TargetLowering.h revision f560ffae1f1f6591859c7b70636a3eca6c03f083
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/InlineAsm.h"
26#include "llvm/CodeGen/SelectionDAGNodes.h"
27#include "llvm/CodeGen/RuntimeLibcalls.h"
28#include "llvm/ADT/APFloat.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/SmallSet.h"
31#include "llvm/ADT/STLExtras.h"
32#include <climits>
33#include <map>
34#include <vector>
35
36namespace llvm {
37  class AllocaInst;
38  class CallInst;
39  class Function;
40  class FastISel;
41  class MachineBasicBlock;
42  class MachineFunction;
43  class MachineFrameInfo;
44  class MachineInstr;
45  class MachineModuleInfo;
46  class DwarfWriter;
47  class SDNode;
48  class SDValue;
49  class SelectionDAG;
50  class TargetData;
51  class TargetMachine;
52  class TargetRegisterClass;
53  class TargetSubtarget;
54  class Value;
55
56//===----------------------------------------------------------------------===//
57/// TargetLowering - This class defines information used to lower LLVM code to
58/// legal SelectionDAG operators that the target instruction selector can accept
59/// natively.
60///
61/// This class also defines callbacks that targets must implement to lower
62/// target-specific constructs to SelectionDAG operators.
63///
64class TargetLowering {
65public:
66  /// LegalizeAction - This enum indicates whether operations are valid for a
67  /// target, and if not, what action should be used to make them valid.
68  enum LegalizeAction {
69    Legal,      // The target natively supports this operation.
70    Promote,    // This operation should be executed in a larger type.
71    Expand,     // Try to expand this to other ops, otherwise use a libcall.
72    Custom      // Use the LowerOperation hook to implement custom lowering.
73  };
74
75  enum OutOfRangeShiftAmount {
76    Undefined,  // Oversized shift amounts are undefined (default).
77    Mask,       // Shift amounts are auto masked (anded) to value size.
78    Extend      // Oversized shift pulls in zeros or sign bits.
79  };
80
81  enum BooleanContent { // How the target represents true/false values.
82    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
83    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
84    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
85  };
86
87  enum SchedPreference {
88    SchedulingForLatency,          // Scheduling for shortest total latency.
89    SchedulingForRegPressure       // Scheduling for lowest register pressure.
90  };
91
92  explicit TargetLowering(TargetMachine &TM);
93  virtual ~TargetLowering();
94
95  TargetMachine &getTargetMachine() const { return TM; }
96  const TargetData *getTargetData() const { return TD; }
97
98  bool isBigEndian() const { return !IsLittleEndian; }
99  bool isLittleEndian() const { return IsLittleEndian; }
100  MVT getPointerTy() const { return PointerTy; }
101  MVT getShiftAmountTy() const { return ShiftAmountTy; }
102  OutOfRangeShiftAmount getShiftAmountFlavor() const {return ShiftAmtHandling; }
103
104  /// usesGlobalOffsetTable - Return true if this target uses a GOT for PIC
105  /// codegen.
106  bool usesGlobalOffsetTable() const { return UsesGlobalOffsetTable; }
107
108  /// isSelectExpensive - Return true if the select operation is expensive for
109  /// this target.
110  bool isSelectExpensive() const { return SelectIsExpensive; }
111
112  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
113  /// a sequence of several shifts, adds, and multiplies for this target.
114  bool isIntDivCheap() const { return IntDivIsCheap; }
115
116  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
117  /// srl/add/sra.
118  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
119
120  /// getSetCCResultType - Return the ValueType of the result of SETCC
121  /// operations.  Also used to obtain the target's preferred type for
122  /// the condition operand of SELECT and BRCOND nodes.  In the case of
123  /// BRCOND the argument passed is MVT::Other since there are no other
124  /// operands to get a type hint from.
125  virtual MVT getSetCCResultType(MVT VT) const;
126
127  /// getBooleanContents - For targets without i1 registers, this gives the
128  /// nature of the high-bits of boolean values held in types wider than i1.
129  /// "Boolean values" are special true/false values produced by nodes like
130  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
131  /// Not to be confused with general values promoted from i1.
132  BooleanContent getBooleanContents() const { return BooleanContents;}
133
134  /// getSchedulingPreference - Return target scheduling preference.
135  SchedPreference getSchedulingPreference() const {
136    return SchedPreferenceInfo;
137  }
138
139  /// getRegClassFor - Return the register class that should be used for the
140  /// specified value type.  This may only be called on legal types.
141  TargetRegisterClass *getRegClassFor(MVT VT) const {
142    assert((unsigned)VT.getSimpleVT() < array_lengthof(RegClassForVT));
143    TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT()];
144    assert(RC && "This value type is not natively supported!");
145    return RC;
146  }
147
148  /// isTypeLegal - Return true if the target has native support for the
149  /// specified value type.  This means that it has a register that directly
150  /// holds it without promotions or expansions.
151  bool isTypeLegal(MVT VT) const {
152    assert(!VT.isSimple() ||
153           (unsigned)VT.getSimpleVT() < array_lengthof(RegClassForVT));
154    return VT.isSimple() && RegClassForVT[VT.getSimpleVT()] != 0;
155  }
156
157  class ValueTypeActionImpl {
158    /// ValueTypeActions - This is a bitvector that contains two bits for each
159    /// value type, where the two bits correspond to the LegalizeAction enum.
160    /// This can be queried with "getTypeAction(VT)".
161    uint32_t ValueTypeActions[2];
162  public:
163    ValueTypeActionImpl() {
164      ValueTypeActions[0] = ValueTypeActions[1] = 0;
165    }
166    ValueTypeActionImpl(const ValueTypeActionImpl &RHS) {
167      ValueTypeActions[0] = RHS.ValueTypeActions[0];
168      ValueTypeActions[1] = RHS.ValueTypeActions[1];
169    }
170
171    LegalizeAction getTypeAction(MVT VT) const {
172      if (VT.isExtended()) {
173        if (VT.isVector()) {
174          return VT.isPow2VectorType() ? Expand : Promote;
175        }
176        if (VT.isInteger())
177          // First promote to a power-of-two size, then expand if necessary.
178          return VT == VT.getRoundIntegerType() ? Expand : Promote;
179        assert(0 && "Unsupported extended type!");
180        return Legal;
181      }
182      unsigned I = VT.getSimpleVT();
183      assert(I<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
184      return (LegalizeAction)((ValueTypeActions[I>>4] >> ((2*I) & 31)) & 3);
185    }
186    void setTypeAction(MVT VT, LegalizeAction Action) {
187      unsigned I = VT.getSimpleVT();
188      assert(I<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
189      ValueTypeActions[I>>4] |= Action << ((I*2) & 31);
190    }
191  };
192
193  const ValueTypeActionImpl &getValueTypeActions() const {
194    return ValueTypeActions;
195  }
196
197  /// getTypeAction - Return how we should legalize values of this type, either
198  /// it is already legal (return 'Legal') or we need to promote it to a larger
199  /// type (return 'Promote'), or we need to expand it into multiple registers
200  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
201  LegalizeAction getTypeAction(MVT VT) const {
202    return ValueTypeActions.getTypeAction(VT);
203  }
204
205  /// getTypeToTransformTo - For types supported by the target, this is an
206  /// identity function.  For types that must be promoted to larger types, this
207  /// returns the larger type to promote to.  For integer types that are larger
208  /// than the largest integer register, this contains one step in the expansion
209  /// to get to the smaller register. For illegal floating point types, this
210  /// returns the integer type to transform to.
211  MVT getTypeToTransformTo(MVT VT) const {
212    if (VT.isSimple()) {
213      assert((unsigned)VT.getSimpleVT() < array_lengthof(TransformToType));
214      MVT NVT = TransformToType[VT.getSimpleVT()];
215      assert(getTypeAction(NVT) != Promote &&
216             "Promote may not follow Expand or Promote");
217      return NVT;
218    }
219
220    if (VT.isVector()) {
221      MVT NVT = VT.getPow2VectorType();
222      if (NVT == VT) {
223        // Vector length is a power of 2 - split to half the size.
224        unsigned NumElts = VT.getVectorNumElements();
225        MVT EltVT = VT.getVectorElementType();
226        return (NumElts == 1) ? EltVT : MVT::getVectorVT(EltVT, NumElts / 2);
227      }
228      // Promote to a power of two size, avoiding multi-step promotion.
