TargetRegisterInfo.h revision b5dae003252d8e650a32bfdf33cba5aed8e41e40
1//=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes an abstract interface used to get information about a
11// target machines register file.  This information is used for a variety of
12// purposed, especially register allocation.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_TARGET_TARGETREGISTERINFO_H
17#define LLVM_TARGET_TARGETREGISTERINFO_H
18
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/ValueTypes.h"
22#include <cassert>
23#include <functional>
24
25namespace llvm {
26
27class BitVector;
28class MachineFunction;
29class MachineInstr;
30class MachineMove;
31class RegScavenger;
32class SDNode;
33class SelectionDAG;
34class TargetRegisterClass;
35class Type;
36
37/// TargetRegisterDesc - This record contains all of the information known about
38/// a particular register.  The AliasSet field (if not null) contains a pointer
39/// to a Zero terminated array of registers that this register aliases.  This is
40/// needed for architectures like X86 which have AL alias AX alias EAX.
41/// Registers that this does not apply to simply should set this to null.
42/// The SubRegs field is a zero terminated array of registers that are
43/// sub-registers of the specific register, e.g. AL, AH are sub-registers of AX.
44/// The ImmsubRegs field is a subset of SubRegs. It includes only the immediate
45/// sub-registers. e.g. EAX has only one immediate sub-register of AX, not AH,
46/// AL which are immediate sub-registers of AX. The SuperRegs field is a zero
47/// terminated array of registers that are super-registers of the specific
48/// register, e.g. RAX, EAX, are super-registers of AX.
49///
50struct TargetRegisterDesc {
51  const char     *AsmName;      // Assembly language name for the register
52  const char     *Name;         // Printable name for the reg (for debugging)
53  const unsigned *AliasSet;     // Register Alias Set, described above
54  const unsigned *SubRegs;      // Sub-register set, described above
55  const unsigned *ImmSubRegs;   // Immediate sub-register set, described above
56  const unsigned *SuperRegs;    // Super-register set, described above
57};
58
59class TargetRegisterClass {
60public:
61  typedef const unsigned* iterator;
62  typedef const unsigned* const_iterator;
63
64  typedef const MVT* vt_iterator;
65  typedef const TargetRegisterClass* const * sc_iterator;
66private:
67  unsigned ID;
68  bool  isSubClass;
69  const vt_iterator VTs;
70  const sc_iterator SubClasses;
71  const sc_iterator SuperClasses;
72  const sc_iterator SubRegClasses;
73  const sc_iterator SuperRegClasses;
74  const unsigned RegSize, Alignment;    // Size & Alignment of register in bytes
75  const int CopyCost;
76  const iterator RegsBegin, RegsEnd;
77public:
78  TargetRegisterClass(unsigned id,
79                      const MVT *vts,
80                      const TargetRegisterClass * const *subcs,
81                      const TargetRegisterClass * const *supcs,
82                      const TargetRegisterClass * const *subregcs,
83                      const TargetRegisterClass * const *superregcs,
84                      unsigned RS, unsigned Al, int CC,
85                      iterator RB, iterator RE)
86    : ID(id), VTs(vts), SubClasses(subcs), SuperClasses(supcs),
87    SubRegClasses(subregcs), SuperRegClasses(superregcs),
88    RegSize(RS), Alignment(Al), CopyCost(CC), RegsBegin(RB), RegsEnd(RE) {}
89  virtual ~TargetRegisterClass() {}     // Allow subclasses
90
91  /// getID() - Return the register class ID number.
92  ///
93  unsigned getID() const { return ID; }
94
95  /// begin/end - Return all of the registers in this class.
96  ///
97  iterator       begin() const { return RegsBegin; }
98  iterator         end() const { return RegsEnd; }
99
100  /// getNumRegs - Return the number of registers in this class.
101  ///
102  unsigned getNumRegs() const { return (unsigned)(RegsEnd-RegsBegin); }
103
104  /// getRegister - Return the specified register in the class.
105  ///
106  unsigned getRegister(unsigned i) const {
107    assert(i < getNumRegs() && "Register number out of range!");
108    return RegsBegin[i];
109  }
110
111  /// contains - Return true if the specified register is included in this
112  /// register class.
