TargetLowering.h revision f0757b0edc1ef3d1998485d3f74cadaa3f7180a0
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/CallingConv.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/CodeGen/SelectionDAGNodes.h"
28#include "llvm/CodeGen/RuntimeLibcalls.h"
29#include "llvm/ADT/APFloat.h"
30#include "llvm/ADT/DenseMap.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/STLExtras.h"
34#include "llvm/Support/DebugLoc.h"
35#include "llvm/Target/TargetMachine.h"
36#include <climits>
37#include <map>
38#include <vector>
39
40namespace llvm {
41  class AllocaInst;
42  class CallInst;
43  class Function;
44  class FastISel;
45  class MachineBasicBlock;
46  class MachineFunction;
47  class MachineFrameInfo;
48  class MachineInstr;
49  class MachineJumpTableInfo;
50  class MCContext;
51  class MCExpr;
52  class SDNode;
53  class SDValue;
54  class SelectionDAG;
55  class TargetData;
56  class TargetMachine;
57  class TargetRegisterClass;
58  class TargetSubtarget;
59  class TargetLoweringObjectFile;
60  class Value;
61
62  // FIXME: should this be here?
63  namespace TLSModel {
64    enum Model {
65      GeneralDynamic,
66      LocalDynamic,
67      InitialExec,
68      LocalExec
69    };
70  }
71  TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc);
72
73
74//===----------------------------------------------------------------------===//
75/// TargetLowering - This class defines information used to lower LLVM code to
76/// legal SelectionDAG operators that the target instruction selector can accept
77/// natively.
78///
79/// This class also defines callbacks that targets must implement to lower
80/// target-specific constructs to SelectionDAG operators.
81///
82class TargetLowering {
83  TargetLowering(const TargetLowering&);  // DO NOT IMPLEMENT
84  void operator=(const TargetLowering&);  // DO NOT IMPLEMENT
85public:
86  /// LegalizeAction - This enum indicates whether operations are valid for a
87  /// target, and if not, what action should be used to make them valid.
88  enum LegalizeAction {
89    Legal,      // The target natively supports this operation.
90    Promote,    // This operation should be executed in a larger type.
91    Expand,     // Try to expand this to other ops, otherwise use a libcall.
92    Custom      // Use the LowerOperation hook to implement custom lowering.
93  };
94
95  enum BooleanContent { // How the target represents true/false values.
96    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
97    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
98    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
99  };
100
101  enum SchedPreference {
102    SchedulingForLatency,          // Scheduling for shortest total latency.
103    SchedulingForRegPressure       // Scheduling for lowest register pressure.
104  };
105
106  /// NOTE: The constructor takes ownership of TLOF.
107  explicit TargetLowering(const TargetMachine &TM,
108                          const TargetLoweringObjectFile *TLOF);
109  virtual ~TargetLowering();
110
111  const TargetMachine &getTargetMachine() const { return TM; }
112  const TargetData *getTargetData() const { return TD; }
113  const TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
114
115  bool isBigEndian() const { return !IsLittleEndian; }
116  bool isLittleEndian() const { return IsLittleEndian; }
117  MVT getPointerTy() const { return PointerTy; }
118  MVT getShiftAmountTy() const { return ShiftAmountTy; }
119
120  /// isSelectExpensive - Return true if the select operation is expensive for
121  /// this target.
122  bool isSelectExpensive() const { return SelectIsExpensive; }
123
124  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
125  /// a sequence of several shifts, adds, and multiplies for this target.
126  bool isIntDivCheap() const { return IntDivIsCheap; }
127
128  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
129  /// srl/add/sra.
130  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
131
132  /// getSetCCResultType - Return the ValueType of the result of SETCC
133  /// operations.  Also used to obtain the target's preferred type for
134  /// the condition operand of SELECT and BRCOND nodes.  In the case of
135  /// BRCOND the argument passed is MVT::Other since there are no other
136  /// operands to get a type hint from.
137  virtual
138  MVT::SimpleValueType getSetCCResultType(EVT VT) const;
139
140  /// getCmpLibcallReturnType - Return the ValueType for comparison
141  /// libcalls. Comparions libcalls include floating point comparion calls,
142  /// and Ordered/Unordered check calls on floating point numbers.
143  virtual
144  MVT::SimpleValueType getCmpLibcallReturnType() const;
145
146  /// getBooleanContents - For targets without i1 registers, this gives the
147  /// nature of the high-bits of boolean values held in types wider than i1.
148  /// "Boolean values" are special true/false values produced by nodes like
149  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
150  /// Not to be confused with general values promoted from i1.
151  BooleanContent getBooleanContents() const { return BooleanContents;}
152
153  /// getSchedulingPreference - Return target scheduling preference.
154  SchedPreference getSchedulingPreference() const {
155    return SchedPreferenceInfo;
156  }
157
158  /// getRegClassFor - Return the register class that should be used for the
159  /// specified value type.  This may only be called on legal types.
160  TargetRegisterClass *getRegClassFor(EVT VT) const {
161    assert(VT.isSimple() && "getRegClassFor called on illegal type!");
162    TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
163    assert(RC && "This value type is not natively supported!");
164    return RC;
165  }
166
167  /// isTypeLegal - Return true if the target has native support for the
168  /// specified value type.  This means that it has a register that directly
169  /// holds it without promotions or expansions.
170  bool isTypeLegal(EVT VT) const {
171    assert(!VT.isSimple() ||
172           (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
173    return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0;
174  }
175
176  /// isTypeSynthesizable - Return true if it's OK for the compiler to create
177  /// new operations of this type.  All Legal types are synthesizable except
178  /// MMX vector types on X86.  Non-Legal types are not synthesizable.
179  bool isTypeSynthesizable(EVT VT) const {
180    return isTypeLegal(VT) && Synthesizable[VT.getSimpleVT().SimpleTy];
181  }
182
183  class ValueTypeActionImpl {
184    /// ValueTypeActions - This is a bitvector that contains two bits for each
185    /// value type, where the two bits correspond to the LegalizeAction enum.
186    /// This can be queried with "getTypeAction(VT)".
187    /// dimension by (MVT::MAX_ALLOWED_VALUETYPE/32) * 2
188    uint32_t ValueTypeActions[(MVT::MAX_ALLOWED_VALUETYPE/32)*2];
189  public:
190    ValueTypeActionImpl() {
191      std::fill(ValueTypeActions, array_endof(ValueTypeActions), 0);
192    }
193    LegalizeAction getTypeAction(LLVMContext &Context, EVT VT) const {
194      if (VT.isExtended()) {
195        if (VT.isVector()) {
196          return VT.isPow2VectorType() ? Expand : Promote;
197        }
198        if (VT.isInteger())
199          // First promote to a power-of-two size, then expand if necessary.
200          return VT == VT.getRoundIntegerType(Context) ? Expand : Promote;
201        assert(0 && "Unsupported extended type!");
202        return Legal;
203      }
204      unsigned I = VT.getSimpleVT().SimpleTy;
205      assert(I<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
206      return (LegalizeAction)((ValueTypeActions[I>>4] >> ((2*I) & 31)) & 3);
207    }
208    void setTypeAction(EVT VT, LegalizeAction Action) {
209      unsigned I = VT.getSimpleVT().SimpleTy;
210      assert(I<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
211      ValueTypeActions[I>>4] |= Action << ((I*2) & 31);
212    }
213  };
214
215  const ValueTypeActionImpl &getValueTypeActions() const {
216    return ValueTypeActions;
217  }
218
219  /// getTypeAction - Return how we should legalize values of this type, either
220  /// it is already legal (return 'Legal') or we need to promote it to a larger
221  /// type (return 'Promote'), or we need to expand it into multiple registers
222  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
223  LegalizeAction getTypeAction(LLVMContext &Context, EVT VT) const {
224    return ValueTypeActions.getTypeAction(Context, VT);
225  }
226
227  /// getTypeToTransformTo - For types supported by the target, this is an
228  /// identity function.  For types that must be promoted to larger types, this
229  /// returns the larger type to promote to.  For integer types that are larger
230  /// than the largest integer register, this contains one step in the expansion
231  /// to get to the smaller register. For illegal floating point types, this
232  /// returns the integer type to transform to.
233  EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
234    if (VT.isSimple()) {
235      assert((unsigned)VT.getSimpleVT().SimpleTy <
236             array_lengthof(TransformToType));
237      EVT NVT = TransformToType[VT.getSimpleVT().SimpleTy];
238      assert(getTypeAction(Context, NVT) != Promote &&
239             "Promote may not follow Expand or Promote");
240      return NVT;
241    }
242
243    if (VT.isVector()) {
244      EVT NVT = VT.getPow2VectorType(Context);
245      if (NVT == VT) {
246        // Vector length is a power of 2 - split to half the size.