229      return getTypeAction(NVT) == Promote ? getTypeToTransformTo(NVT) : NVT;
230    } else if (VT.isInteger()) {
231      MVT NVT = VT.getRoundIntegerType();
232      if (NVT == VT)
233        // Size is a power of two - expand to half the size.
234        return MVT::getIntegerVT(VT.getSizeInBits() / 2);
235      else
236        // Promote to a power of two size, avoiding multi-step promotion.
237        return getTypeAction(NVT) == Promote ? getTypeToTransformTo(NVT) : NVT;
238    }
239    assert(0 && "Unsupported extended type!");
240    return MVT(); // Not reached
241  }
242
243  /// getTypeToExpandTo - For types supported by the target, this is an
244  /// identity function.  For types that must be expanded (i.e. integer types
245  /// that are larger than the largest integer register or illegal floating
246  /// point types), this returns the largest legal type it will be expanded to.
247  MVT getTypeToExpandTo(MVT VT) const {
248    assert(!VT.isVector());
249    while (true) {
250      switch (getTypeAction(VT)) {
251      case Legal:
252        return VT;
253      case Expand:
254        VT = getTypeToTransformTo(VT);
255        break;
256      default:
257        assert(false && "Type is not legal nor is it to be expanded!");
258        return VT;
259      }
260    }
261    return VT;
262  }
263
264  /// getVectorTypeBreakdown - Vector types are broken down into some number of
265  /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
266  /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
267  /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
268  ///
269  /// This method returns the number of registers needed, and the VT for each
270  /// register.  It also returns the VT and quantity of the intermediate values
271  /// before they are promoted/expanded.
272  ///
273  unsigned getVectorTypeBreakdown(MVT VT,
274                                  MVT &IntermediateVT,
275                                  unsigned &NumIntermediates,
276                                  MVT &RegisterVT) const;
277
278  /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
279  /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
280  /// this is the case, it returns true and store the intrinsic
281  /// information into the IntrinsicInfo that was passed to the function.
282  typedef struct IntrinsicInfo {
283    unsigned     opc;         // target opcode
284    MVT          memVT;       // memory VT
285    const Value* ptrVal;      // value representing memory location
286    int          offset;      // offset off of ptrVal
287    unsigned     align;       // alignment
288    bool         vol;         // is volatile?
289    bool         readMem;     // reads memory?
290    bool         writeMem;    // writes memory?
291  } IntrinisicInfo;
292
293  virtual bool getTgtMemIntrinsic(IntrinsicInfo& Info,
294                                  CallInst &I, unsigned Intrinsic) {
295    return false;
296  }
297
298  /// getWidenVectorType: given a vector type, returns the type to widen to
299  /// (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
300  /// If there is no vector type that we want to widen to, returns MVT::Other
301  /// When and were to widen is target dependent based on the cost of
302  /// scalarizing vs using the wider vector type.
303  virtual MVT getWidenVectorType(MVT VT) const;
304
305  typedef std::vector<APFloat>::const_iterator legal_fpimm_iterator;
306  legal_fpimm_iterator legal_fpimm_begin() const {
307    return LegalFPImmediates.begin();
308  }
309  legal_fpimm_iterator legal_fpimm_end() const {
310    return LegalFPImmediates.end();
311  }
312
313  /// isShuffleMaskLegal - Targets can use this to indicate that they only
314  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
315  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
316  /// are assumed to be legal.
317  virtual bool isShuffleMaskLegal(SDValue Mask, MVT VT) const {
318    return true;
319  }
320
321  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
322  /// used by Targets can use this to indicate if there is a suitable
323  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
324  /// pool entry.
325  virtual bool isVectorClearMaskLegal(const std::vector<SDValue> &BVOps,
326                                      MVT EVT,
327                                      SelectionDAG &DAG) const {
328    return false;
329  }
330
331  /// getOperationAction - Return how this operation should be treated: either
332  /// it is legal, needs to be promoted to a larger size, needs to be
333  /// expanded to some other code sequence, or the target has a custom expander
334  /// for it.
335  LegalizeAction getOperationAction(unsigned Op, MVT VT) const {
336    if (VT.isExtended()) return Expand;
337    assert(Op < array_lengthof(OpActions) &&
338           (unsigned)VT.getSimpleVT() < sizeof(OpActions[0])*4 &&
339           "Table isn't big enough!");
340    return (LegalizeAction)((OpActions[Op] >> (2*VT.getSimpleVT())) & 3);
341  }
342
343  /// isOperationLegalOrCustom - Return true if the specified operation is
344  /// legal on this target or can be made legal with custom lowering. This
345  /// is used to help guide high-level lowering decisions.
346  bool isOperationLegalOrCustom(unsigned Op, MVT VT) const {
347    return (VT == MVT::Other || isTypeLegal(VT)) &&
348      (getOperationAction(Op, VT) == Legal ||
349       getOperationAction(Op, VT) == Custom);
350  }
351
352  /// isOperationLegal - Return true if the specified operation is legal on this
353  /// target.
354  bool isOperationLegal(unsigned Op, MVT VT) const {
355    return (VT == MVT::Other || isTypeLegal(VT)) &&
356           getOperationAction(Op, VT) == Legal;
357  }
358
359  /// getLoadExtAction - Return how this load with extension should be treated:
360  /// either it is legal, needs to be promoted to a larger size, needs to be
361  /// expanded to some other code sequence, or the target has a custom expander
362  /// for it.
363  LegalizeAction getLoadExtAction(unsigned LType, MVT VT) const {
364    assert(LType < array_lengthof(LoadExtActions) &&
365           (unsigned)VT.getSimpleVT() < sizeof(LoadExtActions[0])*4 &&
366           "Table isn't big enough!");
367    return (LegalizeAction)((LoadExtActions[LType] >> (2*VT.getSimpleVT())) & 3);
368  }
369
370  /// isLoadExtLegal - Return true if the specified load with extension is legal
371  /// on this target.
372  bool isLoadExtLegal(unsigned LType, MVT VT) const {
373    return VT.isSimple() &&
374      (getLoadExtAction(LType, VT) == Legal ||
375       getLoadExtAction(LType, VT) == Custom);
376  }
377
378  /// getTruncStoreAction - Return how this store with truncation should be
379  /// treated: either it is legal, needs to be promoted to a larger size, needs
380  /// to be expanded to some other code sequence, or the target has a custom
381  /// expander for it.
382  LegalizeAction getTruncStoreAction(MVT ValVT,
383                                     MVT MemVT) const {
384    assert((unsigned)ValVT.getSimpleVT() < array_lengthof(TruncStoreActions) &&
385           (unsigned)MemVT.getSimpleVT() < sizeof(TruncStoreActions[0])*4 &&
386           "Table isn't big enough!");
387    return (LegalizeAction)((TruncStoreActions[ValVT.getSimpleVT()] >>
388                             (2*MemVT.getSimpleVT())) & 3);
389  }
390
391  /// isTruncStoreLegal - Return true if the specified store with truncation is
392  /// legal on this target.
393  bool isTruncStoreLegal(MVT ValVT, MVT MemVT) const {
394    return isTypeLegal(ValVT) && MemVT.isSimple() &&
395      (getTruncStoreAction(ValVT, MemVT) == Legal ||
396       getTruncStoreAction(ValVT, MemVT) == Custom);
397  }
398
399  /// getIndexedLoadAction - Return how the indexed load should be treated:
400  /// either it is legal, needs to be promoted to a larger size, needs to be
401  /// expanded to some other code sequence, or the target has a custom expander
402  /// for it.
403  LegalizeAction
404  getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
405    assert(IdxMode < array_lengthof(IndexedModeActions[0]) &&
406           (unsigned)VT.getSimpleVT() < sizeof(IndexedModeActions[0][0])*4 &&
407           "Table isn't big enough!");
408    return (LegalizeAction)((IndexedModeActions[0][IdxMode] >>
409                             (2*VT.getSimpleVT())) & 3);
410  }
411
412  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
413  /// on this target.
414  bool isIndexedLoadLegal(unsigned IdxMode, MVT VT) const {
415    return VT.isSimple() &&
416      (getIndexedLoadAction(IdxMode, VT) == Legal ||
417       getIndexedLoadAction(IdxMode, VT) == Custom);
418  }
419
420  /// getIndexedStoreAction - Return how the indexed store should be treated:
421  /// either it is legal, needs to be promoted to a larger size, needs to be
422  /// expanded to some other code sequence, or the target has a custom expander
423  /// for it.
