const {
648    return MVT::Other;
649  }
650
651  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
652  /// to implement llvm.setjmp.
653  bool usesUnderscoreSetJmp() const {
654    return UseUnderscoreSetJmp;
655  }
656
657  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
658  /// to implement llvm.longjmp.
659  bool usesUnderscoreLongJmp() const {
660    return UseUnderscoreLongJmp;
661  }
662
663  /// getStackPointerRegisterToSaveRestore - If a physical register, this
664  /// specifies the register that llvm.savestack/llvm.restorestack should save
665  /// and restore.
666  unsigned getStackPointerRegisterToSaveRestore() const {
667    return StackPointerRegisterToSaveRestore;
668  }
669
670  /// getExceptionAddressRegister - If a physical register, this returns
671  /// the register that receives the exception address on entry to a landing
672  /// pad.
673  unsigned getExceptionAddressRegister() const {
674    return ExceptionPointerRegister;
675  }
676
677  /// getExceptionSelectorRegister - If a physical register, this returns
678  /// the register that receives the exception typeid on entry to a landing
679  /// pad.
680  unsigned getExceptionSelectorRegister() const {
681    return ExceptionSelectorRegister;
682  }
683
684  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
685  /// set, the default is 200)
686  unsigned getJumpBufSize() const {
687    return JumpBufSize;
688  }
689
690  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
691  /// (if never set, the default is 0)
692  unsigned getJumpBufAlignment() const {
693    return JumpBufAlignment;
694  }
695
696  /// getIfCvtBlockLimit - returns the target specific if-conversion block size
697  /// limit. Any block whose size is greater should not be predicated.
698  unsigned getIfCvtBlockSizeLimit() const {
699    return IfCvtBlockSizeLimit;
700  }
701
702  /// getIfCvtDupBlockLimit - returns the target specific size limit for a
703  /// block to be considered for duplication. Any block whose size is greater
704  /// should not be duplicated to facilitate its predication.
705  unsigned getIfCvtDupBlockSizeLimit() const {
706    return IfCvtDupBlockSizeLimit;
707  }
708
709  /// getPrefLoopAlignment - return the preferred loop alignment.
710  ///
711  unsigned getPrefLoopAlignment() const {
712    return PrefLoopAlignment;
713  }
714
715  /// getPreIndexedAddressParts - returns true by value, base pointer and
716  /// offset pointer and addressing mode by reference if the node's address
717  /// can be legally represented as pre-indexed load / store address.
718  virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
719                                         SDValue &Offset,
720                                         ISD::MemIndexedMode &AM,
721                                         SelectionDAG &DAG) const {
722    return false;
723  }
724
725  /// getPostIndexedAddressParts - returns true by value, base pointer and
726  /// offset pointer and addressing mode by reference if this node can be
727  /// combined with a load / store to form a post-indexed load / store.
728  virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
729                                          SDValue &Base, SDValue &Offset,
730                                          ISD::MemIndexedMode &AM,
731                                          SelectionDAG &DAG) const {
732    return false;
733  }
734
735  /// getJumpTableEncoding - Return the entry encoding for a jump table in the
736  /// current function.  The returned value is a member of the
737  /// MachineJumpTableInfo::JTEntryKind enum.
738  virtual unsigned getJumpTableEncoding() const;
739
740  virtual const MCExpr *
741  LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
742                            const MachineBasicBlock *MBB, unsigned uid,
743                            MCContext &Ctx) const {
744    assert(0 && "Need to implement this hook if target has custom JTIs");
745    return 0;
746  }
747
748  /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
749  /// jumptable.
750  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
751                                           SelectionDAG &DAG) const;
752
753  /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
754  /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
755  /// MCExpr.
756  virtual const MCExpr *
757  getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
758                               unsigned JTI, MCContext &Ctx) const;
759
760  /// isOffsetFoldingLegal - Return true if folding a constant offset
761  /// with the given GlobalAddress is legal.  It is frequently not legal in
762  /// PIC relocation models.
763  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
764
765  /// getFunctionAlignment - Return the Log2 alignment of this function.
766  virtual unsigned getFunctionAlignment(const Function *) const = 0;
767
768  //===--------------------------------------------------------------------===//
769  // TargetLowering Optimization Methods
770  //
771
772  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
773  /// SDValues for returning information from TargetLowering to its clients
774  /// that want to combine
775  struct TargetLoweringOpt {
776    SelectionDAG &DAG;
777    bool ShrinkOps;
778    SDValue Old;
779    SDValue New;
780
781    explicit TargetLoweringOpt(SelectionDAG &InDAG, bool Shrink = false) :
782      DAG(InDAG), ShrinkOps(Shrink) {}
783
784    bool CombineTo(SDValue O, SDValue N) {
785      Old = O;
786      New = N;
787      return true;
788    }
789
790    /// ShrinkDemandedConstant - Check to see if the specified operand of the
791    /// specified instruction is a constant integer.  If so, check to see if
792    /// there are any bits set in the constant that are not demanded.  If so,
793    /// shrink the constant and return true.
794    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
795
796    /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
797    /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
798    /// cast, but it could be generalized for targets with other types of
799    /// implicit widening casts.
800    bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
801                          DebugLoc dl);
802  };
803
804  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
805  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
806  /// use this information to simplify Op, create a new simplified DAG node and
807  /// return true, returning the original and new nodes in Old and New.
