TargetRegisterInfo.h revision 39b5abf507b43da6b92f68b86406e0015ead18e9
1//=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes an abstract interface used to get information about a
11// target machines register file.  This information is used for a variety of
12// purposed, especially register allocation.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_TARGET_TARGETREGISTERINFO_H
17#define LLVM_TARGET_TARGETREGISTERINFO_H
18
19#include "llvm/MC/MCRegisterInfo.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/ValueTypes.h"
22#include "llvm/ADT/ArrayRef.h"
23#include "llvm/ADT/DenseSet.h"
24#include <cassert>
25#include <functional>
26
27namespace llvm {
28
29class BitVector;
30class MachineFunction;
31class RegScavenger;
32template<class T> class SmallVectorImpl;
33class raw_ostream;
34
35class TargetRegisterClass {
36public:
37  typedef const unsigned* iterator;
38  typedef const unsigned* const_iterator;
39
40  typedef const EVT* vt_iterator;
41  typedef const TargetRegisterClass* const * sc_iterator;
42private:
43  unsigned ID;
44  const char *Name;
45  const vt_iterator VTs;
46  const sc_iterator SubClasses;
47  const sc_iterator SuperClasses;
48  const sc_iterator SubRegClasses;
49  const sc_iterator SuperRegClasses;
50  const unsigned RegSize, Alignment;    // Size & Alignment of register in bytes
51  const int CopyCost;
52  const bool Allocatable;
53  const iterator RegsBegin, RegsEnd;
54  DenseSet<unsigned> RegSet;
55public:
56  TargetRegisterClass(unsigned id,
57                      const char *name,
58                      const EVT *vts,
59                      const TargetRegisterClass * const *subcs,
60                      const TargetRegisterClass * const *supcs,
61                      const TargetRegisterClass * const *subregcs,
62                      const TargetRegisterClass * const *superregcs,
63                      unsigned RS, unsigned Al, int CC, bool Allocable,
64                      iterator RB, iterator RE)
65    : ID(id), Name(name), VTs(vts), SubClasses(subcs), SuperClasses(supcs),
66    SubRegClasses(subregcs), SuperRegClasses(superregcs),
67    RegSize(RS), Alignment(Al), CopyCost(CC), Allocatable(Allocable),
68    RegsBegin(RB), RegsEnd(RE) {
69      for (iterator I = RegsBegin, E = RegsEnd; I != E; ++I)
70        RegSet.insert(*I);
71    }
72  virtual ~TargetRegisterClass() {}     // Allow subclasses
73
74  /// getID() - Return the register class ID number.
75  ///
76  unsigned getID() const { return ID; }
77
78  /// getName() - Return the register class name for debugging.
79  ///
80  const char *getName() const { return Name; }
81
82  /// begin/end - Return all of the registers in this class.
83  ///
84  iterator       begin() const { return RegsBegin; }
85  iterator         end() const { return RegsEnd; }
86
87  /// getNumRegs - Return the number of registers in this class.
88  ///
89  unsigned getNumRegs() const { return (unsigned)(RegsEnd-RegsBegin); }
90
91  /// getRegister - Return the specified register in the class.
92  ///
93  unsigned getRegister(unsigned i) const {
94    assert(i < getNumRegs() && "Register number out of range!");
95    return RegsBegin[i];
96  }
97
98  /// contains - Return true if the specified register is included in this
99  /// register class.  This does not include virtual registers.
100  bool contains(unsigned Reg) const {
101    return RegSet.count(Reg);
102  }
103
104  /// contains - Return true if both registers are in this class.
105  bool contains(unsigned Reg1, unsigned Reg2) const {
106    return contains(Reg1) && contains(Reg2);
107  }
108
109  /// hasType - return true if this TargetRegisterClass has the ValueType vt.
110  ///
111  bool hasType(EVT vt) const {
112    for(int i = 0; VTs[i] != MVT::Other; ++i)
113      if (VTs[i] == vt)
114        return true;
115    return false;
116  }
117
118  /// vt_begin / vt_end - Loop over all of the value types that can be
119  /// represented by values in this register class.
120  vt_iterator vt_begin() const {
121    return VTs;
122  }
123
124  vt_iterator vt_end() const {
125    vt_iterator I = VTs;
126    while (*I != MVT::Other) ++I;
127    return I;
128  }
129
130  /// subregclasses_begin / subregclasses_end - Loop over all of
131  /// the subreg register classes of this register class.
