TargetLowering.h revision fb2e752e4175920d0531f2afc93a23d0cdf4db14
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/CallingConv.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/CodeGen/SelectionDAGNodes.h"
28#include "llvm/CodeGen/RuntimeLibcalls.h"
29#include "llvm/ADT/APFloat.h"
30#include "llvm/ADT/DenseMap.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/STLExtras.h"
34#include "llvm/Support/DebugLoc.h"
35#include "llvm/Target/TargetMachine.h"
36#include <climits>
37#include <map>
38#include <vector>
39
40namespace llvm {
41  class AllocaInst;
42  class CallInst;
43  class Function;
44  class FastISel;
45  class MachineBasicBlock;
46  class MachineFunction;
47  class MachineFrameInfo;
48  class MachineInstr;
49  class MachineModuleInfo;
50  class DwarfWriter;
51  class SDNode;
52  class SDValue;
53  class SelectionDAG;
54  class TargetData;
55  class TargetMachine;
56  class TargetRegisterClass;
57  class TargetSubtarget;
58  class TargetLoweringObjectFile;
59  class Value;
60
61  // FIXME: should this be here?
62  namespace TLSModel {
63    enum Model {
64      GeneralDynamic,
65      LocalDynamic,
66      InitialExec,
67      LocalExec
68    };
69  }
70  TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc);
71
72
73//===----------------------------------------------------------------------===//
74/// TargetLowering - This class defines information used to lower LLVM code to
75/// legal SelectionDAG operators that the target instruction selector can accept
76/// natively.
77///
78/// This class also defines callbacks that targets must implement to lower
79/// target-specific constructs to SelectionDAG operators.
80///
81class TargetLowering {
82  TargetLowering(const TargetLowering&);  // DO NOT IMPLEMENT
83  void operator=(const TargetLowering&);  // DO NOT IMPLEMENT
84public:
85  /// LegalizeAction - This enum indicates whether operations are valid for a
86  /// target, and if not, what action should be used to make them valid.
87  enum LegalizeAction {
88    Legal,      // The target natively supports this operation.
89    Promote,    // This operation should be executed in a larger type.
90    Expand,     // Try to expand this to other ops, otherwise use a libcall.
91    Custom      // Use the LowerOperation hook to implement custom lowering.
92  };
93
94  enum BooleanContent { // How the target represents true/false values.
95    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
96    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
97    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
98  };
99
100  enum SchedPreference {
101    SchedulingForLatency,          // Scheduling for shortest total latency.
102    SchedulingForRegPressure       // Scheduling for lowest register pressure.
103  };
104
105  /// NOTE: The constructor takes ownership of TLOF.
106  explicit TargetLowering(TargetMachine &TM, TargetLoweringObjectFile *TLOF);
107  virtual ~TargetLowering();
108
109  TargetMachine &getTargetMachine() const { return TM; }
110  const TargetData *getTargetData() const { return TD; }
111  TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
112
113  bool isBigEndian() const { return !IsLittleEndian; }
114  bool isLittleEndian() const { return IsLittleEndian; }
115  MVT getPointerTy() const { return PointerTy; }
116  MVT getShiftAmountTy() const { return ShiftAmountTy; }
117
118  /// usesGlobalOffsetTable - Return true if this target uses a GOT for PIC
119  /// codegen.
120  bool usesGlobalOffsetTable() const { return UsesGlobalOffsetTable; }
121
122  /// isSelectExpensive - Return true if the select operation is expensive for
123  /// this target.
124  bool isSelectExpensive() const { return SelectIsExpensive; }
125
126  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
127  /// a sequence of several shifts, adds, and multiplies for this target.
128  bool isIntDivCheap() const { return IntDivIsCheap; }
129
130  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
131  /// srl/add/sra.
132  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
133
134  /// getSetCCResultType - Return the ValueType of the result of SETCC
135  /// operations.  Also used to obtain the target's preferred type for
136  /// the condition operand of SELECT and BRCOND nodes.  In the case of
137  /// BRCOND the argument passed is MVT::Other since there are no other
138  /// operands to get a type hint from.
139  virtual
140  MVT::SimpleValueType getSetCCResultType(EVT VT) const;
141
142  /// getBooleanContents - For targets without i1 registers, this gives the
143  /// nature of the high-bits of boolean values held in types wider than i1.
144  /// "Boolean values" are special true/false values produced by nodes like
145  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
146  /// Not to be confused with general values promoted from i1.
147  BooleanContent getBooleanContents() const { return BooleanContents;}
148
149  /// getSchedulingPreference - Return target scheduling preference.
150  SchedPreference getSchedulingPreference() const {
151    return SchedPreferenceInfo;
152  }
153
154  /// getRegClassFor - Return the register class that should be used for the
155  /// specified value type.  This may only be called on legal types.
156  TargetRegisterClass *getRegClassFor(EVT VT) const {
157    assert(VT.isSimple() && "getRegClassFor called on illegal type!");
158    TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
159    assert(RC && "This value type is not natively supported!");
160    return RC;
161  }
162
163  /// isTypeLegal - Return true if the target has native support for the
164  /// specified value type.  This means that it has a register that directly
165  /// holds it without promotions or expansions.
166  bool isTypeLegal(EVT VT) const {
167    assert(!VT.isSimple() ||
168           (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
169    return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0;
170  }
171
172  class ValueTypeActionImpl {
173    /// ValueTypeActions - This is a bitvector that contains two bits for each
174    /// value type, where the two bits correspond to the LegalizeAction enum.
175    /// This can be queried with "getTypeAction(VT)".
176    /// dimension by (MVT::MAX_ALLOWED_VALUETYPE/32) * 2
177    uint32_t ValueTypeActions[(MVT::MAX_ALLOWED_VALUETYPE/32)*2];
178  public:
179    ValueTypeActionImpl() {
180      ValueTypeActions[0] = ValueTypeActions[1] = 0;
181      ValueTypeActions[2] = ValueTypeActions[3] = 0;
182    }
183    ValueTypeActionImpl(const ValueTypeActionImpl &RHS) {
184      ValueTypeActions[0] = RHS.ValueTypeActions[0];
185      ValueTypeActions[1] = RHS.ValueTypeActions[1];
186      ValueTypeActions[2] = RHS.ValueTypeActions[2];
187      ValueTypeActions[3] = RHS.ValueTypeActions[3];
188    }
189
190    LegalizeAction getTypeAction(LLVMContext &Context, EVT VT) const {
191      if (VT.isExtended()) {
192        if (VT.isVector()) {
193          return VT.isPow2VectorType() ? Expand : Promote;
194        }
195        if (VT.isInteger())
196          // First promote to a power-of-two size, then expand if necessary.
197          return VT == VT.getRoundIntegerType(Context) ? Expand : Promote;
198        assert(0 && "Unsupported extended type!");
199        return Legal;
200      }
201      unsigned I = VT.getSimpleVT().SimpleTy;
202      assert(I<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
203      return (LegalizeAction)((ValueTypeActions[I>>4] >> ((2*I) & 31)) & 3);
204    }
205    void setTypeAction(EVT VT, LegalizeAction Action) {
206      unsigned I = VT.getSimpleVT().SimpleTy;
207      assert(I<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
208      ValueTypeActions[I>>4] |= Action << ((I*2) & 31);
209    }
210  };
211
212  const ValueTypeActionImpl &getValueTypeActions() const {
213    return ValueTypeActions;
214  }
215
216  /// getTypeAction - Return how we should legalize values of this type, either
217  /// it is already legal (return 'Legal') or we need to promote it to a larger
218  /// type (return 'Promote'), or we need to expand it into multiple registers
219  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
220  LegalizeAction getTypeAction(LLVMContext &Context, EVT VT) const {
221    return ValueTypeActions.getTypeAction(Context, VT);
222  }
223
224  /// getTypeToTransformTo - For types supported by the target, this is an
225  /// identity function.  For types that must be promoted to larger types, this
226  /// returns the larger type to promote to.  For integer types that are larger
227  /// than the largest integer register, this contains one step in the expansion
228  /// to get to the smaller register. For illegal floating point types, this
229  /// returns the integer type to transform to.
230  EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
231    if (VT.isSimple()) {
232      assert((unsigned)VT.getSimpleVT().SimpleTy <
233             array_lengthof(TransformToType));
234      EVT NVT = TransformToType[VT.getSimpleVT().SimpleTy];
235      assert(getTypeAction(Context, NVT) != Promote &&
236             "Promote may not follow Expand or Promote");
237      return NVT;
238    }
239
240    if (VT.isVector()) {
241      EVT NVT = VT.getPow2VectorType(Context);
242      if (NVT == VT) {
243        // Vector length is a power of 2 - split to half the size.
244        unsigned NumElts = VT.getVectorNumElements();
245        EVT EltVT = VT.getVectorElementType();
246        return (NumElts == 1) ?