808  /// Otherwise, analyze the expression and return a mask of KnownOne and
809  /// KnownZero bits for the expression (used to simplify the caller).
810  /// The KnownZero/One bits may only be accurate for those bits in the
811  /// DemandedMask.
812  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
813                            APInt &KnownZero, APInt &KnownOne,
814                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
815
816  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
817  /// Mask are known to be either zero or one and return them in the
818  /// KnownZero/KnownOne bitsets.
819  virtual void computeMaskedBitsForTargetNode(const SDValue Op,
820                                              const APInt &Mask,
821                                              APInt &KnownZero,
822                                              APInt &KnownOne,
823                                              const SelectionDAG &DAG,
824                                              unsigned Depth = 0) const;
825
826  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
827  /// targets that want to expose additional information about sign bits to the
828  /// DAG Combiner.
829  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
830                                                   unsigned Depth = 0) const;
831
832  struct DAGCombinerInfo {
833    void *DC;  // The DAG Combiner object.
834    bool BeforeLegalize;
835    bool BeforeLegalizeOps;
836    bool CalledByLegalizer;
837  public:
838    SelectionDAG &DAG;
839
840    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool blo, bool cl, void *dc)
841      : DC(dc), BeforeLegalize(bl), BeforeLegalizeOps(blo),
842        CalledByLegalizer(cl), DAG(dag) {}
843
844    bool isBeforeLegalize() const { return BeforeLegalize; }
845    bool isBeforeLegalizeOps() const { return BeforeLegalizeOps; }
846    bool isCalledByLegalizer() const { return CalledByLegalizer; }
847
848    void AddToWorklist(SDNode *N);
849    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
850                      bool AddTo = true);
851    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
852    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
853
854    void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
855  };
856
857  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
858  /// and cc. If it is unable to simplify it, return a null SDValue.
859  SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
860                          ISD::CondCode Cond, bool foldBooleans,
861                          DAGCombinerInfo &DCI, DebugLoc dl) const;
862
863  /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
864  /// node is a GlobalAddress + offset.
865  virtual bool
866  isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) const;
867
868  /// PerformDAGCombine - This method will be invoked for all target nodes and
869  /// for any target-independent nodes that the target has registered with
870  /// invoke it for.
871  ///
872  /// The semantics are as follows:
873  /// Return Value:
874  ///   SDValue.Val == 0   - No change was made
875  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
876  ///   otherwise          - N should be replaced by the returned Operand.
877  ///
878  /// In addition, methods provided by DAGCombinerInfo may be used to perform
879  /// more complex transformations.
880  ///
881  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
882
883  //===--------------------------------------------------------------------===//
884  // TargetLowering Configuration Methods - These methods should be invoked by
885  // the derived class constructor to configure this object for the target.
886  //
887
888protected:
889  /// setShiftAmountType - Describe the type that should be used for shift
890  /// amounts.  This type defaults to the pointer type.
891  void setShiftAmountType(MVT VT) { ShiftAmountTy = VT; }
892
893  /// setBooleanContents - Specify how the target extends the result of a
894  /// boolean value from i1 to a wider type.  See getBooleanContents.
895  void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
896
897  /// setSchedulingPreference - Specify the target scheduling preference.
898  void setSchedulingPreference(SchedPreference Pref) {
899    SchedPreferenceInfo = Pref;
900  }
901
902  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
903  /// use _setjmp to implement llvm.setjmp or the non _ version.
904  /// Defaults to false.
905  void setUseUnderscoreSetJmp(bool Val) {
906    UseUnderscoreSetJmp = Val;
907  }
908
909  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
910  /// use _longjmp to implement llvm.longjmp or the non _ version.
911  /// Defaults to false.
912  void setUseUnderscoreLongJmp(bool Val) {
913    UseUnderscoreLongJmp = Val;
914  }
915
916  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
917  /// specifies the register that llvm.savestack/llvm.restorestack should save
918  /// and restore.
919  void setStackPointerRegisterToSaveRestore(unsigned R) {
920    StackPointerRegisterToSaveRestore = R;
921  }
922
923  /// setExceptionPointerRegister - If set to a physical register, this sets
924  /// the register that receives the exception address on entry to a landing
925  /// pad.
926  void setExceptionPointerRegister(unsigned R) {
927    ExceptionPointerRegister = R;
928  }
929
930  /// setExceptionSelectorRegister - If set to a physical register, this sets
931  /// the register that receives the exception typeid on entry to a landing
932  /// pad.
933  void setExceptionSelectorRegister(unsigned R) {
934    ExceptionSelectorRegister = R;
935  }
936
937  /// SelectIsExpensive - Tells the code generator not to expand operations
938  /// into sequences that use the select operations if possible.
939  void setSelectIsExpensive() { SelectIsExpensive = true; }
940
941  /// setIntDivIsCheap - Tells the code generator that integer divide is
942  /// expensive, and if possible, should be replaced by an alternate sequence
943  /// of instructions not containing an integer divide.
944  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
945
946  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
947  /// srl/add/sra for a signed divide by power of two, and let the target handle
948  /// it.
949  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
950
951  /// addRegisterClass - Add the specified register class as an available
952  /// regclass for the specified value type.  This indicates the selector can
953  /// handle values of that class natively.
954  void addRegisterClass(EVT VT, TargetRegisterClass *RC) {
955    assert((unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
956    AvailableRegClasses.push_back(std::make_pair(VT, RC));
957    RegClassForVT[VT.getSimpleVT().SimpleTy] = RC;
958  }
959
960  /// computeRegisterProperties - Once all of the register classes are added,
961  /// this allows us to compute derived properties we expose.