113  bool contains(unsigned Reg) const {
114    for (iterator I = begin(), E = end(); I != E; ++I)
115      if (*I == Reg) return true;
116    return false;
117  }
118
119  /// hasType - return true if this TargetRegisterClass has the ValueType vt.
120  ///
121  bool hasType(MVT vt) const {
122    for(int i = 0; VTs[i] != MVT::Other; ++i)
123      if (VTs[i] == vt)
124        return true;
125    return false;
126  }
127
128  /// vt_begin / vt_end - Loop over all of the value types that can be
129  /// represented by values in this register class.
130  vt_iterator vt_begin() const {
131    return VTs;
132  }
133
134  vt_iterator vt_end() const {
135    vt_iterator I = VTs;
136    while (*I != MVT::Other) ++I;
137    return I;
138  }
139
140  /// hasSubClass - return true if the specified TargetRegisterClass is a
141  /// sub-register class of this TargetRegisterClass.
142  bool hasSubClass(const TargetRegisterClass *cs) const {
143    for (int i = 0; SubClasses[i] != NULL; ++i)
144      if (SubClasses[i] == cs)
145        return true;
146    return false;
147  }
148
149  /// subclasses_begin / subclasses_end - Loop over all of the sub-classes of
150  /// this register class.
151  sc_iterator subclasses_begin() const {
152    return SubClasses;
153  }
154
155  sc_iterator subclasses_end() const {
156    sc_iterator I = SubClasses;
157    while (*I != NULL) ++I;
158    return I;
159  }
160
161  /// hasSuperClass - return true if the specified TargetRegisterClass is a
162  /// super-register class of this TargetRegisterClass.
163  bool hasSuperClass(const TargetRegisterClass *cs) const {
164    for (int i = 0; SuperClasses[i] != NULL; ++i)
165      if (SuperClasses[i] == cs)
166        return true;
167    return false;
168  }
169
170  /// superclasses_begin / superclasses_end - Loop over all of the super-classes
171  /// of this register class.
172  sc_iterator superclasses_begin() const {
173    return SuperClasses;
174  }
175
176  sc_iterator superclasses_end() const {
177    sc_iterator I = SuperClasses;
178    while (*I != NULL) ++I;
179    return I;
180  }
181
182  /// hasSubRegClass - return true if the specified TargetRegisterClass is a
183  /// class of a sub-register class for this TargetRegisterClass.
184  bool hasSubRegClass(const TargetRegisterClass *cs) const {
185    for (int i = 0; SubRegClasses[i] != NULL; ++i)
186      if (SubRegClasses[i] == cs)
187        return true;
188    return false;
189  }
190
191  /// hasClassForSubReg - return true if the specified TargetRegisterClass is a
192  /// class of a sub-register class for this TargetRegisterClass.
193  bool hasClassForSubReg(unsigned SubReg) const {
194    --SubReg;
195    for (unsigned i = 0; SubRegClasses[i] != NULL; ++i)
196      if (i == SubReg)
197        return true;
198    return false;
199  }
200
201  /// getClassForSubReg - return theTargetRegisterClass for the sub-register
202  /// at idx for this TargetRegisterClass.
203  sc_iterator getClassForSubReg(unsigned SubReg) const {
204    --SubReg;
205    for (unsigned i = 0; SubRegClasses[i] != NULL; ++i)
206      if (i == SubReg)
207        return &SubRegClasses[i];
208    assert(0 && "Invalid subregister index for register class");
209    return NULL;
210  }
211
212  /// subregclasses_begin / subregclasses_end - Loop over all of
213  /// the subregister classes of this register class.
214  sc_iterator subregclasses_begin() const {
215    return SubRegClasses;
216  }
217
218  sc_iterator subregclasses_end() const {
219    sc_iterator I = SubRegClasses;
220    while (*I != NULL) ++I;
221    return I;
222  }
223
224  /// superregclasses_begin / superregclasses_end - Loop over all of
225  /// the superregister classes of this register class.