424  LegalizeAction
425  getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
426    assert(IdxMode < array_lengthof(IndexedModeActions[1]) &&
427           (unsigned)VT.getSimpleVT() < sizeof(IndexedModeActions[1][0])*4 &&
428           "Table isn't big enough!");
429    return (LegalizeAction)((IndexedModeActions[1][IdxMode] >>
430                             (2*VT.getSimpleVT())) & 3);
431  }
432
433  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
434  /// on this target.
435  bool isIndexedStoreLegal(unsigned IdxMode, MVT VT) const {
436    return VT.isSimple() &&
437      (getIndexedStoreAction(IdxMode, VT) == Legal ||
438       getIndexedStoreAction(IdxMode, VT) == Custom);
439  }
440
441  /// getConvertAction - Return how the conversion should be treated:
442  /// either it is legal, needs to be promoted to a larger size, needs to be
443  /// expanded to some other code sequence, or the target has a custom expander
444  /// for it.
445  LegalizeAction
446  getConvertAction(MVT FromVT, MVT ToVT) const {
447    assert((unsigned)FromVT.getSimpleVT() < array_lengthof(ConvertActions) &&
448           (unsigned)ToVT.getSimpleVT() < sizeof(ConvertActions[0])*4 &&
449           "Table isn't big enough!");
450    return (LegalizeAction)((ConvertActions[FromVT.getSimpleVT()] >>
451                             (2*ToVT.getSimpleVT())) & 3);
452  }
453
454  /// isConvertLegal - Return true if the specified conversion is legal
455  /// on this target.
456  bool isConvertLegal(MVT FromVT, MVT ToVT) const {
457    return isTypeLegal(FromVT) && isTypeLegal(ToVT) &&
458      (getConvertAction(FromVT, ToVT) == Legal ||
459       getConvertAction(FromVT, ToVT) == Custom);
460  }
461
462  /// getCondCodeAction - Return how the condition code should be treated:
463  /// either it is legal, needs to be expanded to some other code sequence,
464  /// or the target has a custom expander for it.
465  LegalizeAction
466  getCondCodeAction(ISD::CondCode CC, MVT VT) const {
467    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
468           (unsigned)VT.getSimpleVT() < sizeof(CondCodeActions[0])*4 &&
469           "Table isn't big enough!");
470    LegalizeAction Action = (LegalizeAction)
471      ((CondCodeActions[CC] >> (2*VT.getSimpleVT())) & 3);
472    assert(Action != Promote && "Can't promote condition code!");
473    return Action;
474  }
475
476  /// isCondCodeLegal - Return true if the specified condition code is legal
477  /// on this target.
478  bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const {
479    return getCondCodeAction(CC, VT) == Legal ||
480           getCondCodeAction(CC, VT) == Custom;
481  }
482
483
484  /// getTypeToPromoteTo - If the action for this operation is to promote, this
485  /// method returns the ValueType to promote to.
486  MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
487    assert(getOperationAction(Op, VT) == Promote &&
488           "This operation isn't promoted!");
489
490    // See if this has an explicit type specified.
491    std::map<std::pair<unsigned, MVT::SimpleValueType>,
492             MVT::SimpleValueType>::const_iterator PTTI =
493      PromoteToType.find(std::make_pair(Op, VT.getSimpleVT()));
494    if (PTTI != PromoteToType.end()) return PTTI->second;
495
496    assert((VT.isInteger() || VT.isFloatingPoint()) &&
497           "Cannot autopromote this type, add it with AddPromotedToType.");
498
499    MVT NVT = VT;
500    do {
501      NVT = (MVT::SimpleValueType)(NVT.getSimpleVT()+1);
502      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
503             "Didn't find type to promote to!");
504    } while (!isTypeLegal(NVT) ||
505              getOperationAction(Op, NVT) == Promote);
506    return NVT;
507  }
508
509  /// getValueType - Return the MVT corresponding to this LLVM type.
510  /// This is fixed by the LLVM operations except for the pointer size.  If
511  /// AllowUnknown is true, this will return MVT::Other for types with no MVT
512  /// counterpart (e.g. structs), otherwise it will assert.
513  MVT getValueType(const Type *Ty, bool AllowUnknown = false) const {
514    MVT VT = MVT::getMVT(Ty, AllowUnknown);
515    return VT == MVT::iPTR ? PointerTy : VT;
516  }
517
518  /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
519  /// function arguments in the caller parameter area.  This is the actual
520  /// alignment, not its logarithm.
521  virtual unsigned getByValTypeAlignment(const Type *Ty) const;
522
523  /// getRegisterType - Return the type of registers that this ValueType will
524  /// eventually require.
525  MVT getRegisterType(MVT VT) const {
526    if (VT.isSimple()) {
527      assert((unsigned)VT.getSimpleVT() < array_lengthof(RegisterTypeForVT));
528      return RegisterTypeForVT[VT.getSimpleVT()];
529    }
530    if (VT.isVector()) {
531      MVT VT1, RegisterVT;
532      unsigned NumIntermediates;
533      (void)getVectorTypeBreakdown(VT, VT1, NumIntermediates, RegisterVT);
534      return RegisterVT;
535    }
536    if (VT.isInteger()) {
537      return getRegisterType(getTypeToTransformTo(VT));
538    }
539    assert(0 && "Unsupported extended type!");
540    return MVT(); // Not reached
541  }
542
543  /// getNumRegisters - Return the number of registers that this ValueType will
544  /// eventually require.  This is one for any types promoted to live in larger
545  /// registers, but may be more than one for types (like i64) that are split
546  /// into pieces.  For types like i140, which are first promoted then expanded,
547  /// it is the number of registers needed to hold all the bits of the original
548  /// type.  For an i140 on a 32 bit machine this means 5 registers.
549  unsigned getNumRegisters(MVT VT) const {
550    if (VT.isSimple()) {
551      assert((unsigned)VT.getSimpleVT() < array_lengthof(NumRegistersForVT));
552      return NumRegistersForVT[VT.getSimpleVT()];
553    }
554    if (VT.isVector()) {
555      MVT VT1, VT2;
556      unsigned NumIntermediates;
557      return getVectorTypeBreakdown(VT, VT1, NumIntermediates, VT2);
558    }
559    if (VT.isInteger()) {
560      unsigned BitWidth = VT.getSizeInBits();
561      unsigned RegWidth = getRegisterType(VT).getSizeInBits();
562      return (BitWidth + RegWidth - 1) / RegWidth;
563    }
564    assert(0 && "Unsupported extended type!");
565    return 0; // Not reached
566  }
567
568  /// ShouldShrinkFPConstant - If true, then instruction selection should
569  /// seek to shrink the FP constant of the specified type to a smaller type
570  /// in order to save space and / or reduce runtime.
571  virtual bool ShouldShrinkFPConstant(MVT VT) const { return true; }
572
573  /// hasTargetDAGCombine - If true, the target has custom DAG combine
574  /// transformations that it can perform for the specified node.
575  bool hasTargetDAGCombine(ISD::NodeType NT) const {
576    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
577    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
578  }
579
580  /// This function returns the maximum number of store operations permitted
581  /// to replace a call to llvm.memset. The value is set by the target at the
582  /// performance threshold for such a replacement.
583  /// @brief Get maximum # of store operations permitted for llvm.memset
584  unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; }
585
586  /// This function returns the maximum number of store operations permitted
587  /// to replace a call to llvm.memcpy. The value is set by the target at the
588  /// performance threshold for such a replacement.
589  /// @brief Get maximum # of store operations permitted for llvm.memcpy
590  unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; }
591
592  /// This function returns the maximum number of store operations permitted
593  /// to replace a call to llvm.memmove. The value is set by the target at the
594  /// performance threshold for such a replacement.
595  /// @brief Get maximum # of store operations permitted for llvm.memmove
596  unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; }
597
598  /// This function returns true if the target allows unaligned memory accesses.
599  /// This is used, for example, in situations where an array copy/move/set is
600  /// converted to a sequence of store operations. It's use helps to ensure that
601  /// such replacements don't generate code that causes an alignment error
602  /// (trap) on the target machine.
603  /// @brief Determine if the target supports unaligned memory accesses.