247          EltVT : EVT::getVectorVT(Context, EltVT, NumElts / 2);
248      }
249      // Promote to a power of two size, avoiding multi-step promotion.
250      return getTypeAction(Context, NVT) == Promote ?
251        getTypeToTransformTo(Context, NVT) : NVT;
252    } else if (VT.isInteger()) {
253      EVT NVT = VT.getRoundIntegerType(Context);
254      if (NVT == VT)
255        // Size is a power of two - expand to half the size.
256        return EVT::getIntegerVT(Context, VT.getSizeInBits() / 2);
257      else
258        // Promote to a power of two size, avoiding multi-step promotion.
259        return getTypeAction(Context, NVT) == Promote ?
260          getTypeToTransformTo(Context, NVT) : NVT;
261    }
262    assert(0 && "Unsupported extended type!");
263    return MVT(MVT::Other); // Not reached
264  }
265
266  /// getTypeToExpandTo - For types supported by the target, this is an
267  /// identity function.  For types that must be expanded (i.e. integer types
268  /// that are larger than the largest integer register or illegal floating
269  /// point types), this returns the largest legal type it will be expanded to.
270  EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
271    assert(!VT.isVector());
272    while (true) {
273      switch (getTypeAction(Context, VT)) {
274      case Legal:
275        return VT;
276      case Expand:
277        VT = getTypeToTransformTo(Context, VT);
278        break;
279      default:
280        assert(false && "Type is not legal nor is it to be expanded!");
281        return VT;
282      }
283    }
284    return VT;
285  }
286
287  /// getVectorTypeBreakdown - Vector types are broken down into some number of
288  /// legal first class types.  For example, EVT::v8f32 maps to 2 EVT::v4f32
289  /// with Altivec or SSE1, or 8 promoted EVT::f64 values with the X86 FP stack.
290  /// Similarly, EVT::v2i64 turns into 4 EVT::i32 values with both PPC and X86.
291  ///
292  /// This method returns the number of registers needed, and the VT for each
293  /// register.  It also returns the VT and quantity of the intermediate values
294  /// before they are promoted/expanded.
295  ///
296  unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
297                                  EVT &IntermediateVT,
298                                  unsigned &NumIntermediates,
299                                  EVT &RegisterVT) const;
300
301  /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
302  /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
303  /// this is the case, it returns true and store the intrinsic
304  /// information into the IntrinsicInfo that was passed to the function.
305  typedef struct IntrinsicInfo {
306    unsigned     opc;         // target opcode
307    EVT          memVT;       // memory VT
308    const Value* ptrVal;      // value representing memory location
309    int          offset;      // offset off of ptrVal
310    unsigned     align;       // alignment
311    bool         vol;         // is volatile?
312    bool         readMem;     // reads memory?
313    bool         writeMem;    // writes memory?
314  } IntrinisicInfo;
315
316  virtual bool getTgtMemIntrinsic(IntrinsicInfo& Info,
317                                  CallInst &I, unsigned Intrinsic) {
318    return false;
319  }
320
321  /// getWidenVectorType: given a vector type, returns the type to widen to
322  /// (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
323  /// If there is no vector type that we want to widen to, returns MVT::Other
324  /// When and were to widen is target dependent based on the cost of
325  /// scalarizing vs using the wider vector type.
326  virtual EVT getWidenVectorType(EVT VT) const;
327
328  typedef std::vector<APFloat>::const_iterator legal_fpimm_iterator;
329  legal_fpimm_iterator legal_fpimm_begin() const {
330    return LegalFPImmediates.begin();
331  }
332  legal_fpimm_iterator legal_fpimm_end() const {
333    return LegalFPImmediates.end();
334  }
335
336  /// isShuffleMaskLegal - Targets can use this to indicate that they only
337  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
338  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
339  /// are assumed to be legal.
340  virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
341                                  EVT VT) const {
342    return true;
343  }
344
345  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
346  /// used by Targets can use this to indicate if there is a suitable
347  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
348  /// pool entry.
349  virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
350                                      EVT VT) const {
351    return false;
352  }
353
354  /// getOperationAction - Return how this operation should be treated: either
355  /// it is legal, needs to be promoted to a larger size, needs to be
356  /// expanded to some other code sequence, or the target has a custom expander
357  /// for it.
358  LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
359    if (VT.isExtended()) return Expand;
360    assert(Op < array_lengthof(OpActions[0]) &&
361           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(OpActions[0][0])*8 &&
362           "Table isn't big enough!");
363    unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
364    unsigned J = I & 31;
365    I = I >> 5;
366    return (LegalizeAction)((OpActions[I][Op] >> (J*2) ) & 3);
367  }
368
369  /// isOperationLegalOrCustom - Return true if the specified operation is
370  /// legal on this target or can be made legal with custom lowering. This
371  /// is used to help guide high-level lowering decisions.
372  bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
373    return (VT == MVT::Other || isTypeLegal(VT)) &&
374      (getOperationAction(Op, VT) == Legal ||
375       getOperationAction(Op, VT) == Custom);
376  }
377
378  /// isOperationLegal - Return true if the specified operation is legal on this
379  /// target.
380  bool isOperationLegal(unsigned Op, EVT VT) const {
381    return (VT == MVT::Other || isTypeLegal(VT)) &&
382           getOperationAction(Op, VT) == Legal;
383  }
384
385  /// getLoadExtAction - Return how this load with extension should be treated:
386  /// either it is legal, needs to be promoted to a larger size, needs to be
387  /// expanded to some other code sequence, or the target has a custom expander
388  /// for it.
389  LegalizeAction getLoadExtAction(unsigned LType, EVT VT) const {
390    assert(LType < array_lengthof(LoadExtActions) &&
391           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(LoadExtActions[0])*4 &&
392           "Table isn't big enough!");
393    return (LegalizeAction)((LoadExtActions[LType] >>
394              (2*VT.getSimpleVT().SimpleTy)) & 3);
395  }
396
397  /// isLoadExtLegal - Return true if the specified load with extension is legal
398  /// on this target.
399  bool isLoadExtLegal(unsigned LType, EVT VT) const {
400    return VT.isSimple() &&
401      (getLoadExtAction(LType, VT) == Legal ||
402       getLoadExtAction(LType, VT) == Custom);
403  }
404
405  /// getTruncStoreAction - Return how this store with truncation should be
406  /// treated: either it is legal, needs to be promoted to a larger size, needs
407  /// to be expanded to some other code sequence, or the target has a custom
408  /// expander for it.
409  LegalizeAction getTruncStoreAction(EVT ValVT,
410                                     EVT MemVT) const {
411    assert((unsigned)ValVT.getSimpleVT().SimpleTy <
412             array_lengthof(TruncStoreActions) &&
413           (unsigned)MemVT.getSimpleVT().SimpleTy <
414             sizeof(TruncStoreActions[0])*4 &&
415           "Table isn't big enough!");
416    return (LegalizeAction)((TruncStoreActions[ValVT.getSimpleVT().SimpleTy] >>
417                             (2*MemVT.getSimpleVT().SimpleTy)) & 3);
418  }
419
420  /// isTruncStoreLegal - Return true if the specified store with truncation is
421  /// legal on this target.
422  bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
423    return isTypeLegal(ValVT) && MemVT.isSimple() &&
424      (getTruncStoreAction(ValVT, MemVT) == Legal ||
425       getTruncStoreAction(ValVT, MemVT) == Custom);
426  }
427
428  /// getIndexedLoadAction - Return how the indexed load should be treated:
429  /// either it is legal, needs to be promoted to a larger size, needs to be
430  /// expanded to some other code sequence, or the target has a custom expander
431  /// for it.
432  LegalizeAction
433  getIndexedLoadAction(unsigned IdxMode, EVT VT) const {
434    assert( IdxMode < array_lengthof(IndexedModeActions[0][0]) &&
435           ((unsigned)VT.getSimpleVT().SimpleTy) < MVT::LAST_VALUETYPE &&
436           "Table isn't big enough!");
437    return (LegalizeAction)((IndexedModeActions[
438                             (unsigned)VT.getSimpleVT().SimpleTy][0][IdxMode]));
439  }
440
441  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
442  /// on this target.
443  bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
444    return VT.isSimple() &&
445      (getIndexedLoadAction(IdxMode, VT) == Legal ||
446       getIndexedLoadAction(IdxMode, VT) == Custom);
447  }
448
449  /// getIndexedStoreAction - Return how the indexed store should be treated:
450  /// either it is legal, needs to be promoted to a larger size, needs to be
451  /// expanded to some other code sequence, or the target has a custom expander
452  /// for it.
453  LegalizeAction
454  getIndexedStoreAction(unsigned IdxMode, EVT VT) const {
455    assert(IdxMode < array_lengthof(IndexedModeActions[0][1]) &&
456           (unsigned)VT.getSimpleVT().SimpleTy < MVT::LAST_VALUETYPE &&
457           "Table isn't big enough!");
458    return (LegalizeAction)((IndexedModeActions[
459              (unsigned)VT.getSimpleVT().SimpleTy][1][IdxMode]));
460  }
461
462  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
463  /// on this target.
