TargetRegisterInfo.h revision 1fc8e759a767077726f9be35b93767e68bdf101f
1//=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes an abstract interface used to get information about a
11// target machines register file.  This information is used for a variety of
12// purposed, especially register allocation.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_TARGET_TARGETREGISTERINFO_H
17#define LLVM_TARGET_TARGETREGISTERINFO_H
18
19#include "llvm/CodeGen/MachineBasicBlock.h"
20#include "llvm/CodeGen/ValueTypes.h"
21#include "llvm/ADT/DenseSet.h"
22#include <cassert>
23#include <functional>
24
25namespace llvm {
26
27class BitVector;
28class MachineFunction;
29class MachineMove;
30class RegScavenger;
31template<class T> class SmallVectorImpl;
32
33/// TargetRegisterDesc - This record contains all of the information known about
34/// a particular register.  The AliasSet field (if not null) contains a pointer
35/// to a Zero terminated array of registers that this register aliases.  This is
36/// needed for architectures like X86 which have AL alias AX alias EAX.
37/// Registers that this does not apply to simply should set this to null.
38/// The SubRegs field is a zero terminated array of registers that are
39/// sub-registers of the specific register, e.g. AL, AH are sub-registers of AX.
40/// The SuperRegs field is a zero terminated array of registers that are
41/// super-registers of the specific register, e.g. RAX, EAX, are super-registers
42/// of AX.
43///
44struct TargetRegisterDesc {
45  const char     *Name;         // Printable name for the reg (for debugging)
46  const unsigned *AliasSet;     // Register Alias Set, described above
47  const unsigned *SubRegs;      // Sub-register set, described above
48  const unsigned *SuperRegs;    // Super-register set, described above
49};
50
51class TargetRegisterClass {
52public:
53  typedef const unsigned* iterator;
54  typedef const unsigned* const_iterator;
55
56  typedef const EVT* vt_iterator;
57  typedef const TargetRegisterClass* const * sc_iterator;
58private:
59  unsigned ID;
60  const char *Name;
61  const vt_iterator VTs;
62  const sc_iterator SubClasses;
63  const sc_iterator SuperClasses;
64  const sc_iterator SubRegClasses;
65  const sc_iterator SuperRegClasses;
66  const unsigned RegSize, Alignment;    // Size & Alignment of register in bytes
67  const int CopyCost;
68  const iterator RegsBegin, RegsEnd;
69  DenseSet<unsigned> RegSet;
70public:
71  TargetRegisterClass(unsigned id,
72                      const char *name,
73                      const EVT *vts,
74                      const TargetRegisterClass * const *subcs,
75                      const TargetRegisterClass * const *supcs,
76                      const TargetRegisterClass * const *subregcs,
77                      const TargetRegisterClass * const *superregcs,
78                      unsigned RS, unsigned Al, int CC,
79                      iterator RB, iterator RE)
80    : ID(id), Name(name), VTs(vts), SubClasses(subcs), SuperClasses(supcs),
81    SubRegClasses(subregcs), SuperRegClasses(superregcs),
82    RegSize(RS), Alignment(Al), CopyCost(CC), RegsBegin(RB), RegsEnd(RE) {
83      for (iterator I = RegsBegin, E = RegsEnd; I != E; ++I)
84        RegSet.insert(*I);
85    }
86  virtual ~TargetRegisterClass() {}     // Allow subclasses
87
88  /// getID() - Return the register class ID number.
89  ///
90  unsigned getID() const { return ID; }
91
92  /// getName() - Return the register class name for debugging.
93  ///
94  const char *getName() const { return Name; }
95
96  /// begin/end - Return all of the registers in this class.
97  ///
98  iterator       begin() const { return RegsBegin; }
99  iterator         end() const { return RegsEnd; }
100
101  /// getNumRegs - Return the number of registers in this class.
102  ///
103  unsigned getNumRegs() const { return (unsigned)(RegsEnd-RegsBegin); }
104
105  /// getRegister - Return the specified register in the class.