604  bool allowsUnalignedMemoryAccesses() const {
605    return allowUnalignedMemoryAccesses;
606  }
607
608  /// getOptimalMemOpType - Returns the target specific optimal type for load
609  /// and store operations as a result of memset, memcpy, and memmove lowering.
610  /// It returns MVT::iAny if SelectionDAG should be responsible for
611  /// determining it.
612  virtual MVT getOptimalMemOpType(uint64_t Size, unsigned Align,
613                                  bool isSrcConst, bool isSrcStr) const {
614    return MVT::iAny;
615  }
616
617  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
618  /// to implement llvm.setjmp.
619  bool usesUnderscoreSetJmp() const {
620    return UseUnderscoreSetJmp;
621  }
622
623  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
624  /// to implement llvm.longjmp.
625  bool usesUnderscoreLongJmp() const {
626    return UseUnderscoreLongJmp;
627  }
628
629  /// getStackPointerRegisterToSaveRestore - If a physical register, this
630  /// specifies the register that llvm.savestack/llvm.restorestack should save
631  /// and restore.
632  unsigned getStackPointerRegisterToSaveRestore() const {
633    return StackPointerRegisterToSaveRestore;
634  }
635
636  /// getExceptionAddressRegister - If a physical register, this returns
637  /// the register that receives the exception address on entry to a landing
638  /// pad.
639  unsigned getExceptionAddressRegister() const {
640    return ExceptionPointerRegister;
641  }
642
643  /// getExceptionSelectorRegister - If a physical register, this returns
644  /// the register that receives the exception typeid on entry to a landing
645  /// pad.
646  unsigned getExceptionSelectorRegister() const {
647    return ExceptionSelectorRegister;
648  }
649
650  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
651  /// set, the default is 200)
652  unsigned getJumpBufSize() const {
653    return JumpBufSize;
654  }
655
656  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
657  /// (if never set, the default is 0)
658  unsigned getJumpBufAlignment() const {
659    return JumpBufAlignment;
660  }
661
662  /// getIfCvtBlockLimit - returns the target specific if-conversion block size
663  /// limit. Any block whose size is greater should not be predicated.
664  unsigned getIfCvtBlockSizeLimit() const {
665    return IfCvtBlockSizeLimit;
666  }
667
668  /// getIfCvtDupBlockLimit - returns the target specific size limit for a
669  /// block to be considered for duplication. Any block whose size is greater
670  /// should not be duplicated to facilitate its predication.
671  unsigned getIfCvtDupBlockSizeLimit() const {
672    return IfCvtDupBlockSizeLimit;
673  }
674
675  /// getPrefLoopAlignment - return the preferred loop alignment.
676  ///
677  unsigned getPrefLoopAlignment() const {
678    return PrefLoopAlignment;
679  }
680
681  /// getPreIndexedAddressParts - returns true by value, base pointer and
682  /// offset pointer and addressing mode by reference if the node's address
683  /// can be legally represented as pre-indexed load / store address.
684  virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
685                                         SDValue &Offset,
686                                         ISD::MemIndexedMode &AM,
687                                         SelectionDAG &DAG) const {
688    return false;
689  }
690
691  /// getPostIndexedAddressParts - returns true by value, base pointer and
692  /// offset pointer and addressing mode by reference if this node can be
693  /// combined with a load / store to form a post-indexed load / store.
694  virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
695                                          SDValue &Base, SDValue &Offset,
696                                          ISD::MemIndexedMode &AM,
697                                          SelectionDAG &DAG) const {
698    return false;
699  }
700
701  /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
702  /// jumptable.
703  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
704                                             SelectionDAG &DAG) const;
705
706  /// isOffsetFoldingLegal - Return true if folding a constant offset
707  /// with the given GlobalAddress is legal.  It is frequently not legal in
708  /// PIC relocation models.
709  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
710
711  //===--------------------------------------------------------------------===//
712  // TargetLowering Optimization Methods
713  //
714
715  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
716  /// SDValues for returning information from TargetLowering to its clients
717  /// that want to combine
718  struct TargetLoweringOpt {
719    SelectionDAG &DAG;
720    SDValue Old;
721    SDValue New;
722
723    explicit TargetLoweringOpt(SelectionDAG &InDAG) : DAG(InDAG) {}
724
725    bool CombineTo(SDValue O, SDValue N) {
726      Old = O;
727      New = N;
728      return true;
729    }
730
731    /// ShrinkDemandedConstant - Check to see if the specified operand of the
732    /// specified instruction is a constant integer.  If so, check to see if
733    /// there are any bits set in the constant that are not demanded.  If so,
734    /// shrink the constant and return true.
735    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
736  };
737
738  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
739  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
740  /// use this information to simplify Op, create a new simplified DAG node and
741  /// return true, returning the original and new nodes in Old and New.
742  /// Otherwise, analyze the expression and return a mask of KnownOne and
743  /// KnownZero bits for the expression (used to simplify the caller).
744  /// The KnownZero/One bits may only be accurate for those bits in the
745  /// DemandedMask.
746  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
747                            APInt &KnownZero, APInt &KnownOne,
748                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
749
750  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
751  /// Mask are known to be either zero or one and return them in the
752  /// KnownZero/KnownOne bitsets.
753  virtual void computeMaskedBitsForTargetNode(const SDValue Op,
754                                              const APInt &Mask,
755                                              APInt &KnownZero,
756                                              APInt &KnownOne,
757                                              const SelectionDAG &DAG,
758                                              unsigned Depth = 0) const;
759
760  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
761  /// targets that want to expose additional information about sign bits to the
762  /// DAG Combiner.
763  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
764                                                   unsigned Depth = 0) const;
765
766  struct DAGCombinerInfo {
767    void *DC;  // The DAG Combiner object.
768    bool BeforeLegalize;
769    bool CalledByLegalizer;
770  public:
771    SelectionDAG &DAG;
772
773    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool cl, void *dc)
774      : DC(dc), BeforeLegalize(bl), CalledByLegalizer(cl), DAG(dag) {}
775
776    bool isBeforeLegalize() const { return BeforeLegalize; }
777    bool isCalledByLegalizer() const { return CalledByLegalizer; }
778
779    void AddToWorklist(SDNode *N);
780    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To);
781    SDValue CombineTo(SDNode *N, SDValue Res);
782    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1);
783  };
784
785  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
786  /// and cc. If it is unable to simplify it, return a null SDValue.
787  SDValue SimplifySetCC(MVT VT, SDValue N0, SDValue N1,
788                          ISD::CondCode Cond, bool foldBooleans,
789                          DAGCombinerInfo &DCI) const;
790
791  /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
792  /// node is a GlobalAddress + offset.
793  virtual bool
794  isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) const;
795
796  /// isConsecutiveLoad - Return true if LD (which must be a LoadSDNode) is
797  /// loading 'Bytes' bytes from a location that is 'Dist' units away from the
798  /// location that the 'Base' load is loading from.
799  bool isConsecutiveLoad(SDNode *LD, SDNode *Base, unsigned Bytes, int Dist,
800                         const MachineFrameInfo *MFI) const;
801
802  /// PerformDAGCombine - This method will be invoked for all target nodes and
803  /// for any target-independent nodes that the target has registered with
804  /// invoke it for.
805  ///
806  /// The semantics are as follows:
807  /// Return Value:
808  ///   SDValue.Val == 0   - No change was made
809  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
810  ///   otherwise          - N should be replaced by the returned Operand.
811  ///
812  /// In addition, methods provided by DAGCombinerInfo may be used to perform
813  /// more complex transformations.
814  ///
815  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
816
817  //===--------------------------------------------------------------------===//
818  // TargetLowering Configuration Methods - These methods should be invoked by
819  // the derived class constructor to configure this object for the target.
820  //
821
822protected:
823  /// setUsesGlobalOffsetTable - Specify that this target does or doesn't use a
824  /// GOT for PC-relative code.
825  void setUsesGlobalOffsetTable(bool V) { UsesGlobalOffsetTable = V; }
826
827  /// setShiftAmountType - Describe the type that should be used for shift
828  /// amounts.  This type defaults to the pointer type.
829  void setShiftAmountType(MVT VT) { ShiftAmountTy = VT; }
830
831  /// setBooleanContents - Specify how the target extends the result of a
832  /// boolean value from i1 to a wider type.  See getBooleanContents.
833  void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
834
835  /// setSchedulingPreference - Specify the target scheduling preference.