247        unsigned NumElts = VT.getVectorNumElements();
248        EVT EltVT = VT.getVectorElementType();
249        return (NumElts == 1) ?
250          EltVT : EVT::getVectorVT(Context, EltVT, NumElts / 2);
251      }
252      // Promote to a power of two size, avoiding multi-step promotion.
253      return getTypeAction(Context, NVT) == Promote ?
254        getTypeToTransformTo(Context, NVT) : NVT;
255    } else if (VT.isInteger()) {
256      EVT NVT = VT.getRoundIntegerType(Context);
257      if (NVT == VT)
258        // Size is a power of two - expand to half the size.
259        return EVT::getIntegerVT(Context, VT.getSizeInBits() / 2);
260      else
261        // Promote to a power of two size, avoiding multi-step promotion.
262        return getTypeAction(Context, NVT) == Promote ?
263          getTypeToTransformTo(Context, NVT) : NVT;
264    }
265    assert(0 && "Unsupported extended type!");
266    return MVT(MVT::Other); // Not reached
267  }
268
269  /// getTypeToExpandTo - For types supported by the target, this is an
270  /// identity function.  For types that must be expanded (i.e. integer types
271  /// that are larger than the largest integer register or illegal floating
272  /// point types), this returns the largest legal type it will be expanded to.
273  EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
274    assert(!VT.isVector());
275    while (true) {
276      switch (getTypeAction(Context, VT)) {
277      case Legal:
278        return VT;
279      case Expand:
280        VT = getTypeToTransformTo(Context, VT);
281        break;
282      default:
283        assert(false && "Type is not legal nor is it to be expanded!");
284        return VT;
285      }
286    }
287    return VT;
288  }
289
290  /// getVectorTypeBreakdown - Vector types are broken down into some number of
291  /// legal first class types.  For example, EVT::v8f32 maps to 2 EVT::v4f32
292  /// with Altivec or SSE1, or 8 promoted EVT::f64 values with the X86 FP stack.
293  /// Similarly, EVT::v2i64 turns into 4 EVT::i32 values with both PPC and X86.
294  ///
295  /// This method returns the number of registers needed, and the VT for each
296  /// register.  It also returns the VT and quantity of the intermediate values
297  /// before they are promoted/expanded.
298  ///
299  unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
300                                  EVT &IntermediateVT,
301                                  unsigned &NumIntermediates,
302                                  EVT &RegisterVT) const;
303
304  /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
305  /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
306  /// this is the case, it returns true and store the intrinsic
307  /// information into the IntrinsicInfo that was passed to the function.
308  struct IntrinsicInfo {
309    unsigned     opc;         // target opcode
310    EVT          memVT;       // memory VT
311    const Value* ptrVal;      // value representing memory location
312    int          offset;      // offset off of ptrVal
313    unsigned     align;       // alignment
314    bool         vol;         // is volatile?
315    bool         readMem;     // reads memory?
316    bool         writeMem;    // writes memory?
317  };
318
319  virtual bool getTgtMemIntrinsic(IntrinsicInfo &Info,
320                                  const CallInst &I, unsigned Intrinsic) const {
321    return false;
322  }
323
324  /// isFPImmLegal - Returns true if the target can instruction select the
325  /// specified FP immediate natively. If false, the legalizer will materialize
326  /// the FP immediate as a load from a constant pool.
327  virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const {
328    return false;
329  }
330
331  /// isShuffleMaskLegal - Targets can use this to indicate that they only
332  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
333  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
334  /// are assumed to be legal.
335  virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
336                                  EVT VT) const {
337    return true;
338  }
339
340  /// canOpTrap - Returns true if the operation can trap for the value type.
341  /// VT must be a legal type. By default, we optimistically assume most
342  /// operations don't trap except for divide and remainder.
343  virtual bool canOpTrap(unsigned Op, EVT VT) const;
344
345  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
346  /// used by Targets can use this to indicate if there is a suitable
347  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
348  /// pool entry.
349  virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
350                                      EVT VT) const {
351    return false;
352  }
353
354  /// getOperationAction - Return how this operation should be treated: either
355  /// it is legal, needs to be promoted to a larger size, needs to be
356  /// expanded to some other code sequence, or the target has a custom expander
357  /// for it.
358  LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
359    if (VT.isExtended()) return Expand;
360    assert(Op < array_lengthof(OpActions[0]) &&
361           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(OpActions[0][0])*8 &&
362           "Table isn't big enough!");
363    unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
364    unsigned J = I & 31;
365    I = I >> 5;
366    return (LegalizeAction)((OpActions[I][Op] >> (J*2) ) & 3);
367  }
368
369  /// isOperationLegalOrCustom - Return true if the specified operation is
370  /// legal on this target or can be made legal with custom lowering. This
371  /// is used to help guide high-level lowering decisions.
372  bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
373    return (VT == MVT::Other || isTypeLegal(VT)) &&
374      (getOperationAction(Op, VT) == Legal ||
375       getOperationAction(Op, VT) == Custom);
376  }
377
378  /// isOperationLegal - Return true if the specified operation is legal on this
379  /// target.
380  bool isOperationLegal(unsigned Op, EVT VT) const {
381    return (VT == MVT::Other || isTypeLegal(VT)) &&
382           getOperationAction(Op, VT) == Legal;
383  }
384
385  /// getLoadExtAction - Return how this load with extension should be treated:
386  /// either it is legal, needs to be promoted to a larger size, needs to be
387  /// expanded to some other code sequence, or the target has a custom expander
388  /// for it.
389  LegalizeAction getLoadExtAction(unsigned LType, EVT VT) const {
390    assert(LType < array_lengthof(LoadExtActions) &&
391           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(LoadExtActions[0])*4 &&
392           "Table isn't big enough!");
393    return (LegalizeAction)((LoadExtActions[LType] >>
394              (2*VT.getSimpleVT().SimpleTy)) & 3);
395  }
396
397  /// isLoadExtLegal - Return true if the specified load with extension is legal
398  /// on this target.
399  bool isLoadExtLegal(unsigned LType, EVT VT) const {
400    return VT.isSimple() &&
401      (getLoadExtAction(LType, VT) == Legal ||
402       getLoadExtAction(LType, VT) == Custom);
403  }
404
405  /// getTruncStoreAction - Return how this store with truncation should be
406  /// treated: either it is legal, needs to be promoted to a larger size, needs
407  /// to be expanded to some other code sequence, or the target has a custom
408  /// expander for it.
409  LegalizeAction getTruncStoreAction(EVT ValVT,
410                                     EVT MemVT) const {
411    assert((unsigned)ValVT.getSimpleVT().SimpleTy <
412             array_lengthof(TruncStoreActions) &&
413           (unsigned)MemVT.getSimpleVT().SimpleTy <
414             sizeof(TruncStoreActions[0])*4 &&
415           "Table isn't big enough!");
416    return (LegalizeAction)((TruncStoreActions[ValVT.getSimpleVT().SimpleTy] >>
417                             (2*MemVT.getSimpleVT().SimpleTy)) & 3);
418  }
419
420  /// isTruncStoreLegal - Return true if the specified store with truncation is
421  /// legal on this target.
422  bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
423    return isTypeLegal(ValVT) && MemVT.isSimple() &&
424      (getTruncStoreAction(ValVT, MemVT) == Legal ||
425       getTruncStoreAction(ValVT, MemVT) == Custom);
426  }
427
428  /// getIndexedLoadAction - Return how the indexed load should be treated:
429  /// either it is legal, needs to be promoted to a larger size, needs to be
430  /// expanded to some other code sequence, or the target has a custom expander
431  /// for it.
432  LegalizeAction
433  getIndexedLoadAction(unsigned IdxMode, EVT VT) const {
434    assert( IdxMode < array_lengthof(IndexedModeActions[0][0]) &&
435           ((unsigned)VT.getSimpleVT().SimpleTy) < MVT::LAST_VALUETYPE &&
436           "Table isn't big enough!");
437    return (LegalizeAction)((IndexedModeActions[
438                             (unsigned)VT.getSimpleVT().SimpleTy][0][IdxMode]));
439  }
440
441  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
442  /// on this target.
443  bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
444    return VT.isSimple() &&
445      (getIndexedLoadAction(IdxMode, VT) == Legal ||
446       getIndexedLoadAction(IdxMode, VT) == Custom);
447  }
448
449  /// getIndexedStoreAction - Return how the indexed store should be treated:
450  /// either it is legal, needs to be promoted to a larger size, needs to be
451  /// expanded to some other code sequence, or the target has a custom expander
452  /// for it.
