TargetLowering.h revision e93d99cf0742eebab859022e4cfdcf03cb9d5dfa
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/CallingConv.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Attributes.h"
28#include "llvm/CodeGen/SelectionDAGNodes.h"
29#include "llvm/CodeGen/RuntimeLibcalls.h"
30#include "llvm/ADT/APFloat.h"
31#include "llvm/ADT/DenseMap.h"
32#include "llvm/ADT/SmallSet.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/ADT/STLExtras.h"
35#include "llvm/Support/DebugLoc.h"
36#include "llvm/Target/TargetCallingConv.h"
37#include "llvm/Target/TargetMachine.h"
38#include <climits>
39#include <map>
40#include <vector>
41
42namespace llvm {
43  class AllocaInst;
44  class CallInst;
45  class Function;
46  class FastISel;
47  class FunctionLoweringInfo;
48  class ImmutableCallSite;
49  class MachineBasicBlock;
50  class MachineFunction;
51  class MachineFrameInfo;
52  class MachineInstr;
53  class MachineJumpTableInfo;
54  class MCContext;
55  class MCExpr;
56  class SDNode;
57  class SDValue;
58  class SelectionDAG;
59  class TargetData;
60  class TargetMachine;
61  class TargetRegisterClass;
62  class TargetLoweringObjectFile;
63  class Value;
64
65  // FIXME: should this be here?
66  namespace TLSModel {
67    enum Model {
68      GeneralDynamic,
69      LocalDynamic,
70      InitialExec,
71      LocalExec
72    };
73  }
74  TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc);
75
76
77//===----------------------------------------------------------------------===//
78/// TargetLowering - This class defines information used to lower LLVM code to
79/// legal SelectionDAG operators that the target instruction selector can accept
80/// natively.
81///
82/// This class also defines callbacks that targets must implement to lower
83/// target-specific constructs to SelectionDAG operators.
84///
85class TargetLowering {
86  TargetLowering(const TargetLowering&);  // DO NOT IMPLEMENT
87  void operator=(const TargetLowering&);  // DO NOT IMPLEMENT
88public:
89  /// LegalizeAction - This enum indicates whether operations are valid for a
90  /// target, and if not, what action should be used to make them valid.
91  enum LegalizeAction {
92    Legal,      // The target natively supports this operation.
93    Promote,    // This operation should be executed in a larger type.
94    Expand,     // Try to expand this to other ops, otherwise use a libcall.
95    Custom      // Use the LowerOperation hook to implement custom lowering.
96  };
97
98  enum BooleanContent { // How the target represents true/false values.
99    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
100    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
101    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
102  };
103
104  /// NOTE: The constructor takes ownership of TLOF.
105  explicit TargetLowering(const TargetMachine &TM,
106                          const TargetLoweringObjectFile *TLOF);
107  virtual ~TargetLowering();
108
109  const TargetMachine &getTargetMachine() const { return TM; }
110  const TargetData *getTargetData() const { return TD; }
111  const TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
112
113  bool isBigEndian() const { return !IsLittleEndian; }
114  bool isLittleEndian() const { return IsLittleEndian; }
115  MVT getPointerTy() const { return PointerTy; }
116  MVT getShiftAmountTy() const { return ShiftAmountTy; }
117
118  /// isSelectExpensive - Return true if the select operation is expensive for
119  /// this target.
120  bool isSelectExpensive() const { return SelectIsExpensive; }
121
122  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
123  /// a sequence of several shifts, adds, and multiplies for this target.
124  bool isIntDivCheap() const { return IntDivIsCheap; }
125
126  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
127  /// srl/add/sra.
128  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
129
130  /// getSetCCResultType - Return the ValueType of the result of SETCC
131  /// operations.  Also used to obtain the target's preferred type for
132  /// the condition operand of SELECT and BRCOND nodes.  In the case of
133  /// BRCOND the argument passed is MVT::Other since there are no other
134  /// operands to get a type hint from.
135  virtual
136  MVT::SimpleValueType getSetCCResultType(EVT VT) const;
137
138  /// getCmpLibcallReturnType - Return the ValueType for comparison
139  /// libcalls. Comparions libcalls include floating point comparion calls,
140  /// and Ordered/Unordered check calls on floating point numbers.
141  virtual
142  MVT::SimpleValueType getCmpLibcallReturnType() const;
143
144  /// getBooleanContents - For targets without i1 registers, this gives the
145  /// nature of the high-bits of boolean values held in types wider than i1.
146  /// "Boolean values" are special true/false values produced by nodes like
147  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
148  /// Not to be confused with general values promoted from i1.
149  BooleanContent getBooleanContents() const { return BooleanContents;}
150
151  /// getSchedulingPreference - Return target scheduling preference.
152  Sched::Preference getSchedulingPreference() const {
153    return SchedPreferenceInfo;
154  }
155
156  /// getSchedulingPreference - Some scheduler, e.g. hybrid, can switch to
157  /// different scheduling heuristics for different nodes. This function returns
158  /// the preference (or none) for the given node.
159  virtual Sched::Preference getSchedulingPreference(SDNode *N) const {
160    return Sched::None;
161  }
162
163  /// getRegClassFor - Return the register class that should be used for the
164  /// specified value type.
165  virtual TargetRegisterClass *getRegClassFor(EVT VT) const {
166    assert(VT.isSimple() && "getRegClassFor called on illegal type!");
167    TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
168    assert(RC && "This value type is not natively supported!");
169    return RC;
170  }
171
172  /// getRepRegClassFor - Return the 'representative' register class for the
173  /// specified value type. The 'representative' register class is the largest
174  /// legal super-reg register class for the register class of the value type.
175  /// For example, on i386 the rep register class for i8, i16, and i32 are GR32;
176  /// while the rep register class is GR64 on x86_64.
177  virtual const TargetRegisterClass *getRepRegClassFor(EVT VT) const {
178    assert(VT.isSimple() && "getRepRegClassFor called on illegal type!");
179    const TargetRegisterClass *RC = RepRegClassForVT[VT.getSimpleVT().SimpleTy];
180    return RC;
181  }
182
183  /// getRepRegClassCostFor - Return the cost of the 'representative' register
184  /// class for the specified value type.
185  virtual uint8_t getRepRegClassCostFor(EVT VT) const {
186    assert(VT.isSimple() && "getRepRegClassCostFor called on illegal type!");
187    return RepRegClassCostForVT[VT.getSimpleVT().SimpleTy];
188  }
189
190  /// getRegPressureLimit - Return the register pressure "high water mark" for
191  /// the specific register class. The scheduler is in high register pressure
192  /// mode (for the specific register class) if it goes over the limit.
193  virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC,
194                                       MachineFunction &MF) const {
195    return 0;
196  }
197
198  /// isTypeLegal - Return true if the target has native support for the
199  /// specified value type.  This means that it has a register that directly
200  /// holds it without promotions or expansions.
201  bool isTypeLegal(EVT VT) const {
202    assert(!VT.isSimple() ||
203           (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
204    return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0;
205  }
206
207  class ValueTypeActionImpl {
208    /// ValueTypeActions - For each value type, keep a LegalizeAction enum
209    /// that indicates how instruction selection should deal with the type.
210    uint8_t ValueTypeActions[MVT::LAST_VALUETYPE];
211
212    LegalizeAction getExtendedTypeAction(EVT VT) const {
213      // Handle non-vector integers.
214      if (!VT.isVector()) {
215        assert(VT.isInteger() && "Unsupported extended type!");
216        unsigned BitSize = VT.getSizeInBits();
217        // First promote to a power-of-two size, then expand if necessary.
218        if (BitSize < 8 || !isPowerOf2_32(BitSize))
219          return Promote;
220        return Expand;
221      }
222
223      // If this is a type smaller than a legal vector type, promote to that
224      // type, e.g. <2 x float> -> <4 x float>.
225      if (VT.getVectorElementType().isSimple() &&
226          VT.getVectorNumElements() != 1) {
227        MVT EltType = VT.getVectorElementType().getSimpleVT();
228        unsigned NumElts = VT.getVectorNumElements();
229        while (1) {
230          // Round up to the nearest power of 2.
231          NumElts = (unsigned)NextPowerOf2(NumElts);
232
233          MVT LargerVector = MVT::getVectorVT(EltType, NumElts);
234          if (LargerVector == MVT()) break;
235
236          // If this the larger type is legal, promote to it.