226  sc_iterator superregclasses_begin() const {
227    return SuperRegClasses;
228  }
229
230  sc_iterator superregclasses_end() const {
231    sc_iterator I = SuperRegClasses;
232    while (*I != NULL) ++I;
233    return I;
234  }
235
236  /// allocation_order_begin/end - These methods define a range of registers
237  /// which specify the registers in this class that are valid to register
238  /// allocate, and the preferred order to allocate them in.  For example,
239  /// callee saved registers should be at the end of the list, because it is
240  /// cheaper to allocate caller saved registers.
241  ///
242  /// These methods take a MachineFunction argument, which can be used to tune
243  /// the allocatable registers based on the characteristics of the function.
244  /// One simple example is that the frame pointer register can be used if
245  /// frame-pointer-elimination is performed.
246  ///
247  /// By default, these methods return all registers in the class.
248  ///
249  virtual iterator allocation_order_begin(const MachineFunction &MF) const {
250    return begin();
251  }
252  virtual iterator allocation_order_end(const MachineFunction &MF)   const {
253    return end();
254  }
255
256
257
258  /// getSize - Return the size of the register in bytes, which is also the size
259  /// of a stack slot allocated to hold a spilled copy of this register.
260  unsigned getSize() const { return RegSize; }
261
262  /// getAlignment - Return the minimum required alignment for a register of
263  /// this class.
264  unsigned getAlignment() const { return Alignment; }
265
266  /// getCopyCost - Return the cost of copying a value between two registers in
267  /// this class.
268  int getCopyCost() const { return CopyCost; }
269};
270
271
272/// TargetRegisterInfo base class - We assume that the target defines a static
273/// array of TargetRegisterDesc objects that represent all of the machine
274/// registers that the target has.  As such, we simply have to track a pointer
275/// to this array so that we can turn register number into a register
276/// descriptor.
277///
278class TargetRegisterInfo {
279public:
280  typedef const TargetRegisterClass * const * regclass_iterator;
281private:
282  const TargetRegisterDesc *Desc;             // Pointer to the descriptor array
283  unsigned NumRegs;                           // Number of entries in the array
284
285  regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses
286
287  int CallFrameSetupOpcode, CallFrameDestroyOpcode;
288protected:
289  TargetRegisterInfo(const TargetRegisterDesc *D, unsigned NR,
290                     regclass_iterator RegClassBegin,
291                     regclass_iterator RegClassEnd,
292                     int CallFrameSetupOpcode = -1,
293                     int CallFrameDestroyOpcode = -1);
294  virtual ~TargetRegisterInfo();
295public:
296
297  enum {                        // Define some target independent constants
298    /// NoRegister - This physical register is not a real target register.  It
299    /// is useful as a sentinal.
300    NoRegister = 0,
301
302    /// FirstVirtualRegister - This is the first register number that is
303    /// considered to be a 'virtual' register, which is part of the SSA
304    /// namespace.  This must be the same for all targets, which means that each
305    /// target is limited to 1024 registers.
306    FirstVirtualRegister = 1024
307  };
308
309  /// isPhysicalRegister - Return true if the specified register number is in
310  /// the physical register namespace.
311  static bool isPhysicalRegister(unsigned Reg) {
312    assert(Reg && "this is not a register!");
313    return Reg < FirstVirtualRegister;
314  }
315
316  /// isVirtualRegister - Return true if the specified register number is in
317  /// the virtual register namespace.
318  static bool isVirtualRegister(unsigned Reg) {
319    assert(Reg && "this is not a register!");
320    return Reg >= FirstVirtualRegister;
321  }
322
323  /// getPhysicalRegisterRegClass - Returns the Register Class of a physical
324  /// register of the given type. If type is MVT::Other, then just return any
325  /// register class the register belongs to.
326  const TargetRegisterClass *getPhysicalRegisterRegClass(unsigned Reg,
327                                          MVT VT = MVT::Other) const;
328
329  /// getAllocatableSet - Returns a bitset indexed by register number
330  /// indicating if a register is allocatable or not. If a register class is
331  /// specified, returns the subset for the class.