453  LegalizeAction
454  getIndexedStoreAction(unsigned IdxMode, EVT VT) const {
455    assert(IdxMode < array_lengthof(IndexedModeActions[0][1]) &&
456           (unsigned)VT.getSimpleVT().SimpleTy < MVT::LAST_VALUETYPE &&
457           "Table isn't big enough!");
458    return (LegalizeAction)((IndexedModeActions[
459              (unsigned)VT.getSimpleVT().SimpleTy][1][IdxMode]));
460  }
461
462  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
463  /// on this target.
464  bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
465    return VT.isSimple() &&
466      (getIndexedStoreAction(IdxMode, VT) == Legal ||
467       getIndexedStoreAction(IdxMode, VT) == Custom);
468  }
469
470  /// getCondCodeAction - Return how the condition code should be treated:
471  /// either it is legal, needs to be expanded to some other code sequence,
472  /// or the target has a custom expander for it.
473  LegalizeAction
474  getCondCodeAction(ISD::CondCode CC, EVT VT) const {
475    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
476           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(CondCodeActions[0])*4 &&
477           "Table isn't big enough!");
478    LegalizeAction Action = (LegalizeAction)
479      ((CondCodeActions[CC] >> (2*VT.getSimpleVT().SimpleTy)) & 3);
480    assert(Action != Promote && "Can't promote condition code!");
481    return Action;
482  }
483
484  /// isCondCodeLegal - Return true if the specified condition code is legal
485  /// on this target.
486  bool isCondCodeLegal(ISD::CondCode CC, EVT VT) const {
487    return getCondCodeAction(CC, VT) == Legal ||
488           getCondCodeAction(CC, VT) == Custom;
489  }
490
491
492  /// getTypeToPromoteTo - If the action for this operation is to promote, this
493  /// method returns the ValueType to promote to.
494  EVT getTypeToPromoteTo(unsigned Op, EVT VT) const {
495    assert(getOperationAction(Op, VT) == Promote &&
496           "This operation isn't promoted!");
497
498    // See if this has an explicit type specified.
499    std::map<std::pair<unsigned, MVT::SimpleValueType>,
500             MVT::SimpleValueType>::const_iterator PTTI =
501      PromoteToType.find(std::make_pair(Op, VT.getSimpleVT().SimpleTy));
502    if (PTTI != PromoteToType.end()) return PTTI->second;
503
504    assert((VT.isInteger() || VT.isFloatingPoint()) &&
505           "Cannot autopromote this type, add it with AddPromotedToType.");
506
507    EVT NVT = VT;
508    do {
509      NVT = (MVT::SimpleValueType)(NVT.getSimpleVT().SimpleTy+1);
510      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
511             "Didn't find type to promote to!");
512    } while (!isTypeLegal(NVT) ||
513              getOperationAction(Op, NVT) == Promote);
514    return NVT;
515  }
516
517  /// getValueType - Return the EVT corresponding to this LLVM type.
518  /// This is fixed by the LLVM operations except for the pointer size.  If
519  /// AllowUnknown is true, this will return MVT::Other for types with no EVT
520  /// counterpart (e.g. structs), otherwise it will assert.
521  EVT getValueType(const Type *Ty, bool AllowUnknown = false) const {
522    EVT VT = EVT::getEVT(Ty, AllowUnknown);
523    return VT == MVT::iPTR ? PointerTy : VT;
524  }
525
526  /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
527  /// function arguments in the caller parameter area.  This is the actual
528  /// alignment, not its logarithm.
529  virtual unsigned getByValTypeAlignment(const Type *Ty) const;
530
531  /// getRegisterType - Return the type of registers that this ValueType will
532  /// eventually require.
533  EVT getRegisterType(MVT VT) const {
534    assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
535    return RegisterTypeForVT[VT.SimpleTy];
536  }
537
538  /// getRegisterType - Return the type of registers that this ValueType will
539  /// eventually require.
540  EVT getRegisterType(LLVMContext &Context, EVT VT) const {
541    if (VT.isSimple()) {
542      assert((unsigned)VT.getSimpleVT().SimpleTy <
543                array_lengthof(RegisterTypeForVT));
544      return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
545    }
546    if (VT.isVector()) {
547      EVT VT1, RegisterVT;
548      unsigned NumIntermediates;
549      (void)getVectorTypeBreakdown(Context, VT, VT1,
550                                   NumIntermediates, RegisterVT);
551      return RegisterVT;
552    }
553    if (VT.isInteger()) {
554      return getRegisterType(Context, getTypeToTransformTo(Context, VT));
555    }
556    assert(0 && "Unsupported extended type!");
557    return EVT(MVT::Other); // Not reached
558  }
559
560  /// getNumRegisters - Return the number of registers that this ValueType will
561  /// eventually require.  This is one for any types promoted to live in larger
562  /// registers, but may be more than one for types (like i64) that are split
563  /// into pieces.  For types like i140, which are first promoted then expanded,
564  /// it is the number of registers needed to hold all the bits of the original
565  /// type.  For an i140 on a 32 bit machine this means 5 registers.
566  unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
567    if (VT.isSimple()) {
568      assert((unsigned)VT.getSimpleVT().SimpleTy <
569                array_lengthof(NumRegistersForVT));
570      return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
571    }
572    if (VT.isVector()) {
573      EVT VT1, VT2;
574      unsigned NumIntermediates;
575      return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
576    }
577    if (VT.isInteger()) {
578      unsigned BitWidth = VT.getSizeInBits();
579      unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
580      return (BitWidth + RegWidth - 1) / RegWidth;
581    }
582    assert(0 && "Unsupported extended type!");
583    return 0; // Not reached
584  }
585
586  /// ShouldShrinkFPConstant - If true, then instruction selection should
587  /// seek to shrink the FP constant of the specified type to a smaller type
588  /// in order to save space and / or reduce runtime.
589  virtual bool ShouldShrinkFPConstant(EVT VT) const { return true; }
590
591  /// hasTargetDAGCombine - If true, the target has custom DAG combine
592  /// transformations that it can perform for the specified node.
593  bool hasTargetDAGCombine(ISD::NodeType NT) const {
594    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
595    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
596  }
597
598  /// This function returns the maximum number of store operations permitted
599  /// to replace a call to llvm.memset. The value is set by the target at the
600  /// performance threshold for such a replacement.
601  /// @brief Get maximum # of store operations permitted for llvm.memset
602  unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; }
603
604  /// This function returns the maximum number of store operations permitted
605  /// to replace a call to llvm.memcpy. The value is set by the target at the
606  /// performance threshold for such a replacement.
607  /// @brief Get maximum # of store operations permitted for llvm.memcpy
608  unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; }
609
610  /// This function returns the maximum number of store operations permitted
611  /// to replace a call to llvm.memmove. The value is set by the target at the
612  /// performance threshold for such a replacement.
613  /// @brief Get maximum # of store operations permitted for llvm.memmove
614  unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; }
615
616  /// This function returns true if the target allows unaligned memory accesses.
617  /// of the specified type. This is used, for example, in situations where an
618  /// array copy/move/set is  converted to a sequence of store operations. It's
619  /// use helps to ensure that such replacements don't generate code that causes
620  /// an alignment error  (trap) on the target machine.
621  /// @brief Determine if the target supports unaligned memory accesses.
622  virtual bool allowsUnalignedMemoryAccesses(EVT VT) const {
623    return false;
624  }
625
626  /// This function returns true if the target would benefit from code placement
627  /// optimization.
628  /// @brief Determine if the target should perform code placement optimization.
629  bool shouldOptimizeCodePlacement() const {
630    return benefitFromCodePlacementOpt;
631  }
632
633  /// getOptimalMemOpType - Returns the target specific optimal type for load
634  /// and store operations as a result of memset, memcpy, and memmove
635  /// lowering. If DstAlign is zero that means it's safe to destination
636  /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
637  /// means there isn't a need to check it against alignment requirement,
638  /// probably because the source does not need to be loaded. If
639  /// 'NonScalarIntSafe' is true, that means it's safe to return a
640  /// non-scalar-integer type, e.g. empty string source, constant, or loaded
641  /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
642  /// constant so it does not need to be loaded.
643  /// It returns EVT::Other if the type should be determined using generic
644  /// target-independent logic.
645  virtual EVT getOptimalMemOpType(uint64_t Size,
646                                  unsigned DstAlign, unsigned SrcAlign,
647                                  bool NonScalarIntSafe, bool MemcpyStrSrc,
648                                  MachineFunction &MF) const {
649    return MVT::Other;
650  }
651
652  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
653  /// to implement llvm.setjmp.
654  bool usesUnderscoreSetJmp() const {
655    return UseUnderscoreSetJmp;
656  }
657
658  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
659  /// to implement llvm.longjmp.
660  bool usesUnderscoreLongJmp() const {
661    return UseUnderscoreLongJmp;
662  }
663
664  /// getStackPointerRegisterToSaveRestore - If a physical register, this
665  /// specifies the register that llvm.savestack/llvm.restorestack should save
666  /// and restore.