106  ///
107  unsigned getRegister(unsigned i) const {
108    assert(i < getNumRegs() && "Register number out of range!");
109    return RegsBegin[i];
110  }
111
112  /// contains - Return true if the specified register is included in this
113  /// register class.  This does not include virtual registers.
114  bool contains(unsigned Reg) const {
115    return RegSet.count(Reg);
116  }
117
118  /// hasType - return true if this TargetRegisterClass has the ValueType vt.
119  ///
120  bool hasType(EVT vt) const {
121    for(int i = 0; VTs[i].getSimpleVT().SimpleTy != MVT::Other; ++i)
122      if (VTs[i] == vt)
123        return true;
124    return false;
125  }
126
127  /// vt_begin / vt_end - Loop over all of the value types that can be
128  /// represented by values in this register class.
129  vt_iterator vt_begin() const {
130    return VTs;
131  }
132
133  vt_iterator vt_end() const {
134    vt_iterator I = VTs;
135    while (I->getSimpleVT().SimpleTy != MVT::Other) ++I;
136    return I;
137  }
138
139  /// subregclasses_begin / subregclasses_end - Loop over all of
140  /// the subreg register classes of this register class.
141  sc_iterator subregclasses_begin() const {
142    return SubRegClasses;
143  }
144
145  sc_iterator subregclasses_end() const {
146    sc_iterator I = SubRegClasses;
147    while (*I != NULL) ++I;
148    return I;
149  }
150
151  /// getSubRegisterRegClass - Return the register class of subregisters with
152  /// index SubIdx, or NULL if no such class exists.
153  const TargetRegisterClass* getSubRegisterRegClass(unsigned SubIdx) const {
154    assert(SubIdx>0 && "Invalid subregister index");
155    return SubRegClasses[SubIdx-1];
156  }
157
158  /// superregclasses_begin / superregclasses_end - Loop over all of
159  /// the superreg register classes of this register class.
160  sc_iterator superregclasses_begin() const {
161    return SuperRegClasses;
162  }
163
164  sc_iterator superregclasses_end() const {
165    sc_iterator I = SuperRegClasses;
166    while (*I != NULL) ++I;
167    return I;
168  }
169
170  /// hasSubClass - return true if the specified TargetRegisterClass
171  /// is a proper subset of this TargetRegisterClass.
172  bool hasSubClass(const TargetRegisterClass *cs) const {
173    for (int i = 0; SubClasses[i] != NULL; ++i)
174      if (SubClasses[i] == cs)
175        return true;
176    return false;
177  }
178
179  /// subclasses_begin / subclasses_end - Loop over all of the classes
180  /// that are proper subsets of this register class.
181  sc_iterator subclasses_begin() const {
182    return SubClasses;
183  }
184
185  sc_iterator subclasses_end() const {
186    sc_iterator I = SubClasses;
187    while (*I != NULL) ++I;
188    return I;
189  }
190
191  /// hasSuperClass - return true if the specified TargetRegisterClass is a
192  /// proper superset of this TargetRegisterClass.
193  bool hasSuperClass(const TargetRegisterClass *cs) const {
194    for (int i = 0; SuperClasses[i] != NULL; ++i)
195      if (SuperClasses[i] == cs)
196        return true;
197    return false;
198  }
199
200  /// superclasses_begin / superclasses_end - Loop over all of the classes
201  /// that are proper supersets of this register class.
202  sc_iterator superclasses_begin() const {
203    return SuperClasses;
204  }
205
206  sc_iterator superclasses_end() const {
207    sc_iterator I = SuperClasses;
208    while (*I != NULL) ++I;
209    return I;
210  }
211
212  /// isASubClass - return true if this TargetRegisterClass is a subset
213  /// class of at least one other TargetRegisterClass.