836  void setSchedulingPreference(SchedPreference Pref) {
837    SchedPreferenceInfo = Pref;
838  }
839
840  /// setShiftAmountFlavor - Describe how the target handles out of range shift
841  /// amounts.
842  void setShiftAmountFlavor(OutOfRangeShiftAmount OORSA) {
843    ShiftAmtHandling = OORSA;
844  }
845
846  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
847  /// use _setjmp to implement llvm.setjmp or the non _ version.
848  /// Defaults to false.
849  void setUseUnderscoreSetJmp(bool Val) {
850    UseUnderscoreSetJmp = Val;
851  }
852
853  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
854  /// use _longjmp to implement llvm.longjmp or the non _ version.
855  /// Defaults to false.
856  void setUseUnderscoreLongJmp(bool Val) {
857    UseUnderscoreLongJmp = Val;
858  }
859
860  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
861  /// specifies the register that llvm.savestack/llvm.restorestack should save
862  /// and restore.
863  void setStackPointerRegisterToSaveRestore(unsigned R) {
864    StackPointerRegisterToSaveRestore = R;
865  }
866
867  /// setExceptionPointerRegister - If set to a physical register, this sets
868  /// the register that receives the exception address on entry to a landing
869  /// pad.
870  void setExceptionPointerRegister(unsigned R) {
871    ExceptionPointerRegister = R;
872  }
873
874  /// setExceptionSelectorRegister - If set to a physical register, this sets
875  /// the register that receives the exception typeid on entry to a landing
876  /// pad.
877  void setExceptionSelectorRegister(unsigned R) {
878    ExceptionSelectorRegister = R;
879  }
880
881  /// SelectIsExpensive - Tells the code generator not to expand operations
882  /// into sequences that use the select operations if possible.
883  void setSelectIsExpensive() { SelectIsExpensive = true; }
884
885  /// setIntDivIsCheap - Tells the code generator that integer divide is
886  /// expensive, and if possible, should be replaced by an alternate sequence
887  /// of instructions not containing an integer divide.
888  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
889
890  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
891  /// srl/add/sra for a signed divide by power of two, and let the target handle
892  /// it.
893  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
894
895  /// addRegisterClass - Add the specified register class as an available
896  /// regclass for the specified value type.  This indicates the selector can
897  /// handle values of that class natively.
898  void addRegisterClass(MVT VT, TargetRegisterClass *RC) {
899    assert((unsigned)VT.getSimpleVT() < array_lengthof(RegClassForVT));
900    AvailableRegClasses.push_back(std::make_pair(VT, RC));
901    RegClassForVT[VT.getSimpleVT()] = RC;
902  }
903
904  /// computeRegisterProperties - Once all of the register classes are added,
905  /// this allows us to compute derived properties we expose.
906  void computeRegisterProperties();
907
908  /// setOperationAction - Indicate that the specified operation does not work
909  /// with the specified type and indicate what to do about it.
910  void setOperationAction(unsigned Op, MVT VT,
911                          LegalizeAction Action) {
912    assert((unsigned)VT.getSimpleVT() < sizeof(OpActions[0])*4 &&
913           Op < array_lengthof(OpActions) && "Table isn't big enough!");
914    OpActions[Op] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2);
915    OpActions[Op] |= (uint64_t)Action << VT.getSimpleVT()*2;
916  }
917
918  /// setLoadExtAction - Indicate that the specified load with extension does
919  /// not work with the with specified type and indicate what to do about it.
920  void setLoadExtAction(unsigned ExtType, MVT VT,
921                      LegalizeAction Action) {
922    assert((unsigned)VT.getSimpleVT() < sizeof(LoadExtActions[0])*4 &&
923           ExtType < array_lengthof(LoadExtActions) &&
924           "Table isn't big enough!");
925    LoadExtActions[ExtType] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2);
926    LoadExtActions[ExtType] |= (uint64_t)Action << VT.getSimpleVT()*2;
927  }
928
929  /// setTruncStoreAction - Indicate that the specified truncating store does
930  /// not work with the with specified type and indicate what to do about it.
931  void setTruncStoreAction(MVT ValVT, MVT MemVT,
932                           LegalizeAction Action) {
933    assert((unsigned)ValVT.getSimpleVT() < array_lengthof(TruncStoreActions) &&
934           (unsigned)MemVT.getSimpleVT() < sizeof(TruncStoreActions[0])*4 &&
935           "Table isn't big enough!");
936    TruncStoreActions[ValVT.getSimpleVT()] &= ~(uint64_t(3UL) <<
937                                                MemVT.getSimpleVT()*2);
938    TruncStoreActions[ValVT.getSimpleVT()] |= (uint64_t)Action <<
939      MemVT.getSimpleVT()*2;
940  }
941
942  /// setIndexedLoadAction - Indicate that the specified indexed load does or
943  /// does not work with the with specified type and indicate what to do abort
944  /// it. NOTE: All indexed mode loads are initialized to Expand in
945  /// TargetLowering.cpp
946  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
947                            LegalizeAction Action) {
948    assert((unsigned)VT.getSimpleVT() < sizeof(IndexedModeActions[0])*4 &&
949           IdxMode < array_lengthof(IndexedModeActions[0]) &&
950           "Table isn't big enough!");
951    IndexedModeActions[0][IdxMode] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2);
952    IndexedModeActions[0][IdxMode] |= (uint64_t)Action << VT.getSimpleVT()*2;
953  }
954
955  /// setIndexedStoreAction - Indicate that the specified indexed store does or
956  /// does not work with the with specified type and indicate what to do about
957  /// it. NOTE: All indexed mode stores are initialized to Expand in
958  /// TargetLowering.cpp
959  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
960                             LegalizeAction Action) {
961    assert((unsigned)VT.getSimpleVT() < sizeof(IndexedModeActions[1][0])*4 &&
962           IdxMode < array_lengthof(IndexedModeActions[1]) &&
963           "Table isn't big enough!");
964    IndexedModeActions[1][IdxMode] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2);
965    IndexedModeActions[1][IdxMode] |= (uint64_t)Action << VT.getSimpleVT()*2;
966  }
967
968  /// setConvertAction - Indicate that the specified conversion does or does
969  /// not work with the with specified type and indicate what to do about it.
970  void setConvertAction(MVT FromVT, MVT ToVT,
971                        LegalizeAction Action) {
972    assert((unsigned)FromVT.getSimpleVT() < array_lengthof(ConvertActions) &&
973           (unsigned)ToVT.getSimpleVT() < sizeof(ConvertActions[0])*4 &&
974           "Table isn't big enough!");
975    ConvertActions[FromVT.getSimpleVT()] &= ~(uint64_t(3UL) <<
976                                              ToVT.getSimpleVT()*2);
977    ConvertActions[FromVT.getSimpleVT()] |= (uint64_t)Action <<
978      ToVT.getSimpleVT()*2;
979  }
980
981  /// setCondCodeAction - Indicate that the specified condition code is or isn't
982  /// supported on the target and indicate what to do about it.
983  void setCondCodeAction(ISD::CondCode CC, MVT VT, LegalizeAction Action) {
984    assert((unsigned)VT.getSimpleVT() < sizeof(CondCodeActions[0])*4 &&
985           (unsigned)CC < array_lengthof(CondCodeActions) &&
986           "Table isn't big enough!");
987    CondCodeActions[(unsigned)CC] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2);
988    CondCodeActions[(unsigned)CC] |= (uint64_t)Action << VT.getSimpleVT()*2;
989  }
990
991  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
992  /// promotion code defaults to trying a larger integer/fp until it can find
993  /// one that works.  If that default is insufficient, this method can be used
994  /// by the target to override the default.
995  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
996    PromoteToType[std::make_pair(Opc, OrigVT.getSimpleVT())] =
997      DestVT.getSimpleVT();
998  }
999
1000  /// addLegalFPImmediate - Indicate that this target can instruction select
1001  /// the specified FP immediate natively.
1002  void addLegalFPImmediate(const APFloat& Imm) {
1003    LegalFPImmediates.push_back(Imm);
1004  }
1005
1006  /// setTargetDAGCombine - Targets should invoke this method for each target
1007  /// independent node that they want to provide a custom DAG combiner for by
1008  /// implementing the PerformDAGCombine virtual method.