237          if (getTypeAction(LargerVector) == Legal) return Promote;
238        }
239      }
240
241      return VT.isPow2VectorType() ? Expand : Promote;
242    }
243  public:
244    ValueTypeActionImpl() {
245      std::fill(ValueTypeActions, array_endof(ValueTypeActions), 0);
246    }
247
248    LegalizeAction getTypeAction(EVT VT) const {
249      if (!VT.isExtended())
250        return getTypeAction(VT.getSimpleVT());
251      return getExtendedTypeAction(VT);
252    }
253
254    LegalizeAction getTypeAction(MVT VT) const {
255      return (LegalizeAction)ValueTypeActions[VT.SimpleTy];
256    }
257
258    void setTypeAction(EVT VT, LegalizeAction Action) {
259      unsigned I = VT.getSimpleVT().SimpleTy;
260      ValueTypeActions[I] = Action;
261    }
262  };
263
264  const ValueTypeActionImpl &getValueTypeActions() const {
265    return ValueTypeActions;
266  }
267
268  /// getTypeAction - Return how we should legalize values of this type, either
269  /// it is already legal (return 'Legal') or we need to promote it to a larger
270  /// type (return 'Promote'), or we need to expand it into multiple registers
271  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
272  LegalizeAction getTypeAction(EVT VT) const {
273    return ValueTypeActions.getTypeAction(VT);
274  }
275  LegalizeAction getTypeAction(MVT VT) const {
276    return ValueTypeActions.getTypeAction(VT);
277  }
278
279  /// getTypeToTransformTo - For types supported by the target, this is an
280  /// identity function.  For types that must be promoted to larger types, this
281  /// returns the larger type to promote to.  For integer types that are larger
282  /// than the largest integer register, this contains one step in the expansion
283  /// to get to the smaller register. For illegal floating point types, this
284  /// returns the integer type to transform to.
285  EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
286    if (VT.isSimple()) {
287      assert((unsigned)VT.getSimpleVT().SimpleTy <
288             array_lengthof(TransformToType));
289      EVT NVT = TransformToType[VT.getSimpleVT().SimpleTy];
290      assert(getTypeAction(NVT) != Promote &&
291             "Promote may not follow Expand or Promote");
292      return NVT;
293    }
294
295    if (VT.isVector()) {
296      EVT NVT = VT.getPow2VectorType(Context);
297      if (NVT == VT) {
298        // Vector length is a power of 2 - split to half the size.
299        unsigned NumElts = VT.getVectorNumElements();
300        EVT EltVT = VT.getVectorElementType();
301        return (NumElts == 1) ?
302          EltVT : EVT::getVectorVT(Context, EltVT, NumElts / 2);
303      }
304      // Promote to a power of two size, avoiding multi-step promotion.
305      return getTypeAction(NVT) == Promote ?
306        getTypeToTransformTo(Context, NVT) : NVT;
307    } else if (VT.isInteger()) {
308      EVT NVT = VT.getRoundIntegerType(Context);
309      if (NVT == VT)      // Size is a power of two - expand to half the size.
310        return EVT::getIntegerVT(Context, VT.getSizeInBits() / 2);
311
312      // Promote to a power of two size, avoiding multi-step promotion.
313      return getTypeAction(NVT) == Promote ?
314        getTypeToTransformTo(Context, NVT) : NVT;
315    }
316    assert(0 && "Unsupported extended type!");
317    return MVT(MVT::Other); // Not reached
318  }
319
320  /// getTypeToExpandTo - For types supported by the target, this is an
321  /// identity function.  For types that must be expanded (i.e. integer types
322  /// that are larger than the largest integer register or illegal floating
323  /// point types), this returns the largest legal type it will be expanded to.
324  EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
325    assert(!VT.isVector());
326    while (true) {
327      switch (getTypeAction(VT)) {
328      case Legal:
329        return VT;
330      case Expand:
331        VT = getTypeToTransformTo(Context, VT);
332        break;
333      default:
334        assert(false && "Type is not legal nor is it to be expanded!");
335        return VT;
336      }
337    }
338    return VT;
339  }
340
341  /// getVectorTypeBreakdown - Vector types are broken down into some number of
342  /// legal first class types.  For example, EVT::v8f32 maps to 2 EVT::v4f32
343  /// with Altivec or SSE1, or 8 promoted EVT::f64 values with the X86 FP stack.
344  /// Similarly, EVT::v2i64 turns into 4 EVT::i32 values with both PPC and X86.
345  ///
346  /// This method returns the number of registers needed, and the VT for each
347  /// register.  It also returns the VT and quantity of the intermediate values
348  /// before they are promoted/expanded.
349  ///
350  unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
351                                  EVT &IntermediateVT,
352                                  unsigned &NumIntermediates,
353                                  EVT &RegisterVT) const;
354
355  /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
356  /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
357  /// this is the case, it returns true and store the intrinsic
358  /// information into the IntrinsicInfo that was passed to the function.
359  struct IntrinsicInfo {
360    unsigned     opc;         // target opcode
361    EVT          memVT;       // memory VT
362    const Value* ptrVal;      // value representing memory location
363    int          offset;      // offset off of ptrVal
364    unsigned     align;       // alignment
365    bool         vol;         // is volatile?
366    bool         readMem;     // reads memory?
367    bool         writeMem;    // writes memory?
368  };
369
370  virtual bool getTgtMemIntrinsic(IntrinsicInfo &Info,
371                                  const CallInst &I, unsigned Intrinsic) const {
372    return false;
373  }
374
375  /// isFPImmLegal - Returns true if the target can instruction select the
376  /// specified FP immediate natively. If false, the legalizer will materialize
377  /// the FP immediate as a load from a constant pool.
378  virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const {
379    return false;
380  }
381
382  /// isShuffleMaskLegal - Targets can use this to indicate that they only
383  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
384  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
385  /// are assumed to be legal.
386  virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
387                                  EVT VT) const {
388    return true;
389  }
390
391  /// canOpTrap - Returns true if the operation can trap for the value type.
392  /// VT must be a legal type. By default, we optimistically assume most
393  /// operations don't trap except for divide and remainder.
394  virtual bool canOpTrap(unsigned Op, EVT VT) const;
395
396  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
397  /// used by Targets can use this to indicate if there is a suitable
398  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
399  /// pool entry.
400  virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
401                                      EVT VT) const {
402    return false;
403  }
404
405  /// getOperationAction - Return how this operation should be treated: either
406  /// it is legal, needs to be promoted to a larger size, needs to be
407  /// expanded to some other code sequence, or the target has a custom expander
408  /// for it.
409  LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
410    if (VT.isExtended()) return Expand;
411    assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
412    unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
413    return (LegalizeAction)OpActions[I][Op];
414  }
415
416  /// isOperationLegalOrCustom - Return true if the specified operation is
417  /// legal on this target or can be made legal with custom lowering. This
418  /// is used to help guide high-level lowering decisions.
419  bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
420    return (VT == MVT::Other || isTypeLegal(VT)) &&
421      (getOperationAction(Op, VT) == Legal ||
422       getOperationAction(Op, VT) == Custom);
423  }
424
425  /// isOperationLegal - Return true if the specified operation is legal on this
426  /// target.
427  bool isOperationLegal(unsigned Op, EVT VT) const {
428    return (VT == MVT::Other || isTypeLegal(VT)) &&
429           getOperationAction(Op, VT) == Legal;
430  }
431
432  /// getLoadExtAction - Return how this load with extension should be treated:
433  /// either it is legal, needs to be promoted to a larger size, needs to be
434  /// expanded to some other code sequence, or the target has a custom expander
435  /// for it.
436  LegalizeAction getLoadExtAction(unsigned ExtType, EVT VT) const {
437    assert(ExtType < ISD::LAST_LOADEXT_TYPE &&
438           (unsigned)VT.getSimpleVT().SimpleTy < MVT::LAST_VALUETYPE &&
439           "Table isn't big enough!");
440    return (LegalizeAction)LoadExtActions[VT.getSimpleVT().SimpleTy][ExtType];
441  }
442
443  /// isLoadExtLegal - Return true if the specified load with extension is legal
444  /// on this target.
445  bool isLoadExtLegal(unsigned ExtType, EVT VT) const {
446    return VT.isSimple() &&
447      (getLoadExtAction(ExtType, VT) == Legal ||
448       getLoadExtAction(ExtType, VT) == Custom);
449  }
450
451  /// getTruncStoreAction - Return how this store with truncation should be
452  /// treated: either it is legal, needs to be promoted to a larger size, needs
453  /// to be expanded to some other code sequence, or the target has a custom
454  /// expander for it.
455  LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const {
456    assert((unsigned)ValVT.getSimpleVT().SimpleTy < MVT::LAST_VALUETYPE &&
457           (unsigned)MemVT.getSimpleVT().SimpleTy < MVT::LAST_VALUETYPE &&
458           "Table isn't big enough!");
459    return (LegalizeAction)TruncStoreActions[ValVT.getSimpleVT().SimpleTy]
460                                            [MemVT.getSimpleVT().SimpleTy];
461  }
462
463  /// isTruncStoreLegal - Return true if the specified store with truncation is
464  /// legal on this target.