214  bool isASubClass() const {
215    return SuperClasses[0] != 0;
216  }
217
218  /// allocation_order_begin/end - These methods define a range of registers
219  /// which specify the registers in this class that are valid to register
220  /// allocate, and the preferred order to allocate them in.  For example,
221  /// callee saved registers should be at the end of the list, because it is
222  /// cheaper to allocate caller saved registers.
223  ///
224  /// These methods take a MachineFunction argument, which can be used to tune
225  /// the allocatable registers based on the characteristics of the function.
226  /// One simple example is that the frame pointer register can be used if
227  /// frame-pointer-elimination is performed.
228  ///
229  /// By default, these methods return all registers in the class.
230  ///
231  virtual iterator allocation_order_begin(const MachineFunction &MF) const {
232    return begin();
233  }
234  virtual iterator allocation_order_end(const MachineFunction &MF)   const {
235    return end();
236  }
237
238  /// getSize - Return the size of the register in bytes, which is also the size
239  /// of a stack slot allocated to hold a spilled copy of this register.
240  unsigned getSize() const { return RegSize; }
241
242  /// getAlignment - Return the minimum required alignment for a register of
243  /// this class.
244  unsigned getAlignment() const { return Alignment; }
245
246  /// getCopyCost - Return the cost of copying a value between two registers in
247  /// this class. A negative number means the register class is very expensive
248  /// to copy e.g. status flag register classes.
249  int getCopyCost() const { return CopyCost; }
250};
251
252
253/// TargetRegisterInfo base class - We assume that the target defines a static
254/// array of TargetRegisterDesc objects that represent all of the machine
255/// registers that the target has.  As such, we simply have to track a pointer
256/// to this array so that we can turn register number into a register
257/// descriptor.
258///
259class TargetRegisterInfo {
260protected:
261  const unsigned* SubregHash;
262  const unsigned SubregHashSize;
263  const unsigned* SuperregHash;
264  const unsigned SuperregHashSize;
265  const unsigned* AliasesHash;
266  const unsigned AliasesHashSize;
267public:
268  typedef const TargetRegisterClass * const * regclass_iterator;
269private:
270  const TargetRegisterDesc *Desc;             // Pointer to the descriptor array
271  const char *const *SubRegIndexNames;        // Names of subreg indexes.
272  unsigned NumRegs;                           // Number of entries in the array
273
274  regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses
275
276  int CallFrameSetupOpcode, CallFrameDestroyOpcode;
277
278protected:
279  TargetRegisterInfo(const TargetRegisterDesc *D, unsigned NR,
280                     regclass_iterator RegClassBegin,
281                     regclass_iterator RegClassEnd,
282                     const char *const *subregindexnames,
283                     int CallFrameSetupOpcode = -1,
284                     int CallFrameDestroyOpcode = -1,
285                     const unsigned* subregs = 0,
286                     const unsigned subregsize = 0,
287                     const unsigned* superregs = 0,
288                     const unsigned superregsize = 0,
289                     const unsigned* aliases = 0,
290                     const unsigned aliasessize = 0);
291  virtual ~TargetRegisterInfo();
292public:
293
294  enum {                        // Define some target independent constants
295    /// NoRegister - This physical register is not a real target register.  It
296    /// is useful as a sentinal.
297    NoRegister = 0,
298
299    /// FirstVirtualRegister - This is the first register number that is
300    /// considered to be a 'virtual' register, which is part of the SSA
301    /// namespace.  This must be the same for all targets, which means that each
302    /// target is limited to this fixed number of registers.
303    FirstVirtualRegister = 1024
304  };
305
306  /// isPhysicalRegister - Return true if the specified register number is in
307  /// the physical register namespace.
308  static bool isPhysicalRegister(unsigned Reg) {
309    assert(Reg && "this is not a register!");
310    return Reg < FirstVirtualRegister;
311  }
312
313  /// isVirtualRegister - Return true if the specified register number is in
314  /// the virtual register namespace.
315  static bool isVirtualRegister(unsigned Reg) {
316    assert(Reg && "this is not a register!");
317    return Reg >= FirstVirtualRegister;
318  }
319
320  /// getPhysicalRegisterRegClass - Returns the Register Class of a physical
321  /// register of the given type. If type is EVT::Other, then just return any
322  /// register class the register belongs to.