132  sc_iterator subregclasses_begin() const {
133    return SubRegClasses;
134  }
135
136  sc_iterator subregclasses_end() const {
137    sc_iterator I = SubRegClasses;
138    while (*I != NULL) ++I;
139    return I;
140  }
141
142  /// getSubRegisterRegClass - Return the register class of subregisters with
143  /// index SubIdx, or NULL if no such class exists.
144  const TargetRegisterClass* getSubRegisterRegClass(unsigned SubIdx) const {
145    assert(SubIdx>0 && "Invalid subregister index");
146    return SubRegClasses[SubIdx-1];
147  }
148
149  /// superregclasses_begin / superregclasses_end - Loop over all of
150  /// the superreg register classes of this register class.
151  sc_iterator superregclasses_begin() const {
152    return SuperRegClasses;
153  }
154
155  sc_iterator superregclasses_end() const {
156    sc_iterator I = SuperRegClasses;
157    while (*I != NULL) ++I;
158    return I;
159  }
160
161  /// hasSubClass - return true if the specified TargetRegisterClass
162  /// is a proper subset of this TargetRegisterClass.
163  bool hasSubClass(const TargetRegisterClass *cs) const {
164    for (int i = 0; SubClasses[i] != NULL; ++i)
165      if (SubClasses[i] == cs)
166        return true;
167    return false;
168  }
169
170  /// hasSubClassEq - Returns true if RC is a subclass of or equal to this
171  /// class.
172  bool hasSubClassEq(const TargetRegisterClass *RC) const {
173    return RC == this || hasSubClass(RC);
174  }
175
176  /// subclasses_begin / subclasses_end - Loop over all of the classes
177  /// that are proper subsets of this register class.
178  sc_iterator subclasses_begin() const {
179    return SubClasses;
180  }
181
182  sc_iterator subclasses_end() const {
183    sc_iterator I = SubClasses;
184    while (*I != NULL) ++I;
185    return I;
186  }
187
188  /// hasSuperClass - return true if the specified TargetRegisterClass is a
189  /// proper superset of this TargetRegisterClass.
190  bool hasSuperClass(const TargetRegisterClass *cs) const {
191    for (int i = 0; SuperClasses[i] != NULL; ++i)
192      if (SuperClasses[i] == cs)
193        return true;
194    return false;
195  }
196
197  /// hasSuperClassEq - Returns true if RC is a superclass of or equal to this
198  /// class.
199  bool hasSuperClassEq(const TargetRegisterClass *RC) const {
200    return RC == this || hasSuperClass(RC);
201  }
202
203  /// superclasses_begin / superclasses_end - Loop over all of the classes
204  /// that are proper supersets of this register class.
205  sc_iterator superclasses_begin() const {
206    return SuperClasses;
207  }
208
209  sc_iterator superclasses_end() const {
210    sc_iterator I = SuperClasses;
211    while (*I != NULL) ++I;
212    return I;
213  }
214
215  /// isASubClass - return true if this TargetRegisterClass is a subset
216  /// class of at least one other TargetRegisterClass.
217  bool isASubClass() const {
218    return SuperClasses[0] != 0;
219  }
220
221  /// getRawAllocationOrder - Returns the preferred order for allocating
222  /// registers from this register class in MF. The raw order comes directly
223  /// from the .td file and may include reserved registers that are not
224  /// allocatable. Register allocators should also make sure to allocate
225  /// callee-saved registers only after all the volatiles are used. The
226  /// RegisterClassInfo class provides filtered allocation orders with
227  /// callee-saved registers moved to the end.
228  ///
229  /// The MachineFunction argument can be used to tune the allocatable
230  /// registers based on the characteristics of the function, subtarget, or
231  /// other criteria.
232  ///
233  /// By default, this method returns all registers in the class.
234  ///
235  virtual
236  ArrayRef<unsigned> getRawAllocationOrder(const MachineFunction &MF) const {
237    return makeArrayRef(begin(), getNumRegs());
238  }
239
240  /// getSize - Return the size of the register in bytes, which is also the size
241  /// of a stack slot allocated to hold a spilled copy of this register.
242  unsigned getSize() const { return RegSize; }
243
244  /// getAlignment - Return the minimum required alignment for a register of
245  /// this class.