465  bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
466    return isTypeLegal(ValVT) && MemVT.isSimple() &&
467      (getTruncStoreAction(ValVT, MemVT) == Legal ||
468       getTruncStoreAction(ValVT, MemVT) == Custom);
469  }
470
471  /// getIndexedLoadAction - Return how the indexed load should be treated:
472  /// either it is legal, needs to be promoted to a larger size, needs to be
473  /// expanded to some other code sequence, or the target has a custom expander
474  /// for it.
475  LegalizeAction
476  getIndexedLoadAction(unsigned IdxMode, EVT VT) const {
477    assert( IdxMode < ISD::LAST_INDEXED_MODE &&
478           ((unsigned)VT.getSimpleVT().SimpleTy) < MVT::LAST_VALUETYPE &&
479           "Table isn't big enough!");
480    unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
481    return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
482  }
483
484  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
485  /// on this target.
486  bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
487    return VT.isSimple() &&
488      (getIndexedLoadAction(IdxMode, VT) == Legal ||
489       getIndexedLoadAction(IdxMode, VT) == Custom);
490  }
491
492  /// getIndexedStoreAction - Return how the indexed store should be treated:
493  /// either it is legal, needs to be promoted to a larger size, needs to be
494  /// expanded to some other code sequence, or the target has a custom expander
495  /// for it.
496  LegalizeAction
497  getIndexedStoreAction(unsigned IdxMode, EVT VT) const {
498    assert( IdxMode < ISD::LAST_INDEXED_MODE &&
499           ((unsigned)VT.getSimpleVT().SimpleTy) < MVT::LAST_VALUETYPE &&
500           "Table isn't big enough!");
501    unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
502    return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
503  }
504
505  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
506  /// on this target.
507  bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
508    return VT.isSimple() &&
509      (getIndexedStoreAction(IdxMode, VT) == Legal ||
510       getIndexedStoreAction(IdxMode, VT) == Custom);
511  }
512
513  /// getCondCodeAction - Return how the condition code should be treated:
514  /// either it is legal, needs to be expanded to some other code sequence,
515  /// or the target has a custom expander for it.
516  LegalizeAction
517  getCondCodeAction(ISD::CondCode CC, EVT VT) const {
518    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
519           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(CondCodeActions[0])*4 &&
520           "Table isn't big enough!");
521    LegalizeAction Action = (LegalizeAction)
522      ((CondCodeActions[CC] >> (2*VT.getSimpleVT().SimpleTy)) & 3);
523    assert(Action != Promote && "Can't promote condition code!");
524    return Action;
525  }
526
527  /// isCondCodeLegal - Return true if the specified condition code is legal
528  /// on this target.
529  bool isCondCodeLegal(ISD::CondCode CC, EVT VT) const {
530    return getCondCodeAction(CC, VT) == Legal ||
531           getCondCodeAction(CC, VT) == Custom;
532  }
533
534
535  /// getTypeToPromoteTo - If the action for this operation is to promote, this
536  /// method returns the ValueType to promote to.
537  EVT getTypeToPromoteTo(unsigned Op, EVT VT) const {
538    assert(getOperationAction(Op, VT) == Promote &&
539           "This operation isn't promoted!");
540
541    // See if this has an explicit type specified.
542    std::map<std::pair<unsigned, MVT::SimpleValueType>,
543             MVT::SimpleValueType>::const_iterator PTTI =
544      PromoteToType.find(std::make_pair(Op, VT.getSimpleVT().SimpleTy));
545    if (PTTI != PromoteToType.end()) return PTTI->second;
546
547    assert((VT.isInteger() || VT.isFloatingPoint()) &&
548           "Cannot autopromote this type, add it with AddPromotedToType.");
549
550    EVT NVT = VT;
551    do {
552      NVT = (MVT::SimpleValueType)(NVT.getSimpleVT().SimpleTy+1);
553      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
554             "Didn't find type to promote to!");
555    } while (!isTypeLegal(NVT) ||
556              getOperationAction(Op, NVT) == Promote);
557    return NVT;
558  }
559
560  /// getValueType - Return the EVT corresponding to this LLVM type.
561  /// This is fixed by the LLVM operations except for the pointer size.  If
562  /// AllowUnknown is true, this will return MVT::Other for types with no EVT
563  /// counterpart (e.g. structs), otherwise it will assert.
564  EVT getValueType(const Type *Ty, bool AllowUnknown = false) const {
565    EVT VT = EVT::getEVT(Ty, AllowUnknown);
566    return VT == MVT::iPTR ? PointerTy : VT;
567  }
568
569  /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
570  /// function arguments in the caller parameter area.  This is the actual
571  /// alignment, not its logarithm.
572  virtual unsigned getByValTypeAlignment(const Type *Ty) const;
573
574  /// getRegisterType - Return the type of registers that this ValueType will
575  /// eventually require.
576  EVT getRegisterType(MVT VT) const {
577    assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
578    return RegisterTypeForVT[VT.SimpleTy];
579  }
580
581  /// getRegisterType - Return the type of registers that this ValueType will
582  /// eventually require.
583  EVT getRegisterType(LLVMContext &Context, EVT VT) const {
584    if (VT.isSimple()) {
585      assert((unsigned)VT.getSimpleVT().SimpleTy <
586                array_lengthof(RegisterTypeForVT));
587      return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
588    }
589    if (VT.isVector()) {
590      EVT VT1, RegisterVT;
591      unsigned NumIntermediates;
592      (void)getVectorTypeBreakdown(Context, VT, VT1,
593                                   NumIntermediates, RegisterVT);
594      return RegisterVT;
595    }
596    if (VT.isInteger()) {
597      return getRegisterType(Context, getTypeToTransformTo(Context, VT));
598    }
599    assert(0 && "Unsupported extended type!");
600    return EVT(MVT::Other); // Not reached
601  }
602
603  /// getNumRegisters - Return the number of registers that this ValueType will
604  /// eventually require.  This is one for any types promoted to live in larger
605  /// registers, but may be more than one for types (like i64) that are split
606  /// into pieces.  For types like i140, which are first promoted then expanded,
607  /// it is the number of registers needed to hold all the bits of the original
608  /// type.  For an i140 on a 32 bit machine this means 5 registers.
609  unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
610    if (VT.isSimple()) {
611      assert((unsigned)VT.getSimpleVT().SimpleTy <
612                array_lengthof(NumRegistersForVT));
613      return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
614    }
615    if (VT.isVector()) {
616      EVT VT1, VT2;
617      unsigned NumIntermediates;
618      return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
619    }
620    if (VT.isInteger()) {
621      unsigned BitWidth = VT.getSizeInBits();
622      unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
623      return (BitWidth + RegWidth - 1) / RegWidth;
624    }
625    assert(0 && "Unsupported extended type!");
626    return 0; // Not reached
627  }
628
629  /// ShouldShrinkFPConstant - If true, then instruction selection should
630  /// seek to shrink the FP constant of the specified type to a smaller type
631  /// in order to save space and / or reduce runtime.
632  virtual bool ShouldShrinkFPConstant(EVT VT) const { return true; }
633
634  /// hasTargetDAGCombine - If true, the target has custom DAG combine
635  /// transformations that it can perform for the specified node.
636  bool hasTargetDAGCombine(ISD::NodeType NT) const {
637    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
638    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
639  }
640
641  /// This function returns the maximum number of store operations permitted
642  /// to replace a call to llvm.memset. The value is set by the target at the
643  /// performance threshold for such a replacement.
644  /// @brief Get maximum # of store operations permitted for llvm.memset
645  unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; }
646
647  /// This function returns the maximum number of store operations permitted
648  /// to replace a call to llvm.memcpy. The value is set by the target at the
649  /// performance threshold for such a replacement.
650  /// @brief Get maximum # of store operations permitted for llvm.memcpy
651  unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; }
652
653  /// This function returns the maximum number of store operations permitted
654  /// to replace a call to llvm.memmove. The value is set by the target at the
655  /// performance threshold for such a replacement.
656  /// @brief Get maximum # of store operations permitted for llvm.memmove
657  unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; }
658
659  /// This function returns true if the target allows unaligned memory accesses.
660  /// of the specified type. This is used, for example, in situations where an
661  /// array copy/move/set is  converted to a sequence of store operations. It's
662  /// use helps to ensure that such replacements don't generate code that causes
663  /// an alignment error  (trap) on the target machine.
664  /// @brief Determine if the target supports unaligned memory accesses.
665  virtual bool allowsUnalignedMemoryAccesses(EVT VT) const {
666    return false;
667  }
668
669  /// This function returns true if the target would benefit from code placement
670  /// optimization.
671  /// @brief Determine if the target should perform code placement optimization.
