TargetLowering.h revision dae9cbe8d4fcd8f182a99403d67cae906bdb3175
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/Type.h"
26#include "llvm/CodeGen/SelectionDAGNodes.h"
27#include <map>
28#include <list>
29
30namespace llvm {
31  class Value;
32  class Function;
33  class TargetMachine;
34  class TargetData;
35  class TargetRegisterClass;
36  class SDNode;
37  class SDOperand;
38  class SelectionDAG;
39  class MachineBasicBlock;
40  class MachineInstr;
41
42//===----------------------------------------------------------------------===//
43/// TargetLowering - This class defines information used to lower LLVM code to
44/// legal SelectionDAG operators that the target instruction selector can accept
45/// natively.
46///
47/// This class also defines callbacks that targets must implement to lower
48/// target-specific constructs to SelectionDAG operators.
49///
50class TargetLowering {
51public:
52  /// LegalizeAction - This enum indicates whether operations are valid for a
53  /// target, and if not, what action should be used to make them valid.
54  enum LegalizeAction {
55    Legal,      // The target natively supports this operation.
56    Promote,    // This operation should be executed in a larger type.
57    Expand,     // Try to expand this to other ops, otherwise use a libcall.
58    Custom      // Use the LowerOperation hook to implement custom lowering.
59  };
60
61  enum OutOfRangeShiftAmount {
62    Undefined,  // Oversized shift amounts are undefined (default).
63    Mask,       // Shift amounts are auto masked (anded) to value size.
64    Extend      // Oversized shift pulls in zeros or sign bits.
65  };
66
67  enum SetCCResultValue {
68    UndefinedSetCCResult,          // SetCC returns a garbage/unknown extend.
69    ZeroOrOneSetCCResult,          // SetCC returns a zero extended result.
70    ZeroOrNegativeOneSetCCResult   // SetCC returns a sign extended result.
71  };
72
73  enum SchedPreference {
74    SchedulingForLatency,          // Scheduling for shortest total latency.
75    SchedulingForRegPressure       // Scheduling for lowest register pressure.
76  };
77
78  TargetLowering(TargetMachine &TM);
79  virtual ~TargetLowering();
80
81  TargetMachine &getTargetMachine() const { return TM; }
82  const TargetData *getTargetData() const { return TD; }
83
84  bool isLittleEndian() const { return IsLittleEndian; }
85  MVT::ValueType getPointerTy() const { return PointerTy; }
86  MVT::ValueType getShiftAmountTy() const { return ShiftAmountTy; }
87  OutOfRangeShiftAmount getShiftAmountFlavor() const {return ShiftAmtHandling; }
88
89  /// isSetCCExpensive - Return true if the setcc operation is expensive for
90  /// this target.
91  bool isSetCCExpensive() const { return SetCCIsExpensive; }
92
93  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
94  /// a sequence of several shifts, adds, and multiplies for this target.
95  bool isIntDivCheap() const { return IntDivIsCheap; }
96
97  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
98  /// srl/add/sra.
99  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
100
101  /// getSetCCResultTy - Return the ValueType of the result of setcc operations.
102  ///
103  MVT::ValueType getSetCCResultTy() const { return SetCCResultTy; }
104
105  /// getSetCCResultContents - For targets without boolean registers, this flag
106  /// returns information about the contents of the high-bits in the setcc
107  /// result register.
108  SetCCResultValue getSetCCResultContents() const { return SetCCResultContents;}
109
110  /// getSchedulingPreference - Return target scheduling preference.
111  SchedPreference getSchedulingPreference() const {
112    return SchedPreferenceInfo;
113  }
114
115  /// getRegClassFor - Return the register class that should be used for the
116  /// specified value type.  This may only be called on legal types.
117  TargetRegisterClass *getRegClassFor(MVT::ValueType VT) const {
118    TargetRegisterClass *RC = RegClassForVT[VT];
119    assert(RC && "This value type is not natively supported!");
120    return RC;
121  }
122
123  /// isTypeLegal - Return true if the target has native support for the
124  /// specified value type.  This means that it has a register that directly
125  /// holds it without promotions or expansions.