667  unsigned getStackPointerRegisterToSaveRestore() const {
668    return StackPointerRegisterToSaveRestore;
669  }
670
671  /// getExceptionAddressRegister - If a physical register, this returns
672  /// the register that receives the exception address on entry to a landing
673  /// pad.
674  unsigned getExceptionAddressRegister() const {
675    return ExceptionPointerRegister;
676  }
677
678  /// getExceptionSelectorRegister - If a physical register, this returns
679  /// the register that receives the exception typeid on entry to a landing
680  /// pad.
681  unsigned getExceptionSelectorRegister() const {
682    return ExceptionSelectorRegister;
683  }
684
685  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
686  /// set, the default is 200)
687  unsigned getJumpBufSize() const {
688    return JumpBufSize;
689  }
690
691  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
692  /// (if never set, the default is 0)
693  unsigned getJumpBufAlignment() const {
694    return JumpBufAlignment;
695  }
696
697  /// getIfCvtBlockLimit - returns the target specific if-conversion block size
698  /// limit. Any block whose size is greater should not be predicated.
699  unsigned getIfCvtBlockSizeLimit() const {
700    return IfCvtBlockSizeLimit;
701  }
702
703  /// getIfCvtDupBlockLimit - returns the target specific size limit for a
704  /// block to be considered for duplication. Any block whose size is greater
705  /// should not be duplicated to facilitate its predication.
706  unsigned getIfCvtDupBlockSizeLimit() const {
707    return IfCvtDupBlockSizeLimit;
708  }
709
710  /// getPrefLoopAlignment - return the preferred loop alignment.
711  ///
712  unsigned getPrefLoopAlignment() const {
713    return PrefLoopAlignment;
714  }
715
716  /// getPreIndexedAddressParts - returns true by value, base pointer and
717  /// offset pointer and addressing mode by reference if the node's address
718  /// can be legally represented as pre-indexed load / store address.
719  virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
720                                         SDValue &Offset,
721                                         ISD::MemIndexedMode &AM,
722                                         SelectionDAG &DAG) const {
723    return false;
724  }
725
726  /// getPostIndexedAddressParts - returns true by value, base pointer and
727  /// offset pointer and addressing mode by reference if this node can be
728  /// combined with a load / store to form a post-indexed load / store.
729  virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
730                                          SDValue &Base, SDValue &Offset,
731                                          ISD::MemIndexedMode &AM,
732                                          SelectionDAG &DAG) const {
733    return false;
734  }
735
736  /// getJumpTableEncoding - Return the entry encoding for a jump table in the
737  /// current function.  The returned value is a member of the
738  /// MachineJumpTableInfo::JTEntryKind enum.
739  virtual unsigned getJumpTableEncoding() const;
740
741  virtual const MCExpr *
742  LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
743                            const MachineBasicBlock *MBB, unsigned uid,
744                            MCContext &Ctx) const {
745    assert(0 && "Need to implement this hook if target has custom JTIs");
746    return 0;
747  }
748
749  /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
750  /// jumptable.
751  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
752                                           SelectionDAG &DAG) const;
753
754  /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
755  /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
756  /// MCExpr.
757  virtual const MCExpr *
758  getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
759                               unsigned JTI, MCContext &Ctx) const;
760
761  /// isOffsetFoldingLegal - Return true if folding a constant offset
762  /// with the given GlobalAddress is legal.  It is frequently not legal in
763  /// PIC relocation models.
764  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
765
766  /// getFunctionAlignment - Return the Log2 alignment of this function.
767  virtual unsigned getFunctionAlignment(const Function *) const = 0;
768
769  //===--------------------------------------------------------------------===//
770  // TargetLowering Optimization Methods
771  //
772
773  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
774  /// SDValues for returning information from TargetLowering to its clients
775  /// that want to combine
776  struct TargetLoweringOpt {
777    SelectionDAG &DAG;
778    bool LegalTys;
779    bool LegalOps;
780    bool ShrinkOps;
781    SDValue Old;
782    SDValue New;
783
784    explicit TargetLoweringOpt(SelectionDAG &InDAG,
785                               bool LT, bool LO,
786                               bool Shrink = false) :
787      DAG(InDAG), LegalTys(LT), LegalOps(LO), ShrinkOps(Shrink) {}
788
789    bool LegalTypes() const { return LegalTys; }
790    bool LegalOperations() const { return LegalOps; }
791
792    bool CombineTo(SDValue O, SDValue N) {
793      Old = O;
794      New = N;
795      return true;
796    }
797
798    /// ShrinkDemandedConstant - Check to see if the specified operand of the
799    /// specified instruction is a constant integer.  If so, check to see if
800    /// there are any bits set in the constant that are not demanded.  If so,
801    /// shrink the constant and return true.
802    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
803
804    /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
805    /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
806    /// cast, but it could be generalized for targets with other types of
807    /// implicit widening casts.
808    bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
809                          DebugLoc dl);
810  };
811
812  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
813  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
814  /// use this information to simplify Op, create a new simplified DAG node and
815  /// return true, returning the original and new nodes in Old and New.
816  /// Otherwise, analyze the expression and return a mask of KnownOne and
817  /// KnownZero bits for the expression (used to simplify the caller).
818  /// The KnownZero/One bits may only be accurate for those bits in the
819  /// DemandedMask.
820  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
821                            APInt &KnownZero, APInt &KnownOne,
822                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
823
824  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
825  /// Mask are known to be either zero or one and return them in the
826  /// KnownZero/KnownOne bitsets.
827  virtual void computeMaskedBitsForTargetNode(const SDValue Op,
828                                              const APInt &Mask,
829                                              APInt &KnownZero,
830                                              APInt &KnownOne,
831                                              const SelectionDAG &DAG,
832                                              unsigned Depth = 0) const;
833
834  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
835  /// targets that want to expose additional information about sign bits to the
836  /// DAG Combiner.
837  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
838                                                   unsigned Depth = 0) const;
839
840  struct DAGCombinerInfo {
841    void *DC;  // The DAG Combiner object.
842    bool BeforeLegalize;
843    bool BeforeLegalizeOps;
844    bool CalledByLegalizer;
845  public:
846    SelectionDAG &DAG;
847
848    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool blo, bool cl, void *dc)
849      : DC(dc), BeforeLegalize(bl), BeforeLegalizeOps(blo),
850        CalledByLegalizer(cl), DAG(dag) {}
851
852    bool isBeforeLegalize() const { return BeforeLegalize; }
853    bool isBeforeLegalizeOps() const { return BeforeLegalizeOps; }
854    bool isCalledByLegalizer() const { return CalledByLegalizer; }
855
856    void AddToWorklist(SDNode *N);
857    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
858                      bool AddTo = true);
859    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
860    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
861
862    void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
863  };
864
865  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
866  /// and cc. If it is unable to simplify it, return a null SDValue.
867  SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
868                          ISD::CondCode Cond, bool foldBooleans,
869                          DAGCombinerInfo &DCI, DebugLoc dl) const;
870
871  /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
872  /// node is a GlobalAddress + offset.
873  virtual bool
874  isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
875
876  /// PerformDAGCombine - This method will be invoked for all target nodes and
877  /// for any target-independent nodes that the target has registered with
878  /// invoke it for.
879  ///
880  /// The semantics are as follows:
881  /// Return Value:
882  ///   SDValue.Val == 0   - No change was made
883  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
884  ///   otherwise          - N should be replaced by the returned Operand.
885  ///
886  /// In addition, methods provided by DAGCombinerInfo may be used to perform
887  /// more complex transformations.
888  ///
889  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
890
891  /// isTypeDesirableForOp - Return true if the target has native support for
892  /// the specified value type and it is 'desirable' to use the type for the
893  /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
894  /// instruction encodings are longer and some i16 instructions are slow.
895  virtual bool isTypeDesirableForOp(unsigned Opc, EVT VT) const {
896    // By default, assume all legal types are desirable.
897    return isTypeLegal(VT);
898  }
899
900  /// IsDesirableToPromoteOp - This method query the target whether it is
901  /// beneficial for dag combiner to promote the specified node. If true, it
902  /// should return the desired promotion type by reference.
903  virtual bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
904    return false;
905  }
906
907  //===--------------------------------------------------------------------===//
908  // TargetLowering Configuration Methods - These methods should be invoked by
909  // the derived class constructor to configure this object for the target.
910  //
911
912protected:
913  /// setShiftAmountType - Describe the type that should be used for shift
914  /// amounts.  This type defaults to the pointer type.
915  void setShiftAmountType(MVT VT) { ShiftAmountTy = VT; }
916
917  /// setBooleanContents - Specify how the target extends the result of a
918  /// boolean value from i1 to a wider type.  See getBooleanContents.