672  bool shouldOptimizeCodePlacement() const {
673    return benefitFromCodePlacementOpt;
674  }
675
676  /// getOptimalMemOpType - Returns the target specific optimal type for load
677  /// and store operations as a result of memset, memcpy, and memmove
678  /// lowering. If DstAlign is zero that means it's safe to destination
679  /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
680  /// means there isn't a need to check it against alignment requirement,
681  /// probably because the source does not need to be loaded. If
682  /// 'NonScalarIntSafe' is true, that means it's safe to return a
683  /// non-scalar-integer type, e.g. empty string source, constant, or loaded
684  /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
685  /// constant so it does not need to be loaded.
686  /// It returns EVT::Other if the type should be determined using generic
687  /// target-independent logic.
688  virtual EVT getOptimalMemOpType(uint64_t Size,
689                                  unsigned DstAlign, unsigned SrcAlign,
690                                  bool NonScalarIntSafe, bool MemcpyStrSrc,
691                                  MachineFunction &MF) const {
692    return MVT::Other;
693  }
694
695  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
696  /// to implement llvm.setjmp.
697  bool usesUnderscoreSetJmp() const {
698    return UseUnderscoreSetJmp;
699  }
700
701  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
702  /// to implement llvm.longjmp.
703  bool usesUnderscoreLongJmp() const {
704    return UseUnderscoreLongJmp;
705  }
706
707  /// getStackPointerRegisterToSaveRestore - If a physical register, this
708  /// specifies the register that llvm.savestack/llvm.restorestack should save
709  /// and restore.
710  unsigned getStackPointerRegisterToSaveRestore() const {
711    return StackPointerRegisterToSaveRestore;
712  }
713
714  /// getExceptionAddressRegister - If a physical register, this returns
715  /// the register that receives the exception address on entry to a landing
716  /// pad.
717  unsigned getExceptionAddressRegister() const {
718    return ExceptionPointerRegister;
719  }
720
721  /// getExceptionSelectorRegister - If a physical register, this returns
722  /// the register that receives the exception typeid on entry to a landing
723  /// pad.
724  unsigned getExceptionSelectorRegister() const {
725    return ExceptionSelectorRegister;
726  }
727
728  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
729  /// set, the default is 200)
730  unsigned getJumpBufSize() const {
731    return JumpBufSize;
732  }
733
734  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
735  /// (if never set, the default is 0)
736  unsigned getJumpBufAlignment() const {
737    return JumpBufAlignment;
738  }
739
740  /// getMinStackArgumentAlignment - return the minimum stack alignment of an
741  /// argument.
742  unsigned getMinStackArgumentAlignment() const {
743    return MinStackArgumentAlignment;
744  }
745
746  /// getPrefLoopAlignment - return the preferred loop alignment.
747  ///
748  unsigned getPrefLoopAlignment() const {
749    return PrefLoopAlignment;
750  }
751
752  /// getShouldFoldAtomicFences - return whether the combiner should fold
753  /// fence MEMBARRIER instructions into the atomic intrinsic instructions.
754  ///
755  bool getShouldFoldAtomicFences() const {
756    return ShouldFoldAtomicFences;
757  }
758
759  /// getPreIndexedAddressParts - returns true by value, base pointer and
760  /// offset pointer and addressing mode by reference if the node's address
761  /// can be legally represented as pre-indexed load / store address.
762  virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
763                                         SDValue &Offset,
764                                         ISD::MemIndexedMode &AM,
765                                         SelectionDAG &DAG) const {
766    return false;
767  }
768
769  /// getPostIndexedAddressParts - returns true by value, base pointer and
770  /// offset pointer and addressing mode by reference if this node can be
771  /// combined with a load / store to form a post-indexed load / store.
772  virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
773                                          SDValue &Base, SDValue &Offset,
774                                          ISD::MemIndexedMode &AM,
775                                          SelectionDAG &DAG) const {
776    return false;
777  }
778
779  /// getJumpTableEncoding - Return the entry encoding for a jump table in the
780  /// current function.  The returned value is a member of the
781  /// MachineJumpTableInfo::JTEntryKind enum.
782  virtual unsigned getJumpTableEncoding() const;
783
784  virtual const MCExpr *
785  LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
786                            const MachineBasicBlock *MBB, unsigned uid,
787                            MCContext &Ctx) const {
788    assert(0 && "Need to implement this hook if target has custom JTIs");
789    return 0;
790  }
791
792  /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
793  /// jumptable.
794  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
795                                           SelectionDAG &DAG) const;
796
797  /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
798  /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
799  /// MCExpr.
800  virtual const MCExpr *
801  getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
802                               unsigned JTI, MCContext &Ctx) const;
803
804  /// isOffsetFoldingLegal - Return true if folding a constant offset
805  /// with the given GlobalAddress is legal.  It is frequently not legal in
806  /// PIC relocation models.
807  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
808
809  /// getFunctionAlignment - Return the Log2 alignment of this function.
810  virtual unsigned getFunctionAlignment(const Function *) const = 0;
811
812  /// getStackCookieLocation - Return true if the target stores stack
813  /// protector cookies at a fixed offset in some non-standard address
814  /// space, and populates the address space and offset as
815  /// appropriate.
816  virtual bool getStackCookieLocation(unsigned &AddressSpace, unsigned &Offset) const {
817    return false;
818  }
819
820  /// getMaximalGlobalOffset - Returns the maximal possible offset which can be
821  /// used for loads / stores from the global.
822  virtual unsigned getMaximalGlobalOffset() const {
823    return 0;
824  }
825
826  //===--------------------------------------------------------------------===//
827  // TargetLowering Optimization Methods
828  //
829
830  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
831  /// SDValues for returning information from TargetLowering to its clients
832  /// that want to combine
833  struct TargetLoweringOpt {
834    SelectionDAG &DAG;
835    bool LegalTys;
836    bool LegalOps;
837    SDValue Old;
838    SDValue New;
839
840    explicit TargetLoweringOpt(SelectionDAG &InDAG,
841                               bool LT, bool LO) :
842      DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
843
844    bool LegalTypes() const { return LegalTys; }
845    bool LegalOperations() const { return LegalOps; }
846
847    bool CombineTo(SDValue O, SDValue N) {
848      Old = O;
849      New = N;
850      return true;
851    }
852
853    /// ShrinkDemandedConstant - Check to see if the specified operand of the
854    /// specified instruction is a constant integer.  If so, check to see if
855    /// there are any bits set in the constant that are not demanded.  If so,
856    /// shrink the constant and return true.
857    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
858
859    /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
860    /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
861    /// cast, but it could be generalized for targets with other types of
862    /// implicit widening casts.
863    bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
864                          DebugLoc dl);
865  };
866
867  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
868  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
869  /// use this information to simplify Op, create a new simplified DAG node and
870  /// return true, returning the original and new nodes in Old and New.
871  /// Otherwise, analyze the expression and return a mask of KnownOne and
872  /// KnownZero bits for the expression (used to simplify the caller).
873  /// The KnownZero/One bits may only be accurate for those bits in the
874  /// DemandedMask.
875  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
876                            APInt &KnownZero, APInt &KnownOne,
877                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
878
879  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
880  /// Mask are known to be either zero or one and return them in the
881  /// KnownZero/KnownOne bitsets.
882  virtual void computeMaskedBitsForTargetNode(const SDValue Op,
883                                              const APInt &Mask,
884                                              APInt &KnownZero,
885                                              APInt &KnownOne,
886                                              const SelectionDAG &DAG,
887                                              unsigned Depth = 0) const;
888
889  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
890  /// targets that want to expose additional information about sign bits to the
891  /// DAG Combiner.
892  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
893                                                   unsigned Depth = 0) const;
894
895  struct DAGCombinerInfo {
896    void *DC;  // The DAG Combiner object.
897    bool BeforeLegalize;
898    bool BeforeLegalizeOps;
899    bool CalledByLegalizer;
900  public:
901    SelectionDAG &DAG;
902
903    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool blo, bool cl, void *dc)
904      : DC(dc), BeforeLegalize(bl), BeforeLegalizeOps(blo),
905        CalledByLegalizer(cl), DAG(dag) {}
906
907    bool isBeforeLegalize() const { return BeforeLegalize; }
908    bool isBeforeLegalizeOps() const { return BeforeLegalizeOps; }
909    bool isCalledByLegalizer() const { return CalledByLegalizer; }
910
911    void AddToWorklist(SDNode *N);
912    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
913                      bool AddTo = true);
914    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
915    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
916
917    void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
918  };
919
920  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
921  /// and cc. If it is unable to simplify it, return a null SDValue.
922  SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
923                          ISD::CondCode Cond, bool foldBooleans,
924                          DAGCombinerInfo &DCI, DebugLoc dl) const;
925
926  /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
927  /// node is a GlobalAddress + offset.
