TargetRegisterInfo.h revision de2d8694e25a814696358e95141f4b1aa4d8847e
1//=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes an abstract interface used to get information about a
11// target machines register file.  This information is used for a variety of
12// purposed, especially register allocation.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_TARGET_TARGETREGISTERINFO_H
17#define LLVM_TARGET_TARGETREGISTERINFO_H
18
19#include "llvm/ADT/ArrayRef.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/MachineValueType.h"
22#include "llvm/IR/CallingConv.h"
23#include "llvm/MC/MCRegisterInfo.h"
24#include "llvm/Support/Printable.h"
25#include <cassert>
26#include <functional>
27
28namespace llvm {
29
30class BitVector;
31class MachineFunction;
32class RegScavenger;
33template<class T> class SmallVectorImpl;
34class VirtRegMap;
35class raw_ostream;
36class LiveRegMatrix;
37
38/// A bitmask representing the covering of a register with sub-registers.
39///
40/// This is typically used to track liveness at sub-register granularity.
41/// Lane masks for sub-register indices are similar to register units for
42/// physical registers. The individual bits in a lane mask can't be assigned
43/// any specific meaning. They can be used to check if two sub-register
44/// indices overlap.
45///
46/// Iff the target has a register such that:
47///
48///   getSubReg(Reg, A) overlaps getSubReg(Reg, B)
49///
50/// then:
51///
52///   (getSubRegIndexLaneMask(A) & getSubRegIndexLaneMask(B)) != 0
53typedef unsigned LaneBitmask;
54
55class TargetRegisterClass {
56public:
57  typedef const MCPhysReg* iterator;
58  typedef const MCPhysReg* const_iterator;
59  typedef const MVT::SimpleValueType* vt_iterator;
60  typedef const TargetRegisterClass* const * sc_iterator;
61
62  // Instance variables filled by tablegen, do not use!
63  const MCRegisterClass *MC;
64  const vt_iterator VTs;
65  const uint32_t *SubClassMask;
66  const uint16_t *SuperRegIndices;
67  const LaneBitmask LaneMask;
68  /// Classes with a higher priority value are assigned first by register
69  /// allocators using a greedy heuristic. The value is in the range [0,63].
70  const uint8_t AllocationPriority;
71  /// Whether the class supports two (or more) disjunct subregister indices.
72  const bool HasDisjunctSubRegs;
73  /// Whether a combination of subregisters can cover every register in the
74  /// class. See also the CoveredBySubRegs description in Target.td.
75  const bool CoveredBySubRegs;
76  const sc_iterator SuperClasses;
77  ArrayRef<MCPhysReg> (*OrderFunc)(const MachineFunction&);
78
79  /// Return the register class ID number.
80  unsigned getID() const { return MC->getID(); }
81
82  /// begin/end - Return all of the registers in this class.
83  ///
84  iterator       begin() const { return MC->begin(); }
85  iterator         end() const { return MC->end(); }
86
87  /// Return the number of registers in this class.
88  unsigned getNumRegs() const { return MC->getNumRegs(); }
89
90  /// Return the specified register in the class.
91  unsigned getRegister(unsigned i) const {
92    return MC->getRegister(i);
93  }
94
95  /// Return true if the specified register is included in this register class.
96  /// This does not include virtual registers.
97  bool contains(unsigned Reg) const {
98    return MC->contains(Reg);
99  }
100
101  /// Return true if both registers are in this class.
102  bool contains(unsigned Reg1, unsigned Reg2) const {
103    return MC->contains(Reg1, Reg2);
104  }
105
106  /// Return the size of the register in bytes, which is also the size
107  /// of a stack slot allocated to hold a spilled copy of this register.
108  unsigned getSize() const { return MC->getSize(); }
109
110  /// Return the minimum required alignment for a register of this class.
111  unsigned getAlignment() const { return MC->getAlignment(); }
112
113  /// Return the cost of copying a value between two registers in this class.
114  /// A negative number means the register class is very expensive
115  /// to copy e.g. status flag register classes.
116  int getCopyCost() const { return MC->getCopyCost(); }
117
118  /// Return true if this register class may be used to create virtual
119  /// registers.
120  bool isAllocatable() const { return MC->isAllocatable(); }
121
122  /// Return true if this TargetRegisterClass has the ValueType vt.