962  void computeRegisterProperties();
963
964  /// setOperationAction - Indicate that the specified operation does not work
965  /// with the specified type and indicate what to do about it.
966  void setOperationAction(unsigned Op, MVT VT,
967                          LegalizeAction Action) {
968    unsigned I = (unsigned)VT.SimpleTy;
969    unsigned J = I & 31;
970    I = I >> 5;
971    OpActions[I][Op] &= ~(uint64_t(3UL) << (J*2));
972    OpActions[I][Op] |= (uint64_t)Action << (J*2);
973  }
974
975  /// setLoadExtAction - Indicate that the specified load with extension does
976  /// not work with the specified type and indicate what to do about it.
977  void setLoadExtAction(unsigned ExtType, MVT VT,
978                      LegalizeAction Action) {
979    assert((unsigned)VT.SimpleTy*2 < 63 &&
980           ExtType < array_lengthof(LoadExtActions) &&
981           "Table isn't big enough!");
982    LoadExtActions[ExtType] &= ~(uint64_t(3UL) << VT.SimpleTy*2);
983    LoadExtActions[ExtType] |= (uint64_t)Action << VT.SimpleTy*2;
984  }
985
986  /// setTruncStoreAction - Indicate that the specified truncating store does
987  /// not work with the specified type and indicate what to do about it.
988  void setTruncStoreAction(MVT ValVT, MVT MemVT,
989                           LegalizeAction Action) {
990    assert((unsigned)ValVT.SimpleTy < array_lengthof(TruncStoreActions) &&
991           (unsigned)MemVT.SimpleTy*2 < 63 &&
992           "Table isn't big enough!");
993    TruncStoreActions[ValVT.SimpleTy] &= ~(uint64_t(3UL)  << MemVT.SimpleTy*2);
994    TruncStoreActions[ValVT.SimpleTy] |= (uint64_t)Action << MemVT.SimpleTy*2;
995  }
996
997  /// setIndexedLoadAction - Indicate that the specified indexed load does or
998  /// does not work with the specified type and indicate what to do abort
999  /// it. NOTE: All indexed mode loads are initialized to Expand in
1000  /// TargetLowering.cpp
1001  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
1002                            LegalizeAction Action) {
1003    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1004           IdxMode < array_lengthof(IndexedModeActions[0][0]) &&
1005           "Table isn't big enough!");
1006    IndexedModeActions[(unsigned)VT.SimpleTy][0][IdxMode] = (uint8_t)Action;
1007  }
1008
1009  /// setIndexedStoreAction - Indicate that the specified indexed store does or
1010  /// does not work with the specified type and indicate what to do about
1011  /// it. NOTE: All indexed mode stores are initialized to Expand in
1012  /// TargetLowering.cpp
1013  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
1014                             LegalizeAction Action) {
1015    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1016           IdxMode < array_lengthof(IndexedModeActions[0][1] ) &&
1017           "Table isn't big enough!");
1018    IndexedModeActions[(unsigned)VT.SimpleTy][1][IdxMode] = (uint8_t)Action;
1019  }
1020
1021  /// setCondCodeAction - Indicate that the specified condition code is or isn't
1022  /// supported on the target and indicate what to do about it.
1023  void setCondCodeAction(ISD::CondCode CC, MVT VT,
1024                         LegalizeAction Action) {
1025    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1026           (unsigned)CC < array_lengthof(CondCodeActions) &&
1027           "Table isn't big enough!");
1028    CondCodeActions[(unsigned)CC] &= ~(uint64_t(3UL)  << VT.SimpleTy*2);
1029    CondCodeActions[(unsigned)CC] |= (uint64_t)Action << VT.SimpleTy*2;
1030  }
1031
1032  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
1033  /// promotion code defaults to trying a larger integer/fp until it can find
1034  /// one that works.  If that default is insufficient, this method can be used
1035  /// by the target to override the default.
1036  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1037    PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
1038  }
1039
1040  /// setTargetDAGCombine - Targets should invoke this method for each target
1041  /// independent node that they want to provide a custom DAG combiner for by
1042  /// implementing the PerformDAGCombine virtual method.
1043  void setTargetDAGCombine(ISD::NodeType NT) {
1044    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1045    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1046  }
1047
1048  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
1049  /// bytes); default is 200
1050  void setJumpBufSize(unsigned Size) {
1051    JumpBufSize = Size;
1052  }
1053
1054  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
1055  /// alignment (in bytes); default is 0
1056  void setJumpBufAlignment(unsigned Align) {
1057    JumpBufAlignment = Align;
1058  }
1059
1060  /// setIfCvtBlockSizeLimit - Set the target's if-conversion block size
1061  /// limit (in number of instructions); default is 2.
1062  void setIfCvtBlockSizeLimit(unsigned Limit) {
1063    IfCvtBlockSizeLimit = Limit;
1064  }
1065
1066  /// setIfCvtDupBlockSizeLimit - Set the target's block size limit (in number
1067  /// of instructions) to be considered for code duplication during
1068  /// if-conversion; default is 2.
1069  void setIfCvtDupBlockSizeLimit(unsigned Limit) {
1070    IfCvtDupBlockSizeLimit = Limit;
1071  }
1072
1073  /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
1074  /// alignment is zero, it means the target does not care about loop alignment.