928  virtual bool
929  isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
930
931  /// PerformDAGCombine - This method will be invoked for all target nodes and
932  /// for any target-independent nodes that the target has registered with
933  /// invoke it for.
934  ///
935  /// The semantics are as follows:
936  /// Return Value:
937  ///   SDValue.Val == 0   - No change was made
938  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
939  ///   otherwise          - N should be replaced by the returned Operand.
940  ///
941  /// In addition, methods provided by DAGCombinerInfo may be used to perform
942  /// more complex transformations.
943  ///
944  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
945
946  /// isTypeDesirableForOp - Return true if the target has native support for
947  /// the specified value type and it is 'desirable' to use the type for the
948  /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
949  /// instruction encodings are longer and some i16 instructions are slow.
950  virtual bool isTypeDesirableForOp(unsigned Opc, EVT VT) const {
951    // By default, assume all legal types are desirable.
952    return isTypeLegal(VT);
953  }
954
955  /// IsDesirableToPromoteOp - This method query the target whether it is
956  /// beneficial for dag combiner to promote the specified node. If true, it
957  /// should return the desired promotion type by reference.
958  virtual bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
959    return false;
960  }
961
962  //===--------------------------------------------------------------------===//
963  // TargetLowering Configuration Methods - These methods should be invoked by
964  // the derived class constructor to configure this object for the target.
965  //
966
967protected:
968  /// setShiftAmountType - Describe the type that should be used for shift
969  /// amounts.  This type defaults to the pointer type.
970  void setShiftAmountType(MVT VT) { ShiftAmountTy = VT; }
971
972  /// setBooleanContents - Specify how the target extends the result of a
973  /// boolean value from i1 to a wider type.  See getBooleanContents.
974  void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
975
976  /// setSchedulingPreference - Specify the target scheduling preference.
977  void setSchedulingPreference(Sched::Preference Pref) {
978    SchedPreferenceInfo = Pref;
979  }
980
981  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
982  /// use _setjmp to implement llvm.setjmp or the non _ version.
983  /// Defaults to false.
984  void setUseUnderscoreSetJmp(bool Val) {
985    UseUnderscoreSetJmp = Val;
986  }
987
988  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
989  /// use _longjmp to implement llvm.longjmp or the non _ version.
990  /// Defaults to false.
991  void setUseUnderscoreLongJmp(bool Val) {
992    UseUnderscoreLongJmp = Val;
993  }
994
995  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
996  /// specifies the register that llvm.savestack/llvm.restorestack should save
997  /// and restore.
998  void setStackPointerRegisterToSaveRestore(unsigned R) {
999    StackPointerRegisterToSaveRestore = R;
1000  }
1001
1002  /// setExceptionPointerRegister - If set to a physical register, this sets
1003  /// the register that receives the exception address on entry to a landing
1004  /// pad.
1005  void setExceptionPointerRegister(unsigned R) {
1006    ExceptionPointerRegister = R;
1007  }
1008
1009  /// setExceptionSelectorRegister - If set to a physical register, this sets
1010  /// the register that receives the exception typeid on entry to a landing
1011  /// pad.
1012  void setExceptionSelectorRegister(unsigned R) {
1013    ExceptionSelectorRegister = R;
1014  }
1015
1016  /// SelectIsExpensive - Tells the code generator not to expand operations
1017  /// into sequences that use the select operations if possible.
1018  void setSelectIsExpensive() { SelectIsExpensive = true; }
1019
1020  /// setIntDivIsCheap - Tells the code generator that integer divide is
1021  /// expensive, and if possible, should be replaced by an alternate sequence
1022  /// of instructions not containing an integer divide.
1023  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
1024
1025  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
1026  /// srl/add/sra for a signed divide by power of two, and let the target handle
1027  /// it.
1028  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
1029
1030  /// addRegisterClass - Add the specified register class as an available
1031  /// regclass for the specified value type.  This indicates the selector can
1032  /// handle values of that class natively.
1033  void addRegisterClass(EVT VT, TargetRegisterClass *RC) {
1034    assert((unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
1035    AvailableRegClasses.push_back(std::make_pair(VT, RC));
1036    RegClassForVT[VT.getSimpleVT().SimpleTy] = RC;
1037  }
1038
1039  /// findRepresentativeClass - Return the largest legal super-reg register class
1040  /// of the register class for the specified type and its associated "cost".
1041  virtual std::pair<const TargetRegisterClass*, uint8_t>
1042  findRepresentativeClass(EVT VT) const;
1043
1044  /// computeRegisterProperties - Once all of the register classes are added,
1045  /// this allows us to compute derived properties we expose.
1046  void computeRegisterProperties();
1047
1048  /// setOperationAction - Indicate that the specified operation does not work
1049  /// with the specified type and indicate what to do about it.
1050  void setOperationAction(unsigned Op, MVT VT,
1051                          LegalizeAction Action) {
1052    assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
1053    OpActions[(unsigned)VT.SimpleTy][Op] = (uint8_t)Action;
1054  }
1055
1056  /// setLoadExtAction - Indicate that the specified load with extension does
1057  /// not work with the specified type and indicate what to do about it.
1058  void setLoadExtAction(unsigned ExtType, MVT VT,
1059                        LegalizeAction Action) {
1060    assert(ExtType < ISD::LAST_LOADEXT_TYPE &&
1061           (unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1062           "Table isn't big enough!");
1063    LoadExtActions[VT.SimpleTy][ExtType] = (uint8_t)Action;
1064  }
1065
1066  /// setTruncStoreAction - Indicate that the specified truncating store does
1067  /// not work with the specified type and indicate what to do about it.
1068  void setTruncStoreAction(MVT ValVT, MVT MemVT,
1069                           LegalizeAction Action) {
1070    assert((unsigned)ValVT.SimpleTy < MVT::LAST_VALUETYPE &&
1071           (unsigned)MemVT.SimpleTy < MVT::LAST_VALUETYPE &&
1072           "Table isn't big enough!");
1073    TruncStoreActions[ValVT.SimpleTy][MemVT.SimpleTy] = (uint8_t)Action;
1074  }
1075
1076  /// setIndexedLoadAction - Indicate that the specified indexed load does or
1077  /// does not work with the specified type and indicate what to do abort
1078  /// it. NOTE: All indexed mode loads are initialized to Expand in
1079  /// TargetLowering.cpp
1080  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
1081                            LegalizeAction Action) {
1082    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1083           IdxMode < ISD::LAST_INDEXED_MODE &&
1084           (unsigned)Action < 0xf &&
1085           "Table isn't big enough!");
1086    // Load action are kept in the upper half.
1087    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
1088    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
1089  }
1090
1091  /// setIndexedStoreAction - Indicate that the specified indexed store does or
1092  /// does not work with the specified type and indicate what to do about
1093  /// it. NOTE: All indexed mode stores are initialized to Expand in
1094  /// TargetLowering.cpp
1095  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
1096                             LegalizeAction Action) {
1097    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1098           IdxMode < ISD::LAST_INDEXED_MODE &&
1099           (unsigned)Action < 0xf &&
1100           "Table isn't big enough!");
1101    // Store action are kept in the lower half.
1102    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
1103    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
1104  }
1105
1106  /// setCondCodeAction - Indicate that the specified condition code is or isn't
1107  /// supported on the target and indicate what to do about it.
1108  void setCondCodeAction(ISD::CondCode CC, MVT VT,
1109                         LegalizeAction Action) {
1110    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1111           (unsigned)CC < array_lengthof(CondCodeActions) &&
1112           "Table isn't big enough!");
1113    CondCodeActions[(unsigned)CC] &= ~(uint64_t(3UL)  << VT.SimpleTy*2);
1114    CondCodeActions[(unsigned)CC] |= (uint64_t)Action << VT.SimpleTy*2;
1115  }
1116
1117  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
1118  /// promotion code defaults to trying a larger integer/fp until it can find
1119  /// one that works.  If that default is insufficient, this method can be used
1120  /// by the target to override the default.
1121  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1122    PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
1123  }
1124
1125  /// setTargetDAGCombine - Targets should invoke this method for each target
1126  /// independent node that they want to provide a custom DAG combiner for by
1127  /// implementing the PerformDAGCombine virtual method.
1128  void setTargetDAGCombine(ISD::NodeType NT) {
1129    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1130    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1131  }
1132
1133  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
1134  /// bytes); default is 200
1135  void setJumpBufSize(unsigned Size) {
1136    JumpBufSize = Size;
1137  }
1138
1139  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
1140  /// alignment (in bytes); default is 0
1141  void setJumpBufAlignment(unsigned Align) {
1142    JumpBufAlignment = Align;
1143  }
1144
1145  /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
1146  /// alignment is zero, it means the target does not care about loop alignment.