123  bool hasType(MVT vt) const {
124    for(int i = 0; VTs[i] != MVT::Other; ++i)
125      if (MVT(VTs[i]) == vt)
126        return true;
127    return false;
128  }
129
130  /// vt_begin / vt_end - Loop over all of the value types that can be
131  /// represented by values in this register class.
132  vt_iterator vt_begin() const {
133    return VTs;
134  }
135
136  vt_iterator vt_end() const {
137    vt_iterator I = VTs;
138    while (*I != MVT::Other) ++I;
139    return I;
140  }
141
142  /// Return true if the specified TargetRegisterClass
143  /// is a proper sub-class of this TargetRegisterClass.
144  bool hasSubClass(const TargetRegisterClass *RC) const {
145    return RC != this && hasSubClassEq(RC);
146  }
147
148  /// Returns true if RC is a sub-class of or equal to this class.
149  bool hasSubClassEq(const TargetRegisterClass *RC) const {
150    unsigned ID = RC->getID();
151    return (SubClassMask[ID / 32] >> (ID % 32)) & 1;
152  }
153
154  /// Return true if the specified TargetRegisterClass is a
155  /// proper super-class of this TargetRegisterClass.
156  bool hasSuperClass(const TargetRegisterClass *RC) const {
157    return RC->hasSubClass(this);
158  }
159
160  /// Returns true if RC is a super-class of or equal to this class.
161  bool hasSuperClassEq(const TargetRegisterClass *RC) const {
162    return RC->hasSubClassEq(this);
163  }
164
165  /// Returns a bit vector of subclasses, including this one.
166  /// The vector is indexed by class IDs.
167  ///
168  /// To use it, consider the returned array as a chunk of memory that
169  /// contains an array of bits of size NumRegClasses. Each 32-bit chunk
170  /// contains a bitset of the ID of the subclasses in big-endian style.
171
172  /// I.e., the representation of the memory from left to right at the
173  /// bit level looks like:
174  /// [31 30 ... 1 0] [ 63 62 ... 33 32] ...
175  ///                     [ XXX NumRegClasses NumRegClasses - 1 ... ]
176  /// Where the number represents the class ID and XXX bits that
177  /// should be ignored.
178  ///
179  /// See the implementation of hasSubClassEq for an example of how it
180  /// can be used.
181  const uint32_t *getSubClassMask() const {
182    return SubClassMask;
183  }
184
185  /// Returns a 0-terminated list of sub-register indices that project some
186  /// super-register class into this register class. The list has an entry for
187  /// each Idx such that:
188  ///
189  ///   There exists SuperRC where:
190  ///     For all Reg in SuperRC:
191  ///       this->contains(Reg:Idx)
192  ///
193  const uint16_t *getSuperRegIndices() const {
194    return SuperRegIndices;
195  }
196
197  /// Returns a NULL-terminated list of super-classes.  The
198  /// classes are ordered by ID which is also a topological ordering from large
199  /// to small classes.  The list does NOT include the current class.
200  sc_iterator getSuperClasses() const {
201    return SuperClasses;
202  }
203
204  /// Return true if this TargetRegisterClass is a subset
205  /// class of at least one other TargetRegisterClass.
206  bool isASubClass() const {
207    return SuperClasses[0] != nullptr;
208  }
209
210  /// Returns the preferred order for allocating registers from this register
211  /// class in MF. The raw order comes directly from the .td file and may
212  /// include reserved registers that are not allocatable.
213  /// Register allocators should also make sure to allocate
214  /// callee-saved registers only after all the volatiles are used. The
215  /// RegisterClassInfo class provides filtered allocation orders with
216  /// callee-saved registers moved to the end.
217  ///
218  /// The MachineFunction argument can be used to tune the allocatable
219  /// registers based on the characteristics of the function, subtarget, or
220  /// other criteria.
221  ///
222  /// By default, this method returns all registers in the class.
223  ///
224  ArrayRef<MCPhysReg> getRawAllocationOrder(const MachineFunction &MF) const {
225    return OrderFunc ? OrderFunc(MF) : makeArrayRef(begin(), getNumRegs());
226  }
227
228  /// Returns the combination of all lane masks of register in this class.
229  /// The lane masks of the registers are the combination of all lane masks
230  /// of their subregisters. Returns 1 if there are no subregisters.