464  bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
465    return VT.isSimple() &&
466      (getIndexedStoreAction(IdxMode, VT) == Legal ||
467       getIndexedStoreAction(IdxMode, VT) == Custom);
468  }
469
470  /// getConvertAction - Return how the conversion should be treated:
471  /// either it is legal, needs to be promoted to a larger size, needs to be
472  /// expanded to some other code sequence, or the target has a custom expander
473  /// for it.
474  LegalizeAction
475  getConvertAction(EVT FromVT, EVT ToVT) const {
476    assert((unsigned)FromVT.getSimpleVT().SimpleTy <
477              array_lengthof(ConvertActions) &&
478           (unsigned)ToVT.getSimpleVT().SimpleTy <
479              sizeof(ConvertActions[0])*4 &&
480           "Table isn't big enough!");
481    return (LegalizeAction)((ConvertActions[FromVT.getSimpleVT().SimpleTy] >>
482                             (2*ToVT.getSimpleVT().SimpleTy)) & 3);
483  }
484
485  /// isConvertLegal - Return true if the specified conversion is legal
486  /// on this target.
487  bool isConvertLegal(EVT FromVT, EVT ToVT) const {
488    return isTypeLegal(FromVT) && isTypeLegal(ToVT) &&
489      (getConvertAction(FromVT, ToVT) == Legal ||
490       getConvertAction(FromVT, ToVT) == Custom);
491  }
492
493  /// getCondCodeAction - Return how the condition code should be treated:
494  /// either it is legal, needs to be expanded to some other code sequence,
495  /// or the target has a custom expander for it.
496  LegalizeAction
497  getCondCodeAction(ISD::CondCode CC, EVT VT) const {
498    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
499           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(CondCodeActions[0])*4 &&
500           "Table isn't big enough!");
501    LegalizeAction Action = (LegalizeAction)
502      ((CondCodeActions[CC] >> (2*VT.getSimpleVT().SimpleTy)) & 3);
503    assert(Action != Promote && "Can't promote condition code!");
504    return Action;
505  }
506
507  /// isCondCodeLegal - Return true if the specified condition code is legal
508  /// on this target.
509  bool isCondCodeLegal(ISD::CondCode CC, EVT VT) const {
510    return getCondCodeAction(CC, VT) == Legal ||
511           getCondCodeAction(CC, VT) == Custom;
512  }
513
514
515  /// getTypeToPromoteTo - If the action for this operation is to promote, this
516  /// method returns the ValueType to promote to.
517  EVT getTypeToPromoteTo(unsigned Op, EVT VT) const {
518    assert(getOperationAction(Op, VT) == Promote &&
519           "This operation isn't promoted!");
520
521    // See if this has an explicit type specified.
522    std::map<std::pair<unsigned, MVT::SimpleValueType>,
523             MVT::SimpleValueType>::const_iterator PTTI =
524      PromoteToType.find(std::make_pair(Op, VT.getSimpleVT().SimpleTy));
525    if (PTTI != PromoteToType.end()) return PTTI->second;
526
527    assert((VT.isInteger() || VT.isFloatingPoint()) &&
528           "Cannot autopromote this type, add it with AddPromotedToType.");
529
530    EVT NVT = VT;
531    do {
532      NVT = (MVT::SimpleValueType)(NVT.getSimpleVT().SimpleTy+1);
533      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
534             "Didn't find type to promote to!");
535    } while (!isTypeLegal(NVT) ||
536              getOperationAction(Op, NVT) == Promote);
537    return NVT;
538  }
539
540  /// getValueType - Return the EVT corresponding to this LLVM type.
541  /// This is fixed by the LLVM operations except for the pointer size.  If
542  /// AllowUnknown is true, this will return MVT::Other for types with no EVT
543  /// counterpart (e.g. structs), otherwise it will assert.
544  EVT getValueType(const Type *Ty, bool AllowUnknown = false) const {
545    EVT VT = EVT::getEVT(Ty, AllowUnknown);
546    return VT == MVT:: iPTR ? PointerTy : VT;
547  }
548
549  /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
550  /// function arguments in the caller parameter area.  This is the actual
551  /// alignment, not its logarithm.
552  virtual unsigned getByValTypeAlignment(const Type *Ty) const;
553
554  /// getRegisterType - Return the type of registers that this ValueType will
555  /// eventually require.
556  EVT getRegisterType(MVT VT) const {
557    assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
558    return RegisterTypeForVT[VT.SimpleTy];
559  }
560
561  /// getRegisterType - Return the type of registers that this ValueType will
562  /// eventually require.
563  EVT getRegisterType(LLVMContext &Context, EVT VT) const {
564    if (VT.isSimple()) {
565      assert((unsigned)VT.getSimpleVT().SimpleTy <
566                array_lengthof(RegisterTypeForVT));
567      return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
568    }
569    if (VT.isVector()) {
570      EVT VT1, RegisterVT;
571      unsigned NumIntermediates;
572      (void)getVectorTypeBreakdown(Context, VT, VT1,
573                                   NumIntermediates, RegisterVT);
574      return RegisterVT;
575    }
576    if (VT.isInteger()) {
577      return getRegisterType(Context, getTypeToTransformTo(Context, VT));
578    }
579    assert(0 && "Unsupported extended type!");
580    return EVT(MVT::Other); // Not reached
581  }
582
583  /// getNumRegisters - Return the number of registers that this ValueType will
584  /// eventually require.  This is one for any types promoted to live in larger
585  /// registers, but may be more than one for types (like i64) that are split
586  /// into pieces.  For types like i140, which are first promoted then expanded,
587  /// it is the number of registers needed to hold all the bits of the original
588  /// type.  For an i140 on a 32 bit machine this means 5 registers.
589  unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
590    if (VT.isSimple()) {
591      assert((unsigned)VT.getSimpleVT().SimpleTy <
592                array_lengthof(NumRegistersForVT));
593      return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
594    }
595    if (VT.isVector()) {
596      EVT VT1, VT2;
597      unsigned NumIntermediates;
598      return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
599    }
600    if (VT.isInteger()) {
601      unsigned BitWidth = VT.getSizeInBits();
602      unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
603      return (BitWidth + RegWidth - 1) / RegWidth;
604    }
605    assert(0 && "Unsupported extended type!");
606    return 0; // Not reached
607  }
608
609  /// ShouldShrinkFPConstant - If true, then instruction selection should
610  /// seek to shrink the FP constant of the specified type to a smaller type
611  /// in order to save space and / or reduce runtime.
612  virtual bool ShouldShrinkFPConstant(EVT VT) const { return true; }
613
614  /// hasTargetDAGCombine - If true, the target has custom DAG combine
615  /// transformations that it can perform for the specified node.
616  bool hasTargetDAGCombine(ISD::NodeType NT) const {
617    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
618    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
619  }
620
621  /// This function returns the maximum number of store operations permitted
622  /// to replace a call to llvm.memset. The value is set by the target at the
623  /// performance threshold for such a replacement.
624  /// @brief Get maximum # of store operations permitted for llvm.memset
625  unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; }
626
627  /// This function returns the maximum number of store operations permitted
628  /// to replace a call to llvm.memcpy. The value is set by the target at the
629  /// performance threshold for such a replacement.
630  /// @brief Get maximum # of store operations permitted for llvm.memcpy
631  unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; }
632
633  /// This function returns the maximum number of store operations permitted
634  /// to replace a call to llvm.memmove. The value is set by the target at the
635  /// performance threshold for such a replacement.
636  /// @brief Get maximum # of store operations permitted for llvm.memmove
637  unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; }
638
639  /// This function returns true if the target allows unaligned memory accesses.
640  /// of the specified type. This is used, for example, in situations where an
641  /// array copy/move/set is  converted to a sequence of store operations. It's
642  /// use helps to ensure that such replacements don't generate code that causes
643  /// an alignment error  (trap) on the target machine.
644  /// @brief Determine if the target supports unaligned memory accesses.
645  virtual bool allowsUnalignedMemoryAccesses(EVT VT) const {
646    return false;
647  }
648
649  /// This function returns true if the target would benefit from code placement
650  /// optimization.
651  /// @brief Determine if the target should perform code placement optimization.
652  bool shouldOptimizeCodePlacement() const {
653    return benefitFromCodePlacementOpt;
654  }
655
656  /// getOptimalMemOpType - Returns the target specific optimal type for load
657  /// and store operations as a result of memset, memcpy, and memmove lowering.
658  /// It returns EVT::iAny if SelectionDAG should be responsible for
659  /// determining it.
660  virtual EVT getOptimalMemOpType(uint64_t Size, unsigned Align,
661                                  bool isSrcConst, bool isSrcStr,
662                                  SelectionDAG &DAG) const {
663    return MVT::iAny;
664  }
665
666  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
667  /// to implement llvm.setjmp.