246  unsigned getAlignment() const { return Alignment; }
247
248  /// getCopyCost - Return the cost of copying a value between two registers in
249  /// this class. A negative number means the register class is very expensive
250  /// to copy e.g. status flag register classes.
251  int getCopyCost() const { return CopyCost; }
252
253  /// isAllocatable - Return true if this register class may be used to create
254  /// virtual registers.
255  bool isAllocatable() const { return Allocatable; }
256};
257
258/// TargetRegisterInfoDesc - Extra information, not in MCRegisterDesc, about
259/// registers. These are used by codegen, not by MC.
260struct TargetRegisterInfoDesc {
261  unsigned CostPerUse;          // Extra cost of instructions using register.
262  bool inAllocatableClass;      // Register belongs to an allocatable regclass.
263};
264
265/// TargetRegisterInfo base class - We assume that the target defines a static
266/// array of TargetRegisterDesc objects that represent all of the machine
267/// registers that the target has.  As such, we simply have to track a pointer
268/// to this array so that we can turn register number into a register
269/// descriptor.
270///
271class TargetRegisterInfo : public MCRegisterInfo {
272public:
273  typedef const TargetRegisterClass * const * regclass_iterator;
274private:
275  const TargetRegisterInfoDesc *InfoDesc;     // Extra desc array for codegen
276  const char *const *SubRegIndexNames;        // Names of subreg indexes.
277  regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses
278
279protected:
280  TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
281                     regclass_iterator RegClassBegin,
282                     regclass_iterator RegClassEnd,
283                     const char *const *subregindexnames);
284  virtual ~TargetRegisterInfo();
285public:
286
287  // Register numbers can represent physical registers, virtual registers, and
288  // sometimes stack slots. The unsigned values are divided into these ranges:
289  //
290  //   0           Not a register, can be used as a sentinel.
291  //   [1;2^30)    Physical registers assigned by TableGen.
292  //   [2^30;2^31) Stack slots. (Rarely used.)
293  //   [2^31;2^32) Virtual registers assigned by MachineRegisterInfo.
294  //
295  // Further sentinels can be allocated from the small negative integers.
296  // DenseMapInfo<unsigned> uses -1u and -2u.
297
298  /// isStackSlot - Sometimes it is useful the be able to store a non-negative
299  /// frame index in a variable that normally holds a register. isStackSlot()
300  /// returns true if Reg is in the range used for stack slots.
301  ///
302  /// Note that isVirtualRegister() and isPhysicalRegister() cannot handle stack
303  /// slots, so if a variable may contains a stack slot, always check
304  /// isStackSlot() first.
305  ///
306  static bool isStackSlot(unsigned Reg) {
307    return int(Reg) >= (1 << 30);
308  }
309
310  /// stackSlot2Index - Compute the frame index from a register value
311  /// representing a stack slot.
312  static int stackSlot2Index(unsigned Reg) {
313    assert(isStackSlot(Reg) && "Not a stack slot");
314    return int(Reg - (1u << 30));
315  }
316
317  /// index2StackSlot - Convert a non-negative frame index to a stack slot
318  /// register value.
319  static unsigned index2StackSlot(int FI) {
320    assert(FI >= 0 && "Cannot hold a negative frame index.");
321    return FI + (1u << 30);
322  }
323
324  /// isPhysicalRegister - Return true if the specified register number is in
325  /// the physical register namespace.
326  static bool isPhysicalRegister(unsigned Reg) {
327    assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
328    return int(Reg) > 0;
329  }
330
331  /// isVirtualRegister - Return true if the specified register number is in
332  /// the virtual register namespace.
333  static bool isVirtualRegister(unsigned Reg) {
334    assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
335    return int(Reg) < 0;
336  }
337
338  /// virtReg2Index - Convert a virtual register number to a 0-based index.
339  /// The first virtual register in a function will get the index 0.
340  static unsigned virtReg2Index(unsigned Reg) {
341    assert(isVirtualRegister(Reg) && "Not a virtual register");
342    return Reg & ~(1u << 31);
343  }
344
345  /// index2VirtReg - Convert a 0-based index to a virtual register number.
346  /// This is the inverse operation of VirtReg2IndexFunctor below.
347  static unsigned index2VirtReg(unsigned Index) {
348    return Index | (1u << 31);
349  }
350
351  /// getMinimalPhysRegClass - Returns the Register Class of a physical
352  /// register of the given type, picking the most sub register class of
353  /// the right type that contains this physreg.