1009  void setTargetDAGCombine(ISD::NodeType NT) {
1010    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1011    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1012  }
1013
1014  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
1015  /// bytes); default is 200
1016  void setJumpBufSize(unsigned Size) {
1017    JumpBufSize = Size;
1018  }
1019
1020  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
1021  /// alignment (in bytes); default is 0
1022  void setJumpBufAlignment(unsigned Align) {
1023    JumpBufAlignment = Align;
1024  }
1025
1026  /// setIfCvtBlockSizeLimit - Set the target's if-conversion block size
1027  /// limit (in number of instructions); default is 2.
1028  void setIfCvtBlockSizeLimit(unsigned Limit) {
1029    IfCvtBlockSizeLimit = Limit;
1030  }
1031
1032  /// setIfCvtDupBlockSizeLimit - Set the target's block size limit (in number
1033  /// of instructions) to be considered for code duplication during
1034  /// if-conversion; default is 2.
1035  void setIfCvtDupBlockSizeLimit(unsigned Limit) {
1036    IfCvtDupBlockSizeLimit = Limit;
1037  }
1038
1039  /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
1040  /// alignment is zero, it means the target does not care about loop alignment.
1041  void setPrefLoopAlignment(unsigned Align) {
1042    PrefLoopAlignment = Align;
1043  }
1044
1045public:
1046
1047  virtual const TargetSubtarget *getSubtarget() {
1048    assert(0 && "Not Implemented");
1049    return NULL;    // this is here to silence compiler errors
1050  }
1051  //===--------------------------------------------------------------------===//
1052  // Lowering methods - These methods must be implemented by targets so that
1053  // the SelectionDAGLowering code knows how to lower these.
1054  //
1055
1056  /// LowerArguments - This hook must be implemented to indicate how we should
1057  /// lower the arguments for the specified function, into the specified DAG.
1058  virtual void
1059  LowerArguments(Function &F, SelectionDAG &DAG,
1060                 SmallVectorImpl<SDValue>& ArgValues);
1061
1062  /// LowerCallTo - This hook lowers an abstract call to a function into an
1063  /// actual call.  This returns a pair of operands.  The first element is the
1064  /// return value for the function (if RetTy is not VoidTy).  The second
1065  /// element is the outgoing token chain.
1066  struct ArgListEntry {
1067    SDValue Node;
1068    const Type* Ty;
1069    bool isSExt  : 1;
1070    bool isZExt  : 1;
1071    bool isInReg : 1;
1072    bool isSRet  : 1;
1073    bool isNest  : 1;
1074    bool isByVal : 1;
1075    uint16_t Alignment;
1076
1077    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
1078      isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
1079  };
1080  typedef std::vector<ArgListEntry> ArgListTy;
1081  virtual std::pair<SDValue, SDValue>
1082  LowerCallTo(SDValue Chain, const Type *RetTy, bool RetSExt, bool RetZExt,
1083              bool isVarArg, bool isInreg, unsigned CallingConv,
1084              bool isTailCall, SDValue Callee, ArgListTy &Args,
1085              SelectionDAG &DAG);
1086
1087  /// EmitTargetCodeForMemcpy - Emit target-specific code that performs a
1088  /// memcpy. This can be used by targets to provide code sequences for cases
1089  /// that don't fit the target's parameters for simple loads/stores and can be
1090  /// more efficient than using a library call. This function can return a null
1091  /// SDValue if the target declines to use custom code and a different
1092  /// lowering strategy should be used.
1093  ///
1094  /// If AlwaysInline is true, the size is constant and the target should not
1095  /// emit any calls and is strongly encouraged to attempt to emit inline code
1096  /// even if it is beyond the usual threshold because this intrinsic is being
1097  /// expanded in a place where calls are not feasible (e.g. within the prologue
1098  /// for another call). If the target chooses to decline an AlwaysInline
1099  /// request here, legalize will resort to using simple loads and stores.
1100  virtual SDValue
1101  EmitTargetCodeForMemcpy(SelectionDAG &DAG,
1102                          SDValue Chain,
1103                          SDValue Op1, SDValue Op2,
1104                          SDValue Op3, unsigned Align,
1105                          bool AlwaysInline,
1106                          const Value *DstSV, uint64_t DstOff,
1107                          const Value *SrcSV, uint64_t SrcOff) {
1108    return SDValue();
1109  }
1110
1111  /// EmitTargetCodeForMemmove - Emit target-specific code that performs a
1112  /// memmove. This can be used by targets to provide code sequences for cases
1113  /// that don't fit the target's parameters for simple loads/stores and can be
1114  /// more efficient than using a library call. This function can return a null
1115  /// SDValue if the target declines to use custom code and a different
1116  /// lowering strategy should be used.
1117  virtual SDValue
1118  EmitTargetCodeForMemmove(SelectionDAG &DAG,
1119                           SDValue Chain,
1120                           SDValue Op1, SDValue Op2,
1121                           SDValue Op3, unsigned Align,
1122                           const Value *DstSV, uint64_t DstOff,
1123                           const Value *SrcSV, uint64_t SrcOff) {
1124    return SDValue();
1125  }
1126
1127  /// EmitTargetCodeForMemset - Emit target-specific code that performs a
1128  /// memset. This can be used by targets to provide code sequences for cases
1129  /// that don't fit the target's parameters for simple stores and can be more
1130  /// efficient than using a library call. This function can return a null
1131  /// SDValue if the target declines to use custom code and a different
1132  /// lowering strategy should be used.
1133  virtual SDValue
1134  EmitTargetCodeForMemset(SelectionDAG &DAG,
1135                          SDValue Chain,
1136                          SDValue Op1, SDValue Op2,
1137                          SDValue Op3, unsigned Align,
1138                          const Value *DstSV, uint64_t DstOff) {
1139    return SDValue();
1140  }
1141
1142  /// LowerOperationWrapper - This callback is invoked by the type legalizer
1143  /// to legalize nodes with an illegal operand type but legal result types.
1144  /// It replaces the LowerOperation callback in the type Legalizer.
1145  /// The reason we can not do away with LowerOperation entirely is that
1146  /// LegalizeDAG isn't yet ready to use this callback.
1147  /// TODO: Consider merging with ReplaceNodeResults.
1148
1149  /// The target places new result values for the node in Results (their number
1150  /// and types must exactly match those of the original return values of
1151  /// the node), or leaves Results empty, which indicates that the node is not
1152  /// to be custom lowered after all.
1153  /// The default implementation calls LowerOperation.
1154  virtual void LowerOperationWrapper(SDNode *N,
1155                                     SmallVectorImpl<SDValue> &Results,
1156                                     SelectionDAG &DAG);
1157
1158  /// LowerOperation - This callback is invoked for operations that are
1159  /// unsupported by the target, which are registered to use 'custom' lowering,
1160  /// and whose defined values are all legal.
1161  /// If the target has no operations that require custom lowering, it need not
1162  /// implement this.  The default implementation of this aborts.
1163  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG);
1164
1165  /// ReplaceNodeResults - This callback is invoked when a node result type is
1166  /// illegal for the target, and the operation was registered to use 'custom'
1167  /// lowering for that result type.  The target places new result values for
1168  /// the node in Results (their number and types must exactly match those of
1169  /// the original return values of the node), or leaves Results empty, which
1170  /// indicates that the node is not to be custom lowered after all.
1171  ///
1172  /// If the target has no operations that require custom lowering, it need not
1173  /// implement this.  The default implementation aborts.
1174  virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
1175                                  SelectionDAG &DAG) {
1176    assert(0 && "ReplaceNodeResults not implemented for this target!");
1177  }
1178
1179  /// IsEligibleForTailCallOptimization - Check whether the call is eligible for
1180  /// tail call optimization. Targets which want to do tail call optimization
1181  /// should override this function.
1182  virtual bool IsEligibleForTailCallOptimization(CallSDNode *Call,
1183                                                 SDValue Ret,
1184                                                 SelectionDAG &DAG) const {
1185    return false;
1186  }
1187
1188  /// CheckTailCallReturnConstraints - Check whether CALL node immediatly
1189  /// preceeds the RET node and whether the return uses the result of the node
1190  /// or is a void return. This function can be used by the target to determine
1191  /// eligiblity of tail call optimization.