1147  void setPrefLoopAlignment(unsigned Align) {
1148    PrefLoopAlignment = Align;
1149  }
1150
1151  /// setMinStackArgumentAlignment - Set the minimum stack alignment of an
1152  /// argument.
1153  void setMinStackArgumentAlignment(unsigned Align) {
1154    MinStackArgumentAlignment = Align;
1155  }
1156
1157  /// setShouldFoldAtomicFences - Set if the target's implementation of the
1158  /// atomic operation intrinsics includes locking. Default is false.
1159  void setShouldFoldAtomicFences(bool fold) {
1160    ShouldFoldAtomicFences = fold;
1161  }
1162
1163public:
1164  //===--------------------------------------------------------------------===//
1165  // Lowering methods - These methods must be implemented by targets so that
1166  // the SelectionDAGLowering code knows how to lower these.
1167  //
1168
1169  /// LowerFormalArguments - This hook must be implemented to lower the
1170  /// incoming (formal) arguments, described by the Ins array, into the
1171  /// specified DAG. The implementation should fill in the InVals array
1172  /// with legal-type argument values, and return the resulting token
1173  /// chain value.
1174  ///
1175  virtual SDValue
1176    LowerFormalArguments(SDValue Chain,
1177                         CallingConv::ID CallConv, bool isVarArg,
1178                         const SmallVectorImpl<ISD::InputArg> &Ins,
1179                         DebugLoc dl, SelectionDAG &DAG,
1180                         SmallVectorImpl<SDValue> &InVals) const {
1181    assert(0 && "Not Implemented");
1182    return SDValue();    // this is here to silence compiler errors
1183  }
1184
1185  /// LowerCallTo - This function lowers an abstract call to a function into an
1186  /// actual call.  This returns a pair of operands.  The first element is the
1187  /// return value for the function (if RetTy is not VoidTy).  The second
1188  /// element is the outgoing token chain. It calls LowerCall to do the actual
1189  /// lowering.
1190  struct ArgListEntry {
1191    SDValue Node;
1192    const Type* Ty;
1193    bool isSExt  : 1;
1194    bool isZExt  : 1;
1195    bool isInReg : 1;
1196    bool isSRet  : 1;
1197    bool isNest  : 1;
1198    bool isByVal : 1;
1199    uint16_t Alignment;
1200
1201    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
1202      isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
1203  };
1204  typedef std::vector<ArgListEntry> ArgListTy;
1205  std::pair<SDValue, SDValue>
1206  LowerCallTo(SDValue Chain, const Type *RetTy, bool RetSExt, bool RetZExt,
1207              bool isVarArg, bool isInreg, unsigned NumFixedArgs,
1208              CallingConv::ID CallConv, bool isTailCall,
1209              bool isReturnValueUsed, SDValue Callee, ArgListTy &Args,
1210              SelectionDAG &DAG, DebugLoc dl) const;
1211
1212  /// LowerCall - This hook must be implemented to lower calls into the
1213  /// the specified DAG. The outgoing arguments to the call are described
1214  /// by the Outs array, and the values to be returned by the call are
1215  /// described by the Ins array. The implementation should fill in the
1216  /// InVals array with legal-type return values from the call, and return
1217  /// the resulting token chain value.
1218  virtual SDValue
1219    LowerCall(SDValue Chain, SDValue Callee,
1220              CallingConv::ID CallConv, bool isVarArg, bool &isTailCall,
1221              const SmallVectorImpl<ISD::OutputArg> &Outs,
1222              const SmallVectorImpl<SDValue> &OutVals,
1223              const SmallVectorImpl<ISD::InputArg> &Ins,
1224              DebugLoc dl, SelectionDAG &DAG,
1225              SmallVectorImpl<SDValue> &InVals) const {
1226    assert(0 && "Not Implemented");
1227    return SDValue();    // this is here to silence compiler errors
1228  }
1229
1230  /// CanLowerReturn - This hook should be implemented to check whether the
1231  /// return values described by the Outs array can fit into the return
1232  /// registers.  If false is returned, an sret-demotion is performed.
1233  ///
1234  virtual bool CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1235               const SmallVectorImpl<ISD::OutputArg> &Outs,
1236               LLVMContext &Context) const
1237  {
1238    // Return true by default to get preexisting behavior.
1239    return true;
1240  }
1241
1242  /// LowerReturn - This hook must be implemented to lower outgoing
1243  /// return values, described by the Outs array, into the specified
1244  /// DAG. The implementation should return the resulting token chain
1245  /// value.
1246  ///
1247  virtual SDValue
1248    LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1249                const SmallVectorImpl<ISD::OutputArg> &Outs,
1250                const SmallVectorImpl<SDValue> &OutVals,
1251                DebugLoc dl, SelectionDAG &DAG) const {
1252    assert(0 && "Not Implemented");
1253    return SDValue();    // this is here to silence compiler errors
1254  }
1255
1256  /// LowerOperationWrapper - This callback is invoked by the type legalizer
1257  /// to legalize nodes with an illegal operand type but legal result types.
1258  /// It replaces the LowerOperation callback in the type Legalizer.
1259  /// The reason we can not do away with LowerOperation entirely is that
1260  /// LegalizeDAG isn't yet ready to use this callback.
1261  /// TODO: Consider merging with ReplaceNodeResults.
1262
1263  /// The target places new result values for the node in Results (their number
1264  /// and types must exactly match those of the original return values of
1265  /// the node), or leaves Results empty, which indicates that the node is not
1266  /// to be custom lowered after all.
1267  /// The default implementation calls LowerOperation.
1268  virtual void LowerOperationWrapper(SDNode *N,
1269                                     SmallVectorImpl<SDValue> &Results,
1270                                     SelectionDAG &DAG) const;
1271
1272  /// LowerOperation - This callback is invoked for operations that are
1273  /// unsupported by the target, which are registered to use 'custom' lowering,
1274  /// and whose defined values are all legal.
1275  /// If the target has no operations that require custom lowering, it need not
1276  /// implement this.  The default implementation of this aborts.
1277  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
1278
1279  /// ReplaceNodeResults - This callback is invoked when a node result type is
1280  /// illegal for the target, and the operation was registered to use 'custom'
1281  /// lowering for that result type.  The target places new result values for
1282  /// the node in Results (their number and types must exactly match those of
1283  /// the original return values of the node), or leaves Results empty, which
1284  /// indicates that the node is not to be custom lowered after all.
1285  ///
1286  /// If the target has no operations that require custom lowering, it need not
1287  /// implement this.  The default implementation aborts.
1288  virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
1289                                  SelectionDAG &DAG) const {
1290    assert(0 && "ReplaceNodeResults not implemented for this target!");
1291  }
1292
1293  /// getTargetNodeName() - This method returns the name of a target specific
1294  /// DAG node.
1295  virtual const char *getTargetNodeName(unsigned Opcode) const;
1296
1297  /// createFastISel - This method returns a target specific FastISel object,
1298  /// or null if the target does not support "fast" ISel.
1299  virtual FastISel *createFastISel(FunctionLoweringInfo &funcInfo) const {
1300    return 0;
1301  }
1302
1303  //===--------------------------------------------------------------------===//
1304  // Inline Asm Support hooks
1305  //
1306
1307  /// ExpandInlineAsm - This hook allows the target to expand an inline asm
1308  /// call to be explicit llvm code if it wants to.  This is useful for
1309  /// turning simple inline asms into LLVM intrinsics, which gives the
1310  /// compiler more information about the behavior of the code.
1311  virtual bool ExpandInlineAsm(CallInst *CI) const {
1312    return false;
1313  }
1314
1315  enum ConstraintType {
1316    C_Register,            // Constraint represents specific register(s).
1317    C_RegisterClass,       // Constraint represents any of register(s) in class.
1318    C_Memory,              // Memory constraint.
1319    C_Other,               // Something else.
1320    C_Unknown              // Unsupported constraint.
1321  };
1322
1323  /// AsmOperandInfo - This contains information for each constraint that we are
1324  /// lowering.
1325  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
1326    /// ConstraintCode - This contains the actual string for the code, like "m".
1327    /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
1328    /// most closely matches the operand.
1329    std::string ConstraintCode;
1330
1331    /// ConstraintType - Information about the constraint code, e.g. Register,
1332    /// RegisterClass, Memory, Other, Unknown.
1333    TargetLowering::ConstraintType ConstraintType;
1334
1335    /// CallOperandval - If this is the result output operand or a
1336    /// clobber, this is null, otherwise it is the incoming operand to the
1337    /// CallInst.  This gets modified as the asm is processed.
1338    Value *CallOperandVal;
1339
1340    /// ConstraintVT - The ValueType for the operand value.
1341    EVT ConstraintVT;
1342
1343    /// isMatchingInputConstraint - Return true of this is an input operand that
1344    /// is a matching constraint like "4".