126  bool isTypeLegal(MVT::ValueType VT) const {
127    return RegClassForVT[VT] != 0;
128  }
129
130  class ValueTypeActionImpl {
131    /// ValueTypeActions - This is a bitvector that contains two bits for each
132    /// value type, where the two bits correspond to the LegalizeAction enum.
133    /// This can be queried with "getTypeAction(VT)".
134    uint32_t ValueTypeActions[2];
135  public:
136    ValueTypeActionImpl() {
137      ValueTypeActions[0] = ValueTypeActions[1] = 0;
138    }
139    ValueTypeActionImpl(const ValueTypeActionImpl &RHS) {
140      ValueTypeActions[0] = RHS.ValueTypeActions[0];
141      ValueTypeActions[1] = RHS.ValueTypeActions[1];
142    }
143
144    LegalizeAction getTypeAction(MVT::ValueType VT) const {
145      return (LegalizeAction)((ValueTypeActions[VT>>4] >> ((2*VT) & 31)) & 3);
146    }
147    void setTypeAction(MVT::ValueType VT, LegalizeAction Action) {
148      assert(unsigned(VT >> 4) <
149             sizeof(ValueTypeActions)/sizeof(ValueTypeActions[0]));
150      ValueTypeActions[VT>>4] |= Action << ((VT*2) & 31);
151    }
152  };
153
154  const ValueTypeActionImpl &getValueTypeActions() const {
155    return ValueTypeActions;
156  }
157
158  /// getTypeAction - Return how we should legalize values of this type, either
159  /// it is already legal (return 'Legal') or we need to promote it to a larger
160  /// type (return 'Promote'), or we need to expand it into multiple registers
161  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
162  LegalizeAction getTypeAction(MVT::ValueType VT) const {
163    return ValueTypeActions.getTypeAction(VT);
164  }
165
166  /// getTypeToTransformTo - For types supported by the target, this is an
167  /// identity function.  For types that must be promoted to larger types, this
168  /// returns the larger type to promote to.  For types that are larger than the
169  /// largest integer register, this contains one step in the expansion to get
170  /// to the smaller register.
171  MVT::ValueType getTypeToTransformTo(MVT::ValueType VT) const {
172    return TransformToType[VT];
173  }
174
175  /// getPackedTypeBreakdown - Packed types are broken down into some number of
176  /// legal scalar types.  For example, <8 x float> maps to 2 MVT::v2f32 values
177  /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
178  /// Similarly, <2 x long> turns into 4 MVT::i32 values with both PPC and X86.
179  ///
180  /// This method returns the number of registers needed, and the VT for each
181  /// register.  It also returns the VT of the PackedType elements before they
182  /// are promoted/expanded.
183  ///
184  unsigned getPackedTypeBreakdown(const PackedType *PTy,
185                                  MVT::ValueType &PTyElementVT,
186                                  MVT::ValueType &PTyLegalElementVT) const;
187
188  typedef std::vector<double>::const_iterator legal_fpimm_iterator;
189  legal_fpimm_iterator legal_fpimm_begin() const {
190    return LegalFPImmediates.begin();
191  }
192  legal_fpimm_iterator legal_fpimm_end() const {
193    return LegalFPImmediates.end();
194  }
195
196  /// isShuffleMaskLegal - Targets can use this to indicate that they only
197  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
198  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
199  /// are assumed to be legal.
200  virtual bool isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
201    return true;
202  }
203
204  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
205  /// used by Targets can use this to indicate if there is a suitable
206  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
207  /// pool entry.
208  virtual bool isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
209                                      MVT::ValueType EVT,
210                                      SelectionDAG &DAG) const {
211    return false;
212  }
213
214  /// getOperationAction - Return how this operation should be treated: either
215  /// it is legal, needs to be promoted to a larger size, needs to be
216  /// expanded to some other code sequence, or the target has a custom expander
217  /// for it.
218  LegalizeAction getOperationAction(unsigned Op, MVT::ValueType VT) const {
219    return (LegalizeAction)((OpActions[Op] >> (2*VT)) & 3);
220  }
221
222  /// isOperationLegal - Return true if the specified operation is legal on this
223  /// target.
