TargetLowering.h revision f04afdbb48568ef09f11fd10ac03426101f2dbf8
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/CodeGen/SelectionDAGNodes.h"
26#include "llvm/CodeGen/RuntimeLibcalls.h"
27#include "llvm/ADT/APFloat.h"
28#include <map>
29#include <vector>
30
31namespace llvm {
32  class Value;
33  class Function;
34  class TargetMachine;
35  class TargetData;
36  class TargetRegisterClass;
37  class SDNode;
38  class SDOperand;
39  class SelectionDAG;
40  class MachineBasicBlock;
41  class MachineInstr;
42  class VectorType;
43
44//===----------------------------------------------------------------------===//
45/// TargetLowering - This class defines information used to lower LLVM code to
46/// legal SelectionDAG operators that the target instruction selector can accept
47/// natively.
48///
49/// This class also defines callbacks that targets must implement to lower
50/// target-specific constructs to SelectionDAG operators.
51///
52class TargetLowering {
53public:
54  /// LegalizeAction - This enum indicates whether operations are valid for a
55  /// target, and if not, what action should be used to make them valid.
56  enum LegalizeAction {
57    Legal,      // The target natively supports this operation.
58    Promote,    // This operation should be executed in a larger type.
59    Expand,     // Try to expand this to other ops, otherwise use a libcall.
60    Custom      // Use the LowerOperation hook to implement custom lowering.
61  };
62
63  enum OutOfRangeShiftAmount {
64    Undefined,  // Oversized shift amounts are undefined (default).
65    Mask,       // Shift amounts are auto masked (anded) to value size.
66    Extend      // Oversized shift pulls in zeros or sign bits.
67  };
68
69  enum SetCCResultValue {
70    UndefinedSetCCResult,          // SetCC returns a garbage/unknown extend.
71    ZeroOrOneSetCCResult,          // SetCC returns a zero extended result.
72    ZeroOrNegativeOneSetCCResult   // SetCC returns a sign extended result.
73  };
74
75  enum SchedPreference {
76    SchedulingForLatency,          // Scheduling for shortest total latency.
77    SchedulingForRegPressure       // Scheduling for lowest register pressure.
78  };
79
80  explicit TargetLowering(TargetMachine &TM);
81  virtual ~TargetLowering();
82
83  TargetMachine &getTargetMachine() const { return TM; }
84  const TargetData *getTargetData() const { return TD; }
85
86  bool isLittleEndian() const { return IsLittleEndian; }
87  MVT::ValueType getPointerTy() const { return PointerTy; }
88  MVT::ValueType getShiftAmountTy() const { return ShiftAmountTy; }
89  OutOfRangeShiftAmount getShiftAmountFlavor() const {return ShiftAmtHandling; }
90
91  /// usesGlobalOffsetTable - Return true if this target uses a GOT for PIC
92  /// codegen.
93  bool usesGlobalOffsetTable() const { return UsesGlobalOffsetTable; }
94
95  /// isSelectExpensive - Return true if the select operation is expensive for
96  /// this target.
97  bool isSelectExpensive() const { return SelectIsExpensive; }
98
99  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
100  /// a sequence of several shifts, adds, and multiplies for this target.
101  bool isIntDivCheap() const { return IntDivIsCheap; }
102
103  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
104  /// srl/add/sra.
105  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
106
107  /// getSetCCResultTy - Return the ValueType of the result of setcc operations.
108  ///
109  MVT::ValueType getSetCCResultTy() const { return SetCCResultTy; }
110
111  /// getSetCCResultContents - For targets without boolean registers, this flag
112  /// returns information about the contents of the high-bits in the setcc
113  /// result register.
114  SetCCResultValue getSetCCResultContents() const { return SetCCResultContents;}
115
116  /// getSchedulingPreference - Return target scheduling preference.
117  SchedPreference getSchedulingPreference() const {
118    return SchedPreferenceInfo;
119  }
120
121  /// getRegClassFor - Return the register class that should be used for the
122  /// specified value type.  This may only be called on legal types.
123  TargetRegisterClass *getRegClassFor(MVT::ValueType VT) const {
124    assert(!MVT::isExtendedVT(VT));
125    TargetRegisterClass *RC = RegClassForVT[VT];
126    assert(RC && "This value type is not natively supported!");
127    return RC;
128  }
129
130  /// isTypeLegal - Return true if the target has native support for the
131  /// specified value type.  This means that it has a register that directly
132  /// holds it without promotions or expansions.
133  bool isTypeLegal(MVT::ValueType VT) const {
134    return !MVT::isExtendedVT(VT) && RegClassForVT[VT] != 0;
135  }
136
137  class ValueTypeActionImpl {
138    /// ValueTypeActions - This is a bitvector that contains two bits for each
139    /// value type, where the two bits correspond to the LegalizeAction enum.
140    /// This can be queried with "getTypeAction(VT)".
141    uint32_t ValueTypeActions[2];
142  public:
143    ValueTypeActionImpl() {
144      ValueTypeActions[0] = ValueTypeActions[1] = 0;
145    }
146    ValueTypeActionImpl(const ValueTypeActionImpl &RHS) {
147      ValueTypeActions[0] = RHS.ValueTypeActions[0];
148      ValueTypeActions[1] = RHS.ValueTypeActions[1];
149    }
150
151    LegalizeAction getTypeAction(MVT::ValueType VT) const {
152      if (MVT::isExtendedVT(VT)) return Expand;
153      return (LegalizeAction)((ValueTypeActions[VT>>4] >> ((2*VT) & 31)) & 3);
154    }
155    void setTypeAction(MVT::ValueType VT, LegalizeAction Action) {
156      assert(!MVT::isExtendedVT(VT));
157      assert(unsigned(VT >> 4) <
158             sizeof(ValueTypeActions)/sizeof(ValueTypeActions[0]));
159      ValueTypeActions[VT>>4] |= Action << ((VT*2) & 31);
160    }
161  };
162
163  const ValueTypeActionImpl &getValueTypeActions() const {
164    return ValueTypeActions;
165  }
166
167  /// getTypeAction - Return how we should legalize values of this type, either
168  /// it is already legal (return 'Legal') or we need to promote it to a larger
169  /// type (return 'Promote'), or we need to expand it into multiple registers
170  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
171  LegalizeAction getTypeAction(MVT::ValueType VT) const {
172    return ValueTypeActions.getTypeAction(VT);
173  }
174
175  /// getTypeToTransformTo - For types supported by the target, this is an
176  /// identity function.  For types that must be promoted to larger types, this
177  /// returns the larger type to promote to.  For integer types that are larger
178  /// than the largest integer register, this contains one step in the expansion
179  /// to get to the smaller register. For illegal floating point types, this
180  /// returns the integer type to transform to.