668  bool usesUnderscoreSetJmp() const {
669    return UseUnderscoreSetJmp;
670  }
671
672  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
673  /// to implement llvm.longjmp.
674  bool usesUnderscoreLongJmp() const {
675    return UseUnderscoreLongJmp;
676  }
677
678  /// getStackPointerRegisterToSaveRestore - If a physical register, this
679  /// specifies the register that llvm.savestack/llvm.restorestack should save
680  /// and restore.
681  unsigned getStackPointerRegisterToSaveRestore() const {
682    return StackPointerRegisterToSaveRestore;
683  }
684
685  /// getExceptionAddressRegister - If a physical register, this returns
686  /// the register that receives the exception address on entry to a landing
687  /// pad.
688  unsigned getExceptionAddressRegister() const {
689    return ExceptionPointerRegister;
690  }
691
692  /// getExceptionSelectorRegister - If a physical register, this returns
693  /// the register that receives the exception typeid on entry to a landing
694  /// pad.
695  unsigned getExceptionSelectorRegister() const {
696    return ExceptionSelectorRegister;
697  }
698
699  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
700  /// set, the default is 200)
701  unsigned getJumpBufSize() const {
702    return JumpBufSize;
703  }
704
705  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
706  /// (if never set, the default is 0)
707  unsigned getJumpBufAlignment() const {
708    return JumpBufAlignment;
709  }
710
711  /// getIfCvtBlockLimit - returns the target specific if-conversion block size
712  /// limit. Any block whose size is greater should not be predicated.
713  unsigned getIfCvtBlockSizeLimit() const {
714    return IfCvtBlockSizeLimit;
715  }
716
717  /// getIfCvtDupBlockLimit - returns the target specific size limit for a
718  /// block to be considered for duplication. Any block whose size is greater
719  /// should not be duplicated to facilitate its predication.
720  unsigned getIfCvtDupBlockSizeLimit() const {
721    return IfCvtDupBlockSizeLimit;
722  }
723
724  /// getPrefLoopAlignment - return the preferred loop alignment.
725  ///
726  unsigned getPrefLoopAlignment() const {
727    return PrefLoopAlignment;
728  }
729
730  /// getPreIndexedAddressParts - returns true by value, base pointer and
731  /// offset pointer and addressing mode by reference if the node's address
732  /// can be legally represented as pre-indexed load / store address.
733  virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
734                                         SDValue &Offset,
735                                         ISD::MemIndexedMode &AM,
736                                         SelectionDAG &DAG) const {
737    return false;
738  }
739
740  /// getPostIndexedAddressParts - returns true by value, base pointer and
741  /// offset pointer and addressing mode by reference if this node can be
742  /// combined with a load / store to form a post-indexed load / store.
743  virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
744                                          SDValue &Base, SDValue &Offset,
745                                          ISD::MemIndexedMode &AM,
746                                          SelectionDAG &DAG) const {
747    return false;
748  }
749
750  /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
751  /// jumptable.
752  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
753                                             SelectionDAG &DAG) const;
754
755  /// isOffsetFoldingLegal - Return true if folding a constant offset
756  /// with the given GlobalAddress is legal.  It is frequently not legal in
757  /// PIC relocation models.
758  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
759
760  /// getFunctionAlignment - Return the Log2 alignment of this function.
761  virtual unsigned getFunctionAlignment(const Function *) const = 0;
762
763  //===--------------------------------------------------------------------===//
764  // TargetLowering Optimization Methods
765  //
766
767  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
768  /// SDValues for returning information from TargetLowering to its clients
769  /// that want to combine
770  struct TargetLoweringOpt {
771    SelectionDAG &DAG;
772    SDValue Old;
773    SDValue New;
774
775    explicit TargetLoweringOpt(SelectionDAG &InDAG) : DAG(InDAG) {}
776
777    bool CombineTo(SDValue O, SDValue N) {
778      Old = O;
779      New = N;
780      return true;
781    }
782
783    /// ShrinkDemandedConstant - Check to see if the specified operand of the
784    /// specified instruction is a constant integer.  If so, check to see if
785    /// there are any bits set in the constant that are not demanded.  If so,
786    /// shrink the constant and return true.
787    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
788
789    /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
790    /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
791    /// cast, but it could be generalized for targets with other types of
792    /// implicit widening casts.
793    bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
794                          DebugLoc dl);
795  };
796
797  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
798  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
799  /// use this information to simplify Op, create a new simplified DAG node and
800  /// return true, returning the original and new nodes in Old and New.
801  /// Otherwise, analyze the expression and return a mask of KnownOne and
802  /// KnownZero bits for the expression (used to simplify the caller).
803  /// The KnownZero/One bits may only be accurate for those bits in the
804  /// DemandedMask.
805  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
806                            APInt &KnownZero, APInt &KnownOne,
807                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
808
809  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
810  /// Mask are known to be either zero or one and return them in the
811  /// KnownZero/KnownOne bitsets.
812  virtual void computeMaskedBitsForTargetNode(const SDValue Op,
813                                              const APInt &Mask,
814                                              APInt &KnownZero,
815                                              APInt &KnownOne,
816                                              const SelectionDAG &DAG,
817                                              unsigned Depth = 0) const;
818
819  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
820  /// targets that want to expose additional information about sign bits to the
821  /// DAG Combiner.
822  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
823                                                   unsigned Depth = 0) const;
824
825  struct DAGCombinerInfo {
826    void *DC;  // The DAG Combiner object.
827    bool BeforeLegalize;
828    bool BeforeLegalizeOps;
829    bool CalledByLegalizer;
830  public:
831    SelectionDAG &DAG;
832
833    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool blo, bool cl, void *dc)
834      : DC(dc), BeforeLegalize(bl), BeforeLegalizeOps(blo),
835        CalledByLegalizer(cl), DAG(dag) {}
836
837    bool isBeforeLegalize() const { return BeforeLegalize; }
838    bool isBeforeLegalizeOps() const { return BeforeLegalizeOps; }
839    bool isCalledByLegalizer() const { return CalledByLegalizer; }
840
841    void AddToWorklist(SDNode *N);
842    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
843                      bool AddTo = true);
844    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
845    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
846
847    void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
848  };
849
850  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
851  /// and cc. If it is unable to simplify it, return a null SDValue.
852  SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
853                          ISD::CondCode Cond, bool foldBooleans,
854                          DAGCombinerInfo &DCI, DebugLoc dl) const;
855
856  /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
857  /// node is a GlobalAddress + offset.
858  virtual bool
859  isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) const;
860
861  /// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
862  /// location that is 'Dist' units away from the location that the 'Base' load
863  /// is loading from.
864  bool isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base, unsigned Bytes,
865                         int Dist, const MachineFrameInfo *MFI) const;
866
867  /// PerformDAGCombine - This method will be invoked for all target nodes and
868  /// for any target-independent nodes that the target has registered with
869  /// invoke it for.
870  ///
871  /// The semantics are as follows:
872  /// Return Value:
873  ///   SDValue.Val == 0   - No change was made
874  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
875  ///   otherwise          - N should be replaced by the returned Operand.
876  ///
877  /// In addition, methods provided by DAGCombinerInfo may be used to perform
878  /// more complex transformations.
879  ///
880  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
881
882  //===--------------------------------------------------------------------===//
883  // TargetLowering Configuration Methods - These methods should be invoked by
884  // the derived class constructor to configure this object for the target.
885  //
886
887protected:
888  /// setUsesGlobalOffsetTable - Specify that this target does or doesn't use a
889  /// GOT for PC-relative code.
890  void setUsesGlobalOffsetTable(bool V) { UsesGlobalOffsetTable = V; }
891
892  /// setShiftAmountType - Describe the type that should be used for shift
893  /// amounts.  This type defaults to the pointer type.
894  void setShiftAmountType(MVT VT) { ShiftAmountTy = VT; }
895
896  /// setBooleanContents - Specify how the target extends the result of a
897  /// boolean value from i1 to a wider type.  See getBooleanContents.
898  void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
899
900  /// setSchedulingPreference - Specify the target scheduling preference.
901  void setSchedulingPreference(SchedPreference Pref) {
902    SchedPreferenceInfo = Pref;
903  }
904
905  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
906  /// use _setjmp to implement llvm.setjmp or the non _ version.
907  /// Defaults to false.
908  void setUseUnderscoreSetJmp(bool Val) {
909    UseUnderscoreSetJmp = Val;
910  }
911
912  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
913  /// use _longjmp to implement llvm.longjmp or the non _ version.
914  /// Defaults to false.
915  void setUseUnderscoreLongJmp(bool Val) {
916    UseUnderscoreLongJmp = Val;
917  }
918
919  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
920  /// specifies the register that llvm.savestack/llvm.restorestack should save
921  /// and restore.