323  virtual const TargetRegisterClass *
324    getPhysicalRegisterRegClass(unsigned Reg, EVT VT = MVT::Other) const;
325
326  /// getAllocatableSet - Returns a bitset indexed by register number
327  /// indicating if a register is allocatable or not. If a register class is
328  /// specified, returns the subset for the class.
329  BitVector getAllocatableSet(const MachineFunction &MF,
330                              const TargetRegisterClass *RC = NULL) const;
331
332  const TargetRegisterDesc &operator[](unsigned RegNo) const {
333    assert(RegNo < NumRegs &&
334           "Attempting to access record for invalid register number!");
335    return Desc[RegNo];
336  }
337
338  /// Provide a get method, equivalent to [], but more useful if we have a
339  /// pointer to this object.
340  ///
341  const TargetRegisterDesc &get(unsigned RegNo) const {
342    return operator[](RegNo);
343  }
344
345  /// getAliasSet - Return the set of registers aliased by the specified
346  /// register, or a null list of there are none.  The list returned is zero
347  /// terminated.
348  ///
349  const unsigned *getAliasSet(unsigned RegNo) const {
350    return get(RegNo).AliasSet;
351  }
352
353  /// getSubRegisters - Return the list of registers that are sub-registers of
354  /// the specified register, or a null list of there are none. The list
355  /// returned is zero terminated and sorted according to super-sub register
356  /// relations. e.g. X86::RAX's sub-register list is EAX, AX, AL, AH.
357  ///
358  const unsigned *getSubRegisters(unsigned RegNo) const {
359    return get(RegNo).SubRegs;
360  }
361
362  /// getSuperRegisters - Return the list of registers that are super-registers
363  /// of the specified register, or a null list of there are none. The list
364  /// returned is zero terminated and sorted according to super-sub register
365  /// relations. e.g. X86::AL's super-register list is RAX, EAX, AX.
366  ///
367  const unsigned *getSuperRegisters(unsigned RegNo) const {
368    return get(RegNo).SuperRegs;
369  }
370
371  /// getName - Return the human-readable symbolic target-specific name for the
372  /// specified physical register.
373  const char *getName(unsigned RegNo) const {
374    return get(RegNo).Name;
375  }
376
377  /// getNumRegs - Return the number of registers this target has (useful for
378  /// sizing arrays holding per register information)
379  unsigned getNumRegs() const {
380    return NumRegs;
381  }
382
383  /// getSubRegIndexName - Return the human-readable symbolic target-specific
384  /// name for the specified SubRegIndex.
385  const char *getSubRegIndexName(unsigned SubIdx) const {
386    assert(SubIdx && "This is not a subregister index");
387    return SubRegIndexNames[SubIdx-1];
388  }
389
390  /// regsOverlap - Returns true if the two registers are equal or alias each
391  /// other. The registers may be virtual register.
392  bool regsOverlap(unsigned regA, unsigned regB) const {
393    if (regA == regB)
394      return true;
395
396    if (isVirtualRegister(regA) || isVirtualRegister(regB))
397      return false;
398
399    // regA and regB are distinct physical registers. Do they alias?
400    size_t index = (regA + regB * 37) & (AliasesHashSize-1);
401    unsigned ProbeAmt = 0;
402    while (AliasesHash[index*2] != 0 &&
403           AliasesHash[index*2+1] != 0) {
404      if (AliasesHash[index*2] == regA && AliasesHash[index*2+1] == regB)
405        return true;
406
407      index = (index + ProbeAmt) & (AliasesHashSize-1);
408      ProbeAmt += 2;
409    }
410
411    return false;
412  }
413
414  /// isSubRegister - Returns true if regB is a sub-register of regA.
415  ///
416  bool isSubRegister(unsigned regA, unsigned regB) const {
417    // SubregHash is a simple quadratically probed hash table.