231  LaneBitmask getLaneMask() const {
232    return LaneMask;
233  }
234};
235
236/// Extra information, not in MCRegisterDesc, about registers.
237/// These are used by codegen, not by MC.
238struct TargetRegisterInfoDesc {
239  unsigned CostPerUse;          // Extra cost of instructions using register.
240  bool inAllocatableClass;      // Register belongs to an allocatable regclass.
241};
242
243/// Each TargetRegisterClass has a per register weight, and weight
244/// limit which must be less than the limits of its pressure sets.
245struct RegClassWeight {
246  unsigned RegWeight;
247  unsigned WeightLimit;
248};
249
250/// TargetRegisterInfo base class - We assume that the target defines a static
251/// array of TargetRegisterDesc objects that represent all of the machine
252/// registers that the target has.  As such, we simply have to track a pointer
253/// to this array so that we can turn register number into a register
254/// descriptor.
255///
256class TargetRegisterInfo : public MCRegisterInfo {
257public:
258  typedef const TargetRegisterClass * const * regclass_iterator;
259private:
260  const TargetRegisterInfoDesc *InfoDesc;     // Extra desc array for codegen
261  const char *const *SubRegIndexNames;        // Names of subreg indexes.
262  // Pointer to array of lane masks, one per sub-reg index.
263  const LaneBitmask *SubRegIndexLaneMasks;
264
265  regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses
266  unsigned CoveringLanes;
267
268protected:
269  TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
270                     regclass_iterator RegClassBegin,
271                     regclass_iterator RegClassEnd,
272                     const char *const *SRINames,
273                     const LaneBitmask *SRILaneMasks,
274                     unsigned CoveringLanes);
275  virtual ~TargetRegisterInfo();
276public:
277
278  // Register numbers can represent physical registers, virtual registers, and
279  // sometimes stack slots. The unsigned values are divided into these ranges:
280  //
281  //   0           Not a register, can be used as a sentinel.
282  //   [1;2^30)    Physical registers assigned by TableGen.
283  //   [2^30;2^31) Stack slots. (Rarely used.)
284  //   [2^31;2^32) Virtual registers assigned by MachineRegisterInfo.
285  //
286  // Further sentinels can be allocated from the small negative integers.
287  // DenseMapInfo<unsigned> uses -1u and -2u.
288
289  /// isStackSlot - Sometimes it is useful the be able to store a non-negative
290  /// frame index in a variable that normally holds a register. isStackSlot()
291  /// returns true if Reg is in the range used for stack slots.
292  ///
293  /// Note that isVirtualRegister() and isPhysicalRegister() cannot handle stack
294  /// slots, so if a variable may contains a stack slot, always check
295  /// isStackSlot() first.
296  ///
297  static bool isStackSlot(unsigned Reg) {
298    return int(Reg) >= (1 << 30);
299  }
300
301  /// Compute the frame index from a register value representing a stack slot.
302  static int stackSlot2Index(unsigned Reg) {
303    assert(isStackSlot(Reg) && "Not a stack slot");
304    return int(Reg - (1u << 30));
305  }
306
307  /// Convert a non-negative frame index to a stack slot register value.
308  static unsigned index2StackSlot(int FI) {
309    assert(FI >= 0 && "Cannot hold a negative frame index.");
310    return FI + (1u << 30);
311  }
312
313  /// Return true if the specified register number is in
314  /// the physical register namespace.
315  static bool isPhysicalRegister(unsigned Reg) {
316    assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
317    return int(Reg) > 0;
318  }
319
320  /// Return true if the specified register number is in
321  /// the virtual register namespace.
322  static bool isVirtualRegister(unsigned Reg) {
323    assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
324    return int(Reg) < 0;
325  }
326
327  /// Convert a virtual register number to a 0-based index.
328  /// The first virtual register in a function will get the index 0.
329  static unsigned virtReg2Index(unsigned Reg) {
330    assert(isVirtualRegister(Reg) && "Not a virtual register");
331    return Reg & ~(1u << 31);
332  }
333
334  /// Convert a 0-based index to a virtual register number.
335  /// This is the inverse operation of VirtReg2IndexFunctor below.
336  static unsigned index2VirtReg(unsigned Index) {
337    return Index | (1u << 31);
338  }
339
340  /// Returns the Register Class of a physical register of the given type,
341  /// picking the most sub register class of the right type that contains this
342  /// physreg.