181  MVT::ValueType getTypeToTransformTo(MVT::ValueType VT) const {
182    if (MVT::isExtendedVT(VT))
183      return MVT::getVectorType(MVT::getVectorElementType(VT),
184                                MVT::getVectorNumElements(VT) / 2);
185
186    return TransformToType[VT];
187  }
188
189  /// getTypeToExpandTo - For types supported by the target, this is an
190  /// identity function.  For types that must be expanded (i.e. integer types
191  /// that are larger than the largest integer register or illegal floating
192  /// point types), this returns the largest legal type it will be expanded to.
193  MVT::ValueType getTypeToExpandTo(MVT::ValueType VT) const {
194    assert(!MVT::isExtendedVT(VT));
195    while (true) {
196      switch (getTypeAction(VT)) {
197      case Legal:
198        return VT;
199      case Expand:
200        VT = getTypeToTransformTo(VT);
201        break;
202      default:
203        assert(false && "Type is not legal nor is it to be expanded!");
204        return VT;
205      }
206    }
207    return VT;
208  }
209
210  /// getVectorTypeBreakdown - Vector types are broken down into some number of
211  /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
212  /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
213  /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
214  ///
215  /// This method returns the number of registers needed, and the VT for each
216  /// register.  It also returns the VT and quantity of the intermediate values
217  /// before they are promoted/expanded.
218  ///
219  unsigned getVectorTypeBreakdown(MVT::ValueType VT,
220                                  MVT::ValueType &IntermediateVT,
221                                  unsigned &NumIntermediates,
222                                  MVT::ValueType &RegisterVT) const;
223
224  typedef std::vector<APFloat>::const_iterator legal_fpimm_iterator;
225  legal_fpimm_iterator legal_fpimm_begin() const {
226    return LegalFPImmediates.begin();
227  }
228  legal_fpimm_iterator legal_fpimm_end() const {
229    return LegalFPImmediates.end();
230  }
231
232  /// isShuffleMaskLegal - Targets can use this to indicate that they only
233  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
234  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
235  /// are assumed to be legal.
236  virtual bool isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
237    return true;
238  }
239
240  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
241  /// used by Targets can use this to indicate if there is a suitable
242  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
243  /// pool entry.
244  virtual bool isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
245                                      MVT::ValueType EVT,
246                                      SelectionDAG &DAG) const {
247    return false;
248  }
249
250  /// getOperationAction - Return how this operation should be treated: either
251  /// it is legal, needs to be promoted to a larger size, needs to be
252  /// expanded to some other code sequence, or the target has a custom expander
253  /// for it.
254  LegalizeAction getOperationAction(unsigned Op, MVT::ValueType VT) const {
255    if (MVT::isExtendedVT(VT)) return Expand;
256    return (LegalizeAction)((OpActions[Op] >> (2*VT)) & 3);
257  }
258
259  /// isOperationLegal - Return true if the specified operation is legal on this
260  /// target.
261  bool isOperationLegal(unsigned Op, MVT::ValueType VT) const {
262    return getOperationAction(Op, VT) == Legal ||
263           getOperationAction(Op, VT) == Custom;
264  }
265
266  /// getLoadXAction - Return how this load with extension should be treated:
267  /// either it is legal, needs to be promoted to a larger size, needs to be
268  /// expanded to some other code sequence, or the target has a custom expander
269  /// for it.
270  LegalizeAction getLoadXAction(unsigned LType, MVT::ValueType VT) const {
271    if (MVT::isExtendedVT(VT)) return Expand;
272    return (LegalizeAction)((LoadXActions[LType] >> (2*VT)) & 3);
273  }
274
275  /// isLoadXLegal - Return true if the specified load with extension is legal
276  /// on this target.
277  bool isLoadXLegal(unsigned LType, MVT::ValueType VT) const {
278    return getLoadXAction(LType, VT) == Legal ||
279           getLoadXAction(LType, VT) == Custom;
280  }
281
282  /// getStoreXAction - Return how this store with truncation should be treated:
283  /// either it is legal, needs to be promoted to a larger size, needs to be
284  /// expanded to some other code sequence, or the target has a custom expander
285  /// for it.
286  LegalizeAction getStoreXAction(MVT::ValueType VT) const {
287    if (MVT::isExtendedVT(VT)) return Expand;
288    return (LegalizeAction)((StoreXActions >> (2*VT)) & 3);
289  }
290
291  /// isStoreXLegal - Return true if the specified store with truncation is
292  /// legal on this target.
293  bool isStoreXLegal(MVT::ValueType VT) const {
294    return getStoreXAction(VT) == Legal || getStoreXAction(VT) == Custom;
295  }
296
297  /// getIndexedLoadAction - Return how the indexed load should be treated:
298  /// either it is legal, needs to be promoted to a larger size, needs to be
299  /// expanded to some other code sequence, or the target has a custom expander
300  /// for it.
301  LegalizeAction
302  getIndexedLoadAction(unsigned IdxMode, MVT::ValueType VT) const {
303    if (MVT::isExtendedVT(VT)) return Expand;
304    return (LegalizeAction)((IndexedModeActions[0][IdxMode] >> (2*VT)) & 3);
305  }
306
307  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
308  /// on this target.
309  bool isIndexedLoadLegal(unsigned IdxMode, MVT::ValueType VT) const {
310    return getIndexedLoadAction(IdxMode, VT) == Legal ||
311           getIndexedLoadAction(IdxMode, VT) == Custom;
312  }
313
314  /// getIndexedStoreAction - Return how the indexed store should be treated:
315  /// either it is legal, needs to be promoted to a larger size, needs to be
316  /// expanded to some other code sequence, or the target has a custom expander
317  /// for it.