1075  void setPrefLoopAlignment(unsigned Align) {
1076    PrefLoopAlignment = Align;
1077  }
1078
1079public:
1080
1081  virtual const TargetSubtarget *getSubtarget() {
1082    assert(0 && "Not Implemented");
1083    return NULL;    // this is here to silence compiler errors
1084  }
1085
1086  //===--------------------------------------------------------------------===//
1087  // Lowering methods - These methods must be implemented by targets so that
1088  // the SelectionDAGLowering code knows how to lower these.
1089  //
1090
1091  /// LowerFormalArguments - This hook must be implemented to lower the
1092  /// incoming (formal) arguments, described by the Ins array, into the
1093  /// specified DAG. The implementation should fill in the InVals array
1094  /// with legal-type argument values, and return the resulting token
1095  /// chain value.
1096  ///
1097  virtual SDValue
1098    LowerFormalArguments(SDValue Chain,
1099                         CallingConv::ID CallConv, bool isVarArg,
1100                         const SmallVectorImpl<ISD::InputArg> &Ins,
1101                         DebugLoc dl, SelectionDAG &DAG,
1102                         SmallVectorImpl<SDValue> &InVals) {
1103    assert(0 && "Not Implemented");
1104    return SDValue();    // this is here to silence compiler errors
1105  }
1106
1107  /// LowerCallTo - This function lowers an abstract call to a function into an
1108  /// actual call.  This returns a pair of operands.  The first element is the
1109  /// return value for the function (if RetTy is not VoidTy).  The second
1110  /// element is the outgoing token chain. It calls LowerCall to do the actual
1111  /// lowering.
1112  struct ArgListEntry {
1113    SDValue Node;
1114    const Type* Ty;
1115    bool isSExt  : 1;
1116    bool isZExt  : 1;
1117    bool isInReg : 1;
1118    bool isSRet  : 1;
1119    bool isNest  : 1;
1120    bool isByVal : 1;
1121    uint16_t Alignment;
1122
1123    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
1124      isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
1125  };
1126  typedef std::vector<ArgListEntry> ArgListTy;
1127  std::pair<SDValue, SDValue>
1128  LowerCallTo(SDValue Chain, const Type *RetTy, bool RetSExt, bool RetZExt,
1129              bool isVarArg, bool isInreg, unsigned NumFixedArgs,
1130              CallingConv::ID CallConv, bool isTailCall,
1131              bool isReturnValueUsed, SDValue Callee, ArgListTy &Args,
1132              SelectionDAG &DAG, DebugLoc dl);
1133
1134  /// LowerCall - This hook must be implemented to lower calls into the
1135  /// the specified DAG. The outgoing arguments to the call are described
1136  /// by the Outs array, and the values to be returned by the call are
1137  /// described by the Ins array. The implementation should fill in the
1138  /// InVals array with legal-type return values from the call, and return
1139  /// the resulting token chain value.
1140  virtual SDValue
1141    LowerCall(SDValue Chain, SDValue Callee,
1142              CallingConv::ID CallConv, bool isVarArg, bool &isTailCall,
1143              const SmallVectorImpl<ISD::OutputArg> &Outs,
1144              const SmallVectorImpl<ISD::InputArg> &Ins,
1145              DebugLoc dl, SelectionDAG &DAG,
1146              SmallVectorImpl<SDValue> &InVals) {
1147    assert(0 && "Not Implemented");
1148    return SDValue();    // this is here to silence compiler errors
1149  }
1150
1151  /// CanLowerReturn - This hook should be implemented to check whether the
1152  /// return values described by the Outs array can fit into the return
1153  /// registers.  If false is returned, an sret-demotion is performed.
1154  ///
1155  virtual bool CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1156               const SmallVectorImpl<EVT> &OutTys,
1157               const SmallVectorImpl<ISD::ArgFlagsTy> &ArgsFlags,
1158               SelectionDAG &DAG)
1159  {
1160    // Return true by default to get preexisting behavior.
1161    return true;
1162  }
1163  /// LowerReturn - This hook must be implemented to lower outgoing
1164  /// return values, described by the Outs array, into the specified
1165  /// DAG. The implementation should return the resulting token chain
1166  /// value.
1167  ///
1168  virtual SDValue
1169    LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1170                const SmallVectorImpl<ISD::OutputArg> &Outs,
1171                DebugLoc dl, SelectionDAG &DAG) {
1172    assert(0 && "Not Implemented");
1173    return SDValue();    // this is here to silence compiler errors
1174  }
1175
1176  /// EmitTargetCodeForMemcpy - Emit target-specific code that performs a
1177  /// memcpy. This can be used by targets to provide code sequences for cases
1178  /// that don't fit the target's parameters for simple loads/stores and can be
1179  /// more efficient than using a library call. This function can return a null
1180  /// SDValue if the target declines to use custom code and a different
1181  /// lowering strategy should be used.
1182  ///
1183  /// If AlwaysInline is true, the size is constant and the target should not
1184  /// emit any calls and is strongly encouraged to attempt to emit inline code
1185  /// even if it is beyond the usual threshold because this intrinsic is being
1186  /// expanded in a place where calls are not feasible (e.g. within the prologue
1187  /// for another call). If the target chooses to decline an AlwaysInline
1188  /// request here, legalize will resort to using simple loads and stores.