224  bool isOperationLegal(unsigned Op, MVT::ValueType VT) const {
225    return getOperationAction(Op, VT) == Legal ||
226           getOperationAction(Op, VT) == Custom;
227  }
228
229  /// getTypeToPromoteTo - If the action for this operation is to promote, this
230  /// method returns the ValueType to promote to.
231  MVT::ValueType getTypeToPromoteTo(unsigned Op, MVT::ValueType VT) const {
232    assert(getOperationAction(Op, VT) == Promote &&
233           "This operation isn't promoted!");
234
235    // See if this has an explicit type specified.
236    std::map<std::pair<unsigned, MVT::ValueType>,
237             MVT::ValueType>::const_iterator PTTI =
238      PromoteToType.find(std::make_pair(Op, VT));
239    if (PTTI != PromoteToType.end()) return PTTI->second;
240
241    assert((MVT::isInteger(VT) || MVT::isFloatingPoint(VT)) &&
242           "Cannot autopromote this type, add it with AddPromotedToType.");
243
244    MVT::ValueType NVT = VT;
245    do {
246      NVT = (MVT::ValueType)(NVT+1);
247      assert(MVT::isInteger(NVT) == MVT::isInteger(VT) && NVT != MVT::isVoid &&
248             "Didn't find type to promote to!");
249    } while (!isTypeLegal(NVT) ||
250              getOperationAction(Op, NVT) == Promote);
251    return NVT;
252  }
253
254  /// getValueType - Return the MVT::ValueType corresponding to this LLVM type.
255  /// This is fixed by the LLVM operations except for the pointer size.
256  MVT::ValueType getValueType(const Type *Ty) const {
257    switch (Ty->getTypeID()) {
258    default: assert(0 && "Unknown type!");
259    case Type::VoidTyID:    return MVT::isVoid;
260    case Type::BoolTyID:    return MVT::i1;
261    case Type::UByteTyID:
262    case Type::SByteTyID:   return MVT::i8;
263    case Type::ShortTyID:
264    case Type::UShortTyID:  return MVT::i16;
265    case Type::IntTyID:
266    case Type::UIntTyID:    return MVT::i32;
267    case Type::LongTyID:
268    case Type::ULongTyID:   return MVT::i64;
269    case Type::FloatTyID:   return MVT::f32;
270    case Type::DoubleTyID:  return MVT::f64;
271    case Type::PointerTyID: return PointerTy;
272    case Type::PackedTyID:  return MVT::Vector;
273    }
274  }
275
276  /// getNumElements - Return the number of registers that this ValueType will
277  /// eventually require.  This is always one for all non-integer types, is
278  /// one for any types promoted to live in larger registers, but may be more
279  /// than one for types (like i64) that are split into pieces.
280  unsigned getNumElements(MVT::ValueType VT) const {
281    return NumElementsForVT[VT];
282  }
283
284  /// hasTargetDAGCombine - If true, the target has custom DAG combine
285  /// transformations that it can perform for the specified node.
286  bool hasTargetDAGCombine(ISD::NodeType NT) const {
287    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
288  }
289
290  /// This function returns the maximum number of store operations permitted
291  /// to replace a call to llvm.memset. The value is set by the target at the
292  /// performance threshold for such a replacement.
293  /// @brief Get maximum # of store operations permitted for llvm.memset
294  unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; }
295
296  /// This function returns the maximum number of store operations permitted
297  /// to replace a call to llvm.memcpy. The value is set by the target at the
298  /// performance threshold for such a replacement.
299  /// @brief Get maximum # of store operations permitted for llvm.memcpy
300  unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; }
301
302  /// This function returns the maximum number of store operations permitted
303  /// to replace a call to llvm.memmove. The value is set by the target at the
304  /// performance threshold for such a replacement.
305  /// @brief Get maximum # of store operations permitted for llvm.memmove
306  unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; }
307
308  /// This function returns true if the target allows unaligned memory accesses.
309  /// This is used, for example, in situations where an array copy/move/set is
310  /// converted to a sequence of store operations. It's use helps to ensure that
311  /// such replacements don't generate code that causes an alignment error
312  /// (trap) on the target machine.
313  /// @brief Determine if the target supports unaligned memory accesses.
314  bool allowsUnalignedMemoryAccesses() const {
315    return allowUnalignedMemoryAccesses;
316  }
317
318  /// usesUnderscoreSetJmpLongJmp - Determine if we should use _setjmp or setjmp
319  /// to implement llvm.setjmp.