418    size_t index = (regA + regB * 37) & (SubregHashSize-1);
419    unsigned ProbeAmt = 2;
420    while (SubregHash[index*2] != 0 &&
421           SubregHash[index*2+1] != 0) {
422      if (SubregHash[index*2] == regA && SubregHash[index*2+1] == regB)
423        return true;
424
425      index = (index + ProbeAmt) & (SubregHashSize-1);
426      ProbeAmt += 2;
427    }
428
429    return false;
430  }
431
432  /// isSuperRegister - Returns true if regB is a super-register of regA.
433  ///
434  bool isSuperRegister(unsigned regA, unsigned regB) const {
435    // SuperregHash is a simple quadratically probed hash table.
436    size_t index = (regA + regB * 37) & (SuperregHashSize-1);
437    unsigned ProbeAmt = 2;
438    while (SuperregHash[index*2] != 0 &&
439           SuperregHash[index*2+1] != 0) {
440      if (SuperregHash[index*2] == regA && SuperregHash[index*2+1] == regB)
441        return true;
442
443      index = (index + ProbeAmt) & (SuperregHashSize-1);
444      ProbeAmt += 2;
445    }
446
447    return false;
448  }
449
450  /// getCalleeSavedRegs - Return a null-terminated list of all of the
451  /// callee saved registers on this target. The register should be in the
452  /// order of desired callee-save stack frame offset. The first register is
453  /// closed to the incoming stack pointer if stack grows down, and vice versa.
454  virtual const unsigned* getCalleeSavedRegs(const MachineFunction *MF = 0)
455                                                                      const = 0;
456
457  /// getCalleeSavedRegClasses - Return a null-terminated list of the preferred
458  /// register classes to spill each callee saved register with.  The order and
459  /// length of this list match the getCalleeSaveRegs() list.
460  virtual const TargetRegisterClass* const *getCalleeSavedRegClasses(
461                                            const MachineFunction *MF) const =0;
462
463  /// getReservedRegs - Returns a bitset indexed by physical register number
464  /// indicating if a register is a special register that has particular uses
465  /// and should be considered unavailable at all times, e.g. SP, RA. This is
466  /// used by register scavenger to determine what registers are free.
467  virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
468
469  /// getSubReg - Returns the physical register number of sub-register "Index"
470  /// for physical register RegNo. Return zero if the sub-register does not
471  /// exist.
472  virtual unsigned getSubReg(unsigned RegNo, unsigned Index) const = 0;
473
474  /// getSubRegIndex - For a given register pair, return the sub-register index
475  /// if the are second register is a sub-register of the first. Return zero
476  /// otherwise.
477  virtual unsigned getSubRegIndex(unsigned RegNo, unsigned SubRegNo) const = 0;
478
479  /// getMatchingSuperReg - Return a super-register of the specified register
480  /// Reg so its sub-register of index SubIdx is Reg.
481  unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx,
482                               const TargetRegisterClass *RC) const {
483    for (const unsigned *SRs = getSuperRegisters(Reg); unsigned SR = *SRs;++SRs)
484      if (Reg == getSubReg(SR, SubIdx) && RC->contains(SR))
485        return SR;
486    return 0;
487  }
488
489  /// canCombinedSubRegIndex - Given a register class and a list of sub-register
490  /// indices, return true if it's possible to combine the sub-register indices
491  /// into one that corresponds to a larger sub-register. Return the new sub-
492  /// register index by reference. Note the new index by be zero if the given
493  /// sub-registers combined to form the whole register.
494  virtual bool canCombinedSubRegIndex(const TargetRegisterClass *RC,
495                                      SmallVectorImpl<unsigned> &SubIndices,
496                                      unsigned &NewSubIdx) const {
497    return 0;
498  }
499
500  /// getMatchingSuperRegClass - Return a subclass of the specified register
501  /// class A so that each register in it has a sub-register of the
502  /// specified sub-register index which is in the specified register class B.