1189  virtual SDValue
1190  EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
1191                          SDValue Chain,
1192                          SDValue Op1, SDValue Op2,
1193                          SDValue Op3, unsigned Align, bool isVolatile,
1194                          bool AlwaysInline,
1195                          const Value *DstSV, uint64_t DstOff,
1196                          const Value *SrcSV, uint64_t SrcOff) {
1197    return SDValue();
1198  }
1199
1200  /// EmitTargetCodeForMemmove - Emit target-specific code that performs a
1201  /// memmove. This can be used by targets to provide code sequences for cases
1202  /// that don't fit the target's parameters for simple loads/stores and can be
1203  /// more efficient than using a library call. This function can return a null
1204  /// SDValue if the target declines to use custom code and a different
1205  /// lowering strategy should be used.
1206  virtual SDValue
1207  EmitTargetCodeForMemmove(SelectionDAG &DAG, DebugLoc dl,
1208                           SDValue Chain,
1209                           SDValue Op1, SDValue Op2,
1210                           SDValue Op3, unsigned Align, bool isVolatile,
1211                           const Value *DstSV, uint64_t DstOff,
1212                           const Value *SrcSV, uint64_t SrcOff) {
1213    return SDValue();
1214  }
1215
1216  /// EmitTargetCodeForMemset - Emit target-specific code that performs a
1217  /// memset. This can be used by targets to provide code sequences for cases
1218  /// that don't fit the target's parameters for simple stores and can be more
1219  /// efficient than using a library call. This function can return a null
1220  /// SDValue if the target declines to use custom code and a different
1221  /// lowering strategy should be used.
1222  virtual SDValue
1223  EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
1224                          SDValue Chain,
1225                          SDValue Op1, SDValue Op2,
1226                          SDValue Op3, unsigned Align, bool isVolatile,
1227                          const Value *DstSV, uint64_t DstOff) {
1228    return SDValue();
1229  }
1230
1231  /// LowerOperationWrapper - This callback is invoked by the type legalizer
1232  /// to legalize nodes with an illegal operand type but legal result types.
1233  /// It replaces the LowerOperation callback in the type Legalizer.
1234  /// The reason we can not do away with LowerOperation entirely is that
1235  /// LegalizeDAG isn't yet ready to use this callback.
1236  /// TODO: Consider merging with ReplaceNodeResults.
1237
1238  /// The target places new result values for the node in Results (their number
1239  /// and types must exactly match those of the original return values of
1240  /// the node), or leaves Results empty, which indicates that the node is not
1241  /// to be custom lowered after all.
1242  /// The default implementation calls LowerOperation.
1243  virtual void LowerOperationWrapper(SDNode *N,
1244                                     SmallVectorImpl<SDValue> &Results,
1245                                     SelectionDAG &DAG);
1246
1247  /// LowerOperation - This callback is invoked for operations that are
1248  /// unsupported by the target, which are registered to use 'custom' lowering,
1249  /// and whose defined values are all legal.
1250  /// If the target has no operations that require custom lowering, it need not
1251  /// implement this.  The default implementation of this aborts.
1252  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG);
1253
1254  /// ReplaceNodeResults - This callback is invoked when a node result type is
1255  /// illegal for the target, and the operation was registered to use 'custom'
1256  /// lowering for that result type.  The target places new result values for
1257  /// the node in Results (their number and types must exactly match those of
1258  /// the original return values of the node), or leaves Results empty, which
1259  /// indicates that the node is not to be custom lowered after all.
1260  ///
1261  /// If the target has no operations that require custom lowering, it need not
1262  /// implement this.  The default implementation aborts.
1263  virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
1264                                  SelectionDAG &DAG) {
1265    assert(0 && "ReplaceNodeResults not implemented for this target!");
1266  }
1267
1268  /// getTargetNodeName() - This method returns the name of a target specific
1269  /// DAG node.
1270  virtual const char *getTargetNodeName(unsigned Opcode) const;
1271
1272  /// createFastISel - This method returns a target specific FastISel object,
1273  /// or null if the target does not support "fast" ISel.
1274  virtual FastISel *
1275  createFastISel(MachineFunction &, MachineModuleInfo *,
1276                 DenseMap<const Value *, unsigned> &,
1277                 DenseMap<const BasicBlock *, MachineBasicBlock *> &,
1278                 DenseMap<const AllocaInst *, int> &
1279#ifndef NDEBUG
1280                 , SmallSet<Instruction*, 8> &CatchInfoLost
1281#endif
1282                 ) {
1283    return 0;
1284  }
1285
1286  //===--------------------------------------------------------------------===//
1287  // Inline Asm Support hooks
1288  //
1289
1290  /// ExpandInlineAsm - This hook allows the target to expand an inline asm
1291  /// call to be explicit llvm code if it wants to.  This is useful for
1292  /// turning simple inline asms into LLVM intrinsics, which gives the
1293  /// compiler more information about the behavior of the code.
1294  virtual bool ExpandInlineAsm(CallInst *CI) const {
1295    return false;
1296  }
1297
1298  enum ConstraintType {
1299    C_Register,            // Constraint represents specific register(s).
1300    C_RegisterClass,       // Constraint represents any of register(s) in class.
1301    C_Memory,              // Memory constraint.
1302    C_Other,               // Something else.
1303    C_Unknown              // Unsupported constraint.
1304  };
1305
1306  /// AsmOperandInfo - This contains information for each constraint that we are
1307  /// lowering.