919  void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
920
921  /// setSchedulingPreference - Specify the target scheduling preference.
922  void setSchedulingPreference(SchedPreference Pref) {
923    SchedPreferenceInfo = Pref;
924  }
925
926  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
927  /// use _setjmp to implement llvm.setjmp or the non _ version.
928  /// Defaults to false.
929  void setUseUnderscoreSetJmp(bool Val) {
930    UseUnderscoreSetJmp = Val;
931  }
932
933  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
934  /// use _longjmp to implement llvm.longjmp or the non _ version.
935  /// Defaults to false.
936  void setUseUnderscoreLongJmp(bool Val) {
937    UseUnderscoreLongJmp = Val;
938  }
939
940  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
941  /// specifies the register that llvm.savestack/llvm.restorestack should save
942  /// and restore.
943  void setStackPointerRegisterToSaveRestore(unsigned R) {
944    StackPointerRegisterToSaveRestore = R;
945  }
946
947  /// setExceptionPointerRegister - If set to a physical register, this sets
948  /// the register that receives the exception address on entry to a landing
949  /// pad.
950  void setExceptionPointerRegister(unsigned R) {
951    ExceptionPointerRegister = R;
952  }
953
954  /// setExceptionSelectorRegister - If set to a physical register, this sets
955  /// the register that receives the exception typeid on entry to a landing
956  /// pad.
957  void setExceptionSelectorRegister(unsigned R) {
958    ExceptionSelectorRegister = R;
959  }
960
961  /// SelectIsExpensive - Tells the code generator not to expand operations
962  /// into sequences that use the select operations if possible.
963  void setSelectIsExpensive() { SelectIsExpensive = true; }
964
965  /// setIntDivIsCheap - Tells the code generator that integer divide is
966  /// expensive, and if possible, should be replaced by an alternate sequence
967  /// of instructions not containing an integer divide.
968  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
969
970  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
971  /// srl/add/sra for a signed divide by power of two, and let the target handle
972  /// it.
973  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
974
975  /// addRegisterClass - Add the specified register class as an available
976  /// regclass for the specified value type.  This indicates the selector can
977  /// handle values of that class natively.
978  void addRegisterClass(EVT VT, TargetRegisterClass *RC,
979                        bool isSynthesizable = true) {
980    assert((unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
981    AvailableRegClasses.push_back(std::make_pair(VT, RC));
982    RegClassForVT[VT.getSimpleVT().SimpleTy] = RC;
983    Synthesizable[VT.getSimpleVT().SimpleTy] = isSynthesizable;
984  }
985
986  /// computeRegisterProperties - Once all of the register classes are added,
987  /// this allows us to compute derived properties we expose.
988  void computeRegisterProperties();
989
990  /// setOperationAction - Indicate that the specified operation does not work
991  /// with the specified type and indicate what to do about it.
992  void setOperationAction(unsigned Op, MVT VT,
993                          LegalizeAction Action) {
994    unsigned I = (unsigned)VT.SimpleTy;
995    unsigned J = I & 31;
996    I = I >> 5;
997    OpActions[I][Op] &= ~(uint64_t(3UL) << (J*2));
998    OpActions[I][Op] |= (uint64_t)Action << (J*2);
999  }
1000
1001  /// setLoadExtAction - Indicate that the specified load with extension does
1002  /// not work with the specified type and indicate what to do about it.
1003  void setLoadExtAction(unsigned ExtType, MVT VT,
1004                      LegalizeAction Action) {
1005    assert((unsigned)VT.SimpleTy*2 < 63 &&
1006           ExtType < array_lengthof(LoadExtActions) &&
1007           "Table isn't big enough!");
1008    LoadExtActions[ExtType] &= ~(uint64_t(3UL) << VT.SimpleTy*2);
1009    LoadExtActions[ExtType] |= (uint64_t)Action << VT.SimpleTy*2;
1010  }
1011
1012  /// setTruncStoreAction - Indicate that the specified truncating store does
1013  /// not work with the specified type and indicate what to do about it.
1014  void setTruncStoreAction(MVT ValVT, MVT MemVT,
1015                           LegalizeAction Action) {
1016    assert((unsigned)ValVT.SimpleTy < array_lengthof(TruncStoreActions) &&
1017           (unsigned)MemVT.SimpleTy*2 < 63 &&
1018           "Table isn't big enough!");
1019    TruncStoreActions[ValVT.SimpleTy] &= ~(uint64_t(3UL)  << MemVT.SimpleTy*2);
1020    TruncStoreActions[ValVT.SimpleTy] |= (uint64_t)Action << MemVT.SimpleTy*2;
1021  }
1022
1023  /// setIndexedLoadAction - Indicate that the specified indexed load does or
1024  /// does not work with the specified type and indicate what to do abort
1025  /// it. NOTE: All indexed mode loads are initialized to Expand in
1026  /// TargetLowering.cpp
1027  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
1028                            LegalizeAction Action) {
1029    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1030           IdxMode < array_lengthof(IndexedModeActions[0][0]) &&
1031           "Table isn't big enough!");
1032    IndexedModeActions[(unsigned)VT.SimpleTy][0][IdxMode] = (uint8_t)Action;
1033  }
1034
1035  /// setIndexedStoreAction - Indicate that the specified indexed store does or
1036  /// does not work with the specified type and indicate what to do about
1037  /// it. NOTE: All indexed mode stores are initialized to Expand in
1038  /// TargetLowering.cpp
1039  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
1040                             LegalizeAction Action) {
1041    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1042           IdxMode < array_lengthof(IndexedModeActions[0][1] ) &&
1043           "Table isn't big enough!");
1044    IndexedModeActions[(unsigned)VT.SimpleTy][1][IdxMode] = (uint8_t)Action;
1045  }
1046
1047  /// setCondCodeAction - Indicate that the specified condition code is or isn't
1048  /// supported on the target and indicate what to do about it.
1049  void setCondCodeAction(ISD::CondCode CC, MVT VT,
1050                         LegalizeAction Action) {
1051    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1052           (unsigned)CC < array_lengthof(CondCodeActions) &&
1053           "Table isn't big enough!");
1054    CondCodeActions[(unsigned)CC] &= ~(uint64_t(3UL)  << VT.SimpleTy*2);
1055    CondCodeActions[(unsigned)CC] |= (uint64_t)Action << VT.SimpleTy*2;
1056  }
1057
1058  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
1059  /// promotion code defaults to trying a larger integer/fp until it can find
1060  /// one that works.  If that default is insufficient, this method can be used
1061  /// by the target to override the default.
1062  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1063    PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
1064  }
1065
1066  /// setTargetDAGCombine - Targets should invoke this method for each target
1067  /// independent node that they want to provide a custom DAG combiner for by
1068  /// implementing the PerformDAGCombine virtual method.
1069  void setTargetDAGCombine(ISD::NodeType NT) {
1070    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1071    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1072  }
1073
1074  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
1075  /// bytes); default is 200
1076  void setJumpBufSize(unsigned Size) {
1077    JumpBufSize = Size;
1078  }
1079
1080  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
1081  /// alignment (in bytes); default is 0
1082  void setJumpBufAlignment(unsigned Align) {
1083    JumpBufAlignment = Align;
1084  }
1085
1086  /// setIfCvtBlockSizeLimit - Set the target's if-conversion block size
1087  /// limit (in number of instructions); default is 2.
1088  void setIfCvtBlockSizeLimit(unsigned Limit) {
1089    IfCvtBlockSizeLimit = Limit;
1090  }
1091
1092  /// setIfCvtDupBlockSizeLimit - Set the target's block size limit (in number
1093  /// of instructions) to be considered for code duplication during
1094  /// if-conversion; default is 2.
1095  void setIfCvtDupBlockSizeLimit(unsigned Limit) {
1096    IfCvtDupBlockSizeLimit = Limit;
1097  }
1098
1099  /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
1100  /// alignment is zero, it means the target does not care about loop alignment.
1101  void setPrefLoopAlignment(unsigned Align) {
1102    PrefLoopAlignment = Align;
1103  }
1104
1105public:
1106
1107  virtual const TargetSubtarget *getSubtarget() const {
1108    assert(0 && "Not Implemented");
1109    return NULL;    // this is here to silence compiler errors
1110  }
1111
1112  //===--------------------------------------------------------------------===//
1113  // Lowering methods - These methods must be implemented by targets so that
1114  // the SelectionDAGLowering code knows how to lower these.
1115  //
1116
1117  /// LowerFormalArguments - This hook must be implemented to lower the
1118  /// incoming (formal) arguments, described by the Ins array, into the
1119  /// specified DAG. The implementation should fill in the InVals array
1120  /// with legal-type argument values, and return the resulting token
1121  /// chain value.