354  const TargetRegisterClass *
355    getMinimalPhysRegClass(unsigned Reg, EVT VT = MVT::Other) const;
356
357  /// getAllocatableSet - Returns a bitset indexed by register number
358  /// indicating if a register is allocatable or not. If a register class is
359  /// specified, returns the subset for the class.
360  BitVector getAllocatableSet(const MachineFunction &MF,
361                              const TargetRegisterClass *RC = NULL) const;
362
363  /// getCostPerUse - Return the additional cost of using this register instead
364  /// of other registers in its class.
365  unsigned getCostPerUse(unsigned RegNo) const {
366    return InfoDesc[RegNo].CostPerUse;
367  }
368
369  /// isInAllocatableClass - Return true if the register is in the allocation
370  /// of any register class.
371  bool isInAllocatableClass(unsigned RegNo) const {
372    return InfoDesc[RegNo].inAllocatableClass;
373  }
374
375  /// getSubRegIndexName - Return the human-readable symbolic target-specific
376  /// name for the specified SubRegIndex.
377  const char *getSubRegIndexName(unsigned SubIdx) const {
378    assert(SubIdx && "This is not a subregister index");
379    return SubRegIndexNames[SubIdx-1];
380  }
381
382  /// regsOverlap - Returns true if the two registers are equal or alias each
383  /// other. The registers may be virtual register.
384  bool regsOverlap(unsigned regA, unsigned regB) const {
385    if (regA == regB) return true;
386    if (isVirtualRegister(regA) || isVirtualRegister(regB))
387      return false;
388    for (const unsigned *regList = getOverlaps(regA)+1; *regList; ++regList) {
389      if (*regList == regB) return true;
390    }
391    return false;
392  }
393
394  /// isSubRegister - Returns true if regB is a sub-register of regA.
395  ///
396  bool isSubRegister(unsigned regA, unsigned regB) const {
397    return isSuperRegister(regB, regA);
398  }
399
400  /// isSuperRegister - Returns true if regB is a super-register of regA.
401  ///
402  bool isSuperRegister(unsigned regA, unsigned regB) const {
403    for (const unsigned *regList = getSuperRegisters(regA); *regList;++regList){
404      if (*regList == regB) return true;
405    }
406    return false;
407  }
408
409  /// getCalleeSavedRegs - Return a null-terminated list of all of the
410  /// callee saved registers on this target. The register should be in the
411  /// order of desired callee-save stack frame offset. The first register is
412  /// closed to the incoming stack pointer if stack grows down, and vice versa.
413  virtual const unsigned* getCalleeSavedRegs(const MachineFunction *MF = 0)
414                                                                      const = 0;
415
416
417  /// getReservedRegs - Returns a bitset indexed by physical register number
418  /// indicating if a register is a special register that has particular uses
419  /// and should be considered unavailable at all times, e.g. SP, RA. This is
420  /// used by register scavenger to determine what registers are free.
421  virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
422
423  /// getSubReg - Returns the physical register number of sub-register "Index"
424  /// for physical register RegNo. Return zero if the sub-register does not
425  /// exist.
426  virtual unsigned getSubReg(unsigned RegNo, unsigned Index) const = 0;
427
428  /// getSubRegIndex - For a given register pair, return the sub-register index
429  /// if the second register is a sub-register of the first. Return zero
430  /// otherwise.
431  virtual unsigned getSubRegIndex(unsigned RegNo, unsigned SubRegNo) const = 0;
432
433  /// getMatchingSuperReg - Return a super-register of the specified register
434  /// Reg so its sub-register of index SubIdx is Reg.
435  unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx,
436                               const TargetRegisterClass *RC) const {
437    for (const unsigned *SRs = getSuperRegisters(Reg); unsigned SR = *SRs;++SRs)
438      if (Reg == getSubReg(SR, SubIdx) && RC->contains(SR))
439        return SR;
440    return 0;
441  }
442
443  /// canCombineSubRegIndices - Given a register class and a list of
444  /// subregister indices, return true if it's possible to combine the
445  /// subregister indices into one that corresponds to a larger
446  /// subregister. Return the new subregister index by reference. Note the
447  /// new index may be zero if the given subregisters can be combined to
448  /// form the whole register.