343  const TargetRegisterClass *
344    getMinimalPhysRegClass(unsigned Reg, MVT VT = MVT::Other) const;
345
346  /// Return the maximal subclass of the given register class that is
347  /// allocatable or NULL.
348  const TargetRegisterClass *
349    getAllocatableClass(const TargetRegisterClass *RC) const;
350
351  /// Returns a bitset indexed by register number indicating if a register is
352  /// allocatable or not. If a register class is specified, returns the subset
353  /// for the class.
354  BitVector getAllocatableSet(const MachineFunction &MF,
355                              const TargetRegisterClass *RC = nullptr) const;
356
357  /// Return the additional cost of using this register instead
358  /// of other registers in its class.
359  unsigned getCostPerUse(unsigned RegNo) const {
360    return InfoDesc[RegNo].CostPerUse;
361  }
362
363  /// Return true if the register is in the allocation of any register class.
364  bool isInAllocatableClass(unsigned RegNo) const {
365    return InfoDesc[RegNo].inAllocatableClass;
366  }
367
368  /// Return the human-readable symbolic target-specific
369  /// name for the specified SubRegIndex.
370  const char *getSubRegIndexName(unsigned SubIdx) const {
371    assert(SubIdx && SubIdx < getNumSubRegIndices() &&
372           "This is not a subregister index");
373    return SubRegIndexNames[SubIdx-1];
374  }
375
376  /// Return a bitmask representing the parts of a register that are covered by
377  /// SubIdx \see LaneBitmask.
378  ///
379  /// SubIdx == 0 is allowed, it has the lane mask ~0u.
380  LaneBitmask getSubRegIndexLaneMask(unsigned SubIdx) const {
381    assert(SubIdx < getNumSubRegIndices() && "This is not a subregister index");
382    return SubRegIndexLaneMasks[SubIdx];
383  }
384
385  /// The lane masks returned by getSubRegIndexLaneMask() above can only be
386  /// used to determine if sub-registers overlap - they can't be used to
387  /// determine if a set of sub-registers completely cover another
388  /// sub-register.
389  ///
390  /// The X86 general purpose registers have two lanes corresponding to the
391  /// sub_8bit and sub_8bit_hi sub-registers. Both sub_32bit and sub_16bit have
392  /// lane masks '3', but the sub_16bit sub-register doesn't fully cover the
393  /// sub_32bit sub-register.
394  ///
395  /// On the other hand, the ARM NEON lanes fully cover their registers: The
396  /// dsub_0 sub-register is completely covered by the ssub_0 and ssub_1 lanes.
397  /// This is related to the CoveredBySubRegs property on register definitions.
398  ///
399  /// This function returns a bit mask of lanes that completely cover their
400  /// sub-registers. More precisely, given:
401  ///
402  ///   Covering = getCoveringLanes();
403  ///   MaskA = getSubRegIndexLaneMask(SubA);
404  ///   MaskB = getSubRegIndexLaneMask(SubB);
405  ///
406  /// If (MaskA & ~(MaskB & Covering)) == 0, then SubA is completely covered by
407  /// SubB.
408  LaneBitmask getCoveringLanes() const { return CoveringLanes; }
409
410  /// Returns true if the two registers are equal or alias each other.
411  /// The registers may be virtual registers.
412  bool regsOverlap(unsigned regA, unsigned regB) const {
413    if (regA == regB) return true;
414    if (isVirtualRegister(regA) || isVirtualRegister(regB))
415      return false;
416
417    // Regunits are numerically ordered. Find a common unit.
418    MCRegUnitIterator RUA(regA, this);
419    MCRegUnitIterator RUB(regB, this);
420    do {
421      if (*RUA == *RUB) return true;
422      if (*RUA < *RUB) ++RUA;
423      else             ++RUB;
424    } while (RUA.isValid() && RUB.isValid());
425    return false;
426  }
427
428  /// Returns true if Reg contains RegUnit.
429  bool hasRegUnit(unsigned Reg, unsigned RegUnit) const {
430    for (MCRegUnitIterator Units(Reg, this); Units.isValid(); ++Units)
431      if (*Units == RegUnit)
432        return true;
433    return false;
434  }
435
436  /// Return a null-terminated list of all of the callee-saved registers on
437  /// this target. The register should be in the order of desired callee-save
438  /// stack frame offset. The first register is closest to the incoming stack
439  /// pointer if stack grows down, and vice versa.