332  BitVector getAllocatableSet(MachineFunction &MF,
333                              const TargetRegisterClass *RC = NULL) const;
334
335  const TargetRegisterDesc &operator[](unsigned RegNo) const {
336    assert(RegNo < NumRegs &&
337           "Attempting to access record for invalid register number!");
338    return Desc[RegNo];
339  }
340
341  /// Provide a get method, equivalent to [], but more useful if we have a
342  /// pointer to this object.
343  ///
344  const TargetRegisterDesc &get(unsigned RegNo) const {
345    return operator[](RegNo);
346  }
347
348  /// getAliasSet - Return the set of registers aliased by the specified
349  /// register, or a null list of there are none.  The list returned is zero
350  /// terminated.
351  ///
352  const unsigned *getAliasSet(unsigned RegNo) const {
353    return get(RegNo).AliasSet;
354  }
355
356  /// getSubRegisters - Return the list of registers that are sub-registers of
357  /// the specified register, or a null list of there are none. The list
358  /// returned is zero terminated and sorted according to super-sub register
359  /// relations. e.g. X86::RAX's sub-register list is EAX, AX, AL, AH.
360  ///
361  const unsigned *getSubRegisters(unsigned RegNo) const {
362    return get(RegNo).SubRegs;
363  }
364
365  /// getImmediateSubRegisters - Return the set of registers that are immediate
366  /// sub-registers of the specified register, or a null list of there are none.
367  /// The list returned is zero terminated.
368  ///
369  const unsigned *getImmediateSubRegisters(unsigned RegNo) const {
370    return get(RegNo).ImmSubRegs;
371  }
372
373  /// getSuperRegisters - Return the list of registers that are super-registers
374  /// of the specified register, or a null list of there are none. The list
375  /// returned is zero terminated and sorted according to super-sub register
376  /// relations. e.g. X86::AL's super-register list is RAX, EAX, AX.
377  ///
378  const unsigned *getSuperRegisters(unsigned RegNo) const {
379    return get(RegNo).SuperRegs;
380  }
381
382  /// getAsmName - Return the symbolic target-specific name for the
383  /// specified physical register.
384  const char *getAsmName(unsigned RegNo) const {
385    return get(RegNo).AsmName;
386  }
387
388  /// getName - Return the human-readable symbolic target-specific name for the
389  /// specified physical register.
390  const char *getName(unsigned RegNo) const {
391    return get(RegNo).Name;
392  }
393
394  /// getNumRegs - Return the number of registers this target has (useful for
395  /// sizing arrays holding per register information)
396  unsigned getNumRegs() const {
397    return NumRegs;
398  }
399
400  /// areAliases - Returns true if the two registers alias each other, false
401  /// otherwise
402  bool areAliases(unsigned regA, unsigned regB) const {
403    for (const unsigned *Alias = getAliasSet(regA); *Alias; ++Alias)
404      if (*Alias == regB) return true;
405    return false;
406  }
407
408  /// regsOverlap - Returns true if the two registers are equal or alias each
409  /// other. The registers may be virtual register.
410  bool regsOverlap(unsigned regA, unsigned regB) const {
411    if (regA == regB)
412      return true;
413
414    if (isVirtualRegister(regA) || isVirtualRegister(regB))
415      return false;
416    return areAliases(regA, regB);
417  }
418
419  /// isSubRegister - Returns true if regB is a sub-register of regA.
420  ///
421  bool isSubRegister(unsigned regA, unsigned regB) const {
422    for (const unsigned *SR = getSubRegisters(regA); *SR; ++SR)
423      if (*SR == regB) return true;
424    return false;
425  }
426
427  /// isSuperRegister - Returns true if regB is a super-register of regA.
428  ///
429  bool isSuperRegister(unsigned regA, unsigned regB) const {
430    for (const unsigned *SR = getSuperRegisters(regA); *SR; ++SR)
431      if (*SR == regB) return true;
432    return false;
433  }
434
435  /// getCalleeSavedRegs - Return a null-terminated list of all of the
436  /// callee saved registers on this target. The register should be in the
437  /// order of desired callee-save stack frame offset. The first register is
438  /// closed to the incoming stack pointer if stack grows down, and vice versa.