449  virtual bool canCombineSubRegIndices(const TargetRegisterClass *RC,
450                                       SmallVectorImpl<unsigned> &SubIndices,
451                                       unsigned &NewSubIdx) const {
452    return 0;
453  }
454
455  /// getMatchingSuperRegClass - Return a subclass of the specified register
456  /// class A so that each register in it has a sub-register of the
457  /// specified sub-register index which is in the specified register class B.
458  virtual const TargetRegisterClass *
459  getMatchingSuperRegClass(const TargetRegisterClass *A,
460                           const TargetRegisterClass *B, unsigned Idx) const {
461    return 0;
462  }
463
464  /// composeSubRegIndices - Return the subregister index you get from composing
465  /// two subregister indices.
466  ///
467  /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b)
468  /// returns c. Note that composeSubRegIndices does not tell you about illegal
469  /// compositions. If R does not have a subreg a, or R:a does not have a subreg
470  /// b, composeSubRegIndices doesn't tell you.
471  ///
472  /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has
473  /// ssub_0:S0 - ssub_3:S3 subregs.
474  /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2.
475  ///
476  virtual unsigned composeSubRegIndices(unsigned a, unsigned b) const {
477    // This default implementation is correct for most targets.
478    return b;
479  }
480
481  //===--------------------------------------------------------------------===//
482  // Register Class Information
483  //
484
485  /// Register class iterators
486  ///
487  regclass_iterator regclass_begin() const { return RegClassBegin; }
488  regclass_iterator regclass_end() const { return RegClassEnd; }
489
490  unsigned getNumRegClasses() const {
491    return (unsigned)(regclass_end()-regclass_begin());
492  }
493
494  /// getRegClass - Returns the register class associated with the enumeration
495  /// value.  See class MCOperandInfo.
496  const TargetRegisterClass *getRegClass(unsigned i) const {
497    assert(i < getNumRegClasses() && "Register Class ID out of range");
498    return RegClassBegin[i];
499  }
500
501  /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
502  /// values.  If a target supports multiple different pointer register classes,
503  /// kind specifies which one is indicated.
504  virtual const TargetRegisterClass *getPointerRegClass(unsigned Kind=0) const {
505    assert(0 && "Target didn't implement getPointerRegClass!");
506    return 0; // Must return a value in order to compile with VS 2005
507  }
508
509  /// getCrossCopyRegClass - Returns a legal register class to copy a register
510  /// in the specified class to or from. If it is possible to copy the register
511  /// directly without using a cross register class copy, return the specified
512  /// RC. Returns NULL if it is not possible to copy between a two registers of
513  /// the specified class.
514  virtual const TargetRegisterClass *
515  getCrossCopyRegClass(const TargetRegisterClass *RC) const {
516    return RC;
517  }
518
519  /// getLargestLegalSuperClass - Returns the largest super class of RC that is
520  /// legal to use in the current sub-target and has the same spill size.
521  /// The returned register class can be used to create virtual registers which
522  /// means that all its registers can be copied and spilled.
523  virtual const TargetRegisterClass*
524  getLargestLegalSuperClass(const TargetRegisterClass *RC) const {
525    /// The default implementation is very conservative and doesn't allow the
526    /// register allocator to inflate register classes.
527    return RC;
528  }
529
530  /// getRegPressureLimit - Return the register pressure "high water mark" for
531  /// the specific register class. The scheduler is in high register pressure
532  /// mode (for the specific register class) if it goes over the limit.
533  virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC,
534                                       MachineFunction &MF) const {
535    return 0;
536  }
537
538  /// getRawAllocationOrder - Returns the register allocation order for a
539  /// specified register class with a target-dependent hint. The returned list
540  /// may contain reserved registers that cannot be allocated.
541  ///
542  /// Register allocators need only call this function to resolve
543  /// target-dependent hints, but it should work without hinting as well.
544  virtual ArrayRef<unsigned>
545  getRawAllocationOrder(const TargetRegisterClass *RC,
546                        unsigned HintType, unsigned HintReg,
547                        const MachineFunction &MF) const {
548    return RC->getRawAllocationOrder(MF);
549  }
550
551  /// ResolveRegAllocHint - Resolves the specified register allocation hint
552  /// to a physical register. Returns the physical register if it is successful.
553  virtual unsigned ResolveRegAllocHint(unsigned Type, unsigned Reg,
554                                       const MachineFunction &MF) const {
555    if (Type == 0 && Reg && isPhysicalRegister(Reg))
556      return Reg;
557    return 0;
558  }
559
560  /// avoidWriteAfterWrite - Return true if the register allocator should avoid
561  /// writing a register from RC in two consecutive instructions.