320  bool usesUnderscoreSetJmpLongJmp() const {
321    return UseUnderscoreSetJmpLongJmp;
322  }
323
324  /// getStackPointerRegisterToSaveRestore - If a physical register, this
325  /// specifies the register that llvm.savestack/llvm.restorestack should save
326  /// and restore.
327  unsigned getStackPointerRegisterToSaveRestore() const {
328    return StackPointerRegisterToSaveRestore;
329  }
330
331  //===--------------------------------------------------------------------===//
332  // TargetLowering Optimization Methods
333  //
334
335  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
336  /// SDOperands for returning information from TargetLowering to its clients
337  /// that want to combine
338  struct TargetLoweringOpt {
339    SelectionDAG &DAG;
340    SDOperand Old;
341    SDOperand New;
342
343    TargetLoweringOpt(SelectionDAG &InDAG) : DAG(InDAG) {}
344
345    bool CombineTo(SDOperand O, SDOperand N) {
346      Old = O;
347      New = N;
348      return true;
349    }
350
351    /// ShrinkDemandedConstant - Check to see if the specified operand of the
352    /// specified instruction is a constant integer.  If so, check to see if there
353    /// are any bits set in the constant that are not demanded.  If so, shrink the
354    /// constant and return true.
355    bool ShrinkDemandedConstant(SDOperand Op, uint64_t Demanded);
356  };
357
358  /// MaskedValueIsZero - Return true if 'Op & Mask' is known to be zero.  We
359  /// use this predicate to simplify operations downstream.  Op and Mask are
360  /// known to be the same type.
361  bool MaskedValueIsZero(SDOperand Op, uint64_t Mask, unsigned Depth = 0)
362    const;
363
364  /// ComputeMaskedBits - Determine which of the bits specified in Mask are
365  /// known to be either zero or one and return them in the KnownZero/KnownOne
366  /// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
367  /// processing.  Targets can implement the computeMaskedBitsForTargetNode
368  /// method, to allow target nodes to be understood.
369  void ComputeMaskedBits(SDOperand Op, uint64_t Mask, uint64_t &KnownZero,
370                         uint64_t &KnownOne, unsigned Depth = 0) const;
371
372  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
373  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
374  /// use this information to simplify Op, create a new simplified DAG node and
375  /// return true, returning the original and new nodes in Old and New.
376  /// Otherwise, analyze the expression and return a mask of KnownOne and
377  /// KnownZero bits for the expression (used to simplify the caller).
378  /// The KnownZero/One bits may only be accurate for those bits in the
379  /// DemandedMask.
380  bool SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
381                            uint64_t &KnownZero, uint64_t &KnownOne,
382                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
383
384  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
385  /// Mask are known to be either zero or one and return them in the
386  /// KnownZero/KnownOne bitsets.
387  virtual void computeMaskedBitsForTargetNode(const SDOperand Op,
388                                              uint64_t Mask,
389                                              uint64_t &KnownZero,
390                                              uint64_t &KnownOne,
391                                              unsigned Depth = 0) const;
392
393  /// ComputeNumSignBits - Return the number of times the sign bit of the
394  /// register is replicated into the other bits.  We know that at least 1 bit
395  /// is always equal to the sign bit (itself), but other cases can give us
396  /// information.  For example, immediately after an "SRA X, 2", we know that
397  /// the top 3 bits are all equal to each other, so we return 3.
398  unsigned ComputeNumSignBits(SDOperand Op, unsigned Depth = 0) const;
399
400  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
401  /// targets that want to expose additional information about sign bits to the
402  /// DAG Combiner.
403  virtual unsigned ComputeNumSignBitsForTargetNode(SDOperand Op,
404                                                   unsigned Depth = 0) const;
405
406  struct DAGCombinerInfo {
407    void *DC;  // The DAG Combiner object.