318  LegalizeAction
319  getIndexedStoreAction(unsigned IdxMode, MVT::ValueType VT) const {
320    if (MVT::isExtendedVT(VT)) return Expand;
321    return (LegalizeAction)((IndexedModeActions[1][IdxMode] >> (2*VT)) & 3);
322  }
323
324  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
325  /// on this target.
326  bool isIndexedStoreLegal(unsigned IdxMode, MVT::ValueType VT) const {
327    return getIndexedStoreAction(IdxMode, VT) == Legal ||
328           getIndexedStoreAction(IdxMode, VT) == Custom;
329  }
330
331  /// getConvertAction - Return how the conversion should be treated:
332  /// either it is legal, needs to be promoted to a larger size, needs to be
333  /// expanded to some other code sequence, or the target has a custom expander
334  /// for it.
335  LegalizeAction
336  getConvertAction(MVT::ValueType FromVT, MVT::ValueType ToVT) const {
337    assert(FromVT < MVT::LAST_VALUETYPE && ToVT < 32 &&
338           "Table isn't big enough!");
339    return (LegalizeAction)((ConvertActions[FromVT] >> (2*ToVT)) & 3);
340  }
341
342  /// isConvertLegal - Return true if the specified conversion is legal
343  /// on this target.
344  bool isConvertLegal(MVT::ValueType FromVT, MVT::ValueType ToVT) const {
345    return getConvertAction(FromVT, ToVT) == Legal ||
346           getConvertAction(FromVT, ToVT) == Custom;
347  }
348
349  /// getTypeToPromoteTo - If the action for this operation is to promote, this
350  /// method returns the ValueType to promote to.
351  MVT::ValueType getTypeToPromoteTo(unsigned Op, MVT::ValueType VT) const {
352    assert(getOperationAction(Op, VT) == Promote &&
353           "This operation isn't promoted!");
354
355    // See if this has an explicit type specified.
356    std::map<std::pair<unsigned, MVT::ValueType>,
357             MVT::ValueType>::const_iterator PTTI =
358      PromoteToType.find(std::make_pair(Op, VT));
359    if (PTTI != PromoteToType.end()) return PTTI->second;
360
361    assert((MVT::isInteger(VT) || MVT::isFloatingPoint(VT)) &&
362           "Cannot autopromote this type, add it with AddPromotedToType.");
363
364    MVT::ValueType NVT = VT;
365    do {
366      NVT = (MVT::ValueType)(NVT+1);
367      assert(MVT::isInteger(NVT) == MVT::isInteger(VT) && NVT != MVT::isVoid &&
368             "Didn't find type to promote to!");
369    } while (!isTypeLegal(NVT) ||
370              getOperationAction(Op, NVT) == Promote);
371    return NVT;
372  }
373
374  /// getValueType - Return the MVT::ValueType corresponding to this LLVM type.
375  /// This is fixed by the LLVM operations except for the pointer size.  If
376  /// AllowUnknown is true, this will return MVT::Other for types with no MVT
377  /// counterpart (e.g. structs), otherwise it will assert.
378  MVT::ValueType getValueType(const Type *Ty, bool AllowUnknown = false) const {
379    MVT::ValueType VT = MVT::getValueType(Ty, AllowUnknown);
380    return VT == MVT::iPTR ? PointerTy : VT;
381  }
382
383  /// getRegisterType - Return the type of registers that this ValueType will
384  /// eventually require.
385  MVT::ValueType getRegisterType(MVT::ValueType VT) const {
386    if (!MVT::isExtendedVT(VT))
387      return RegisterTypeForVT[VT];
388
389    MVT::ValueType VT1, RegisterVT;
390    unsigned NumIntermediates;
391    (void)getVectorTypeBreakdown(VT, VT1, NumIntermediates, RegisterVT);
392    return RegisterVT;
393  }
394
395  /// getNumRegisters - Return the number of registers that this ValueType will
396  /// eventually require.  This is one for any types promoted to live in larger
397  /// registers, but may be more than one for types (like i64) that are split
398  /// into pieces.
399  unsigned getNumRegisters(MVT::ValueType VT) const {
400    if (!MVT::isExtendedVT(VT))
401      return NumRegistersForVT[VT];
402
403    MVT::ValueType VT1, VT2;
404    unsigned NumIntermediates;
405    return getVectorTypeBreakdown(VT, VT1, NumIntermediates, VT2);
406  }
407
408  /// hasTargetDAGCombine - If true, the target has custom DAG combine
409  /// transformations that it can perform for the specified node.
410  bool hasTargetDAGCombine(ISD::NodeType NT) const {
411    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
412  }
413
414  /// This function returns the maximum number of store operations permitted
415  /// to replace a call to llvm.memset. The value is set by the target at the
416  /// performance threshold for such a replacement.
417  /// @brief Get maximum # of store operations permitted for llvm.memset
418  unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; }
419
420  /// This function returns the maximum number of store operations permitted
421  /// to replace a call to llvm.memcpy. The value is set by the target at the
422  /// performance threshold for such a replacement.
423  /// @brief Get maximum # of store operations permitted for llvm.memcpy
424  unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; }
425
426  /// This function returns the maximum number of store operations permitted
427  /// to replace a call to llvm.memmove. The value is set by the target at the
428  /// performance threshold for such a replacement.
429  /// @brief Get maximum # of store operations permitted for llvm.memmove
430  unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; }
431
432  /// This function returns true if the target allows unaligned memory accesses.
433  /// This is used, for example, in situations where an array copy/move/set is
434  /// converted to a sequence of store operations. It's use helps to ensure that
435  /// such replacements don't generate code that causes an alignment error
436  /// (trap) on the target machine.
437  /// @brief Determine if the target supports unaligned memory accesses.
438  bool allowsUnalignedMemoryAccesses() const {
439    return allowUnalignedMemoryAccesses;
440  }
441
442  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
443  /// to implement llvm.setjmp.