562  /// This can avoid pipeline stalls on certain architectures.
563  /// It does cause increased register pressure, though.
564  virtual bool avoidWriteAfterWrite(const TargetRegisterClass *RC) const {
565    return false;
566  }
567
568  /// UpdateRegAllocHint - A callback to allow target a chance to update
569  /// register allocation hints when a register is "changed" (e.g. coalesced)
570  /// to another register. e.g. On ARM, some virtual registers should target
571  /// register pairs, if one of pair is coalesced to another register, the
572  /// allocation hint of the other half of the pair should be changed to point
573  /// to the new register.
574  virtual void UpdateRegAllocHint(unsigned Reg, unsigned NewReg,
575                                  MachineFunction &MF) const {
576    // Do nothing.
577  }
578
579  /// requiresRegisterScavenging - returns true if the target requires (and can
580  /// make use of) the register scavenger.
581  virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
582    return false;
583  }
584
585  /// useFPForScavengingIndex - returns true if the target wants to use
586  /// frame pointer based accesses to spill to the scavenger emergency spill
587  /// slot.
588  virtual bool useFPForScavengingIndex(const MachineFunction &MF) const {
589    return true;
590  }
591
592  /// requiresFrameIndexScavenging - returns true if the target requires post
593  /// PEI scavenging of registers for materializing frame index constants.
594  virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const {
595    return false;
596  }
597
598  /// requiresVirtualBaseRegisters - Returns true if the target wants the
599  /// LocalStackAllocation pass to be run and virtual base registers
600  /// used for more efficient stack access.
601  virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const {
602    return false;
603  }
604
605  /// hasReservedSpillSlot - Return true if target has reserved a spill slot in
606  /// the stack frame of the given function for the specified register. e.g. On
607  /// x86, if the frame register is required, the first fixed stack object is
608  /// reserved as its spill slot. This tells PEI not to create a new stack frame
609  /// object for the given register. It should be called only after
610  /// processFunctionBeforeCalleeSavedScan().
611  virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg,
612                                    int &FrameIdx) const {
613    return false;
614  }
615
616  /// needsStackRealignment - true if storage within the function requires the
617  /// stack pointer to be aligned more than the normal calling convention calls
618  /// for.
619  virtual bool needsStackRealignment(const MachineFunction &MF) const {
620    return false;
621  }
622
623  /// getFrameIndexInstrOffset - Get the offset from the referenced frame
624  /// index in the instruction, if there is one.
625  virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI,
626                                           int Idx) const {
627    return 0;
628  }
629
630  /// needsFrameBaseReg - Returns true if the instruction's frame index
631  /// reference would be better served by a base register other than FP
632  /// or SP. Used by LocalStackFrameAllocation to determine which frame index
633  /// references it should create new base registers for.
634  virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
635    return false;
636  }
637
638  /// materializeFrameBaseRegister - Insert defining instruction(s) for
639  /// BaseReg to be a pointer to FrameIdx before insertion point I.
640  virtual void materializeFrameBaseRegister(MachineBasicBlock *MBB,
641                                            unsigned BaseReg, int FrameIdx,
642                                            int64_t Offset) const {
643    assert(0 && "materializeFrameBaseRegister does not exist on this target");
644  }
645
646  /// resolveFrameIndex - Resolve a frame index operand of an instruction
647  /// to reference the indicated base register plus offset instead.
648  virtual void resolveFrameIndex(MachineBasicBlock::iterator I,
649                                 unsigned BaseReg, int64_t Offset) const {
650    assert(0 && "resolveFrameIndex does not exist on this target");
651  }
652
653  /// isFrameOffsetLegal - Determine whether a given offset immediate is
654  /// encodable to resolve a frame index.
655  virtual bool isFrameOffsetLegal(const MachineInstr *MI,
656                                  int64_t Offset) const {
657    assert(0 && "isFrameOffsetLegal does not exist on this target");
658    return false; // Must return a value in order to compile with VS 2005
659  }
660
661  /// eliminateCallFramePseudoInstr - This method is called during prolog/epilog
662  /// code insertion to eliminate call frame setup and destroy pseudo
663  /// instructions (but only if the Target is using them).  It is responsible
664  /// for eliminating these instructions, replacing them with concrete
665  /// instructions.  This method need only be implemented if using call frame
666  /// setup/destroy pseudo instructions.