408    bool BeforeLegalize;
409  public:
410    SelectionDAG &DAG;
411
412    DAGCombinerInfo(SelectionDAG &dag, bool bl, void *dc)
413      : DC(dc), BeforeLegalize(bl), DAG(dag) {}
414
415    bool isBeforeLegalize() const { return BeforeLegalize; }
416
417    void AddToWorklist(SDNode *N);
418    SDOperand CombineTo(SDNode *N, const std::vector<SDOperand> &To);
419    SDOperand CombineTo(SDNode *N, SDOperand Res);
420    SDOperand CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1);
421  };
422
423  /// PerformDAGCombine - This method will be invoked for all target nodes and
424  /// for any target-independent nodes that the target has registered with
425  /// invoke it for.
426  ///
427  /// The semantics are as follows:
428  /// Return Value:
429  ///   SDOperand.Val == 0   - No change was made
430  ///   SDOperand.Val == N   - N was replaced, is dead, and is already handled.
431  ///   otherwise            - N should be replaced by the returned Operand.
432  ///
433  /// In addition, methods provided by DAGCombinerInfo may be used to perform
434  /// more complex transformations.
435  ///
436  virtual SDOperand PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
437
438  //===--------------------------------------------------------------------===//
439  // TargetLowering Configuration Methods - These methods should be invoked by
440  // the derived class constructor to configure this object for the target.
441  //
442
443protected:
444
445  /// setShiftAmountType - Describe the type that should be used for shift
446  /// amounts.  This type defaults to the pointer type.
447  void setShiftAmountType(MVT::ValueType VT) { ShiftAmountTy = VT; }
448
449  /// setSetCCResultType - Describe the type that shoudl be used as the result
450  /// of a setcc operation.  This defaults to the pointer type.
451  void setSetCCResultType(MVT::ValueType VT) { SetCCResultTy = VT; }
452
453  /// setSetCCResultContents - Specify how the target extends the result of a
454  /// setcc operation in a register.
455  void setSetCCResultContents(SetCCResultValue Ty) { SetCCResultContents = Ty; }
456
457  /// setSchedulingPreference - Specify the target scheduling preference.
458  void setSchedulingPreference(SchedPreference Pref) {
459    SchedPreferenceInfo = Pref;
460  }
461
462  /// setShiftAmountFlavor - Describe how the target handles out of range shift
463  /// amounts.
464  void setShiftAmountFlavor(OutOfRangeShiftAmount OORSA) {
465    ShiftAmtHandling = OORSA;
466  }
467
468  /// setUseUnderscoreSetJmpLongJmp - Indicate whether this target prefers to
469  /// use _setjmp and _longjmp to or implement llvm.setjmp/llvm.longjmp or
470  /// the non _ versions.  Defaults to false.
471  void setUseUnderscoreSetJmpLongJmp(bool Val) {
472    UseUnderscoreSetJmpLongJmp = Val;
473  }
474
475  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
476  /// specifies the register that llvm.savestack/llvm.restorestack should save
477  /// and restore.
478  void setStackPointerRegisterToSaveRestore(unsigned R) {
479    StackPointerRegisterToSaveRestore = R;
480  }
481
482  /// setSetCCIxExpensive - This is a short term hack for targets that codegen
483  /// setcc as a conditional branch.  This encourages the code generator to fold
484  /// setcc operations into other operations if possible.
485  void setSetCCIsExpensive() { SetCCIsExpensive = true; }
486
487  /// setIntDivIsCheap - Tells the code generator that integer divide is
488  /// expensive, and if possible, should be replaced by an alternate sequence
489  /// of instructions not containing an integer divide.
490  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
491
492  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
493  /// srl/add/sra for a signed divide by power of two, and let the target handle
494  /// it.
495  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
496
497  /// addRegisterClass - Add the specified register class as an available
498  /// regclass for the specified value type.  This indicates the selector can
499  /// handle values of that class natively.
500  void addRegisterClass(MVT::ValueType VT, TargetRegisterClass *RC) {
501    AvailableRegClasses.push_back(std::make_pair(VT, RC));
502    RegClassForVT[VT] = RC;
503  }
504
505  /// computeRegisterProperties - Once all of the register classes are added,
506  /// this allows us to compute derived properties we expose.
507  void computeRegisterProperties();
508
509  /// setOperationAction - Indicate that the specified operation does not work
510  /// with the specified type and indicate what to do about it.