922  void setStackPointerRegisterToSaveRestore(unsigned R) {
923    StackPointerRegisterToSaveRestore = R;
924  }
925
926  /// setExceptionPointerRegister - If set to a physical register, this sets
927  /// the register that receives the exception address on entry to a landing
928  /// pad.
929  void setExceptionPointerRegister(unsigned R) {
930    ExceptionPointerRegister = R;
931  }
932
933  /// setExceptionSelectorRegister - If set to a physical register, this sets
934  /// the register that receives the exception typeid on entry to a landing
935  /// pad.
936  void setExceptionSelectorRegister(unsigned R) {
937    ExceptionSelectorRegister = R;
938  }
939
940  /// SelectIsExpensive - Tells the code generator not to expand operations
941  /// into sequences that use the select operations if possible.
942  void setSelectIsExpensive() { SelectIsExpensive = true; }
943
944  /// setIntDivIsCheap - Tells the code generator that integer divide is
945  /// expensive, and if possible, should be replaced by an alternate sequence
946  /// of instructions not containing an integer divide.
947  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
948
949  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
950  /// srl/add/sra for a signed divide by power of two, and let the target handle
951  /// it.
952  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
953
954  /// addRegisterClass - Add the specified register class as an available
955  /// regclass for the specified value type.  This indicates the selector can
956  /// handle values of that class natively.
957  void addRegisterClass(EVT VT, TargetRegisterClass *RC) {
958    assert((unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
959    AvailableRegClasses.push_back(std::make_pair(VT, RC));
960    RegClassForVT[VT.getSimpleVT().SimpleTy] = RC;
961  }
962
963  /// computeRegisterProperties - Once all of the register classes are added,
964  /// this allows us to compute derived properties we expose.
965  void computeRegisterProperties();
966
967  /// setOperationAction - Indicate that the specified operation does not work
968  /// with the specified type and indicate what to do about it.
969  void setOperationAction(unsigned Op, MVT VT,
970                          LegalizeAction Action) {
971    unsigned I = (unsigned)VT.SimpleTy;
972    unsigned J = I & 31;
973    I = I >> 5;
974    OpActions[I][Op] &= ~(uint64_t(3UL) << (J*2));
975    OpActions[I][Op] |= (uint64_t)Action << (J*2);
976  }
977
978  /// setLoadExtAction - Indicate that the specified load with extension does
979  /// not work with the with specified type and indicate what to do about it.
980  void setLoadExtAction(unsigned ExtType, MVT VT,
981                      LegalizeAction Action) {
982    assert((unsigned)VT.SimpleTy < sizeof(LoadExtActions[0])*4 &&
983           ExtType < array_lengthof(LoadExtActions) &&
984           "Table isn't big enough!");
985    LoadExtActions[ExtType] &= ~(uint64_t(3UL) << VT.SimpleTy*2);
986    LoadExtActions[ExtType] |= (uint64_t)Action << VT.SimpleTy*2;
987  }
988
989  /// setTruncStoreAction - Indicate that the specified truncating store does
990  /// not work with the with specified type and indicate what to do about it.
991  void setTruncStoreAction(MVT ValVT, MVT MemVT,
992                           LegalizeAction Action) {
993    assert((unsigned)ValVT.SimpleTy < array_lengthof(TruncStoreActions) &&
994           (unsigned)MemVT.SimpleTy < sizeof(TruncStoreActions[0])*4 &&
995           "Table isn't big enough!");
996    TruncStoreActions[ValVT.SimpleTy] &= ~(uint64_t(3UL)  << MemVT.SimpleTy*2);
997    TruncStoreActions[ValVT.SimpleTy] |= (uint64_t)Action << MemVT.SimpleTy*2;
998  }
999
1000  /// setIndexedLoadAction - Indicate that the specified indexed load does or
1001  /// does not work with the with specified type and indicate what to do abort
1002  /// it. NOTE: All indexed mode loads are initialized to Expand in
1003  /// TargetLowering.cpp
1004  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
1005                            LegalizeAction Action) {
1006    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1007           IdxMode < array_lengthof(IndexedModeActions[0][0]) &&
1008           "Table isn't big enough!");
1009    IndexedModeActions[(unsigned)VT.SimpleTy][0][IdxMode] = (uint8_t)Action;
1010  }
1011
1012  /// setIndexedStoreAction - Indicate that the specified indexed store does or
1013  /// does not work with the with specified type and indicate what to do about
1014  /// it. NOTE: All indexed mode stores are initialized to Expand in
1015  /// TargetLowering.cpp
1016  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
1017                             LegalizeAction Action) {
1018    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1019           IdxMode < array_lengthof(IndexedModeActions[0][1] ) &&
1020           "Table isn't big enough!");
1021    IndexedModeActions[(unsigned)VT.SimpleTy][1][IdxMode] = (uint8_t)Action;
1022  }
1023
1024  /// setConvertAction - Indicate that the specified conversion does or does
1025  /// not work with the with specified type and indicate what to do about it.
1026  void setConvertAction(MVT FromVT, MVT ToVT,
1027                        LegalizeAction Action) {
1028    assert((unsigned)FromVT.SimpleTy < array_lengthof(ConvertActions) &&
1029           (unsigned)ToVT.SimpleTy < sizeof(ConvertActions[0])*4 &&
1030           "Table isn't big enough!");
1031    ConvertActions[FromVT.SimpleTy] &= ~(uint64_t(3UL)  << ToVT.SimpleTy*2);
1032    ConvertActions[FromVT.SimpleTy] |= (uint64_t)Action << ToVT.SimpleTy*2;
1033  }
1034
1035  /// setCondCodeAction - Indicate that the specified condition code is or isn't
1036  /// supported on the target and indicate what to do about it.
1037  void setCondCodeAction(ISD::CondCode CC, MVT VT,
1038                         LegalizeAction Action) {
1039    assert((unsigned)VT.SimpleTy < sizeof(CondCodeActions[0])*4 &&
1040           (unsigned)CC < array_lengthof(CondCodeActions) &&
1041           "Table isn't big enough!");
1042    CondCodeActions[(unsigned)CC] &= ~(uint64_t(3UL)  << VT.SimpleTy*2);
1043    CondCodeActions[(unsigned)CC] |= (uint64_t)Action << VT.SimpleTy*2;
1044  }
1045
1046  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
1047  /// promotion code defaults to trying a larger integer/fp until it can find
1048  /// one that works.  If that default is insufficient, this method can be used
1049  /// by the target to override the default.
1050  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1051    PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
1052  }
1053
1054  /// addLegalFPImmediate - Indicate that this target can instruction select
1055  /// the specified FP immediate natively.
1056  void addLegalFPImmediate(const APFloat& Imm) {
1057    LegalFPImmediates.push_back(Imm);
1058  }
1059
1060  /// setTargetDAGCombine - Targets should invoke this method for each target
1061  /// independent node that they want to provide a custom DAG combiner for by
1062  /// implementing the PerformDAGCombine virtual method.
1063  void setTargetDAGCombine(ISD::NodeType NT) {
1064    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1065    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1066  }
1067
1068  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
1069  /// bytes); default is 200
1070  void setJumpBufSize(unsigned Size) {
1071    JumpBufSize = Size;
1072  }
1073
1074  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
1075  /// alignment (in bytes); default is 0
1076  void setJumpBufAlignment(unsigned Align) {
1077    JumpBufAlignment = Align;
1078  }
1079
1080  /// setIfCvtBlockSizeLimit - Set the target's if-conversion block size
1081  /// limit (in number of instructions); default is 2.
1082  void setIfCvtBlockSizeLimit(unsigned Limit) {
1083    IfCvtBlockSizeLimit = Limit;
1084  }
1085
1086  /// setIfCvtDupBlockSizeLimit - Set the target's block size limit (in number
1087  /// of instructions) to be considered for code duplication during
1088  /// if-conversion; default is 2.
1089  void setIfCvtDupBlockSizeLimit(unsigned Limit) {
1090    IfCvtDupBlockSizeLimit = Limit;
1091  }
1092
1093  /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
1094  /// alignment is zero, it means the target does not care about loop alignment.
1095  void setPrefLoopAlignment(unsigned Align) {
1096    PrefLoopAlignment = Align;
1097  }
1098
1099public:
1100
1101  virtual const TargetSubtarget *getSubtarget() {
1102    assert(0 && "Not Implemented");
1103    return NULL;    // this is here to silence compiler errors
1104  }
1105
1106  //===--------------------------------------------------------------------===//
1107  // Lowering methods - These methods must be implemented by targets so that
1108  // the SelectionDAGLowering code knows how to lower these.
1109  //
1110
1111  /// LowerFormalArguments - This hook must be implemented to lower the
1112  /// incoming (formal) arguments, described by the Ins array, into the
1113  /// specified DAG. The implementation should fill in the InVals array
1114  /// with legal-type argument values, and return the resulting token
1115  /// chain value.