444  bool usesUnderscoreSetJmp() const {
445    return UseUnderscoreSetJmp;
446  }
447
448  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
449  /// to implement llvm.longjmp.
450  bool usesUnderscoreLongJmp() const {
451    return UseUnderscoreLongJmp;
452  }
453
454  /// getStackPointerRegisterToSaveRestore - If a physical register, this
455  /// specifies the register that llvm.savestack/llvm.restorestack should save
456  /// and restore.
457  unsigned getStackPointerRegisterToSaveRestore() const {
458    return StackPointerRegisterToSaveRestore;
459  }
460
461  /// getExceptionAddressRegister - If a physical register, this returns
462  /// the register that receives the exception address on entry to a landing
463  /// pad.
464  unsigned getExceptionAddressRegister() const {
465    return ExceptionPointerRegister;
466  }
467
468  /// getExceptionSelectorRegister - If a physical register, this returns
469  /// the register that receives the exception typeid on entry to a landing
470  /// pad.
471  unsigned getExceptionSelectorRegister() const {
472    return ExceptionSelectorRegister;
473  }
474
475  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
476  /// set, the default is 200)
477  unsigned getJumpBufSize() const {
478    return JumpBufSize;
479  }
480
481  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
482  /// (if never set, the default is 0)
483  unsigned getJumpBufAlignment() const {
484    return JumpBufAlignment;
485  }
486
487  /// getIfCvtBlockLimit - returns the target specific if-conversion block size
488  /// limit. Any block whose size is greater should not be predicated.
489  virtual unsigned getIfCvtBlockSizeLimit() const {
490    return IfCvtBlockSizeLimit;
491  }
492
493  /// getIfCvtDupBlockLimit - returns the target specific size limit for a
494  /// block to be considered for duplication. Any block whose size is greater
495  /// should not be duplicated to facilitate its predication.
496  virtual unsigned getIfCvtDupBlockSizeLimit() const {
497    return IfCvtDupBlockSizeLimit;
498  }
499
500  /// getPreIndexedAddressParts - returns true by value, base pointer and
501  /// offset pointer and addressing mode by reference if the node's address
502  /// can be legally represented as pre-indexed load / store address.
503  virtual bool getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
504                                         SDOperand &Offset,
505                                         ISD::MemIndexedMode &AM,
506                                         SelectionDAG &DAG) {
507    return false;
508  }
509
510  /// getPostIndexedAddressParts - returns true by value, base pointer and
511  /// offset pointer and addressing mode by reference if this node can be
512  /// combined with a load / store to form a post-indexed load / store.
513  virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
514                                          SDOperand &Base, SDOperand &Offset,
515                                          ISD::MemIndexedMode &AM,
516                                          SelectionDAG &DAG) {
517    return false;
518  }
519
520  //===--------------------------------------------------------------------===//
521  // TargetLowering Optimization Methods
522  //
523
524  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
525  /// SDOperands for returning information from TargetLowering to its clients
526  /// that want to combine
527  struct TargetLoweringOpt {
528    SelectionDAG &DAG;
529    SDOperand Old;
530    SDOperand New;
531
532    explicit TargetLoweringOpt(SelectionDAG &InDAG) : DAG(InDAG) {}
533
534    bool CombineTo(SDOperand O, SDOperand N) {
535      Old = O;
536      New = N;
537      return true;
538    }
539
540    /// ShrinkDemandedConstant - Check to see if the specified operand of the
541    /// specified instruction is a constant integer.  If so, check to see if there
542    /// are any bits set in the constant that are not demanded.  If so, shrink the
543    /// constant and return true.
544    bool ShrinkDemandedConstant(SDOperand Op, uint64_t Demanded);
545  };
546
547  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
548  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
549  /// use this information to simplify Op, create a new simplified DAG node and
550  /// return true, returning the original and new nodes in Old and New.
551  /// Otherwise, analyze the expression and return a mask of KnownOne and
552  /// KnownZero bits for the expression (used to simplify the caller).
553  /// The KnownZero/One bits may only be accurate for those bits in the
554  /// DemandedMask.
555  bool SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
556                            uint64_t &KnownZero, uint64_t &KnownOne,
557                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
558
559  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
560  /// Mask are known to be either zero or one and return them in the
561  /// KnownZero/KnownOne bitsets.
562  virtual void computeMaskedBitsForTargetNode(const SDOperand Op,
563                                              uint64_t Mask,
564                                              uint64_t &KnownZero,
565                                              uint64_t &KnownOne,
566                                              const SelectionDAG &DAG,
567                                              unsigned Depth = 0) const;
568
569  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
570  /// targets that want to expose additional information about sign bits to the
571  /// DAG Combiner.
572  virtual unsigned ComputeNumSignBitsForTargetNode(SDOperand Op,
573                                                   unsigned Depth = 0) const;
574
575  struct DAGCombinerInfo {
576    void *DC;  // The DAG Combiner object.
577    bool BeforeLegalize;
578    bool CalledByLegalizer;
579  public:
580    SelectionDAG &DAG;
581
582    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool cl, void *dc)
583      : DC(dc), BeforeLegalize(bl), CalledByLegalizer(cl), DAG(dag) {}
584
585    bool isBeforeLegalize() const { return BeforeLegalize; }
586    bool isCalledByLegalizer() const { return CalledByLegalizer; }
587
588    void AddToWorklist(SDNode *N);
589    SDOperand CombineTo(SDNode *N, const std::vector<SDOperand> &To);
590    SDOperand CombineTo(SDNode *N, SDOperand Res);
591    SDOperand CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1);
592  };
593
594  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
595  /// and cc. If it is unable to simplify it, return a null SDOperand.
596  SDOperand SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
597                          ISD::CondCode Cond, bool foldBooleans,
598                          DAGCombinerInfo &DCI) const;
599
600  /// PerformDAGCombine - This method will be invoked for all target nodes and
601  /// for any target-independent nodes that the target has registered with
602  /// invoke it for.
603  ///
604  /// The semantics are as follows:
605  /// Return Value:
606  ///   SDOperand.Val == 0   - No change was made
607  ///   SDOperand.Val == N   - N was replaced, is dead, and is already handled.