1192  static bool CheckTailCallReturnConstraints(CallSDNode *TheCall, SDValue Ret) {
1193    unsigned NumOps = Ret.getNumOperands();
1194    if ((NumOps == 1 &&
1195       (Ret.getOperand(0) == SDValue(TheCall,1) ||
1196        Ret.getOperand(0) == SDValue(TheCall,0))) ||
1197      (NumOps > 1 &&
1198       Ret.getOperand(0) == SDValue(TheCall,
1199                                    TheCall->getNumValues()-1) &&
1200       Ret.getOperand(1) == SDValue(TheCall,0)))
1201      return true;
1202    return false;
1203  }
1204
1205  /// GetPossiblePreceedingTailCall - Get preceeding TailCallNodeOpCode node if
1206  /// it exists. Skip a possible ISD::TokenFactor.
1207  static SDValue GetPossiblePreceedingTailCall(SDValue Chain,
1208                                                 unsigned TailCallNodeOpCode) {
1209    if (Chain.getOpcode() == TailCallNodeOpCode) {
1210      return Chain;
1211    } else if (Chain.getOpcode() == ISD::TokenFactor) {
1212      if (Chain.getNumOperands() &&
1213          Chain.getOperand(0).getOpcode() == TailCallNodeOpCode)
1214        return Chain.getOperand(0);
1215    }
1216    return Chain;
1217  }
1218
1219  /// getTargetNodeName() - This method returns the name of a target specific
1220  /// DAG node.
1221  virtual const char *getTargetNodeName(unsigned Opcode) const;
1222
1223  /// createFastISel - This method returns a target specific FastISel object,
1224  /// or null if the target does not support "fast" ISel.
1225  virtual FastISel *
1226  createFastISel(MachineFunction &,
1227                 MachineModuleInfo *, DwarfWriter *,
1228                 DenseMap<const Value *, unsigned> &,
1229                 DenseMap<const BasicBlock *, MachineBasicBlock *> &,
1230                 DenseMap<const AllocaInst *, int> &
1231#ifndef NDEBUG
1232                 , SmallSet<Instruction*, 8> &CatchInfoLost
1233#endif
1234                 ) {
1235    return 0;
1236  }
1237
1238  //===--------------------------------------------------------------------===//
1239  // Inline Asm Support hooks
1240  //
1241
1242  enum ConstraintType {
1243    C_Register,            // Constraint represents specific register(s).
1244    C_RegisterClass,       // Constraint represents any of register(s) in class.
1245    C_Memory,              // Memory constraint.
1246    C_Other,               // Something else.
1247    C_Unknown              // Unsupported constraint.
1248  };
1249
1250  /// AsmOperandInfo - This contains information for each constraint that we are
1251  /// lowering.
1252  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
1253    /// ConstraintCode - This contains the actual string for the code, like "m".
1254    /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
1255    /// most closely matches the operand.
1256    std::string ConstraintCode;
1257
1258    /// ConstraintType - Information about the constraint code, e.g. Register,
1259    /// RegisterClass, Memory, Other, Unknown.
1260    TargetLowering::ConstraintType ConstraintType;
1261
1262    /// CallOperandval - If this is the result output operand or a
1263    /// clobber, this is null, otherwise it is the incoming operand to the
1264    /// CallInst.  This gets modified as the asm is processed.
1265    Value *CallOperandVal;
1266
1267    /// ConstraintVT - The ValueType for the operand value.
1268    MVT ConstraintVT;
1269
1270    /// isMatchingInputConstraint - Return true of this is an input operand that
1271    /// is a matching constraint like "4".
1272    bool isMatchingInputConstraint() const;
1273
1274    /// getMatchedOperand - If this is an input matching constraint, this method
1275    /// returns the output operand it matches.
1276    unsigned getMatchedOperand() const;
1277
1278    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
1279      : InlineAsm::ConstraintInfo(info),
1280        ConstraintType(TargetLowering::C_Unknown),
1281        CallOperandVal(0), ConstraintVT(MVT::Other) {
1282    }
1283  };
1284
1285  /// ComputeConstraintToUse - Determines the constraint code and constraint
1286  /// type to use for the specific AsmOperandInfo, setting
1287  /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
1288  /// being passed in is available, it can be passed in as Op, otherwise an
1289  /// empty SDValue can be passed. If hasMemory is true it means one of the asm
1290  /// constraint of the inline asm instruction being processed is 'm'.
1291  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1292                                      SDValue Op,
1293                                      bool hasMemory,
1294                                      SelectionDAG *DAG = 0) const;
1295
1296  /// getConstraintType - Given a constraint, return the type of constraint it
1297  /// is for this target.
1298  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
1299
1300  /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
1301  /// return a list of registers that can be used to satisfy the constraint.
1302  /// This should only be used for C_RegisterClass constraints.
1303  virtual std::vector<unsigned>
1304  getRegClassForInlineAsmConstraint(const std::string &Constraint,
1305                                    MVT VT) const;
1306
1307  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
1308  /// {edx}), return the register number and the register class for the
1309  /// register.
1310  ///
1311  /// Given a register class constraint, like 'r', if this corresponds directly
1312  /// to an LLVM register class, return a register of 0 and the register class
1313  /// pointer.
1314  ///
1315  /// This should only be used for C_Register constraints.  On error,
1316  /// this returns a register number of 0 and a null register class pointer..
1317  virtual std::pair<unsigned, const TargetRegisterClass*>
1318    getRegForInlineAsmConstraint(const std::string &Constraint,
1319                                 MVT VT) const;
1320
1321  /// LowerXConstraint - try to replace an X constraint, which matches anything,
1322  /// with another that has more specific requirements based on the type of the
1323  /// corresponding operand.  This returns null if there is no replacement to
1324  /// make.
1325  virtual const char *LowerXConstraint(MVT ConstraintVT) const;
1326
1327  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1328  /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is true
1329  /// it means one of the asm constraint of the inline asm instruction being
1330  /// processed is 'm'.
1331  virtual void LowerAsmOperandForConstraint(SDValue Op, char ConstraintLetter,
1332                                            bool hasMemory,
1333                                            std::vector<SDValue> &Ops,
1334                                            SelectionDAG &DAG) const;
1335
1336  //===--------------------------------------------------------------------===//
1337  // Scheduler hooks
1338  //
1339
1340  // EmitInstrWithCustomInserter - This method should be implemented by targets
1341  // that mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
1342  // instructions are special in various ways, which require special support to
1343  // insert.  The specified MachineInstr is created but not inserted into any
1344  // basic blocks, and the scheduler passes ownership of it to this method.
1345  virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
1346                                                        MachineBasicBlock *MBB);
1347
1348  //===--------------------------------------------------------------------===//
1349  // Addressing mode description hooks (used by LSR etc).
1350  //
1351
1352  /// AddrMode - This represents an addressing mode of:
1353  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1354  /// If BaseGV is null,  there is no BaseGV.
1355  /// If BaseOffs is zero, there is no base offset.
1356  /// If HasBaseReg is false, there is no base register.
1357  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1358  /// no scale.
1359  ///
1360  struct AddrMode {
1361    GlobalValue *BaseGV;
1362    int64_t      BaseOffs;
1363    bool         HasBaseReg;
1364    int64_t      Scale;
1365    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1366  };
1367
1368  /// isLegalAddressingMode - Return true if the addressing mode represented by
1369  /// AM is legal for this target, for a load/store of the specified type.
1370  /// TODO: Handle pre/postinc as well.
1371  virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const;
1372
1373  /// isTruncateFree - Return true if it's free to truncate a value of
1374  /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1375  /// register EAX to i16 by referencing its sub-register AX.
1376  virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const {
1377    return false;
1378  }
1379
1380  virtual bool isTruncateFree(MVT VT1, MVT VT2) const {
1381    return false;
1382  }
1383
1384  //===--------------------------------------------------------------------===//
1385  // Div utility functions
1386  //
1387  SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG,
1388                      std::vector<SDNode*>* Created) const;
1389  SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG,
1390                      std::vector<SDNode*>* Created) const;
1391
1392
1393  //===--------------------------------------------------------------------===//
1394  // Runtime Library hooks
1395  //
1396
1397  /// setLibcallName - Rename the default libcall routine name for the specified
1398  /// libcall.
1399  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1400    LibcallRoutineNames[Call] = Name;
1401  }
1402
1403  /// getLibcallName - Get the libcall routine name for the specified libcall.
1404  ///
1405  const char *getLibcallName(RTLIB::Libcall Call) const {
1406    return LibcallRoutineNames[Call];
1407  }
1408
1409  /// setCmpLibcallCC - Override the default CondCode to be used to test the
1410  /// result of the comparison libcall against zero.