1308  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
1309    /// ConstraintCode - This contains the actual string for the code, like "m".
1310    /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
1311    /// most closely matches the operand.
1312    std::string ConstraintCode;
1313
1314    /// ConstraintType - Information about the constraint code, e.g. Register,
1315    /// RegisterClass, Memory, Other, Unknown.
1316    TargetLowering::ConstraintType ConstraintType;
1317
1318    /// CallOperandval - If this is the result output operand or a
1319    /// clobber, this is null, otherwise it is the incoming operand to the
1320    /// CallInst.  This gets modified as the asm is processed.
1321    Value *CallOperandVal;
1322
1323    /// ConstraintVT - The ValueType for the operand value.
1324    EVT ConstraintVT;
1325
1326    /// isMatchingInputConstraint - Return true of this is an input operand that
1327    /// is a matching constraint like "4".
1328    bool isMatchingInputConstraint() const;
1329
1330    /// getMatchedOperand - If this is an input matching constraint, this method
1331    /// returns the output operand it matches.
1332    unsigned getMatchedOperand() const;
1333
1334    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
1335      : InlineAsm::ConstraintInfo(info),
1336        ConstraintType(TargetLowering::C_Unknown),
1337        CallOperandVal(0), ConstraintVT(MVT::Other) {
1338    }
1339  };
1340
1341  /// ComputeConstraintToUse - Determines the constraint code and constraint
1342  /// type to use for the specific AsmOperandInfo, setting
1343  /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
1344  /// being passed in is available, it can be passed in as Op, otherwise an
1345  /// empty SDValue can be passed. If hasMemory is true it means one of the asm
1346  /// constraint of the inline asm instruction being processed is 'm'.
1347  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1348                                      SDValue Op,
1349                                      bool hasMemory,
1350                                      SelectionDAG *DAG = 0) const;
1351
1352  /// getConstraintType - Given a constraint, return the type of constraint it
1353  /// is for this target.
1354  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
1355
1356  /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
1357  /// return a list of registers that can be used to satisfy the constraint.
1358  /// This should only be used for C_RegisterClass constraints.
1359  virtual std::vector<unsigned>
1360  getRegClassForInlineAsmConstraint(const std::string &Constraint,
1361                                    EVT VT) const;
1362
1363  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
1364  /// {edx}), return the register number and the register class for the
1365  /// register.
1366  ///
1367  /// Given a register class constraint, like 'r', if this corresponds directly
1368  /// to an LLVM register class, return a register of 0 and the register class
1369  /// pointer.
1370  ///
1371  /// This should only be used for C_Register constraints.  On error,
1372  /// this returns a register number of 0 and a null register class pointer..
1373  virtual std::pair<unsigned, const TargetRegisterClass*>
1374    getRegForInlineAsmConstraint(const std::string &Constraint,
1375                                 EVT VT) const;
1376
1377  /// LowerXConstraint - try to replace an X constraint, which matches anything,
1378  /// with another that has more specific requirements based on the type of the
1379  /// corresponding operand.  This returns null if there is no replacement to
1380  /// make.
1381  virtual const char *LowerXConstraint(EVT ConstraintVT) const;
1382
1383  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1384  /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is true
1385  /// it means one of the asm constraint of the inline asm instruction being
1386  /// processed is 'm'.
1387  virtual void LowerAsmOperandForConstraint(SDValue Op, char ConstraintLetter,
1388                                            bool hasMemory,
1389                                            std::vector<SDValue> &Ops,
1390                                            SelectionDAG &DAG) const;
1391
1392  //===--------------------------------------------------------------------===//
1393  // Instruction Emitting Hooks
1394  //
1395
1396  // EmitInstrWithCustomInserter - This method should be implemented by targets
1397  // that mark instructions with the 'usesCustomInserter' flag.  These
1398  // instructions are special in various ways, which require special support to
1399  // insert.  The specified MachineInstr is created but not inserted into any
1400  // basic blocks, and this method is called to expand it into a sequence of
1401  // instructions, potentially also creating new basic blocks and control flow.
1402  // When new basic blocks are inserted and the edges from MBB to its successors
1403  // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
1404  // DenseMap.
1405  virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
1406                                                         MachineBasicBlock *MBB,
1407                    DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const;
1408
1409  //===--------------------------------------------------------------------===//
1410  // Addressing mode description hooks (used by LSR etc).
1411  //
1412
1413  /// AddrMode - This represents an addressing mode of:
1414  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1415  /// If BaseGV is null,  there is no BaseGV.
1416  /// If BaseOffs is zero, there is no base offset.
1417  /// If HasBaseReg is false, there is no base register.
1418  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1419  /// no scale.
1420  ///
1421  struct AddrMode {
1422    GlobalValue *BaseGV;
1423    int64_t      BaseOffs;
1424    bool         HasBaseReg;
1425    int64_t      Scale;
1426    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1427  };
1428
1429  /// isLegalAddressingMode - Return true if the addressing mode represented by
1430  /// AM is legal for this target, for a load/store of the specified type.
1431  /// The type may be VoidTy, in which case only return true if the addressing
1432  /// mode is legal for a load/store of any legal type.
1433  /// TODO: Handle pre/postinc as well.
1434  virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const;
1435
1436  /// isTruncateFree - Return true if it's free to truncate a value of
1437  /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1438  /// register EAX to i16 by referencing its sub-register AX.