608  ///   otherwise            - N should be replaced by the returned Operand.
609  ///
610  /// In addition, methods provided by DAGCombinerInfo may be used to perform
611  /// more complex transformations.
612  ///
613  virtual SDOperand PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
614
615  //===--------------------------------------------------------------------===//
616  // TargetLowering Configuration Methods - These methods should be invoked by
617  // the derived class constructor to configure this object for the target.
618  //
619
620protected:
621  /// setUsesGlobalOffsetTable - Specify that this target does or doesn't use a
622  /// GOT for PC-relative code.
623  void setUsesGlobalOffsetTable(bool V) { UsesGlobalOffsetTable = V; }
624
625  /// setShiftAmountType - Describe the type that should be used for shift
626  /// amounts.  This type defaults to the pointer type.
627  void setShiftAmountType(MVT::ValueType VT) { ShiftAmountTy = VT; }
628
629  /// setSetCCResultType - Describe the type that shoudl be used as the result
630  /// of a setcc operation.  This defaults to the pointer type.
631  void setSetCCResultType(MVT::ValueType VT) { SetCCResultTy = VT; }
632
633  /// setSetCCResultContents - Specify how the target extends the result of a
634  /// setcc operation in a register.
635  void setSetCCResultContents(SetCCResultValue Ty) { SetCCResultContents = Ty; }
636
637  /// setSchedulingPreference - Specify the target scheduling preference.
638  void setSchedulingPreference(SchedPreference Pref) {
639    SchedPreferenceInfo = Pref;
640  }
641
642  /// setShiftAmountFlavor - Describe how the target handles out of range shift
643  /// amounts.
644  void setShiftAmountFlavor(OutOfRangeShiftAmount OORSA) {
645    ShiftAmtHandling = OORSA;
646  }
647
648  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
649  /// use _setjmp to implement llvm.setjmp or the non _ version.
650  /// Defaults to false.
651  void setUseUnderscoreSetJmp(bool Val) {
652    UseUnderscoreSetJmp = Val;
653  }
654
655  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
656  /// use _longjmp to implement llvm.longjmp or the non _ version.
657  /// Defaults to false.
658  void setUseUnderscoreLongJmp(bool Val) {
659    UseUnderscoreLongJmp = Val;
660  }
661
662  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
663  /// specifies the register that llvm.savestack/llvm.restorestack should save
664  /// and restore.
665  void setStackPointerRegisterToSaveRestore(unsigned R) {
666    StackPointerRegisterToSaveRestore = R;
667  }
668
669  /// setExceptionPointerRegister - If set to a physical register, this sets
670  /// the register that receives the exception address on entry to a landing
671  /// pad.
672  void setExceptionPointerRegister(unsigned R) {
673    ExceptionPointerRegister = R;
674  }
675
676  /// setExceptionSelectorRegister - If set to a physical register, this sets
677  /// the register that receives the exception typeid on entry to a landing
678  /// pad.
679  void setExceptionSelectorRegister(unsigned R) {
680    ExceptionSelectorRegister = R;
681  }
682
683  /// SelectIsExpensive - Tells the code generator not to expand operations
684  /// into sequences that use the select operations if possible.
685  void setSelectIsExpensive() { SelectIsExpensive = true; }
686
687  /// setIntDivIsCheap - Tells the code generator that integer divide is
688  /// expensive, and if possible, should be replaced by an alternate sequence
689  /// of instructions not containing an integer divide.
690  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
691
692  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
693  /// srl/add/sra for a signed divide by power of two, and let the target handle
694  /// it.
695  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
696
697  /// addRegisterClass - Add the specified register class as an available
698  /// regclass for the specified value type.  This indicates the selector can
699  /// handle values of that class natively.
700  void addRegisterClass(MVT::ValueType VT, TargetRegisterClass *RC) {
701    assert(!MVT::isExtendedVT(VT));
702    AvailableRegClasses.push_back(std::make_pair(VT, RC));
703    RegClassForVT[VT] = RC;
704  }
705
706  /// computeRegisterProperties - Once all of the register classes are added,
707  /// this allows us to compute derived properties we expose.
708  void computeRegisterProperties();
709
710  /// setOperationAction - Indicate that the specified operation does not work
711  /// with the specified type and indicate what to do about it.
712  void setOperationAction(unsigned Op, MVT::ValueType VT,
713                          LegalizeAction Action) {
714    assert(VT < 32 && Op < sizeof(OpActions)/sizeof(OpActions[0]) &&
715           "Table isn't big enough!");
716    OpActions[Op] &= ~(uint64_t(3UL) << VT*2);
717    OpActions[Op] |= (uint64_t)Action << VT*2;
718  }
719
720  /// setLoadXAction - Indicate that the specified load with extension does not
721  /// work with the with specified type and indicate what to do about it.
722  void setLoadXAction(unsigned ExtType, MVT::ValueType VT,
723                      LegalizeAction Action) {
724    assert(VT < 32 && ExtType < sizeof(LoadXActions)/sizeof(LoadXActions[0]) &&
725           "Table isn't big enough!");
726    LoadXActions[ExtType] &= ~(uint64_t(3UL) << VT*2);
727    LoadXActions[ExtType] |= (uint64_t)Action << VT*2;
728  }
729
730  /// setStoreXAction - Indicate that the specified store with truncation does
731  /// not work with the with specified type and indicate what to do about it.