1122  ///
1123  virtual SDValue
1124    LowerFormalArguments(SDValue Chain,
1125                         CallingConv::ID CallConv, bool isVarArg,
1126                         const SmallVectorImpl<ISD::InputArg> &Ins,
1127                         DebugLoc dl, SelectionDAG &DAG,
1128                         SmallVectorImpl<SDValue> &InVals) const {
1129    assert(0 && "Not Implemented");
1130    return SDValue();    // this is here to silence compiler errors
1131  }
1132
1133  /// LowerCallTo - This function lowers an abstract call to a function into an
1134  /// actual call.  This returns a pair of operands.  The first element is the
1135  /// return value for the function (if RetTy is not VoidTy).  The second
1136  /// element is the outgoing token chain. It calls LowerCall to do the actual
1137  /// lowering.
1138  struct ArgListEntry {
1139    SDValue Node;
1140    const Type* Ty;
1141    bool isSExt  : 1;
1142    bool isZExt  : 1;
1143    bool isInReg : 1;
1144    bool isSRet  : 1;
1145    bool isNest  : 1;
1146    bool isByVal : 1;
1147    uint16_t Alignment;
1148
1149    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
1150      isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
1151  };
1152  typedef std::vector<ArgListEntry> ArgListTy;
1153  std::pair<SDValue, SDValue>
1154  LowerCallTo(SDValue Chain, const Type *RetTy, bool RetSExt, bool RetZExt,
1155              bool isVarArg, bool isInreg, unsigned NumFixedArgs,
1156              CallingConv::ID CallConv, bool isTailCall,
1157              bool isReturnValueUsed, SDValue Callee, ArgListTy &Args,
1158              SelectionDAG &DAG, DebugLoc dl) const;
1159
1160  /// LowerCall - This hook must be implemented to lower calls into the
1161  /// the specified DAG. The outgoing arguments to the call are described
1162  /// by the Outs array, and the values to be returned by the call are
1163  /// described by the Ins array. The implementation should fill in the
1164  /// InVals array with legal-type return values from the call, and return
1165  /// the resulting token chain value.
1166  virtual SDValue
1167    LowerCall(SDValue Chain, SDValue Callee,
1168              CallingConv::ID CallConv, bool isVarArg, bool &isTailCall,
1169              const SmallVectorImpl<ISD::OutputArg> &Outs,
1170              const SmallVectorImpl<ISD::InputArg> &Ins,
1171              DebugLoc dl, SelectionDAG &DAG,
1172              SmallVectorImpl<SDValue> &InVals) const {
1173    assert(0 && "Not Implemented");
1174    return SDValue();    // this is here to silence compiler errors
1175  }
1176
1177  /// CanLowerReturn - This hook should be implemented to check whether the
1178  /// return values described by the Outs array can fit into the return
1179  /// registers.  If false is returned, an sret-demotion is performed.
1180  ///
1181  virtual bool CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1182               const SmallVectorImpl<EVT> &OutTys,
1183               const SmallVectorImpl<ISD::ArgFlagsTy> &ArgsFlags,
1184               SelectionDAG &DAG) const
1185  {
1186    // Return true by default to get preexisting behavior.
1187    return true;
1188  }
1189
1190  /// LowerReturn - This hook must be implemented to lower outgoing
1191  /// return values, described by the Outs array, into the specified
1192  /// DAG. The implementation should return the resulting token chain
1193  /// value.
1194  ///
1195  virtual SDValue
1196    LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1197                const SmallVectorImpl<ISD::OutputArg> &Outs,
1198                DebugLoc dl, SelectionDAG &DAG) const {
1199    assert(0 && "Not Implemented");
1200    return SDValue();    // this is here to silence compiler errors
1201  }
1202
1203  /// EmitTargetCodeForMemcpy - Emit target-specific code that performs a
1204  /// memcpy. This can be used by targets to provide code sequences for cases
1205  /// that don't fit the target's parameters for simple loads/stores and can be
1206  /// more efficient than using a library call. This function can return a null
1207  /// SDValue if the target declines to use custom code and a different
1208  /// lowering strategy should be used.
1209  ///
1210  /// If AlwaysInline is true, the size is constant and the target should not
1211  /// emit any calls and is strongly encouraged to attempt to emit inline code
1212  /// even if it is beyond the usual threshold because this intrinsic is being
1213  /// expanded in a place where calls are not feasible (e.g. within the prologue
1214  /// for another call). If the target chooses to decline an AlwaysInline
1215  /// request here, legalize will resort to using simple loads and stores.
1216  virtual SDValue
1217  EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
1218                          SDValue Chain,
1219                          SDValue Op1, SDValue Op2,
1220                          SDValue Op3, unsigned Align, bool isVolatile,
1221                          bool AlwaysInline,
1222                          const Value *DstSV, uint64_t DstOff,
1223                          const Value *SrcSV, uint64_t SrcOff) const {
1224    return SDValue();
1225  }
1226
1227  /// EmitTargetCodeForMemmove - Emit target-specific code that performs a
1228  /// memmove. This can be used by targets to provide code sequences for cases
1229  /// that don't fit the target's parameters for simple loads/stores and can be
1230  /// more efficient than using a library call. This function can return a null
1231  /// SDValue if the target declines to use custom code and a different
1232  /// lowering strategy should be used.
1233  virtual SDValue
1234  EmitTargetCodeForMemmove(SelectionDAG &DAG, DebugLoc dl,
1235                           SDValue Chain,
1236                           SDValue Op1, SDValue Op2,
1237                           SDValue Op3, unsigned Align, bool isVolatile,
1238                           const Value *DstSV, uint64_t DstOff,
1239                           const Value *SrcSV, uint64_t SrcOff) const {
1240    return SDValue();
1241  }
1242
1243  /// EmitTargetCodeForMemset - Emit target-specific code that performs a
1244  /// memset. This can be used by targets to provide code sequences for cases
1245  /// that don't fit the target's parameters for simple stores and can be more
1246  /// efficient than using a library call. This function can return a null
1247  /// SDValue if the target declines to use custom code and a different
1248  /// lowering strategy should be used.
1249  virtual SDValue
1250  EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
1251                          SDValue Chain,
1252                          SDValue Op1, SDValue Op2,
1253                          SDValue Op3, unsigned Align, bool isVolatile,
1254                          const Value *DstSV, uint64_t DstOff) const {
1255    return SDValue();
1256  }
1257
1258  /// LowerOperationWrapper - This callback is invoked by the type legalizer
1259  /// to legalize nodes with an illegal operand type but legal result types.
1260  /// It replaces the LowerOperation callback in the type Legalizer.
1261  /// The reason we can not do away with LowerOperation entirely is that
1262  /// LegalizeDAG isn't yet ready to use this callback.
1263  /// TODO: Consider merging with ReplaceNodeResults.
1264
1265  /// The target places new result values for the node in Results (their number
1266  /// and types must exactly match those of the original return values of
1267  /// the node), or leaves Results empty, which indicates that the node is not
1268  /// to be custom lowered after all.
1269  /// The default implementation calls LowerOperation.
1270  virtual void LowerOperationWrapper(SDNode *N,
1271                                     SmallVectorImpl<SDValue> &Results,
1272                                     SelectionDAG &DAG) const;
1273
1274  /// LowerOperation - This callback is invoked for operations that are
1275  /// unsupported by the target, which are registered to use 'custom' lowering,
1276  /// and whose defined values are all legal.
1277  /// If the target has no operations that require custom lowering, it need not
1278  /// implement this.  The default implementation of this aborts.
1279  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
1280
1281  /// ReplaceNodeResults - This callback is invoked when a node result type is
1282  /// illegal for the target, and the operation was registered to use 'custom'
1283  /// lowering for that result type.  The target places new result values for
1284  /// the node in Results (their number and types must exactly match those of
1285  /// the original return values of the node), or leaves Results empty, which
1286  /// indicates that the node is not to be custom lowered after all.
1287  ///
1288  /// If the target has no operations that require custom lowering, it need not
1289  /// implement this.  The default implementation aborts.
1290  virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
1291                                  SelectionDAG &DAG) const {
1292    assert(0 && "ReplaceNodeResults not implemented for this target!");
1293  }
1294
1295  /// getTargetNodeName() - This method returns the name of a target specific
1296  /// DAG node.
1297  virtual const char *getTargetNodeName(unsigned Opcode) const;
1298
1299  /// createFastISel - This method returns a target specific FastISel object,
1300  /// or null if the target does not support "fast" ISel.