1345    bool isMatchingInputConstraint() const;
1346
1347    /// getMatchedOperand - If this is an input matching constraint, this method
1348    /// returns the output operand it matches.
1349    unsigned getMatchedOperand() const;
1350
1351    /// Copy constructor for copying from an AsmOperandInfo.
1352    AsmOperandInfo(const AsmOperandInfo &info)
1353      : InlineAsm::ConstraintInfo(info),
1354        ConstraintCode(info.ConstraintCode),
1355        ConstraintType(info.ConstraintType),
1356        CallOperandVal(info.CallOperandVal),
1357        ConstraintVT(info.ConstraintVT) {
1358    }
1359
1360    /// Copy constructor for copying from a ConstraintInfo.
1361    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
1362      : InlineAsm::ConstraintInfo(info),
1363        ConstraintType(TargetLowering::C_Unknown),
1364        CallOperandVal(0), ConstraintVT(MVT::Other) {
1365    }
1366  };
1367
1368  /// ParseConstraints - Split up the constraint string from the inline
1369  /// assembly value into the specific constraints and their prefixes,
1370  /// and also tie in the associated operand values.
1371  /// If this returns an empty vector, and if the constraint string itself
1372  /// isn't empty, there was an error parsing.
1373  virtual std::vector<AsmOperandInfo> ParseConstraints(
1374    ImmutableCallSite CS) const;
1375
1376  /// Examine constraint type and operand type and determine a weight value,
1377  /// where: -1 = invalid match, and 0 = so-so match to 5 = good match.
1378  /// The operand object must already have been set up with the operand type.
1379  virtual int getMultipleConstraintMatchWeight(
1380      AsmOperandInfo &info, int maIndex) const;
1381
1382  /// Examine constraint string and operand type and determine a weight value,
1383  /// where: -1 = invalid match, and 0 = so-so match to 3 = good match.
1384  /// The operand object must already have been set up with the operand type.
1385  virtual int getSingleConstraintMatchWeight(
1386      AsmOperandInfo &info, const char *constraint) const;
1387
1388  /// ComputeConstraintToUse - Determines the constraint code and constraint
1389  /// type to use for the specific AsmOperandInfo, setting
1390  /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
1391  /// being passed in is available, it can be passed in as Op, otherwise an
1392  /// empty SDValue can be passed.
1393  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1394                                      SDValue Op,
1395                                      SelectionDAG *DAG = 0) const;
1396
1397  /// getConstraintType - Given a constraint, return the type of constraint it
1398  /// is for this target.
1399  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
1400
1401  /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
1402  /// return a list of registers that can be used to satisfy the constraint.
1403  /// This should only be used for C_RegisterClass constraints.
1404  virtual std::vector<unsigned>
1405  getRegClassForInlineAsmConstraint(const std::string &Constraint,
1406                                    EVT VT) const;
1407
1408  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
1409  /// {edx}), return the register number and the register class for the
1410  /// register.
1411  ///
1412  /// Given a register class constraint, like 'r', if this corresponds directly
1413  /// to an LLVM register class, return a register of 0 and the register class
1414  /// pointer.
1415  ///
1416  /// This should only be used for C_Register constraints.  On error,
1417  /// this returns a register number of 0 and a null register class pointer..
1418  virtual std::pair<unsigned, const TargetRegisterClass*>
1419    getRegForInlineAsmConstraint(const std::string &Constraint,
1420                                 EVT VT) const;
1421
1422  /// LowerXConstraint - try to replace an X constraint, which matches anything,
1423  /// with another that has more specific requirements based on the type of the
1424  /// corresponding operand.  This returns null if there is no replacement to
1425  /// make.
1426  virtual const char *LowerXConstraint(EVT ConstraintVT) const;
1427
1428  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1429  /// vector.  If it is invalid, don't add anything to Ops.
1430  virtual void LowerAsmOperandForConstraint(SDValue Op, char ConstraintLetter,
1431                                            std::vector<SDValue> &Ops,
1432                                            SelectionDAG &DAG) const;
1433
1434  //===--------------------------------------------------------------------===//
1435  // Instruction Emitting Hooks
1436  //
1437
1438  // EmitInstrWithCustomInserter - This method should be implemented by targets
1439  // that mark instructions with the 'usesCustomInserter' flag.  These
1440  // instructions are special in various ways, which require special support to
1441  // insert.  The specified MachineInstr is created but not inserted into any
1442  // basic blocks, and this method is called to expand it into a sequence of
1443  // instructions, potentially also creating new basic blocks and control flow.
1444  virtual MachineBasicBlock *
1445    EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;
1446
1447  //===--------------------------------------------------------------------===//
1448  // Addressing mode description hooks (used by LSR etc).
1449  //
1450
1451  /// AddrMode - This represents an addressing mode of:
1452  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1453  /// If BaseGV is null,  there is no BaseGV.
1454  /// If BaseOffs is zero, there is no base offset.
1455  /// If HasBaseReg is false, there is no base register.
1456  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1457  /// no scale.
1458  ///
1459  struct AddrMode {
1460    GlobalValue *BaseGV;
1461    int64_t      BaseOffs;
1462    bool         HasBaseReg;
1463    int64_t      Scale;
1464    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1465  };
1466
1467  /// isLegalAddressingMode - Return true if the addressing mode represented by
1468  /// AM is legal for this target, for a load/store of the specified type.
1469  /// The type may be VoidTy, in which case only return true if the addressing
1470  /// mode is legal for a load/store of any legal type.
1471  /// TODO: Handle pre/postinc as well.
1472  virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const;
1473
1474  /// isTruncateFree - Return true if it's free to truncate a value of
1475  /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1476  /// register EAX to i16 by referencing its sub-register AX.
1477  virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const {
1478    return false;
1479  }
1480
1481  virtual bool isTruncateFree(EVT VT1, EVT VT2) const {
1482    return false;
1483  }
1484
1485  /// isZExtFree - Return true if any actual instruction that defines a
1486  /// value of type Ty1 implicitly zero-extends the value to Ty2 in the result
1487  /// register. This does not necessarily include registers defined in
1488  /// unknown ways, such as incoming arguments, or copies from unknown
1489  /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1490  /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1491  /// all instructions that define 32-bit values implicit zero-extend the
1492  /// result out to 64 bits.
1493  virtual bool isZExtFree(const Type *Ty1, const Type *Ty2) const {
1494    return false;
1495  }
1496
1497  virtual bool isZExtFree(EVT VT1, EVT VT2) const {
1498    return false;
1499  }
1500
1501  /// isNarrowingProfitable - Return true if it's profitable to narrow
1502  /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
1503  /// from i32 to i8 but not from i32 to i16.
1504  virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const {
1505    return false;
1506  }
1507
1508  /// isLegalICmpImmediate - Return true if the specified immediate is legal
1509  /// icmp immediate, that is the target has icmp instructions which can compare
1510  /// a register against the immediate without having to materialize the
1511  /// immediate into a register.
1512  virtual bool isLegalICmpImmediate(int64_t Imm) const {
1513    return true;
1514  }
1515
1516  //===--------------------------------------------------------------------===//
1517  // Div utility functions
1518  //
1519  SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG,
1520                      std::vector<SDNode*>* Created) const;
1521  SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG,
1522                      std::vector<SDNode*>* Created) const;
1523
1524
1525  //===--------------------------------------------------------------------===//
1526  // Runtime Library hooks
1527  //
1528
1529  /// setLibcallName - Rename the default libcall routine name for the specified
1530  /// libcall.
1531  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1532    LibcallRoutineNames[Call] = Name;
1533  }
1534
1535  /// getLibcallName - Get the libcall routine name for the specified libcall.
1536  ///
1537  const char *getLibcallName(RTLIB::Libcall Call) const {
1538    return LibcallRoutineNames[Call];
1539  }
1540
1541  /// setCmpLibcallCC - Override the default CondCode to be used to test the
1542  /// result of the comparison libcall against zero.
1543  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1544    CmpLibcallCCs[Call] = CC;
1545  }
1546
1547  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1548  /// the comparison libcall against zero.
1549  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1550    return CmpLibcallCCs[Call];
1551  }
1552
1553  /// setLibcallCallingConv - Set the CallingConv that should be used for the
1554  /// specified libcall.
1555  void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
1556    LibcallCallingConvs[Call] = CC;
1557  }
1558
1559  /// getLibcallCallingConv - Get the CallingConv that should be used for the
1560  /// specified libcall.
1561  CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
1562    return LibcallCallingConvs[Call];
1563  }
1564
1565private:
1566  const TargetMachine &TM;
1567  const TargetData *TD;
1568  const TargetLoweringObjectFile &TLOF;
1569
1570  /// PointerTy - The type to use for pointers, usually i32 or i64.