1116  ///
1117  virtual SDValue
1118    LowerFormalArguments(SDValue Chain,
1119                         CallingConv::ID CallConv, bool isVarArg,
1120                         const SmallVectorImpl<ISD::InputArg> &Ins,
1121                         DebugLoc dl, SelectionDAG &DAG,
1122                         SmallVectorImpl<SDValue> &InVals) {
1123    assert(0 && "Not Implemented");
1124    return SDValue();    // this is here to silence compiler errors
1125  }
1126
1127  /// LowerCallTo - This function lowers an abstract call to a function into an
1128  /// actual call.  This returns a pair of operands.  The first element is the
1129  /// return value for the function (if RetTy is not VoidTy).  The second
1130  /// element is the outgoing token chain. It calls LowerCall to do the actual
1131  /// lowering.
1132  struct ArgListEntry {
1133    SDValue Node;
1134    const Type* Ty;
1135    bool isSExt  : 1;
1136    bool isZExt  : 1;
1137    bool isInReg : 1;
1138    bool isSRet  : 1;
1139    bool isNest  : 1;
1140    bool isByVal : 1;
1141    uint16_t Alignment;
1142
1143    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
1144      isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
1145  };
1146  typedef std::vector<ArgListEntry> ArgListTy;
1147  std::pair<SDValue, SDValue>
1148  LowerCallTo(SDValue Chain, const Type *RetTy, bool RetSExt, bool RetZExt,
1149              bool isVarArg, bool isInreg, unsigned NumFixedArgs,
1150              CallingConv::ID CallConv, bool isTailCall,
1151              bool isReturnValueUsed, SDValue Callee, ArgListTy &Args,
1152              SelectionDAG &DAG, DebugLoc dl);
1153
1154  /// LowerCall - This hook must be implemented to lower calls into the
1155  /// the specified DAG. The outgoing arguments to the call are described
1156  /// by the Outs array, and the values to be returned by the call are
1157  /// described by the Ins array. The implementation should fill in the
1158  /// InVals array with legal-type return values from the call, and return
1159  /// the resulting token chain value.
1160  ///
1161  /// The isTailCall flag here is normative. If it is true, the
1162  /// implementation must emit a tail call. The
1163  /// IsEligibleForTailCallOptimization hook should be used to catch
1164  /// cases that cannot be handled.
1165  ///
1166  virtual SDValue
1167    LowerCall(SDValue Chain, SDValue Callee,
1168              CallingConv::ID CallConv, bool isVarArg, bool isTailCall,
1169              const SmallVectorImpl<ISD::OutputArg> &Outs,
1170              const SmallVectorImpl<ISD::InputArg> &Ins,
1171              DebugLoc dl, SelectionDAG &DAG,
1172              SmallVectorImpl<SDValue> &InVals) {
1173    assert(0 && "Not Implemented");
1174    return SDValue();    // this is here to silence compiler errors
1175  }
1176
1177  /// LowerReturn - This hook must be implemented to lower outgoing
1178  /// return values, described by the Outs array, into the specified
1179  /// DAG. The implementation should return the resulting token chain
1180  /// value.
1181  ///
1182  virtual SDValue
1183    LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1184                const SmallVectorImpl<ISD::OutputArg> &Outs,
1185                DebugLoc dl, SelectionDAG &DAG) {
1186    assert(0 && "Not Implemented");
1187    return SDValue();    // this is here to silence compiler errors
1188  }
1189
1190  /// EmitTargetCodeForMemcpy - Emit target-specific code that performs a
1191  /// memcpy. This can be used by targets to provide code sequences for cases
1192  /// that don't fit the target's parameters for simple loads/stores and can be
1193  /// more efficient than using a library call. This function can return a null
1194  /// SDValue if the target declines to use custom code and a different
1195  /// lowering strategy should be used.
1196  ///
1197  /// If AlwaysInline is true, the size is constant and the target should not
1198  /// emit any calls and is strongly encouraged to attempt to emit inline code
1199  /// even if it is beyond the usual threshold because this intrinsic is being
1200  /// expanded in a place where calls are not feasible (e.g. within the prologue
1201  /// for another call). If the target chooses to decline an AlwaysInline
1202  /// request here, legalize will resort to using simple loads and stores.
1203  virtual SDValue
1204  EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
1205                          SDValue Chain,
1206                          SDValue Op1, SDValue Op2,
1207                          SDValue Op3, unsigned Align,
1208                          bool AlwaysInline,
1209                          const Value *DstSV, uint64_t DstOff,
1210                          const Value *SrcSV, uint64_t SrcOff) {
1211    return SDValue();
1212  }
1213
1214  /// EmitTargetCodeForMemmove - Emit target-specific code that performs a
1215  /// memmove. This can be used by targets to provide code sequences for cases
1216  /// that don't fit the target's parameters for simple loads/stores and can be
1217  /// more efficient than using a library call. This function can return a null
1218  /// SDValue if the target declines to use custom code and a different
1219  /// lowering strategy should be used.
1220  virtual SDValue
1221  EmitTargetCodeForMemmove(SelectionDAG &DAG, DebugLoc dl,
1222                           SDValue Chain,
1223                           SDValue Op1, SDValue Op2,
1224                           SDValue Op3, unsigned Align,
1225                           const Value *DstSV, uint64_t DstOff,
1226                           const Value *SrcSV, uint64_t SrcOff) {
1227    return SDValue();
1228  }
1229
1230  /// EmitTargetCodeForMemset - Emit target-specific code that performs a
1231  /// memset. This can be used by targets to provide code sequences for cases
1232  /// that don't fit the target's parameters for simple stores and can be more
1233  /// efficient than using a library call. This function can return a null
1234  /// SDValue if the target declines to use custom code and a different
1235  /// lowering strategy should be used.
1236  virtual SDValue
1237  EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
1238                          SDValue Chain,
1239                          SDValue Op1, SDValue Op2,
1240                          SDValue Op3, unsigned Align,
1241                          const Value *DstSV, uint64_t DstOff) {
1242    return SDValue();
1243  }
1244
1245  /// LowerOperationWrapper - This callback is invoked by the type legalizer
1246  /// to legalize nodes with an illegal operand type but legal result types.
1247  /// It replaces the LowerOperation callback in the type Legalizer.
1248  /// The reason we can not do away with LowerOperation entirely is that
1249  /// LegalizeDAG isn't yet ready to use this callback.
1250  /// TODO: Consider merging with ReplaceNodeResults.
1251
1252  /// The target places new result values for the node in Results (their number
1253  /// and types must exactly match those of the original return values of
1254  /// the node), or leaves Results empty, which indicates that the node is not
1255  /// to be custom lowered after all.
1256  /// The default implementation calls LowerOperation.
1257  virtual void LowerOperationWrapper(SDNode *N,
1258                                     SmallVectorImpl<SDValue> &Results,
1259                                     SelectionDAG &DAG);
1260
1261  /// LowerOperation - This callback is invoked for operations that are
1262  /// unsupported by the target, which are registered to use 'custom' lowering,
1263  /// and whose defined values are all legal.
1264  /// If the target has no operations that require custom lowering, it need not
1265  /// implement this.  The default implementation of this aborts.
1266  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG);
1267
1268  /// ReplaceNodeResults - This callback is invoked when a node result type is
1269  /// illegal for the target, and the operation was registered to use 'custom'
1270  /// lowering for that result type.  The target places new result values for
1271  /// the node in Results (their number and types must exactly match those of
1272  /// the original return values of the node), or leaves Results empty, which
1273  /// indicates that the node is not to be custom lowered after all.
1274  ///
1275  /// If the target has no operations that require custom lowering, it need not
1276  /// implement this.  The default implementation aborts.
1277  virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
1278                                  SelectionDAG &DAG) {
1279    assert(0 && "ReplaceNodeResults not implemented for this target!");
1280  }
1281
1282  /// IsEligibleForTailCallOptimization - Check whether the call is eligible for
1283  /// tail call optimization. Targets which want to do tail call optimization
1284  /// should override this function.
1285  virtual bool
1286  IsEligibleForTailCallOptimization(SDValue Callee,
1287                                    CallingConv::ID CalleeCC,
1288                                    bool isVarArg,
1289                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1290                                    SelectionDAG& DAG) const {
1291    // Conservative default: no calls are eligible.
1292    return false;
1293  }
1294
1295  /// GetPossiblePreceedingTailCall - Get preceeding TailCallNodeOpCode node if
1296  /// it exists. Skip a possible ISD::TokenFactor.
1297  static SDValue GetPossiblePreceedingTailCall(SDValue Chain,
1298                                                 unsigned TailCallNodeOpCode) {
1299    if (Chain.getOpcode() == TailCallNodeOpCode) {
1300      return Chain;
1301    } else if (Chain.getOpcode() == ISD::TokenFactor) {
1302      if (Chain.getNumOperands() &&
1303          Chain.getOperand(0).getOpcode() == TailCallNodeOpCode)
1304        return Chain.getOperand(0);
1305    }
1306    return Chain;
1307  }
1308
1309  /// getTargetNodeName() - This method returns the name of a target specific
1310  /// DAG node.