732  void setStoreXAction(MVT::ValueType VT, LegalizeAction Action) {
733    assert(VT < 32 && "Table isn't big enough!");
734    StoreXActions &= ~(uint64_t(3UL) << VT*2);
735    StoreXActions |= (uint64_t)Action << VT*2;
736  }
737
738  /// setIndexedLoadAction - Indicate that the specified indexed load does or
739  /// does not work with the with specified type and indicate what to do abort
740  /// it. NOTE: All indexed mode loads are initialized to Expand in
741  /// TargetLowering.cpp
742  void setIndexedLoadAction(unsigned IdxMode, MVT::ValueType VT,
743                            LegalizeAction Action) {
744    assert(VT < 32 && IdxMode <
745           sizeof(IndexedModeActions[0]) / sizeof(IndexedModeActions[0][0]) &&
746           "Table isn't big enough!");
747    IndexedModeActions[0][IdxMode] &= ~(uint64_t(3UL) << VT*2);
748    IndexedModeActions[0][IdxMode] |= (uint64_t)Action << VT*2;
749  }
750
751  /// setIndexedStoreAction - Indicate that the specified indexed store does or
752  /// does not work with the with specified type and indicate what to do about
753  /// it. NOTE: All indexed mode stores are initialized to Expand in
754  /// TargetLowering.cpp
755  void setIndexedStoreAction(unsigned IdxMode, MVT::ValueType VT,
756                             LegalizeAction Action) {
757    assert(VT < 32 && IdxMode <
758           sizeof(IndexedModeActions[1]) / sizeof(IndexedModeActions[1][0]) &&
759           "Table isn't big enough!");
760    IndexedModeActions[1][IdxMode] &= ~(uint64_t(3UL) << VT*2);
761    IndexedModeActions[1][IdxMode] |= (uint64_t)Action << VT*2;
762  }
763
764  /// setConvertAction - Indicate that the specified conversion does or does
765  /// not work with the with specified type and indicate what to do about it.
766  void setConvertAction(MVT::ValueType FromVT, MVT::ValueType ToVT,
767                        LegalizeAction Action) {
768    assert(FromVT < MVT::LAST_VALUETYPE && ToVT < 32 &&
769           "Table isn't big enough!");
770    ConvertActions[FromVT] &= ~(uint64_t(3UL) << ToVT*2);
771    ConvertActions[FromVT] |= (uint64_t)Action << ToVT*2;
772  }
773
774  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
775  /// promotion code defaults to trying a larger integer/fp until it can find
776  /// one that works.  If that default is insufficient, this method can be used
777  /// by the target to override the default.
778  void AddPromotedToType(unsigned Opc, MVT::ValueType OrigVT,
779                         MVT::ValueType DestVT) {
780    PromoteToType[std::make_pair(Opc, OrigVT)] = DestVT;
781  }
782
783  /// addLegalFPImmediate - Indicate that this target can instruction select
784  /// the specified FP immediate natively.
785  void addLegalFPImmediate(const APFloat& Imm) {
786    // Incoming constants are expected to be double.  We also add
787    // the float version.  It is expected that all constants are exactly
788    // representable as floats.
789    assert(&Imm.getSemantics() == &APFloat::IEEEdouble);
790    APFloat Immf = APFloat(Imm);
791    // Rounding mode is not supposed to matter here...
792    if (Immf.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven) !=
793        APFloat::opOK)
794      assert(0);
795    LegalFPImmediates.push_back(Imm);
796    LegalFPImmediates.push_back(Immf);
797  }
798
799  /// setTargetDAGCombine - Targets should invoke this method for each target
800  /// independent node that they want to provide a custom DAG combiner for by
801  /// implementing the PerformDAGCombine virtual method.
802  void setTargetDAGCombine(ISD::NodeType NT) {
803    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
804  }
805
806  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
807  /// bytes); default is 200
808  void setJumpBufSize(unsigned Size) {
809    JumpBufSize = Size;
810  }
811
812  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
813  /// alignment (in bytes); default is 0
814  void setJumpBufAlignment(unsigned Align) {
815    JumpBufAlignment = Align;
816  }
817
818  /// setIfCvtBlockSizeLimit - Set the target's if-conversion block size
819  /// limit (in number of instructions); default is 2.
820  void setIfCvtBlockSizeLimit(unsigned Limit) {
821    IfCvtBlockSizeLimit = Limit;
822  }
823
824  /// setIfCvtDupBlockSizeLimit - Set the target's block size limit (in number
825  /// of instructions) to be considered for code duplication during
826  /// if-conversion; default is 2.
827  void setIfCvtDupBlockSizeLimit(unsigned Limit) {
828    IfCvtDupBlockSizeLimit = Limit;
829  }
830
831public:
832
833  //===--------------------------------------------------------------------===//
834  // Lowering methods - These methods must be implemented by targets so that
835  // the SelectionDAGLowering code knows how to lower these.
836  //
837
838  /// LowerArguments - This hook must be implemented to indicate how we should
839  /// lower the arguments for the specified function, into the specified DAG.
840  virtual std::vector<SDOperand>
841  LowerArguments(Function &F, SelectionDAG &DAG);
842
843  /// LowerCallTo - This hook lowers an abstract call to a function into an
844  /// actual call.  This returns a pair of operands.  The first element is the
845  /// return value for the function (if RetTy is not VoidTy).  The second
846  /// element is the outgoing token chain.
847  struct ArgListEntry {
848    SDOperand Node;
849    const Type* Ty;
850    bool isSExt;
851    bool isZExt;
852    bool isInReg;
853    bool isSRet;
854    bool isNest;
855    bool isByVal;
856
857    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
858      isSRet(false), isNest(false), isByVal(false) { }
859  };
860  typedef std::vector<ArgListEntry> ArgListTy;
861  virtual std::pair<SDOperand, SDOperand>
862  LowerCallTo(SDOperand Chain, const Type *RetTy, bool RetTyIsSigned,
863              bool isVarArg, unsigned CallingConv, bool isTailCall,
864              SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG);
865
866  /// LowerOperation - This callback is invoked for operations that are
867  /// unsupported by the target, which are registered to use 'custom' lowering,
868  /// and whose defined values are all legal.
869  /// If the target has no operations that require custom lowering, it need not
870  /// implement this.  The default implementation of this aborts.
871  virtual SDOperand LowerOperation(SDOperand Op, SelectionDAG &DAG);
872
873  /// CustomPromoteOperation - This callback is invoked for operations that are
874  /// unsupported by the target, are registered to use 'custom' lowering, and
875  /// whose type needs to be promoted.
876  virtual SDOperand CustomPromoteOperation(SDOperand Op, SelectionDAG &DAG);
877
878  /// getTargetNodeName() - This method returns the name of a target specific
879  /// DAG node.