439  virtual const unsigned* getCalleeSavedRegs(const MachineFunction *MF = 0)
440                                                                      const = 0;
441
442  /// getCalleeSavedRegClasses - Return a null-terminated list of the preferred
443  /// register classes to spill each callee saved register with.  The order and
444  /// length of this list match the getCalleeSaveRegs() list.
445  virtual const TargetRegisterClass* const *getCalleeSavedRegClasses(
446                                            const MachineFunction *MF) const =0;
447
448  /// getReservedRegs - Returns a bitset indexed by physical register number
449  /// indicating if a register is a special register that has particular uses
450  /// and should be considered unavailable at all times, e.g. SP, RA. This is
451  /// used by register scavenger to determine what registers are free.
452  virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
453
454  /// getSubReg - Returns the physical register number of sub-register "Index"
455  /// for physical register RegNo.
456  virtual unsigned getSubReg(unsigned RegNo, unsigned Index) const = 0;
457
458  //===--------------------------------------------------------------------===//
459  // Register Class Information
460  //
461
462  /// Register class iterators
463  ///
464  regclass_iterator regclass_begin() const { return RegClassBegin; }
465  regclass_iterator regclass_end() const { return RegClassEnd; }
466
467  unsigned getNumRegClasses() const {
468    return (unsigned)(regclass_end()-regclass_begin());
469  }
470
471  /// getRegClass - Returns the register class associated with the enumeration
472  /// value.  See class TargetOperandInfo.
473  const TargetRegisterClass *getRegClass(unsigned i) const {
474    assert(i <= getNumRegClasses() && "Register Class ID out of range");
475    return i ? RegClassBegin[i - 1] : NULL;
476  }
477
478  //===--------------------------------------------------------------------===//
479  // Interfaces used by the register allocator and stack frame
480  // manipulation passes to move data around between registers,
481  // immediates and memory.  FIXME: Move these to TargetInstrInfo.h.
482  //
483
484  /// getCrossCopyRegClass - Returns a legal register class to copy a register
485  /// in the specified class to or from. Returns NULL if it is possible to copy
486  /// between a two registers of the specified class.
487  virtual const TargetRegisterClass *
488  getCrossCopyRegClass(const TargetRegisterClass *RC) const {
489    return NULL;
490  }
491
492  /// targetHandlesStackFrameRounding - Returns true if the target is
493  /// responsible for rounding up the stack frame (probably at emitPrologue
494  /// time).
495  virtual bool targetHandlesStackFrameRounding() const {
496    return false;
497  }
498
499  /// requiresRegisterScavenging - returns true if the target requires (and can
500  /// make use of) the register scavenger.
501  virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
502    return false;
503  }
504
505  /// hasFP - Return true if the specified function should have a dedicated
506  /// frame pointer register. For most targets this is true only if the function
507  /// has variable sized allocas or if frame pointer elimination is disabled.
508  virtual bool hasFP(const MachineFunction &MF) const = 0;
509
510  // hasReservedCallFrame - Under normal circumstances, when a frame pointer is
511  // not required, we reserve argument space for call sites in the function
512  // immediately on entry to the current function. This eliminates the need for
513  // add/sub sp brackets around call sites. Returns true if the call frame is
514  // included as part of the stack frame.
515  virtual bool hasReservedCallFrame(MachineFunction &MF) const {
516    return !hasFP(MF);
517  }
518
519  // needsStackRealignment - true if storage within the function requires the
520  // stack pointer to be aligned more than the normal calling convention calls
521  // for.
522  virtual bool needsStackRealignment(const MachineFunction &MF) const {
523    return false;
524  }
525
526  /// getCallFrameSetup/DestroyOpcode - These methods return the opcode of the
527  /// frame setup/destroy instructions if they exist (-1 otherwise).  Some
528  /// targets use pseudo instructions in order to abstract away the difference
529  /// between operating with a frame pointer and operating without, through the
530  /// use of these two instructions.