511  void setOperationAction(unsigned Op, MVT::ValueType VT,
512                          LegalizeAction Action) {
513    assert(VT < 32 && Op < sizeof(OpActions)/sizeof(OpActions[0]) &&
514           "Table isn't big enough!");
515    OpActions[Op] &= ~(3ULL << VT*2);
516    OpActions[Op] |= (uint64_t)Action << VT*2;
517  }
518
519  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
520  /// promotion code defaults to trying a larger integer/fp until it can find
521  /// one that works.  If that default is insufficient, this method can be used
522  /// by the target to override the default.
523  void AddPromotedToType(unsigned Opc, MVT::ValueType OrigVT,
524                         MVT::ValueType DestVT) {
525    PromoteToType[std::make_pair(Opc, OrigVT)] = DestVT;
526  }
527
528  /// addLegalFPImmediate - Indicate that this target can instruction select
529  /// the specified FP immediate natively.
530  void addLegalFPImmediate(double Imm) {
531    LegalFPImmediates.push_back(Imm);
532  }
533
534  /// setTargetDAGCombine - Targets should invoke this method for each target
535  /// independent node that they want to provide a custom DAG combiner for by
536  /// implementing the PerformDAGCombine virtual method.
537  void setTargetDAGCombine(ISD::NodeType NT) {
538    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
539  }
540
541public:
542
543  //===--------------------------------------------------------------------===//
544  // Lowering methods - These methods must be implemented by targets so that
545  // the SelectionDAGLowering code knows how to lower these.
546  //
547
548  /// LowerArguments - This hook must be implemented to indicate how we should
549  /// lower the arguments for the specified function, into the specified DAG.
550  virtual std::vector<SDOperand>
551  LowerArguments(Function &F, SelectionDAG &DAG);
552
553  /// LowerCallTo - This hook lowers an abstract call to a function into an
554  /// actual call.  This returns a pair of operands.  The first element is the
555  /// return value for the function (if RetTy is not VoidTy).  The second
556  /// element is the outgoing token chain.
557  typedef std::vector<std::pair<SDOperand, const Type*> > ArgListTy;
558  virtual std::pair<SDOperand, SDOperand>
559  LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg,
560              unsigned CallingConv, bool isTailCall, SDOperand Callee,
561              ArgListTy &Args, SelectionDAG &DAG) = 0;
562
563  /// LowerFrameReturnAddress - This hook lowers a call to llvm.returnaddress or
564  /// llvm.frameaddress (depending on the value of the first argument).  The
565  /// return values are the result pointer and the resultant token chain.  If
566  /// not implemented, both of these intrinsics will return null.
567  virtual std::pair<SDOperand, SDOperand>
568  LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain, unsigned Depth,
569                          SelectionDAG &DAG);
570
571  /// LowerOperation - This callback is invoked for operations that are
572  /// unsupported by the target, which are registered to use 'custom' lowering,
573  /// and whose defined values are all legal.
574  /// If the target has no operations that require custom lowering, it need not
575  /// implement this.  The default implementation of this aborts.
576  virtual SDOperand LowerOperation(SDOperand Op, SelectionDAG &DAG);
577
578  /// CustomPromoteOperation - This callback is invoked for operations that are
579  /// unsupported by the target, are registered to use 'custom' lowering, and
580  /// whose type needs to be promoted.
581  virtual SDOperand CustomPromoteOperation(SDOperand Op, SelectionDAG &DAG);
582
583  /// getTargetNodeName() - This method returns the name of a target specific
584  /// DAG node.
585  virtual const char *getTargetNodeName(unsigned Opcode) const;
586
587  //===--------------------------------------------------------------------===//
588  // Inline Asm Support hooks
589  //
590
591  enum ConstraintType {
592    C_Register,            // Constraint represents a single register.
593    C_RegisterClass,       // Constraint represents one or more registers.
594    C_Memory,              // Memory constraint.
595    C_Other,               // Something else.
596    C_Unknown              // Unsupported constraint.
597  };
598
599  /// getConstraintType - Given a constraint letter, return the type of
600  /// constraint it is for this target.
601  virtual ConstraintType getConstraintType(char ConstraintLetter) const;
602
603
604  /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
605  /// return a list of registers that can be used to satisfy the constraint.
606  /// This should only be used for C_RegisterClass constraints.