503  virtual const TargetRegisterClass *
504  getMatchingSuperRegClass(const TargetRegisterClass *A,
505                           const TargetRegisterClass *B, unsigned Idx) const {
506    return 0;
507  }
508
509  //===--------------------------------------------------------------------===//
510  // Register Class Information
511  //
512
513  /// Register class iterators
514  ///
515  regclass_iterator regclass_begin() const { return RegClassBegin; }
516  regclass_iterator regclass_end() const { return RegClassEnd; }
517
518  unsigned getNumRegClasses() const {
519    return (unsigned)(regclass_end()-regclass_begin());
520  }
521
522  /// getRegClass - Returns the register class associated with the enumeration
523  /// value.  See class TargetOperandInfo.
524  const TargetRegisterClass *getRegClass(unsigned i) const {
525    assert(i <= getNumRegClasses() && "Register Class ID out of range");
526    return i ? RegClassBegin[i - 1] : NULL;
527  }
528
529  /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
530  /// values.  If a target supports multiple different pointer register classes,
531  /// kind specifies which one is indicated.
532  virtual const TargetRegisterClass *getPointerRegClass(unsigned Kind=0) const {
533    assert(0 && "Target didn't implement getPointerRegClass!");
534    return 0; // Must return a value in order to compile with VS 2005
535  }
536
537  /// getCrossCopyRegClass - Returns a legal register class to copy a register
538  /// in the specified class to or from. Returns NULL if it is possible to copy
539  /// between a two registers of the specified class.
540  virtual const TargetRegisterClass *
541  getCrossCopyRegClass(const TargetRegisterClass *RC) const {
542    return NULL;
543  }
544
545  /// getAllocationOrder - Returns the register allocation order for a specified
546  /// register class in the form of a pair of TargetRegisterClass iterators.
547  virtual std::pair<TargetRegisterClass::iterator,TargetRegisterClass::iterator>
548  getAllocationOrder(const TargetRegisterClass *RC,
549                     unsigned HintType, unsigned HintReg,
550                     const MachineFunction &MF) const {
551    return std::make_pair(RC->allocation_order_begin(MF),
552                          RC->allocation_order_end(MF));
553  }
554
555  /// ResolveRegAllocHint - Resolves the specified register allocation hint
556  /// to a physical register. Returns the physical register if it is successful.
557  virtual unsigned ResolveRegAllocHint(unsigned Type, unsigned Reg,
558                                       const MachineFunction &MF) const {
559    if (Type == 0 && Reg && isPhysicalRegister(Reg))
560      return Reg;
561    return 0;
562  }
563
564  /// UpdateRegAllocHint - A callback to allow target a chance to update
565  /// register allocation hints when a register is "changed" (e.g. coalesced)
566  /// to another register. e.g. On ARM, some virtual registers should target
567  /// register pairs, if one of pair is coalesced to another register, the
568  /// allocation hint of the other half of the pair should be changed to point
569  /// to the new register.
570  virtual void UpdateRegAllocHint(unsigned Reg, unsigned NewReg,
571                                  MachineFunction &MF) const {
572    // Do nothing.
573  }
574
575  /// targetHandlesStackFrameRounding - Returns true if the target is
576  /// responsible for rounding up the stack frame (probably at emitPrologue
577  /// time).
578  virtual bool targetHandlesStackFrameRounding() const {
579    return false;
580  }
581
582  /// requiresRegisterScavenging - returns true if the target requires (and can
583  /// make use of) the register scavenger.
584  virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
585    return false;
586  }
587
588  /// requiresFrameIndexScavenging - returns true if the target requires post
589  /// PEI scavenging of registers for materializing frame index constants.
590  virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const {
591    return false;
592  }
593
594  /// hasFP - Return true if the specified function should have a dedicated
595  /// frame pointer register. For most targets this is true only if the function
596  /// has variable sized allocas or if frame pointer elimination is disabled.