1301  virtual FastISel *
1302  createFastISel(MachineFunction &,
1303                 DenseMap<const Value *, unsigned> &,
1304                 DenseMap<const BasicBlock *, MachineBasicBlock *> &,
1305                 DenseMap<const AllocaInst *, int> &
1306#ifndef NDEBUG
1307                 , SmallSet<const Instruction *, 8> &CatchInfoLost
1308#endif
1309                 ) const {
1310    return 0;
1311  }
1312
1313  //===--------------------------------------------------------------------===//
1314  // Inline Asm Support hooks
1315  //
1316
1317  /// ExpandInlineAsm - This hook allows the target to expand an inline asm
1318  /// call to be explicit llvm code if it wants to.  This is useful for
1319  /// turning simple inline asms into LLVM intrinsics, which gives the
1320  /// compiler more information about the behavior of the code.
1321  virtual bool ExpandInlineAsm(CallInst *CI) const {
1322    return false;
1323  }
1324
1325  enum ConstraintType {
1326    C_Register,            // Constraint represents specific register(s).
1327    C_RegisterClass,       // Constraint represents any of register(s) in class.
1328    C_Memory,              // Memory constraint.
1329    C_Other,               // Something else.
1330    C_Unknown              // Unsupported constraint.
1331  };
1332
1333  /// AsmOperandInfo - This contains information for each constraint that we are
1334  /// lowering.
1335  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
1336    /// ConstraintCode - This contains the actual string for the code, like "m".
1337    /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
1338    /// most closely matches the operand.
1339    std::string ConstraintCode;
1340
1341    /// ConstraintType - Information about the constraint code, e.g. Register,
1342    /// RegisterClass, Memory, Other, Unknown.
1343    TargetLowering::ConstraintType ConstraintType;
1344
1345    /// CallOperandval - If this is the result output operand or a
1346    /// clobber, this is null, otherwise it is the incoming operand to the
1347    /// CallInst.  This gets modified as the asm is processed.
1348    Value *CallOperandVal;
1349
1350    /// ConstraintVT - The ValueType for the operand value.
1351    EVT ConstraintVT;
1352
1353    /// isMatchingInputConstraint - Return true of this is an input operand that
1354    /// is a matching constraint like "4".
1355    bool isMatchingInputConstraint() const;
1356
1357    /// getMatchedOperand - If this is an input matching constraint, this method
1358    /// returns the output operand it matches.
1359    unsigned getMatchedOperand() const;
1360
1361    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
1362      : InlineAsm::ConstraintInfo(info),
1363        ConstraintType(TargetLowering::C_Unknown),
1364        CallOperandVal(0), ConstraintVT(MVT::Other) {
1365    }
1366  };
1367
1368  /// ComputeConstraintToUse - Determines the constraint code and constraint
1369  /// type to use for the specific AsmOperandInfo, setting
1370  /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
1371  /// being passed in is available, it can be passed in as Op, otherwise an
1372  /// empty SDValue can be passed. If hasMemory is true it means one of the asm
1373  /// constraint of the inline asm instruction being processed is 'm'.
1374  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1375                                      SDValue Op,
1376                                      bool hasMemory,
1377                                      SelectionDAG *DAG = 0) const;
1378
1379  /// getConstraintType - Given a constraint, return the type of constraint it
1380  /// is for this target.
1381  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
1382
1383  /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
1384  /// return a list of registers that can be used to satisfy the constraint.
1385  /// This should only be used for C_RegisterClass constraints.
1386  virtual std::vector<unsigned>
1387  getRegClassForInlineAsmConstraint(const std::string &Constraint,
1388                                    EVT VT) const;
1389
1390  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
1391  /// {edx}), return the register number and the register class for the
1392  /// register.
1393  ///
1394  /// Given a register class constraint, like 'r', if this corresponds directly
1395  /// to an LLVM register class, return a register of 0 and the register class
1396  /// pointer.
1397  ///
1398  /// This should only be used for C_Register constraints.  On error,
1399  /// this returns a register number of 0 and a null register class pointer..
1400  virtual std::pair<unsigned, const TargetRegisterClass*>
1401    getRegForInlineAsmConstraint(const std::string &Constraint,
1402                                 EVT VT) const;
1403
1404  /// LowerXConstraint - try to replace an X constraint, which matches anything,
1405  /// with another that has more specific requirements based on the type of the
1406  /// corresponding operand.  This returns null if there is no replacement to
1407  /// make.
1408  virtual const char *LowerXConstraint(EVT ConstraintVT) const;
1409
1410  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1411  /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is true
1412  /// it means one of the asm constraint of the inline asm instruction being
1413  /// processed is 'm'.
1414  virtual void LowerAsmOperandForConstraint(SDValue Op, char ConstraintLetter,
1415                                            bool hasMemory,
1416                                            std::vector<SDValue> &Ops,
1417                                            SelectionDAG &DAG) const;
1418
1419  //===--------------------------------------------------------------------===//
1420  // Instruction Emitting Hooks
1421  //
1422
1423  // EmitInstrWithCustomInserter - This method should be implemented by targets
1424  // that mark instructions with the 'usesCustomInserter' flag.  These
1425  // instructions are special in various ways, which require special support to
1426  // insert.  The specified MachineInstr is created but not inserted into any
1427  // basic blocks, and this method is called to expand it into a sequence of
1428  // instructions, potentially also creating new basic blocks and control flow.
1429  // When new basic blocks are inserted and the edges from MBB to its successors
1430  // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
1431  // DenseMap.
1432  virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
1433                                                         MachineBasicBlock *MBB,
1434                    DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const;
1435
1436  //===--------------------------------------------------------------------===//
1437  // Addressing mode description hooks (used by LSR etc).
1438  //
1439
1440  /// AddrMode - This represents an addressing mode of:
1441  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1442  /// If BaseGV is null,  there is no BaseGV.
1443  /// If BaseOffs is zero, there is no base offset.
1444  /// If HasBaseReg is false, there is no base register.
1445  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1446  /// no scale.
1447  ///
1448  struct AddrMode {
1449    GlobalValue *BaseGV;
1450    int64_t      BaseOffs;
1451    bool         HasBaseReg;
1452    int64_t      Scale;
1453    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1454  };
1455
1456  /// isLegalAddressingMode - Return true if the addressing mode represented by
1457  /// AM is legal for this target, for a load/store of the specified type.
1458  /// The type may be VoidTy, in which case only return true if the addressing
1459  /// mode is legal for a load/store of any legal type.
1460  /// TODO: Handle pre/postinc as well.
1461  virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const;
1462
1463  /// isTruncateFree - Return true if it's free to truncate a value of
1464  /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1465  /// register EAX to i16 by referencing its sub-register AX.
1466  virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const {
1467    return false;
1468  }
1469
1470  virtual bool isTruncateFree(EVT VT1, EVT VT2) const {
1471    return false;
1472  }
1473
1474  /// isZExtFree - Return true if any actual instruction that defines a
1475  /// value of type Ty1 implicitly zero-extends the value to Ty2 in the result
1476  /// register. This does not necessarily include registers defined in
1477  /// unknown ways, such as incoming arguments, or copies from unknown
1478  /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1479  /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1480  /// all instructions that define 32-bit values implicit zero-extend the
1481  /// result out to 64 bits.
1482  virtual bool isZExtFree(const Type *Ty1, const Type *Ty2) const {
1483    return false;
1484  }
1485
1486  virtual bool isZExtFree(EVT VT1, EVT VT2) const {
1487    return false;
1488  }
1489
1490  /// isNarrowingProfitable - Return true if it's profitable to narrow
1491  /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
1492  /// from i32 to i8 but not from i32 to i16.
1493  virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const {
1494    return false;
1495  }
1496
1497  /// isLegalICmpImmediate - Return true if the specified immediate is legal
1498  /// icmp immediate, that is the target has icmp instructions which can compare
1499  /// a register against the immediate without having to materialize the
1500  /// immediate into a register.
1501  virtual bool isLegalICmpImmediate(int64_t Imm) const {
1502    return true;
1503  }
1504
1505  //===--------------------------------------------------------------------===//
1506  // Div utility functions
1507  //
1508  SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG,
1509                      std::vector<SDNode*>* Created) const;
1510  SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG,
1511                      std::vector<SDNode*>* Created) const;
1512
1513
1514  //===--------------------------------------------------------------------===//
1515  // Runtime Library hooks
1516  //
1517
1518  /// setLibcallName - Rename the default libcall routine name for the specified
1519  /// libcall.
1520  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1521    LibcallRoutineNames[Call] = Name;
1522  }
1523
1524  /// getLibcallName - Get the libcall routine name for the specified libcall.
1525  ///
1526  const char *getLibcallName(RTLIB::Libcall Call) const {
1527    return LibcallRoutineNames[Call];
1528  }
1529
1530  /// setCmpLibcallCC - Override the default CondCode to be used to test the
1531  /// result of the comparison libcall against zero.