1311  virtual const char *getTargetNodeName(unsigned Opcode) const;
1312
1313  /// createFastISel - This method returns a target specific FastISel object,
1314  /// or null if the target does not support "fast" ISel.
1315  virtual FastISel *
1316  createFastISel(MachineFunction &,
1317                 MachineModuleInfo *, DwarfWriter *,
1318                 DenseMap<const Value *, unsigned> &,
1319                 DenseMap<const BasicBlock *, MachineBasicBlock *> &,
1320                 DenseMap<const AllocaInst *, int> &
1321#ifndef NDEBUG
1322                 , SmallSet<Instruction*, 8> &CatchInfoLost
1323#endif
1324                 ) {
1325    return 0;
1326  }
1327
1328  //===--------------------------------------------------------------------===//
1329  // Inline Asm Support hooks
1330  //
1331
1332  /// ExpandInlineAsm - This hook allows the target to expand an inline asm
1333  /// call to be explicit llvm code if it wants to.  This is useful for
1334  /// turning simple inline asms into LLVM intrinsics, which gives the
1335  /// compiler more information about the behavior of the code.
1336  virtual bool ExpandInlineAsm(CallInst *CI) const {
1337    return false;
1338  }
1339
1340  enum ConstraintType {
1341    C_Register,            // Constraint represents specific register(s).
1342    C_RegisterClass,       // Constraint represents any of register(s) in class.
1343    C_Memory,              // Memory constraint.
1344    C_Other,               // Something else.
1345    C_Unknown              // Unsupported constraint.
1346  };
1347
1348  /// AsmOperandInfo - This contains information for each constraint that we are
1349  /// lowering.
1350  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
1351    /// ConstraintCode - This contains the actual string for the code, like "m".
1352    /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
1353    /// most closely matches the operand.
1354    std::string ConstraintCode;
1355
1356    /// ConstraintType - Information about the constraint code, e.g. Register,
1357    /// RegisterClass, Memory, Other, Unknown.
1358    TargetLowering::ConstraintType ConstraintType;
1359
1360    /// CallOperandval - If this is the result output operand or a
1361    /// clobber, this is null, otherwise it is the incoming operand to the
1362    /// CallInst.  This gets modified as the asm is processed.
1363    Value *CallOperandVal;
1364
1365    /// ConstraintVT - The ValueType for the operand value.
1366    EVT ConstraintVT;
1367
1368    /// isMatchingInputConstraint - Return true of this is an input operand that
1369    /// is a matching constraint like "4".
1370    bool isMatchingInputConstraint() const;
1371
1372    /// getMatchedOperand - If this is an input matching constraint, this method
1373    /// returns the output operand it matches.
1374    unsigned getMatchedOperand() const;
1375
1376    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
1377      : InlineAsm::ConstraintInfo(info),
1378        ConstraintType(TargetLowering::C_Unknown),
1379        CallOperandVal(0), ConstraintVT(MVT::Other) {
1380    }
1381  };
1382
1383  /// ComputeConstraintToUse - Determines the constraint code and constraint
1384  /// type to use for the specific AsmOperandInfo, setting
1385  /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
1386  /// being passed in is available, it can be passed in as Op, otherwise an
1387  /// empty SDValue can be passed. If hasMemory is true it means one of the asm
1388  /// constraint of the inline asm instruction being processed is 'm'.
1389  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1390                                      SDValue Op,
1391                                      bool hasMemory,
1392                                      SelectionDAG *DAG = 0) const;
1393
1394  /// getConstraintType - Given a constraint, return the type of constraint it
1395  /// is for this target.
1396  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
1397
1398  /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
1399  /// return a list of registers that can be used to satisfy the constraint.
1400  /// This should only be used for C_RegisterClass constraints.
1401  virtual std::vector<unsigned>
1402  getRegClassForInlineAsmConstraint(const std::string &Constraint,
1403                                    EVT VT) const;
1404
1405  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
1406  /// {edx}), return the register number and the register class for the
1407  /// register.
1408  ///
1409  /// Given a register class constraint, like 'r', if this corresponds directly
1410  /// to an LLVM register class, return a register of 0 and the register class
1411  /// pointer.
1412  ///
1413  /// This should only be used for C_Register constraints.  On error,
1414  /// this returns a register number of 0 and a null register class pointer..
1415  virtual std::pair<unsigned, const TargetRegisterClass*>
1416    getRegForInlineAsmConstraint(const std::string &Constraint,
1417                                 EVT VT) const;
1418
1419  /// LowerXConstraint - try to replace an X constraint, which matches anything,
1420  /// with another that has more specific requirements based on the type of the
1421  /// corresponding operand.  This returns null if there is no replacement to
1422  /// make.
1423  virtual const char *LowerXConstraint(EVT ConstraintVT) const;
1424
1425  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1426  /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is true
1427  /// it means one of the asm constraint of the inline asm instruction being
1428  /// processed is 'm'.
1429  virtual void LowerAsmOperandForConstraint(SDValue Op, char ConstraintLetter,
1430                                            bool hasMemory,
1431                                            std::vector<SDValue> &Ops,
1432                                            SelectionDAG &DAG) const;
1433
1434  //===--------------------------------------------------------------------===//
1435  // Scheduler hooks
1436  //
1437
1438  // EmitInstrWithCustomInserter - This method should be implemented by targets
1439  // that mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
1440  // instructions are special in various ways, which require special support to
1441  // insert.  The specified MachineInstr is created but not inserted into any
1442  // basic blocks, and the scheduler passes ownership of it to this method.
1443  virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
1444                                                         MachineBasicBlock *MBB,
1445                    DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const;
1446
1447  //===--------------------------------------------------------------------===//
1448  // Addressing mode description hooks (used by LSR etc).
1449  //
1450
1451  /// AddrMode - This represents an addressing mode of:
1452  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1453  /// If BaseGV is null,  there is no BaseGV.
1454  /// If BaseOffs is zero, there is no base offset.
1455  /// If HasBaseReg is false, there is no base register.
1456  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1457  /// no scale.
1458  ///
1459  struct AddrMode {
1460    GlobalValue *BaseGV;
1461    int64_t      BaseOffs;
1462    bool         HasBaseReg;
1463    int64_t      Scale;
1464    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1465  };
1466
1467  /// isLegalAddressingMode - Return true if the addressing mode represented by
1468  /// AM is legal for this target, for a load/store of the specified type.
1469  /// The type may be VoidTy, in which case only return true if the addressing
1470  /// mode is legal for a load/store of any legal type.
1471  /// TODO: Handle pre/postinc as well.
1472  virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const;
1473
1474  /// isTruncateFree - Return true if it's free to truncate a value of
1475  /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1476  /// register EAX to i16 by referencing its sub-register AX.
1477  virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const {
1478    return false;
1479  }
1480
1481  virtual bool isTruncateFree(EVT VT1, EVT VT2) const {
1482    return false;
1483  }
1484
1485  /// isZExtFree - Return true if any actual instruction that defines a
1486  /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
1487  /// register. This does not necessarily include registers defined in
1488  /// unknown ways, such as incoming arguments, or copies from unknown
1489  /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1490  /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1491  /// all instructions that define 32-bit values implicit zero-extend the
1492  /// result out to 64 bits.
1493  virtual bool isZExtFree(const Type *Ty1, const Type *Ty2) const {
1494    return false;
1495  }
1496
1497  virtual bool isZExtFree(EVT VT1, EVT VT2) const {
1498    return false;
1499  }
1500
1501  /// isNarrowingProfitable - Return true if it's profitable to narrow
1502  /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
1503  /// from i32 to i8 but not from i32 to i16.
1504  virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const {
1505    return false;
1506  }
1507
1508  //===--------------------------------------------------------------------===//
1509  // Div utility functions
1510  //
1511  SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG,
1512                      std::vector<SDNode*>* Created) const;
1513  SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG,
1514                      std::vector<SDNode*>* Created) const;
1515
1516
1517  //===--------------------------------------------------------------------===//
1518  // Runtime Library hooks
1519  //
1520
1521  /// setLibcallName - Rename the default libcall routine name for the specified
1522  /// libcall.
1523  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1524    LibcallRoutineNames[Call] = Name;
1525  }
1526
1527  /// getLibcallName - Get the libcall routine name for the specified libcall.
1528  ///
1529  const char *getLibcallName(RTLIB::Libcall Call) const {
1530    return LibcallRoutineNames[Call];
1531  }
1532
1533  /// setCmpLibcallCC - Override the default CondCode to be used to test the
1534  /// result of the comparison libcall against zero.
1535  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1536    CmpLibcallCCs[Call] = CC;
1537  }
1538
1539  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1540  /// the comparison libcall against zero.