597  virtual bool hasFP(const MachineFunction &MF) const = 0;
598
599  /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
600  /// not required, we reserve argument space for call sites in the function
601  /// immediately on entry to the current function. This eliminates the need for
602  /// add/sub sp brackets around call sites. Returns true if the call frame is
603  /// included as part of the stack frame.
604  virtual bool hasReservedCallFrame(MachineFunction &MF) const {
605    return !hasFP(MF);
606  }
607
608  /// canSimplifyCallFramePseudos - When possible, it's best to simplify the
609  /// call frame pseudo ops before doing frame index elimination. This is
610  /// possible only when frame index references between the pseudos won't
611  /// need adjusted for the call frame adjustments. Normally, that's true
612  /// if the function has a reserved call frame or a frame pointer. Some
613  /// targets (Thumb2, for example) may have more complicated criteria,
614  /// however, and can override this behavior.
615  virtual bool canSimplifyCallFramePseudos(MachineFunction &MF) const {
616    return hasReservedCallFrame(MF) || hasFP(MF);
617  }
618
619  /// hasReservedSpillSlot - Return true if target has reserved a spill slot in
620  /// the stack frame of the given function for the specified register. e.g. On
621  /// x86, if the frame register is required, the first fixed stack object is
622  /// reserved as its spill slot. This tells PEI not to create a new stack frame
623  /// object for the given register. It should be called only after
624  /// processFunctionBeforeCalleeSavedScan().
625  virtual bool hasReservedSpillSlot(MachineFunction &MF, unsigned Reg,
626                                    int &FrameIdx) const {
627    return false;
628  }
629
630  /// needsStackRealignment - true if storage within the function requires the
631  /// stack pointer to be aligned more than the normal calling convention calls
632  /// for.
633  virtual bool needsStackRealignment(const MachineFunction &MF) const {
634    return false;
635  }
636
637  /// getCallFrameSetup/DestroyOpcode - These methods return the opcode of the
638  /// frame setup/destroy instructions if they exist (-1 otherwise).  Some
639  /// targets use pseudo instructions in order to abstract away the difference
640  /// between operating with a frame pointer and operating without, through the
641  /// use of these two instructions.
642  ///
643  int getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
644  int getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
645
646  /// eliminateCallFramePseudoInstr - This method is called during prolog/epilog
647  /// code insertion to eliminate call frame setup and destroy pseudo
648  /// instructions (but only if the Target is using them).  It is responsible
649  /// for eliminating these instructions, replacing them with concrete
650  /// instructions.  This method need only be implemented if using call frame
651  /// setup/destroy pseudo instructions.
652  ///
653  virtual void
654  eliminateCallFramePseudoInstr(MachineFunction &MF,
655                                MachineBasicBlock &MBB,
656                                MachineBasicBlock::iterator MI) const {
657    assert(getCallFrameSetupOpcode()== -1 && getCallFrameDestroyOpcode()== -1 &&
658           "eliminateCallFramePseudoInstr must be implemented if using"
659           " call frame setup/destroy pseudo instructions!");
660    assert(0 && "Call Frame Pseudo Instructions do not exist on this target!");
661  }
662
663  /// processFunctionBeforeCalleeSavedScan - This method is called immediately
664  /// before PrologEpilogInserter scans the physical registers used to determine
665  /// what callee saved registers should be spilled. This method is optional.
666  virtual void processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
667                                                RegScavenger *RS = NULL) const {
668
669  }
670
671  /// processFunctionBeforeFrameFinalized - This method is called immediately
672  /// before the specified functions frame layout (MF.getFrameInfo()) is
673  /// finalized.  Once the frame is finalized, MO_FrameIndex operands are
674  /// replaced with direct constants.  This method is optional.
675  ///
676  virtual void processFunctionBeforeFrameFinalized(MachineFunction &MF) const {
677  }
678
679  /// saveScavengerRegister - Spill the register so it can be used by the
680  /// register scavenger. Return true if the register was spilled, false
681  /// otherwise. If this function does not spill the register, the scavenger
682  /// will instead spill it to the emergency spill slot.