607  virtual std::vector<unsigned>
608  getRegClassForInlineAsmConstraint(const std::string &Constraint,
609                                    MVT::ValueType VT) const;
610
611  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
612  /// {edx}), return the register number and the register class for the
613  /// register.  This should only be used for C_Register constraints.  On error,
614  /// this returns a register number of 0.
615  virtual std::pair<unsigned, const TargetRegisterClass*>
616    getRegForInlineAsmConstraint(const std::string &Constraint,
617                                 MVT::ValueType VT) const;
618
619
620  /// isOperandValidForConstraint - Return true if the specified SDOperand is
621  /// valid for the specified target constraint letter.
622  virtual bool isOperandValidForConstraint(SDOperand Op, char ConstraintLetter);
623
624  //===--------------------------------------------------------------------===//
625  // Scheduler hooks
626  //
627
628  // InsertAtEndOfBasicBlock - This method should be implemented by targets that
629  // mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
630  // instructions are special in various ways, which require special support to
631  // insert.  The specified MachineInstr is created but not inserted into any
632  // basic blocks, and the scheduler passes ownership of it to this method.
633  virtual MachineBasicBlock *InsertAtEndOfBasicBlock(MachineInstr *MI,
634                                                     MachineBasicBlock *MBB);
635
636  //===--------------------------------------------------------------------===//
637  // Loop Strength Reduction hooks
638  //
639
640  /// isLegalAddressImmediate - Return true if the integer value or GlobalValue
641  /// can be used as the offset of the target addressing mode.
642  virtual bool isLegalAddressImmediate(int64_t V) const;
643  virtual bool isLegalAddressImmediate(GlobalValue *GV) const;
644
645  typedef std::vector<unsigned>::const_iterator legal_am_scale_iterator;
646  legal_am_scale_iterator legal_am_scale_begin() const {
647    return LegalAddressScales.begin();
648  }
649  legal_am_scale_iterator legal_am_scale_end() const {
650    return LegalAddressScales.end();
651  }
652
653  //===--------------------------------------------------------------------===//
654  // Div utility functions
655  //
656  SDOperand BuildSDIV(SDNode *N, SelectionDAG &DAG,
657		      std::list<SDNode*>* Created) const;
658  SDOperand BuildUDIV(SDNode *N, SelectionDAG &DAG,
659		      std::list<SDNode*>* Created) const;
660
661
662protected:
663  /// addLegalAddressScale - Add a integer (> 1) value which can be used as
664  /// scale in the target addressing mode. Note: the ordering matters so the
665  /// least efficient ones should be entered first.
666  void addLegalAddressScale(unsigned Scale) {
667    LegalAddressScales.push_back(Scale);
668  }
669
670private:
671  std::vector<unsigned> LegalAddressScales;
672
673  TargetMachine &TM;
674  const TargetData *TD;
675
676  /// IsLittleEndian - True if this is a little endian target.
677  ///
678  bool IsLittleEndian;
679
680  /// PointerTy - The type to use for pointers, usually i32 or i64.
681  ///
682  MVT::ValueType PointerTy;
683
684  /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
685  /// PointerTy is.
686  MVT::ValueType ShiftAmountTy;
687
688  OutOfRangeShiftAmount ShiftAmtHandling;
689
690  /// SetCCIsExpensive - This is a short term hack for targets that codegen
691  /// setcc as a conditional branch.  This encourages the code generator to fold
692  /// setcc operations into other operations if possible.
693  bool SetCCIsExpensive;
694
695  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
696  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
697  /// a real cost model is in place.  If we ever optimize for size, this will be
698  /// set to true unconditionally.
699  bool IntDivIsCheap;
700
701  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
702  /// srl/add/sra for a signed divide by power of two, and let the target handle
703  /// it.
704  bool Pow2DivIsCheap;
705
706  /// SetCCResultTy - The type that SetCC operations use.  This defaults to the
707  /// PointerTy.
708  MVT::ValueType SetCCResultTy;
709
710  /// SetCCResultContents - Information about the contents of the high-bits in
711  /// the result of a setcc comparison operation.
712  SetCCResultValue SetCCResultContents;
713
714  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
715  /// total cycles or lowest register usage.