880  virtual const char *getTargetNodeName(unsigned Opcode) const;
881
882  //===--------------------------------------------------------------------===//
883  // Inline Asm Support hooks
884  //
885
886  enum ConstraintType {
887    C_Register,            // Constraint represents a single register.
888    C_RegisterClass,       // Constraint represents one or more registers.
889    C_Memory,              // Memory constraint.
890    C_Other,               // Something else.
891    C_Unknown              // Unsupported constraint.
892  };
893
894  /// getConstraintType - Given a constraint, return the type of constraint it
895  /// is for this target.
896  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
897
898
899  /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
900  /// return a list of registers that can be used to satisfy the constraint.
901  /// This should only be used for C_RegisterClass constraints.
902  virtual std::vector<unsigned>
903  getRegClassForInlineAsmConstraint(const std::string &Constraint,
904                                    MVT::ValueType VT) const;
905
906  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
907  /// {edx}), return the register number and the register class for the
908  /// register.
909  ///
910  /// Given a register class constraint, like 'r', if this corresponds directly
911  /// to an LLVM register class, return a register of 0 and the register class
912  /// pointer.
913  ///
914  /// This should only be used for C_Register constraints.  On error,
915  /// this returns a register number of 0 and a null register class pointer..
916  virtual std::pair<unsigned, const TargetRegisterClass*>
917    getRegForInlineAsmConstraint(const std::string &Constraint,
918                                 MVT::ValueType VT) const;
919
920
921  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
922  /// vector.  If it is invalid, don't add anything to Ops.
923  virtual void LowerAsmOperandForConstraint(SDOperand Op, char ConstraintLetter,
924                                            std::vector<SDOperand> &Ops,
925                                            SelectionDAG &DAG);
926
927  //===--------------------------------------------------------------------===//
928  // Scheduler hooks
929  //
930
931  // InsertAtEndOfBasicBlock - This method should be implemented by targets that
932  // mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
933  // instructions are special in various ways, which require special support to
934  // insert.  The specified MachineInstr is created but not inserted into any
935  // basic blocks, and the scheduler passes ownership of it to this method.
936  virtual MachineBasicBlock *InsertAtEndOfBasicBlock(MachineInstr *MI,
937                                                     MachineBasicBlock *MBB);
938
939  //===--------------------------------------------------------------------===//
940  // Addressing mode description hooks (used by LSR etc).
941  //
942
943  /// AddrMode - This represents an addressing mode of:
944  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
945  /// If BaseGV is null,  there is no BaseGV.
946  /// If BaseOffs is zero, there is no base offset.
947  /// If HasBaseReg is false, there is no base register.
948  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
949  /// no scale.
950  ///
951  struct AddrMode {
952    GlobalValue *BaseGV;
953    int64_t      BaseOffs;
954    bool         HasBaseReg;
955    int64_t      Scale;
956    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
957  };
958
959  /// isLegalAddressingMode - Return true if the addressing mode represented by
960  /// AM is legal for this target, for a load/store of the specified type.
961  /// TODO: Handle pre/postinc as well.
962  virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const;
963
964  //===--------------------------------------------------------------------===//
965  // Div utility functions
966  //
967  SDOperand BuildSDIV(SDNode *N, SelectionDAG &DAG,
968                      std::vector<SDNode*>* Created) const;
969  SDOperand BuildUDIV(SDNode *N, SelectionDAG &DAG,
970                      std::vector<SDNode*>* Created) const;
971
972
973  //===--------------------------------------------------------------------===//
974  // Runtime Library hooks
975  //
976
977  /// setLibcallName - Rename the default libcall routine name for the specified
978  /// libcall.
979  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
980    LibcallRoutineNames[Call] = Name;
981  }
982
983  /// getLibcallName - Get the libcall routine name for the specified libcall.
984  ///
985  const char *getLibcallName(RTLIB::Libcall Call) const {
986    return LibcallRoutineNames[Call];
987  }
988
989  /// setCmpLibcallCC - Override the default CondCode to be used to test the
990  /// result of the comparison libcall against zero.
991  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
992    CmpLibcallCCs[Call] = CC;
993  }
994
995  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
996  /// the comparison libcall against zero.
997  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
998    return CmpLibcallCCs[Call];
999  }
1000
1001private:
1002  TargetMachine &TM;
1003  const TargetData *TD;
1004
1005  /// IsLittleEndian - True if this is a little endian target.
1006  ///
1007  bool IsLittleEndian;
1008
1009  /// PointerTy - The type to use for pointers, usually i32 or i64.
1010  ///
1011  MVT::ValueType PointerTy;
1012
1013  /// UsesGlobalOffsetTable - True if this target uses a GOT for PIC codegen.
1014  ///
1015  bool UsesGlobalOffsetTable;
1016
1017  /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
1018  /// PointerTy is.
1019  MVT::ValueType ShiftAmountTy;
1020
1021  OutOfRangeShiftAmount ShiftAmtHandling;
1022
1023  /// SelectIsExpensive - Tells the code generator not to expand operations
1024  /// into sequences that use the select operations if possible.
1025  bool SelectIsExpensive;
1026
1027  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1028  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1029  /// a real cost model is in place.  If we ever optimize for size, this will be
1030  /// set to true unconditionally.
1031  bool IntDivIsCheap;
1032
1033  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1034  /// srl/add/sra for a signed divide by power of two, and let the target handle
1035  /// it.
1036  bool Pow2DivIsCheap;
1037
1038  /// SetCCResultTy - The type that SetCC operations use.  This defaults to the
1039  /// PointerTy.
1040  MVT::ValueType SetCCResultTy;
1041
1042  /// SetCCResultContents - Information about the contents of the high-bits in
1043  /// the result of a setcc comparison operation.
1044  SetCCResultValue SetCCResultContents;
1045
1046  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1047  /// total cycles or lowest register usage.
1048  SchedPreference SchedPreferenceInfo;
1049
1050  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1051  /// llvm.setjmp.  Defaults to false.
1052  bool UseUnderscoreSetJmp;
1053
1054  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1055  /// llvm.longjmp.  Defaults to false.