683  ///
684  virtual bool saveScavengerRegister(MachineBasicBlock &MBB,
685                                     MachineBasicBlock::iterator I,
686                                     MachineBasicBlock::iterator &UseMI,
687                                     const TargetRegisterClass *RC,
688                                     unsigned Reg) const {
689    return false;
690  }
691
692  /// eliminateFrameIndex - This method must be overriden to eliminate abstract
693  /// frame indices from instructions which may use them.  The instruction
694  /// referenced by the iterator contains an MO_FrameIndex operand which must be
695  /// eliminated by this method.  This method may modify or replace the
696  /// specified instruction, as long as it keeps the iterator pointing at the
697  /// finished product. SPAdj is the SP adjustment due to call frame setup
698  /// instruction.
699  ///
700  /// When -enable-frame-index-scavenging is enabled, the virtual register
701  /// allocated for this frame index is returned and its value is stored in
702  /// *Value.
703  typedef std::pair<unsigned, int> FrameIndexValue;
704  virtual unsigned eliminateFrameIndex(MachineBasicBlock::iterator MI,
705                                       int SPAdj, FrameIndexValue *Value = NULL,
706                                       RegScavenger *RS=NULL) const = 0;
707
708  /// emitProlog/emitEpilog - These methods insert prolog and epilog code into
709  /// the function.
710  virtual void emitPrologue(MachineFunction &MF) const = 0;
711  virtual void emitEpilogue(MachineFunction &MF,
712                            MachineBasicBlock &MBB) const = 0;
713
714  //===--------------------------------------------------------------------===//
715  /// Debug information queries.
716
717  /// getDwarfRegNum - Map a target register to an equivalent dwarf register
718  /// number.  Returns -1 if there is no equivalent value.  The second
719  /// parameter allows targets to use different numberings for EH info and
720  /// debugging info.
721  virtual int getDwarfRegNum(unsigned RegNum, bool isEH) const = 0;
722
723  /// getFrameRegister - This method should return the register used as a base
724  /// for values allocated in the current stack frame.
725  virtual unsigned getFrameRegister(const MachineFunction &MF) const = 0;
726
727  /// getFrameIndexOffset - Returns the displacement from the frame register to
728  /// the stack frame of the specified index.
729  virtual int getFrameIndexOffset(const MachineFunction &MF, int FI) const;
730
731  /// getFrameIndexReference - This method should return the base register
732  /// and offset used to reference a frame index location. The offset is
733  /// returned directly, and the base register is returned via FrameReg.
734  virtual int getFrameIndexReference(const MachineFunction &MF, int FI,
735                                     unsigned &FrameReg) const {
736    // By default, assume all frame indices are referenced via whatever
737    // getFrameRegister() says. The target can override this if it's doing
738    // something different.
739    FrameReg = getFrameRegister(MF);
740    return getFrameIndexOffset(MF, FI);
741  }
742
743  /// getRARegister - This method should return the register where the return
744  /// address can be found.
745  virtual unsigned getRARegister() const = 0;
746
747  /// getInitialFrameState - Returns a list of machine moves that are assumed
748  /// on entry to all functions.  Note that LabelID is ignored (assumed to be
749  /// the beginning of the function.)
750  virtual void getInitialFrameState(std::vector<MachineMove> &Moves) const;
751};
752
753
754// This is useful when building IndexedMaps keyed on virtual registers
755struct VirtReg2IndexFunctor : public std::unary_function<unsigned, unsigned> {
756  unsigned operator()(unsigned Reg) const {
757    return Reg - TargetRegisterInfo::FirstVirtualRegister;
758  }
759};
760
761/// getCommonSubClass - find the largest common subclass of A and B. Return NULL
762/// if there is no common subclass.
763const TargetRegisterClass *getCommonSubClass(const TargetRegisterClass *A,
764                                             const TargetRegisterClass *B);
765
766} // End llvm namespace
767
768#endif
769