1439  virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const {
1440    return false;
1441  }
1442
1443  virtual bool isTruncateFree(EVT VT1, EVT VT2) const {
1444    return false;
1445  }
1446
1447  /// isZExtFree - Return true if any actual instruction that defines a
1448  /// value of type Ty1 implicitly zero-extends the value to Ty2 in the result
1449  /// register. This does not necessarily include registers defined in
1450  /// unknown ways, such as incoming arguments, or copies from unknown
1451  /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1452  /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1453  /// all instructions that define 32-bit values implicit zero-extend the
1454  /// result out to 64 bits.
1455  virtual bool isZExtFree(const Type *Ty1, const Type *Ty2) const {
1456    return false;
1457  }
1458
1459  virtual bool isZExtFree(EVT VT1, EVT VT2) const {
1460    return false;
1461  }
1462
1463  /// isNarrowingProfitable - Return true if it's profitable to narrow
1464  /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
1465  /// from i32 to i8 but not from i32 to i16.
1466  virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const {
1467    return false;
1468  }
1469
1470  /// isLegalICmpImmediate - Return true if the specified immediate is legal
1471  /// icmp immediate, that is the target has icmp instructions which can compare
1472  /// a register against the immediate without having to materialize the
1473  /// immediate into a register.
1474  virtual bool isLegalICmpImmediate(int64_t Imm) const {
1475    return true;
1476  }
1477
1478  //===--------------------------------------------------------------------===//
1479  // Div utility functions
1480  //
1481  SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG,
1482                      std::vector<SDNode*>* Created) const;
1483  SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG,
1484                      std::vector<SDNode*>* Created) const;
1485
1486
1487  //===--------------------------------------------------------------------===//
1488  // Runtime Library hooks
1489  //
1490
1491  /// setLibcallName - Rename the default libcall routine name for the specified
1492  /// libcall.
1493  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1494    LibcallRoutineNames[Call] = Name;
1495  }
1496
1497  /// getLibcallName - Get the libcall routine name for the specified libcall.
1498  ///
1499  const char *getLibcallName(RTLIB::Libcall Call) const {
1500    return LibcallRoutineNames[Call];
1501  }
1502
1503  /// setCmpLibcallCC - Override the default CondCode to be used to test the
1504  /// result of the comparison libcall against zero.
1505  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1506    CmpLibcallCCs[Call] = CC;
1507  }
1508
1509  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1510  /// the comparison libcall against zero.
1511  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1512    return CmpLibcallCCs[Call];
1513  }
1514
1515  /// setLibcallCallingConv - Set the CallingConv that should be used for the
1516  /// specified libcall.
1517  void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
1518    LibcallCallingConvs[Call] = CC;
1519  }
1520
1521  /// getLibcallCallingConv - Get the CallingConv that should be used for the
1522  /// specified libcall.
1523  CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
1524    return LibcallCallingConvs[Call];
1525  }
1526
1527private:
1528  TargetMachine &TM;
1529  const TargetData *TD;
1530  TargetLoweringObjectFile &TLOF;
1531
1532  /// PointerTy - The type to use for pointers, usually i32 or i64.
1533  ///
1534  MVT PointerTy;
1535
1536  /// IsLittleEndian - True if this is a little endian target.
1537  ///
1538  bool IsLittleEndian;
1539
1540  /// SelectIsExpensive - Tells the code generator not to expand operations
1541  /// into sequences that use the select operations if possible.
1542  bool SelectIsExpensive;
1543
1544  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1545  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1546  /// a real cost model is in place.  If we ever optimize for size, this will be
1547  /// set to true unconditionally.
1548  bool IntDivIsCheap;
1549
1550  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1551  /// srl/add/sra for a signed divide by power of two, and let the target handle
1552  /// it.
1553  bool Pow2DivIsCheap;
1554
1555  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1556  /// llvm.setjmp.  Defaults to false.
1557  bool UseUnderscoreSetJmp;
1558
1559  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1560  /// llvm.longjmp.  Defaults to false.
1561  bool UseUnderscoreLongJmp;
1562
1563  /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
1564  /// PointerTy is.
1565  MVT ShiftAmountTy;
1566
1567  /// BooleanContents - Information about the contents of the high-bits in
1568  /// boolean values held in a type wider than i1.  See getBooleanContents.
1569  BooleanContent BooleanContents;
1570
1571  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1572  /// total cycles or lowest register usage.
1573  SchedPreference SchedPreferenceInfo;
1574
1575  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1576  unsigned JumpBufSize;
1577
1578  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1579  /// buffers
1580  unsigned JumpBufAlignment;
1581
1582  /// IfCvtBlockSizeLimit - The maximum allowed size for a block to be
1583  /// if-converted.
1584  unsigned IfCvtBlockSizeLimit;
1585
1586  /// IfCvtDupBlockSizeLimit - The maximum allowed size for a block to be
1587  /// duplicated during if-conversion.
1588  unsigned IfCvtDupBlockSizeLimit;
1589
1590  /// PrefLoopAlignment - The perferred loop alignment.
1591  ///
1592  unsigned PrefLoopAlignment;
1593
1594  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1595  /// specifies the register that llvm.savestack/llvm.restorestack should save
1596  /// and restore.
1597  unsigned StackPointerRegisterToSaveRestore;
1598
1599  /// ExceptionPointerRegister - If set to a physical register, this specifies
1600  /// the register that receives the exception address on entry to a landing
1601  /// pad.