1411  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1412    CmpLibcallCCs[Call] = CC;
1413  }
1414
1415  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1416  /// the comparison libcall against zero.
1417  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1418    return CmpLibcallCCs[Call];
1419  }
1420
1421private:
1422  TargetMachine &TM;
1423  const TargetData *TD;
1424
1425  /// PointerTy - The type to use for pointers, usually i32 or i64.
1426  ///
1427  MVT PointerTy;
1428
1429  /// IsLittleEndian - True if this is a little endian target.
1430  ///
1431  bool IsLittleEndian;
1432
1433  /// UsesGlobalOffsetTable - True if this target uses a GOT for PIC codegen.
1434  ///
1435  bool UsesGlobalOffsetTable;
1436
1437  /// SelectIsExpensive - Tells the code generator not to expand operations
1438  /// into sequences that use the select operations if possible.
1439  bool SelectIsExpensive;
1440
1441  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1442  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1443  /// a real cost model is in place.  If we ever optimize for size, this will be
1444  /// set to true unconditionally.
1445  bool IntDivIsCheap;
1446
1447  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1448  /// srl/add/sra for a signed divide by power of two, and let the target handle
1449  /// it.
1450  bool Pow2DivIsCheap;
1451
1452  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1453  /// llvm.setjmp.  Defaults to false.
1454  bool UseUnderscoreSetJmp;
1455
1456  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1457  /// llvm.longjmp.  Defaults to false.
1458  bool UseUnderscoreLongJmp;
1459
1460  /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
1461  /// PointerTy is.
1462  MVT ShiftAmountTy;
1463
1464  OutOfRangeShiftAmount ShiftAmtHandling;
1465
1466  /// BooleanContents - Information about the contents of the high-bits in
1467  /// boolean values held in a type wider than i1.  See getBooleanContents.
1468  BooleanContent BooleanContents;
1469
1470  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1471  /// total cycles or lowest register usage.
1472  SchedPreference SchedPreferenceInfo;
1473
1474  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1475  unsigned JumpBufSize;
1476
1477  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1478  /// buffers
1479  unsigned JumpBufAlignment;
1480
1481  /// IfCvtBlockSizeLimit - The maximum allowed size for a block to be
1482  /// if-converted.
1483  unsigned IfCvtBlockSizeLimit;
1484
1485  /// IfCvtDupBlockSizeLimit - The maximum allowed size for a block to be
1486  /// duplicated during if-conversion.
1487  unsigned IfCvtDupBlockSizeLimit;
1488
1489  /// PrefLoopAlignment - The perferred loop alignment.
1490  ///
1491  unsigned PrefLoopAlignment;
1492
1493  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1494  /// specifies the register that llvm.savestack/llvm.restorestack should save
1495  /// and restore.
1496  unsigned StackPointerRegisterToSaveRestore;
1497
1498  /// ExceptionPointerRegister - If set to a physical register, this specifies
1499  /// the register that receives the exception address on entry to a landing
1500  /// pad.
1501  unsigned ExceptionPointerRegister;
1502
1503  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1504  /// the register that receives the exception typeid on entry to a landing
1505  /// pad.
1506  unsigned ExceptionSelectorRegister;
1507
1508  /// RegClassForVT - This indicates the default register class to use for
1509  /// each ValueType the target supports natively.
1510  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1511  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1512  MVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1513
1514  /// TransformToType - For any value types we are promoting or expanding, this
1515  /// contains the value type that we are changing to.  For Expanded types, this
1516  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1517  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1518  /// by the system, this holds the same type (e.g. i32 -> i32).
1519  MVT TransformToType[MVT::LAST_VALUETYPE];
1520
1521  /// OpActions - For each operation and each value type, keep a LegalizeAction
1522  /// that indicates how instruction selection should deal with the operation.
1523  /// Most operations are Legal (aka, supported natively by the target), but
1524  /// operations that are not should be described.  Note that operations on
1525  /// non-legal value types are not described here.
1526  uint64_t OpActions[ISD::BUILTIN_OP_END];
1527
1528  /// LoadExtActions - For each load of load extension type and each value type,
1529  /// keep a LegalizeAction that indicates how instruction selection should deal
1530  /// with the load.
1531  uint64_t LoadExtActions[ISD::LAST_LOADEXT_TYPE];
1532
1533  /// TruncStoreActions - For each truncating store, keep a LegalizeAction that
1534  /// indicates how instruction selection should deal with the store.
1535  uint64_t TruncStoreActions[MVT::LAST_VALUETYPE];
1536
1537  /// IndexedModeActions - For each indexed mode and each value type, keep a
1538  /// pair of LegalizeAction that indicates how instruction selection should
1539  /// deal with the load / store.
1540  uint64_t IndexedModeActions[2][ISD::LAST_INDEXED_MODE];
1541
1542  /// ConvertActions - For each conversion from source type to destination type,
1543  /// keep a LegalizeAction that indicates how instruction selection should
1544  /// deal with the conversion.
1545  /// Currently, this is used only for floating->floating conversions
1546  /// (FP_EXTEND and FP_ROUND).
1547  uint64_t ConvertActions[MVT::LAST_VALUETYPE];
1548
1549  /// CondCodeActions - For each condition code (ISD::CondCode) keep a
1550  /// LegalizeAction that indicates how instruction selection should
1551  /// deal with the condition code.
1552  uint64_t CondCodeActions[ISD::SETCC_INVALID];
1553
1554  ValueTypeActionImpl ValueTypeActions;
1555
1556  std::vector<APFloat> LegalFPImmediates;
1557
1558  std::vector<std::pair<MVT, TargetRegisterClass*> > AvailableRegClasses;
1559
1560  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
1561  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
1562  /// which sets a bit in this array.
1563  unsigned char
1564  TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
1565
1566  /// PromoteToType - For operations that must be promoted to a specific type,
1567  /// this holds the destination type.  This map should be sparse, so don't hold
1568  /// it as an array.
1569  ///
1570  /// Targets add entries to this map with AddPromotedToType(..), clients access
1571  /// this with getTypeToPromoteTo(..).
1572  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
1573    PromoteToType;
1574
1575  /// LibcallRoutineNames - Stores the name each libcall.
1576  ///
1577  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1578
1579  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
1580  /// of each of the comparison libcall against zero.
1581  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1582
1583protected:
1584  /// When lowering @llvm.memset this field specifies the maximum number of
1585  /// store operations that may be substituted for the call to memset. Targets
1586  /// must set this value based on the cost threshold for that target. Targets
1587  /// should assume that the memset will be done using as many of the largest
1588  /// store operations first, followed by smaller ones, if necessary, per
1589  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1590  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1591  /// store.  This only applies to setting a constant array of a constant size.
1592  /// @brief Specify maximum number of store instructions per memset call.
1593  unsigned maxStoresPerMemset;
1594
1595  /// When lowering @llvm.memcpy this field specifies the maximum number of
1596  /// store operations that may be substituted for a call to memcpy. Targets
1597  /// must set this value based on the cost threshold for that target. Targets
1598  /// should assume that the memcpy will be done using as many of the largest
1599  /// store operations first, followed by smaller ones, if necessary, per
1600  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1601  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1602  /// and one 1-byte store. This only applies to copying a constant array of
1603  /// constant size.
1604  /// @brief Specify maximum bytes of store instructions per memcpy call.
1605  unsigned maxStoresPerMemcpy;
1606
1607  /// When lowering @llvm.memmove this field specifies the maximum number of
1608  /// store instructions that may be substituted for a call to memmove. Targets
1609  /// must set this value based on the cost threshold for that target. Targets
1610  /// should assume that the memmove will be done using as many of the largest
1611  /// store operations first, followed by smaller ones, if necessary, per
1612  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1613  /// with 8-bit alignment would result in nine 1-byte stores.  This only
1614  /// applies to copying a constant array of constant size.
1615  /// @brief Specify maximum bytes of store instructions per memmove call.
1616  unsigned maxStoresPerMemmove;
1617
1618  /// This field specifies whether the target machine permits unaligned memory
1619  /// accesses.  This is used, for example, to determine the size of store
1620  /// operations when copying small arrays and other similar tasks.
1621  /// @brief Indicate whether the target permits unaligned memory accesses.
1622  bool allowUnalignedMemoryAccesses;
1623};
1624} // end llvm namespace
1625
1626#endif
1627