716  SchedPreference SchedPreferenceInfo;
717
718  /// UseUnderscoreSetJmpLongJmp - This target prefers to use _setjmp and
719  /// _longjmp to implement llvm.setjmp/llvm.longjmp.  Defaults to false.
720  bool UseUnderscoreSetJmpLongJmp;
721
722  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
723  /// specifies the register that llvm.savestack/llvm.restorestack should save
724  /// and restore.
725  unsigned StackPointerRegisterToSaveRestore;
726
727  /// RegClassForVT - This indicates the default register class to use for
728  /// each ValueType the target supports natively.
729  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
730  unsigned char NumElementsForVT[MVT::LAST_VALUETYPE];
731
732  /// TransformToType - For any value types we are promoting or expanding, this
733  /// contains the value type that we are changing to.  For Expanded types, this
734  /// contains one step of the expand (e.g. i64 -> i32), even if there are
735  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
736  /// by the system, this holds the same type (e.g. i32 -> i32).
737  MVT::ValueType TransformToType[MVT::LAST_VALUETYPE];
738
739  /// OpActions - For each operation and each value type, keep a LegalizeAction
740  /// that indicates how instruction selection should deal with the operation.
741  /// Most operations are Legal (aka, supported natively by the target), but
742  /// operations that are not should be described.  Note that operations on
743  /// non-legal value types are not described here.
744  uint64_t OpActions[156];
745
746  ValueTypeActionImpl ValueTypeActions;
747
748  std::vector<double> LegalFPImmediates;
749
750  std::vector<std::pair<MVT::ValueType,
751                        TargetRegisterClass*> > AvailableRegClasses;
752
753  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
754  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
755  /// which sets a bit in this array.
756  unsigned char TargetDAGCombineArray[156/(sizeof(unsigned char)*8)];
757
758  /// PromoteToType - For operations that must be promoted to a specific type,
759  /// this holds the destination type.  This map should be sparse, so don't hold
760  /// it as an array.
761  ///
762  /// Targets add entries to this map with AddPromotedToType(..), clients access
763  /// this with getTypeToPromoteTo(..).
764  std::map<std::pair<unsigned, MVT::ValueType>, MVT::ValueType> PromoteToType;
765
766protected:
767  /// When lowering %llvm.memset this field specifies the maximum number of
768  /// store operations that may be substituted for the call to memset. Targets
769  /// must set this value based on the cost threshold for that target. Targets
770  /// should assume that the memset will be done using as many of the largest
771  /// store operations first, followed by smaller ones, if necessary, per
772  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
773  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
774  /// store.  This only applies to setting a constant array of a constant size.
775  /// @brief Specify maximum number of store instructions per memset call.
776  unsigned maxStoresPerMemset;
777
778  /// When lowering %llvm.memcpy this field specifies the maximum number of
779  /// store operations that may be substituted for a call to memcpy. Targets
780  /// must set this value based on the cost threshold for that target. Targets
781  /// should assume that the memcpy will be done using as many of the largest
782  /// store operations first, followed by smaller ones, if necessary, per
783  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
784  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
785  /// and one 1-byte store. This only applies to copying a constant array of
786  /// constant size.
787  /// @brief Specify maximum bytes of store instructions per memcpy call.
788  unsigned maxStoresPerMemcpy;
789
790  /// When lowering %llvm.memmove this field specifies the maximum number of
791  /// store instructions that may be substituted for a call to memmove. Targets
792  /// must set this value based on the cost threshold for that target. Targets
793  /// should assume that the memmove will be done using as many of the largest
794  /// store operations first, followed by smaller ones, if necessary, per
795  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
796  /// with 8-bit alignment would result in nine 1-byte stores.  This only
797  /// applies to copying a constant array of constant size.
798  /// @brief Specify maximum bytes of store instructions per memmove call.
799  unsigned maxStoresPerMemmove;
800
801  /// This field specifies whether the target machine permits unaligned memory
802  /// accesses.  This is used, for example, to determine the size of store
803  /// operations when copying small arrays and other similar tasks.
804  /// @brief Indicate whether the target permits unaligned memory accesses.
805  bool allowUnalignedMemoryAccesses;
806};
807} // end llvm namespace
808
809#endif
810