1602  unsigned ExceptionPointerRegister;
1603
1604  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1605  /// the register that receives the exception typeid on entry to a landing
1606  /// pad.
1607  unsigned ExceptionSelectorRegister;
1608
1609  /// RegClassForVT - This indicates the default register class to use for
1610  /// each ValueType the target supports natively.
1611  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1612  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1613  EVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1614
1615  /// TransformToType - For any value types we are promoting or expanding, this
1616  /// contains the value type that we are changing to.  For Expanded types, this
1617  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1618  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1619  /// by the system, this holds the same type (e.g. i32 -> i32).
1620  EVT TransformToType[MVT::LAST_VALUETYPE];
1621
1622  /// OpActions - For each operation and each value type, keep a LegalizeAction
1623  /// that indicates how instruction selection should deal with the operation.
1624  /// Most operations are Legal (aka, supported natively by the target), but
1625  /// operations that are not should be described.  Note that operations on
1626  /// non-legal value types are not described here.
1627  /// This array is accessed using VT.getSimpleVT(), so it is subject to
1628  /// the MVT::MAX_ALLOWED_VALUETYPE * 2 bits.
1629  uint64_t OpActions[MVT::MAX_ALLOWED_VALUETYPE/(sizeof(uint64_t)*4)][ISD::BUILTIN_OP_END];
1630
1631  /// LoadExtActions - For each load of load extension type and each value type,
1632  /// keep a LegalizeAction that indicates how instruction selection should deal
1633  /// with the load.
1634  uint64_t LoadExtActions[ISD::LAST_LOADEXT_TYPE];
1635
1636  /// TruncStoreActions - For each truncating store, keep a LegalizeAction that
1637  /// indicates how instruction selection should deal with the store.
1638  uint64_t TruncStoreActions[MVT::LAST_VALUETYPE];
1639
1640  /// IndexedModeActions - For each indexed mode and each value type,
1641  /// keep a pair of LegalizeAction that indicates how instruction
1642  /// selection should deal with the load / store.  The first
1643  /// dimension is now the value_type for the reference.  The second
1644  /// dimension is the load [0] vs. store[1].  The third dimension
1645  /// represents the various modes for load store.
1646  uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][2][ISD::LAST_INDEXED_MODE];
1647
1648  /// CondCodeActions - For each condition code (ISD::CondCode) keep a
1649  /// LegalizeAction that indicates how instruction selection should
1650  /// deal with the condition code.
1651  uint64_t CondCodeActions[ISD::SETCC_INVALID];
1652
1653  ValueTypeActionImpl ValueTypeActions;
1654
1655  std::vector<std::pair<EVT, TargetRegisterClass*> > AvailableRegClasses;
1656
1657  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
1658  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
1659  /// which sets a bit in this array.
1660  unsigned char
1661  TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
1662
1663  /// PromoteToType - For operations that must be promoted to a specific type,
1664  /// this holds the destination type.  This map should be sparse, so don't hold
1665  /// it as an array.
1666  ///
1667  /// Targets add entries to this map with AddPromotedToType(..), clients access
1668  /// this with getTypeToPromoteTo(..).
1669  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
1670    PromoteToType;
1671
1672  /// LibcallRoutineNames - Stores the name each libcall.
1673  ///
1674  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1675
1676  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
1677  /// of each of the comparison libcall against zero.
1678  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1679
1680  /// LibcallCallingConvs - Stores the CallingConv that should be used for each
1681  /// libcall.
1682  CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
1683
1684protected:
1685  /// When lowering \@llvm.memset this field specifies the maximum number of
1686  /// store operations that may be substituted for the call to memset. Targets
1687  /// must set this value based on the cost threshold for that target. Targets
1688  /// should assume that the memset will be done using as many of the largest
1689  /// store operations first, followed by smaller ones, if necessary, per
1690  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1691  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1692  /// store.  This only applies to setting a constant array of a constant size.
1693  /// @brief Specify maximum number of store instructions per memset call.
1694  unsigned maxStoresPerMemset;
1695
1696  /// When lowering \@llvm.memcpy this field specifies the maximum number of
1697  /// store operations that may be substituted for a call to memcpy. Targets
1698  /// must set this value based on the cost threshold for that target. Targets
1699  /// should assume that the memcpy will be done using as many of the largest
1700  /// store operations first, followed by smaller ones, if necessary, per
1701  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1702  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1703  /// and one 1-byte store. This only applies to copying a constant array of
1704  /// constant size.
1705  /// @brief Specify maximum bytes of store instructions per memcpy call.
1706  unsigned maxStoresPerMemcpy;
1707
1708  /// When lowering \@llvm.memmove this field specifies the maximum number of
1709  /// store instructions that may be substituted for a call to memmove. Targets
1710  /// must set this value based on the cost threshold for that target. Targets
1711  /// should assume that the memmove will be done using as many of the largest
1712  /// store operations first, followed by smaller ones, if necessary, per
1713  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1714  /// with 8-bit alignment would result in nine 1-byte stores.  This only
1715  /// applies to copying a constant array of constant size.
1716  /// @brief Specify maximum bytes of store instructions per memmove call.
1717  unsigned maxStoresPerMemmove;
1718
1719  /// This field specifies whether the target can benefit from code placement
1720  /// optimization.
1721  bool benefitFromCodePlacementOpt;
1722};
1723} // end llvm namespace
1724
1725#endif
1726