1571  ///
1572  MVT PointerTy;
1573
1574  /// IsLittleEndian - True if this is a little endian target.
1575  ///
1576  bool IsLittleEndian;
1577
1578  /// SelectIsExpensive - Tells the code generator not to expand operations
1579  /// into sequences that use the select operations if possible.
1580  bool SelectIsExpensive;
1581
1582  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1583  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1584  /// a real cost model is in place.  If we ever optimize for size, this will be
1585  /// set to true unconditionally.
1586  bool IntDivIsCheap;
1587
1588  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1589  /// srl/add/sra for a signed divide by power of two, and let the target handle
1590  /// it.
1591  bool Pow2DivIsCheap;
1592
1593  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1594  /// llvm.setjmp.  Defaults to false.
1595  bool UseUnderscoreSetJmp;
1596
1597  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1598  /// llvm.longjmp.  Defaults to false.
1599  bool UseUnderscoreLongJmp;
1600
1601  /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
1602  /// PointerTy is.
1603  MVT ShiftAmountTy;
1604
1605  /// BooleanContents - Information about the contents of the high-bits in
1606  /// boolean values held in a type wider than i1.  See getBooleanContents.
1607  BooleanContent BooleanContents;
1608
1609  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1610  /// total cycles or lowest register usage.
1611  Sched::Preference SchedPreferenceInfo;
1612
1613  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1614  unsigned JumpBufSize;
1615
1616  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1617  /// buffers
1618  unsigned JumpBufAlignment;
1619
1620  /// MinStackArgumentAlignment - The minimum alignment that any argument
1621  /// on the stack needs to have.
1622  ///
1623  unsigned MinStackArgumentAlignment;
1624
1625  /// PrefLoopAlignment - The perferred loop alignment.
1626  ///
1627  unsigned PrefLoopAlignment;
1628
1629  /// ShouldFoldAtomicFences - Whether fencing MEMBARRIER instructions should
1630  /// be folded into the enclosed atomic intrinsic instruction by the
1631  /// combiner.
1632  bool ShouldFoldAtomicFences;
1633
1634  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1635  /// specifies the register that llvm.savestack/llvm.restorestack should save
1636  /// and restore.
1637  unsigned StackPointerRegisterToSaveRestore;
1638
1639  /// ExceptionPointerRegister - If set to a physical register, this specifies
1640  /// the register that receives the exception address on entry to a landing
1641  /// pad.
1642  unsigned ExceptionPointerRegister;
1643
1644  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1645  /// the register that receives the exception typeid on entry to a landing
1646  /// pad.
1647  unsigned ExceptionSelectorRegister;
1648
1649  /// RegClassForVT - This indicates the default register class to use for
1650  /// each ValueType the target supports natively.
1651  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1652  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1653  EVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1654
1655  /// RepRegClassForVT - This indicates the "representative" register class to
1656  /// use for each ValueType the target supports natively. This information is
1657  /// used by the scheduler to track register pressure. By default, the
1658  /// representative register class is the largest legal super-reg register
1659  /// class of the register class of the specified type. e.g. On x86, i8, i16,
1660  /// and i32's representative class would be GR32.
1661  const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
1662
1663  /// RepRegClassCostForVT - This indicates the "cost" of the "representative"
1664  /// register class for each ValueType. The cost is used by the scheduler to
1665  /// approximate register pressure.
1666  uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
1667
1668  /// TransformToType - For any value types we are promoting or expanding, this
1669  /// contains the value type that we are changing to.  For Expanded types, this
1670  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1671  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1672  /// by the system, this holds the same type (e.g. i32 -> i32).
1673  EVT TransformToType[MVT::LAST_VALUETYPE];
1674
1675  /// OpActions - For each operation and each value type, keep a LegalizeAction
1676  /// that indicates how instruction selection should deal with the operation.
1677  /// Most operations are Legal (aka, supported natively by the target), but
1678  /// operations that are not should be described.  Note that operations on
1679  /// non-legal value types are not described here.
1680  uint8_t OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
1681
1682  /// LoadExtActions - For each load extension type and each value type,
1683  /// keep a LegalizeAction that indicates how instruction selection should deal
1684  /// with a load of a specific value type and extension type.
1685  uint8_t LoadExtActions[MVT::LAST_VALUETYPE][ISD::LAST_LOADEXT_TYPE];
1686
1687  /// TruncStoreActions - For each value type pair keep a LegalizeAction that
1688  /// indicates whether a truncating store of a specific value type and
1689  /// truncating type is legal.
1690  uint8_t TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
1691
1692  /// IndexedModeActions - For each indexed mode and each value type,
1693  /// keep a pair of LegalizeAction that indicates how instruction
1694  /// selection should deal with the load / store.  The first dimension is the
1695  /// value_type for the reference. The second dimension represents the various
1696  /// modes for load store.
1697  uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
1698
1699  /// CondCodeActions - For each condition code (ISD::CondCode) keep a
1700  /// LegalizeAction that indicates how instruction selection should
1701  /// deal with the condition code.
1702  uint64_t CondCodeActions[ISD::SETCC_INVALID];
1703
1704  ValueTypeActionImpl ValueTypeActions;
1705
1706  std::vector<std::pair<EVT, TargetRegisterClass*> > AvailableRegClasses;
1707
1708  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
1709  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
1710  /// which sets a bit in this array.
1711  unsigned char
1712  TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
1713
1714  /// PromoteToType - For operations that must be promoted to a specific type,
1715  /// this holds the destination type.  This map should be sparse, so don't hold
1716  /// it as an array.
1717  ///
1718  /// Targets add entries to this map with AddPromotedToType(..), clients access
1719  /// this with getTypeToPromoteTo(..).
1720  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
1721    PromoteToType;
1722
1723  /// LibcallRoutineNames - Stores the name each libcall.
1724  ///
1725  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1726
1727  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
1728  /// of each of the comparison libcall against zero.
1729  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1730
1731  /// LibcallCallingConvs - Stores the CallingConv that should be used for each
1732  /// libcall.
1733  CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
1734
1735protected:
1736  /// When lowering \@llvm.memset this field specifies the maximum number of
1737  /// store operations that may be substituted for the call to memset. Targets
1738  /// must set this value based on the cost threshold for that target. Targets
1739  /// should assume that the memset will be done using as many of the largest
1740  /// store operations first, followed by smaller ones, if necessary, per
1741  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1742  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1743  /// store.  This only applies to setting a constant array of a constant size.
1744  /// @brief Specify maximum number of store instructions per memset call.
1745  unsigned maxStoresPerMemset;
1746
1747  /// When lowering \@llvm.memcpy this field specifies the maximum number of
1748  /// store operations that may be substituted for a call to memcpy. Targets
1749  /// must set this value based on the cost threshold for that target. Targets
1750  /// should assume that the memcpy will be done using as many of the largest
1751  /// store operations first, followed by smaller ones, if necessary, per
1752  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1753  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1754  /// and one 1-byte store. This only applies to copying a constant array of
1755  /// constant size.
1756  /// @brief Specify maximum bytes of store instructions per memcpy call.
1757  unsigned maxStoresPerMemcpy;
1758
1759  /// When lowering \@llvm.memmove this field specifies the maximum number of
1760  /// store instructions that may be substituted for a call to memmove. Targets
1761  /// must set this value based on the cost threshold for that target. Targets
1762  /// should assume that the memmove will be done using as many of the largest
1763  /// store operations first, followed by smaller ones, if necessary, per
1764  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1765  /// with 8-bit alignment would result in nine 1-byte stores.  This only
1766  /// applies to copying a constant array of constant size.
1767  /// @brief Specify maximum bytes of store instructions per memmove call.
1768  unsigned maxStoresPerMemmove;
1769
1770  /// This field specifies whether the target can benefit from code placement
1771  /// optimization.
1772  bool benefitFromCodePlacementOpt;
1773
1774private:
1775  /// isLegalRC - Return true if the value types that can be represented by the
1776  /// specified register class are all legal.
1777  bool isLegalRC(const TargetRegisterClass *RC) const;
1778
1779  /// hasLegalSuperRegRegClasses - Return true if the specified register class
1780  /// has one or more super-reg register classes that are legal.
1781  bool hasLegalSuperRegRegClasses(const TargetRegisterClass *RC) const;
1782};
1783
1784/// GetReturnInfo - Given an LLVM IR type and return type attributes,
1785/// compute the return value EVTs and flags, and optionally also
1786/// the offsets, if the return value is being lowered to memory.
1787void GetReturnInfo(const Type* ReturnType, Attributes attr,
1788                   SmallVectorImpl<ISD::OutputArg> &Outs,
1789                   const TargetLowering &TLI,
1790                   SmallVectorImpl<uint64_t> *Offsets = 0);
1791
1792} // end llvm namespace
1793
1794#endif
1795