1056  bool UseUnderscoreLongJmp;
1057
1058  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1059  unsigned JumpBufSize;
1060
1061  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1062  /// buffers
1063  unsigned JumpBufAlignment;
1064
1065  /// IfCvtBlockSizeLimit - The maximum allowed size for a block to be
1066  /// if-converted.
1067  unsigned IfCvtBlockSizeLimit;
1068
1069  /// IfCvtDupBlockSizeLimit - The maximum allowed size for a block to be
1070  /// duplicated during if-conversion.
1071  unsigned IfCvtDupBlockSizeLimit;
1072
1073  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1074  /// specifies the register that llvm.savestack/llvm.restorestack should save
1075  /// and restore.
1076  unsigned StackPointerRegisterToSaveRestore;
1077
1078  /// ExceptionPointerRegister - If set to a physical register, this specifies
1079  /// the register that receives the exception address on entry to a landing
1080  /// pad.
1081  unsigned ExceptionPointerRegister;
1082
1083  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1084  /// the register that receives the exception typeid on entry to a landing
1085  /// pad.
1086  unsigned ExceptionSelectorRegister;
1087
1088  /// RegClassForVT - This indicates the default register class to use for
1089  /// each ValueType the target supports natively.
1090  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1091  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1092  MVT::ValueType RegisterTypeForVT[MVT::LAST_VALUETYPE];
1093
1094  /// TransformToType - For any value types we are promoting or expanding, this
1095  /// contains the value type that we are changing to.  For Expanded types, this
1096  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1097  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1098  /// by the system, this holds the same type (e.g. i32 -> i32).
1099  MVT::ValueType TransformToType[MVT::LAST_VALUETYPE];
1100
1101  /// OpActions - For each operation and each value type, keep a LegalizeAction
1102  /// that indicates how instruction selection should deal with the operation.
1103  /// Most operations are Legal (aka, supported natively by the target), but
1104  /// operations that are not should be described.  Note that operations on
1105  /// non-legal value types are not described here.
1106  uint64_t OpActions[156];
1107
1108  /// LoadXActions - For each load of load extension type and each value type,
1109  /// keep a LegalizeAction that indicates how instruction selection should deal
1110  /// with the load.
1111  uint64_t LoadXActions[ISD::LAST_LOADX_TYPE];
1112
1113  /// StoreXActions - For each store with truncation of each value type, keep a
1114  /// LegalizeAction that indicates how instruction selection should deal with
1115  /// the store.
1116  uint64_t StoreXActions;
1117
1118  /// IndexedModeActions - For each indexed mode and each value type, keep a
1119  /// pair of LegalizeAction that indicates how instruction selection should
1120  /// deal with the load / store.
1121  uint64_t IndexedModeActions[2][ISD::LAST_INDEXED_MODE];
1122
1123  /// ConvertActions - For each conversion from source type to destination type,
1124  /// keep a LegalizeAction that indicates how instruction selection should
1125  /// deal with the conversion.
1126  /// Currently, this is used only for floating->floating conversions
1127  /// (FP_EXTEND and FP_ROUND).
1128  uint64_t ConvertActions[MVT::LAST_VALUETYPE];
1129
1130  ValueTypeActionImpl ValueTypeActions;
1131
1132  std::vector<APFloat> LegalFPImmediates;
1133
1134  std::vector<std::pair<MVT::ValueType,
1135                        TargetRegisterClass*> > AvailableRegClasses;
1136
1137  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
1138  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
1139  /// which sets a bit in this array.
1140  unsigned char TargetDAGCombineArray[156/(sizeof(unsigned char)*8)];
1141
1142  /// PromoteToType - For operations that must be promoted to a specific type,
1143  /// this holds the destination type.  This map should be sparse, so don't hold
1144  /// it as an array.
1145  ///
1146  /// Targets add entries to this map with AddPromotedToType(..), clients access
1147  /// this with getTypeToPromoteTo(..).
1148  std::map<std::pair<unsigned, MVT::ValueType>, MVT::ValueType> PromoteToType;
1149
1150  /// LibcallRoutineNames - Stores the name each libcall.
1151  ///
1152  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1153
1154  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
1155  /// of each of the comparison libcall against zero.
1156  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1157
1158protected:
1159  /// When lowering %llvm.memset this field specifies the maximum number of
1160  /// store operations that may be substituted for the call to memset. Targets
1161  /// must set this value based on the cost threshold for that target. Targets
1162  /// should assume that the memset will be done using as many of the largest
1163  /// store operations first, followed by smaller ones, if necessary, per
1164  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1165  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1166  /// store.  This only applies to setting a constant array of a constant size.
1167  /// @brief Specify maximum number of store instructions per memset call.
1168  unsigned maxStoresPerMemset;
1169
1170  /// When lowering %llvm.memcpy this field specifies the maximum number of
1171  /// store operations that may be substituted for a call to memcpy. Targets
1172  /// must set this value based on the cost threshold for that target. Targets
1173  /// should assume that the memcpy will be done using as many of the largest
1174  /// store operations first, followed by smaller ones, if necessary, per
1175  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1176  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1177  /// and one 1-byte store. This only applies to copying a constant array of
1178  /// constant size.
1179  /// @brief Specify maximum bytes of store instructions per memcpy call.
1180  unsigned maxStoresPerMemcpy;
1181
1182  /// When lowering %llvm.memmove this field specifies the maximum number of
1183  /// store instructions that may be substituted for a call to memmove. Targets
1184  /// must set this value based on the cost threshold for that target. Targets
1185  /// should assume that the memmove will be done using as many of the largest
1186  /// store operations first, followed by smaller ones, if necessary, per
1187  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1188  /// with 8-bit alignment would result in nine 1-byte stores.  This only
1189  /// applies to copying a constant array of constant size.
1190  /// @brief Specify maximum bytes of store instructions per memmove call.
1191  unsigned maxStoresPerMemmove;
1192
1193  /// This field specifies whether the target machine permits unaligned memory
1194  /// accesses.  This is used, for example, to determine the size of store
1195  /// operations when copying small arrays and other similar tasks.
1196  /// @brief Indicate whether the target permits unaligned memory accesses.
1197  bool allowUnalignedMemoryAccesses;
1198};
1199} // end llvm namespace
1200
1201#endif
1202