1532  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1533    CmpLibcallCCs[Call] = CC;
1534  }
1535
1536  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1537  /// the comparison libcall against zero.
1538  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1539    return CmpLibcallCCs[Call];
1540  }
1541
1542  /// setLibcallCallingConv - Set the CallingConv that should be used for the
1543  /// specified libcall.
1544  void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
1545    LibcallCallingConvs[Call] = CC;
1546  }
1547
1548  /// getLibcallCallingConv - Get the CallingConv that should be used for the
1549  /// specified libcall.
1550  CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
1551    return LibcallCallingConvs[Call];
1552  }
1553
1554private:
1555  const TargetMachine &TM;
1556  const TargetData *TD;
1557  const TargetLoweringObjectFile &TLOF;
1558
1559  /// PointerTy - The type to use for pointers, usually i32 or i64.
1560  ///
1561  MVT PointerTy;
1562
1563  /// IsLittleEndian - True if this is a little endian target.
1564  ///
1565  bool IsLittleEndian;
1566
1567  /// SelectIsExpensive - Tells the code generator not to expand operations
1568  /// into sequences that use the select operations if possible.
1569  bool SelectIsExpensive;
1570
1571  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1572  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1573  /// a real cost model is in place.  If we ever optimize for size, this will be
1574  /// set to true unconditionally.
1575  bool IntDivIsCheap;
1576
1577  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1578  /// srl/add/sra for a signed divide by power of two, and let the target handle
1579  /// it.
1580  bool Pow2DivIsCheap;
1581
1582  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1583  /// llvm.setjmp.  Defaults to false.
1584  bool UseUnderscoreSetJmp;
1585
1586  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1587  /// llvm.longjmp.  Defaults to false.
1588  bool UseUnderscoreLongJmp;
1589
1590  /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
1591  /// PointerTy is.
1592  MVT ShiftAmountTy;
1593
1594  /// BooleanContents - Information about the contents of the high-bits in
1595  /// boolean values held in a type wider than i1.  See getBooleanContents.
1596  BooleanContent BooleanContents;
1597
1598  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1599  /// total cycles or lowest register usage.
1600  SchedPreference SchedPreferenceInfo;
1601
1602  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1603  unsigned JumpBufSize;
1604
1605  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1606  /// buffers
1607  unsigned JumpBufAlignment;
1608
1609  /// IfCvtBlockSizeLimit - The maximum allowed size for a block to be
1610  /// if-converted.
1611  unsigned IfCvtBlockSizeLimit;
1612
1613  /// IfCvtDupBlockSizeLimit - The maximum allowed size for a block to be
1614  /// duplicated during if-conversion.
1615  unsigned IfCvtDupBlockSizeLimit;
1616
1617  /// PrefLoopAlignment - The perferred loop alignment.
1618  ///
1619  unsigned PrefLoopAlignment;
1620
1621  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1622  /// specifies the register that llvm.savestack/llvm.restorestack should save
1623  /// and restore.
1624  unsigned StackPointerRegisterToSaveRestore;
1625
1626  /// ExceptionPointerRegister - If set to a physical register, this specifies
1627  /// the register that receives the exception address on entry to a landing
1628  /// pad.
1629  unsigned ExceptionPointerRegister;
1630
1631  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1632  /// the register that receives the exception typeid on entry to a landing
1633  /// pad.
1634  unsigned ExceptionSelectorRegister;
1635
1636  /// RegClassForVT - This indicates the default register class to use for
1637  /// each ValueType the target supports natively.
1638  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1639  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1640  EVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1641
1642  /// Synthesizable indicates whether it is OK for the compiler to create new
1643  /// operations using this type.  All Legal types are Synthesizable except
1644  /// MMX types on X86.  Non-Legal types are not Synthesizable.
1645  bool Synthesizable[MVT::LAST_VALUETYPE];
1646
1647  /// TransformToType - For any value types we are promoting or expanding, this
1648  /// contains the value type that we are changing to.  For Expanded types, this
1649  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1650  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1651  /// by the system, this holds the same type (e.g. i32 -> i32).
1652  EVT TransformToType[MVT::LAST_VALUETYPE];
1653
1654  /// OpActions - For each operation and each value type, keep a LegalizeAction
1655  /// that indicates how instruction selection should deal with the operation.
1656  /// Most operations are Legal (aka, supported natively by the target), but
1657  /// operations that are not should be described.  Note that operations on
1658  /// non-legal value types are not described here.
1659  /// This array is accessed using VT.getSimpleVT(), so it is subject to
1660  /// the MVT::MAX_ALLOWED_VALUETYPE * 2 bits.
1661  uint64_t OpActions[MVT::MAX_ALLOWED_VALUETYPE/(sizeof(uint64_t)*4)][ISD::BUILTIN_OP_END];
1662
1663  /// LoadExtActions - For each load of load extension type and each value type,
1664  /// keep a LegalizeAction that indicates how instruction selection should deal
1665  /// with the load.
1666  uint64_t LoadExtActions[ISD::LAST_LOADEXT_TYPE];
1667
1668  /// TruncStoreActions - For each truncating store, keep a LegalizeAction that
1669  /// indicates how instruction selection should deal with the store.
1670  uint64_t TruncStoreActions[MVT::LAST_VALUETYPE];
1671
1672  /// IndexedModeActions - For each indexed mode and each value type,
1673  /// keep a pair of LegalizeAction that indicates how instruction
1674  /// selection should deal with the load / store.  The first
1675  /// dimension is now the value_type for the reference.  The second
1676  /// dimension is the load [0] vs. store[1].  The third dimension
1677  /// represents the various modes for load store.
1678  uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][2][ISD::LAST_INDEXED_MODE];
1679
1680  /// CondCodeActions - For each condition code (ISD::CondCode) keep a
1681  /// LegalizeAction that indicates how instruction selection should
1682  /// deal with the condition code.
1683  uint64_t CondCodeActions[ISD::SETCC_INVALID];
1684
1685  ValueTypeActionImpl ValueTypeActions;
1686
1687  std::vector<std::pair<EVT, TargetRegisterClass*> > AvailableRegClasses;
1688
1689  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
1690  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
1691  /// which sets a bit in this array.
1692  unsigned char
1693  TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
1694
1695  /// PromoteToType - For operations that must be promoted to a specific type,
1696  /// this holds the destination type.  This map should be sparse, so don't hold
1697  /// it as an array.
1698  ///
1699  /// Targets add entries to this map with AddPromotedToType(..), clients access
1700  /// this with getTypeToPromoteTo(..).
1701  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
1702    PromoteToType;
1703
1704  /// LibcallRoutineNames - Stores the name each libcall.
1705  ///
1706  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1707
1708  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
1709  /// of each of the comparison libcall against zero.
1710  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1711
1712  /// LibcallCallingConvs - Stores the CallingConv that should be used for each
1713  /// libcall.
1714  CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
1715
1716protected:
1717  /// When lowering \@llvm.memset this field specifies the maximum number of
1718  /// store operations that may be substituted for the call to memset. Targets
1719  /// must set this value based on the cost threshold for that target. Targets
1720  /// should assume that the memset will be done using as many of the largest
1721  /// store operations first, followed by smaller ones, if necessary, per
1722  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1723  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1724  /// store.  This only applies to setting a constant array of a constant size.
1725  /// @brief Specify maximum number of store instructions per memset call.
1726  unsigned maxStoresPerMemset;
1727
1728  /// When lowering \@llvm.memcpy this field specifies the maximum number of
1729  /// store operations that may be substituted for a call to memcpy. Targets
1730  /// must set this value based on the cost threshold for that target. Targets
1731  /// should assume that the memcpy will be done using as many of the largest
1732  /// store operations first, followed by smaller ones, if necessary, per
1733  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1734  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1735  /// and one 1-byte store. This only applies to copying a constant array of
1736  /// constant size.
1737  /// @brief Specify maximum bytes of store instructions per memcpy call.
1738  unsigned maxStoresPerMemcpy;
1739
1740  /// When lowering \@llvm.memmove this field specifies the maximum number of
1741  /// store instructions that may be substituted for a call to memmove. Targets
1742  /// must set this value based on the cost threshold for that target. Targets
1743  /// should assume that the memmove will be done using as many of the largest
1744  /// store operations first, followed by smaller ones, if necessary, per
1745  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1746  /// with 8-bit alignment would result in nine 1-byte stores.  This only
1747  /// applies to copying a constant array of constant size.
1748  /// @brief Specify maximum bytes of store instructions per memmove call.
1749  unsigned maxStoresPerMemmove;
1750
1751  /// This field specifies whether the target can benefit from code placement
1752  /// optimization.
1753  bool benefitFromCodePlacementOpt;
1754};
1755} // end llvm namespace
1756
1757#endif
1758