667  ///
668  virtual void
669  eliminateCallFramePseudoInstr(MachineFunction &MF,
670                                MachineBasicBlock &MBB,
671                                MachineBasicBlock::iterator MI) const {
672    assert(0 && "Call Frame Pseudo Instructions do not exist on this target!");
673  }
674
675
676  /// saveScavengerRegister - Spill the register so it can be used by the
677  /// register scavenger. Return true if the register was spilled, false
678  /// otherwise. If this function does not spill the register, the scavenger
679  /// will instead spill it to the emergency spill slot.
680  ///
681  virtual bool saveScavengerRegister(MachineBasicBlock &MBB,
682                                     MachineBasicBlock::iterator I,
683                                     MachineBasicBlock::iterator &UseMI,
684                                     const TargetRegisterClass *RC,
685                                     unsigned Reg) const {
686    return false;
687  }
688
689  /// eliminateFrameIndex - This method must be overriden to eliminate abstract
690  /// frame indices from instructions which may use them.  The instruction
691  /// referenced by the iterator contains an MO_FrameIndex operand which must be
692  /// eliminated by this method.  This method may modify or replace the
693  /// specified instruction, as long as it keeps the iterator pointing at the
694  /// finished product. SPAdj is the SP adjustment due to call frame setup
695  /// instruction.
696  virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
697                                   int SPAdj, RegScavenger *RS=NULL) const = 0;
698
699  //===--------------------------------------------------------------------===//
700  /// Debug information queries.
701
702  /// getDwarfRegNum - Map a target register to an equivalent dwarf register
703  /// number.  Returns -1 if there is no equivalent value.  The second
704  /// parameter allows targets to use different numberings for EH info and
705  /// debugging info.
706  virtual int getDwarfRegNum(unsigned RegNum, bool isEH) const = 0;
707
708  virtual int getLLVMRegNum(unsigned RegNum, bool isEH) const = 0;
709
710  /// getFrameRegister - This method should return the register used as a base
711  /// for values allocated in the current stack frame.
712  virtual unsigned getFrameRegister(const MachineFunction &MF) const = 0;
713
714  /// getRARegister - This method should return the register where the return
715  /// address can be found.
716  virtual unsigned getRARegister() const = 0;
717
718  /// getSEHRegNum - Map a target register to an equivalent SEH register
719  /// number.  Returns -1 if there is no equivalent value.
720  virtual int getSEHRegNum(unsigned i) const {
721    return i;
722  }
723
724  /// getCompactUnwindRegNum - This function maps the register to the number for
725  /// compact unwind encoding. Return -1 if the register isn't valid.
726  virtual int getCompactUnwindRegNum(unsigned, bool) const {
727    return -1;
728  }
729};
730
731
732// This is useful when building IndexedMaps keyed on virtual registers
733struct VirtReg2IndexFunctor : public std::unary_function<unsigned, unsigned> {
734  unsigned operator()(unsigned Reg) const {
735    return TargetRegisterInfo::virtReg2Index(Reg);
736  }
737};
738
739/// getCommonSubClass - find the largest common subclass of A and B. Return NULL
740/// if there is no common subclass.
741const TargetRegisterClass *getCommonSubClass(const TargetRegisterClass *A,
742                                             const TargetRegisterClass *B);
743
744/// PrintReg - Helper class for printing registers on a raw_ostream.
745/// Prints virtual and physical registers with or without a TRI instance.
746///
747/// The format is:
748///   %noreg          - NoRegister
749///   %vreg5          - a virtual register.
750///   %vreg5:sub_8bit - a virtual register with sub-register index (with TRI).
751///   %EAX            - a physical register
752///   %physreg17      - a physical register when no TRI instance given.
753///
754/// Usage: OS << PrintReg(Reg, TRI) << '\n';
755///
756class PrintReg {
757  const TargetRegisterInfo *TRI;
758  unsigned Reg;
759  unsigned SubIdx;
760public:
761  PrintReg(unsigned reg, const TargetRegisterInfo *tri = 0, unsigned subidx = 0)
762    : TRI(tri), Reg(reg), SubIdx(subidx) {}
763  void print(raw_ostream&) const;
764};
765
766static inline raw_ostream &operator<<(raw_ostream &OS, const PrintReg &PR) {
767  PR.print(OS);
768  return OS;
769}
770
771} // End llvm namespace
772
773#endif
774