531  ///
532  int getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
533  int getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
534
535
536  /// eliminateCallFramePseudoInstr - This method is called during prolog/epilog
537  /// code insertion to eliminate call frame setup and destroy pseudo
538  /// instructions (but only if the Target is using them).  It is responsible
539  /// for eliminating these instructions, replacing them with concrete
540  /// instructions.  This method need only be implemented if using call frame
541  /// setup/destroy pseudo instructions.
542  ///
543  virtual void
544  eliminateCallFramePseudoInstr(MachineFunction &MF,
545                                MachineBasicBlock &MBB,
546                                MachineBasicBlock::iterator MI) const {
547    assert(getCallFrameSetupOpcode()== -1 && getCallFrameDestroyOpcode()== -1 &&
548           "eliminateCallFramePseudoInstr must be implemented if using"
549           " call frame setup/destroy pseudo instructions!");
550    assert(0 && "Call Frame Pseudo Instructions do not exist on this target!");
551  }
552
553  /// processFunctionBeforeCalleeSavedScan - This method is called immediately
554  /// before PrologEpilogInserter scans the physical registers used to determine
555  /// what callee saved registers should be spilled. This method is optional.
556  virtual void processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
557                                                RegScavenger *RS = NULL) const {
558
559  }
560
561  /// processFunctionBeforeFrameFinalized - This method is called immediately
562  /// before the specified functions frame layout (MF.getFrameInfo()) is
563  /// finalized.  Once the frame is finalized, MO_FrameIndex operands are
564  /// replaced with direct constants.  This method is optional.
565  ///
566  virtual void processFunctionBeforeFrameFinalized(MachineFunction &MF) const {
567  }
568
569  /// eliminateFrameIndex - This method must be overriden to eliminate abstract
570  /// frame indices from instructions which may use them.  The instruction
571  /// referenced by the iterator contains an MO_FrameIndex operand which must be
572  /// eliminated by this method.  This method may modify or replace the
573  /// specified instruction, as long as it keeps the iterator pointing the the
574  /// finished product. SPAdj is the SP adjustment due to call frame setup
575  /// instruction. The return value is the number of instructions added to
576  /// (negative if removed from) the basic block.
577  ///
578  virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
579                                   int SPAdj, RegScavenger *RS=NULL) const = 0;
580
581  /// emitProlog/emitEpilog - These methods insert prolog and epilog code into
582  /// the function. The return value is the number of instructions
583  /// added to (negative if removed from) the basic block (entry for prologue).
584  ///
585  virtual void emitPrologue(MachineFunction &MF) const = 0;
586  virtual void emitEpilogue(MachineFunction &MF,
587                            MachineBasicBlock &MBB) const = 0;
588
589  //===--------------------------------------------------------------------===//
590  /// Debug information queries.
591
592  /// getDwarfRegNum - Map a target register to an equivalent dwarf register
593  /// number.  Returns -1 if there is no equivalent value.  The second
594  /// parameter allows targets to use different numberings for EH info and
595  /// deubgging info.
596  virtual int getDwarfRegNum(unsigned RegNum, bool isEH) const = 0;
597
598  /// getFrameRegister - This method should return the register used as a base
599  /// for values allocated in the current stack frame.
600  virtual unsigned getFrameRegister(MachineFunction &MF) const = 0;
601
602  /// getFrameIndexOffset - Returns the displacement from the frame register to
603  /// the stack frame of the specified index.
604  virtual int getFrameIndexOffset(MachineFunction &MF, int FI) const;
605
606  /// getRARegister - This method should return the register where the return
607  /// address can be found.
608  virtual unsigned getRARegister() const = 0;
609
610  /// getInitialFrameState - Returns a list of machine moves that are assumed
611  /// on entry to all functions.  Note that LabelID is ignored (assumed to be
612  /// the beginning of the function.)
613  virtual void getInitialFrameState(std::vector<MachineMove> &Moves) const;
614};
615
616// This is useful when building IndexedMaps keyed on virtual registers
617struct VirtReg2IndexFunctor : std::unary_function<unsigned, unsigned> {
618  unsigned operator()(unsigned Reg) const {
619    return Reg - TargetRegisterInfo::FirstVirtualRegister;
620  }
621};
622
623} // End llvm namespace
624
625#endif
626