1541  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1542    return CmpLibcallCCs[Call];
1543  }
1544
1545  /// setLibcallCallingConv - Set the CallingConv that should be used for the
1546  /// specified libcall.
1547  void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
1548    LibcallCallingConvs[Call] = CC;
1549  }
1550
1551  /// getLibcallCallingConv - Get the CallingConv that should be used for the
1552  /// specified libcall.
1553  CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
1554    return LibcallCallingConvs[Call];
1555  }
1556
1557private:
1558  TargetMachine &TM;
1559  const TargetData *TD;
1560  TargetLoweringObjectFile &TLOF;
1561
1562  /// PointerTy - The type to use for pointers, usually i32 or i64.
1563  ///
1564  MVT PointerTy;
1565
1566  /// IsLittleEndian - True if this is a little endian target.
1567  ///
1568  bool IsLittleEndian;
1569
1570  /// UsesGlobalOffsetTable - True if this target uses a GOT for PIC codegen.
1571  ///
1572  bool UsesGlobalOffsetTable;
1573
1574  /// SelectIsExpensive - Tells the code generator not to expand operations
1575  /// into sequences that use the select operations if possible.
1576  bool SelectIsExpensive;
1577
1578  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1579  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1580  /// a real cost model is in place.  If we ever optimize for size, this will be
1581  /// set to true unconditionally.
1582  bool IntDivIsCheap;
1583
1584  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1585  /// srl/add/sra for a signed divide by power of two, and let the target handle
1586  /// it.
1587  bool Pow2DivIsCheap;
1588
1589  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1590  /// llvm.setjmp.  Defaults to false.
1591  bool UseUnderscoreSetJmp;
1592
1593  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1594  /// llvm.longjmp.  Defaults to false.
1595  bool UseUnderscoreLongJmp;
1596
1597  /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
1598  /// PointerTy is.
1599  MVT ShiftAmountTy;
1600
1601  /// BooleanContents - Information about the contents of the high-bits in
1602  /// boolean values held in a type wider than i1.  See getBooleanContents.
1603  BooleanContent BooleanContents;
1604
1605  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1606  /// total cycles or lowest register usage.
1607  SchedPreference SchedPreferenceInfo;
1608
1609  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1610  unsigned JumpBufSize;
1611
1612  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1613  /// buffers
1614  unsigned JumpBufAlignment;
1615
1616  /// IfCvtBlockSizeLimit - The maximum allowed size for a block to be
1617  /// if-converted.
1618  unsigned IfCvtBlockSizeLimit;
1619
1620  /// IfCvtDupBlockSizeLimit - The maximum allowed size for a block to be
1621  /// duplicated during if-conversion.
1622  unsigned IfCvtDupBlockSizeLimit;
1623
1624  /// PrefLoopAlignment - The perferred loop alignment.
1625  ///
1626  unsigned PrefLoopAlignment;
1627
1628  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1629  /// specifies the register that llvm.savestack/llvm.restorestack should save
1630  /// and restore.
1631  unsigned StackPointerRegisterToSaveRestore;
1632
1633  /// ExceptionPointerRegister - If set to a physical register, this specifies
1634  /// the register that receives the exception address on entry to a landing
1635  /// pad.
1636  unsigned ExceptionPointerRegister;
1637
1638  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1639  /// the register that receives the exception typeid on entry to a landing
1640  /// pad.
1641  unsigned ExceptionSelectorRegister;
1642
1643  /// RegClassForVT - This indicates the default register class to use for
1644  /// each ValueType the target supports natively.
1645  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1646  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1647  EVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1648
1649  /// TransformToType - For any value types we are promoting or expanding, this
1650  /// contains the value type that we are changing to.  For Expanded types, this
1651  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1652  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1653  /// by the system, this holds the same type (e.g. i32 -> i32).
1654  EVT TransformToType[MVT::LAST_VALUETYPE];
1655
1656  /// OpActions - For each operation and each value type, keep a LegalizeAction
1657  /// that indicates how instruction selection should deal with the operation.
1658  /// Most operations are Legal (aka, supported natively by the target), but
1659  /// operations that are not should be described.  Note that operations on
1660  /// non-legal value types are not described here.
1661  /// This array is accessed using VT.getSimpleVT(), so it is subject to
1662  /// the MVT::MAX_ALLOWED_VALUETYPE * 2 bits.
1663  uint64_t OpActions[MVT::MAX_ALLOWED_VALUETYPE/(sizeof(uint64_t)*4)][ISD::BUILTIN_OP_END];
1664
1665  /// LoadExtActions - For each load of load extension type and each value type,
1666  /// keep a LegalizeAction that indicates how instruction selection should deal
1667  /// with the load.
1668  uint64_t LoadExtActions[ISD::LAST_LOADEXT_TYPE];
1669
1670  /// TruncStoreActions - For each truncating store, keep a LegalizeAction that
1671  /// indicates how instruction selection should deal with the store.
1672  uint64_t TruncStoreActions[MVT::LAST_VALUETYPE];
1673
1674  /// IndexedModeActions - For each indexed mode and each value type,
1675  /// keep a pair of LegalizeAction that indicates how instruction
1676  /// selection should deal with the load / store.  The first
1677  /// dimension is now the value_type for the reference.  The second
1678  /// dimension is the load [0] vs. store[1].  The third dimension
1679  /// represents the various modes for load store.
1680  uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][2][ISD::LAST_INDEXED_MODE];
1681
1682  /// ConvertActions - For each conversion from source type to destination type,
1683  /// keep a LegalizeAction that indicates how instruction selection should
1684  /// deal with the conversion.
1685  /// Currently, this is used only for floating->floating conversions
1686  /// (FP_EXTEND and FP_ROUND).
1687  uint64_t ConvertActions[MVT::LAST_VALUETYPE];
1688
1689  /// CondCodeActions - For each condition code (ISD::CondCode) keep a
1690  /// LegalizeAction that indicates how instruction selection should
1691  /// deal with the condition code.
1692  uint64_t CondCodeActions[ISD::SETCC_INVALID];
1693
1694  ValueTypeActionImpl ValueTypeActions;
1695
1696  std::vector<APFloat> LegalFPImmediates;
1697
1698  std::vector<std::pair<EVT, TargetRegisterClass*> > AvailableRegClasses;
1699
1700  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
1701  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
1702  /// which sets a bit in this array.
1703  unsigned char
1704  TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
1705
1706  /// PromoteToType - For operations that must be promoted to a specific type,
1707  /// this holds the destination type.  This map should be sparse, so don't hold
1708  /// it as an array.
1709  ///
1710  /// Targets add entries to this map with AddPromotedToType(..), clients access
1711  /// this with getTypeToPromoteTo(..).
1712  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
1713    PromoteToType;
1714
1715  /// LibcallRoutineNames - Stores the name each libcall.
1716  ///
1717  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1718
1719  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
1720  /// of each of the comparison libcall against zero.
1721  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1722
1723  /// LibcallCallingConvs - Stores the CallingConv that should be used for each
1724  /// libcall.
1725  CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
1726
1727protected:
1728  /// When lowering \@llvm.memset this field specifies the maximum number of
1729  /// store operations that may be substituted for the call to memset. Targets
1730  /// must set this value based on the cost threshold for that target. Targets
1731  /// should assume that the memset will be done using as many of the largest
1732  /// store operations first, followed by smaller ones, if necessary, per
1733  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1734  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1735  /// store.  This only applies to setting a constant array of a constant size.
1736  /// @brief Specify maximum number of store instructions per memset call.
1737  unsigned maxStoresPerMemset;
1738
1739  /// When lowering \@llvm.memcpy this field specifies the maximum number of
1740  /// store operations that may be substituted for a call to memcpy. Targets
1741  /// must set this value based on the cost threshold for that target. Targets
1742  /// should assume that the memcpy will be done using as many of the largest
1743  /// store operations first, followed by smaller ones, if necessary, per
1744  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1745  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1746  /// and one 1-byte store. This only applies to copying a constant array of
1747  /// constant size.
1748  /// @brief Specify maximum bytes of store instructions per memcpy call.
1749  unsigned maxStoresPerMemcpy;
1750
1751  /// When lowering \@llvm.memmove this field specifies the maximum number of
1752  /// store instructions that may be substituted for a call to memmove. Targets
1753  /// must set this value based on the cost threshold for that target. Targets
1754  /// should assume that the memmove will be done using as many of the largest
1755  /// store operations first, followed by smaller ones, if necessary, per
1756  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1757  /// with 8-bit alignment would result in nine 1-byte stores.  This only
1758  /// applies to copying a constant array of constant size.
1759  /// @brief Specify maximum bytes of store instructions per memmove call.
1760  unsigned maxStoresPerMemmove;
1761
1762  /// This field specifies whether the target can benefit from code placement
1763  /// optimization.
1764  bool benefitFromCodePlacementOpt;
1765};
1766} // end llvm namespace
1767
1768#endif
1769