440  ///
441  virtual const MCPhysReg*
442  getCalleeSavedRegs(const MachineFunction *MF) const = 0;
443
444  virtual const MCPhysReg*
445  getCalleeSavedRegsViaCopy(const MachineFunction *MF) const {
446    return nullptr;
447  }
448
449  /// Return a mask of call-preserved registers for the given calling convention
450  /// on the current function. The mask should include all call-preserved
451  /// aliases. This is used by the register allocator to determine which
452  /// registers can be live across a call.
453  ///
454  /// The mask is an array containing (TRI::getNumRegs()+31)/32 entries.
455  /// A set bit indicates that all bits of the corresponding register are
456  /// preserved across the function call.  The bit mask is expected to be
457  /// sub-register complete, i.e. if A is preserved, so are all its
458  /// sub-registers.
459  ///
460  /// Bits are numbered from the LSB, so the bit for physical register Reg can
461  /// be found as (Mask[Reg / 32] >> Reg % 32) & 1.
462  ///
463  /// A NULL pointer means that no register mask will be used, and call
464  /// instructions should use implicit-def operands to indicate call clobbered
465  /// registers.
466  ///
467  virtual const uint32_t *getCallPreservedMask(const MachineFunction &MF,
468                                               CallingConv::ID) const {
469    // The default mask clobbers everything.  All targets should override.
470    return nullptr;
471  }
472
473  /// Return a register mask that clobbers everything.
474  virtual const uint32_t *getNoPreservedMask() const {
475    llvm_unreachable("target does not provide no preserved mask");
476  }
477
478  /// Return true if all bits that are set in mask \p mask0 are also set in
479  /// \p mask1.
480  bool regmaskSubsetEqual(const uint32_t *mask0, const uint32_t *mask1) const;
481
482  /// Return all the call-preserved register masks defined for this target.
483  virtual ArrayRef<const uint32_t *> getRegMasks() const = 0;
484  virtual ArrayRef<const char *> getRegMaskNames() const = 0;
485
486  /// Returns a bitset indexed by physical register number indicating if a
487  /// register is a special register that has particular uses and should be
488  /// considered unavailable at all times, e.g. SP, RA. This is
489  /// used by register scavenger to determine what registers are free.
490  virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
491
492  /// Prior to adding the live-out mask to a stackmap or patchpoint
493  /// instruction, provide the target the opportunity to adjust it (mainly to
494  /// remove pseudo-registers that should be ignored).
495  virtual void adjustStackMapLiveOutMask(uint32_t *Mask) const { }
496
497  /// Return a super-register of the specified register
498  /// Reg so its sub-register of index SubIdx is Reg.
499  unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx,
500                               const TargetRegisterClass *RC) const {
501    return MCRegisterInfo::getMatchingSuperReg(Reg, SubIdx, RC->MC);
502  }
503
504  /// Return a subclass of the specified register
505  /// class A so that each register in it has a sub-register of the
506  /// specified sub-register index which is in the specified register class B.
507  ///
508  /// TableGen will synthesize missing A sub-classes.
509  virtual const TargetRegisterClass *
510  getMatchingSuperRegClass(const TargetRegisterClass *A,
511                           const TargetRegisterClass *B, unsigned Idx) const;
512
513  // For a copy-like instruction that defines a register of class DefRC with
514  // subreg index DefSubReg, reading from another source with class SrcRC and
515  // subregister SrcSubReg return true if this is a preferrable copy
516  // instruction or an earlier use should be used.
517  virtual bool shouldRewriteCopySrc(const TargetRegisterClass *DefRC,
518                                    unsigned DefSubReg,
519                                    const TargetRegisterClass *SrcRC,
520                                    unsigned SrcSubReg) const;
521
522  /// Returns the largest legal sub-class of RC that
523  /// supports the sub-register index Idx.
524  /// If no such sub-class exists, return NULL.
525  /// If all registers in RC already have an Idx sub-register, return RC.
526  ///
527  /// TableGen generates a version of this function that is good enough in most
528  /// cases.  Targets can override if they have constraints that TableGen
529  /// doesn't understand.  For example, the x86 sub_8bit sub-register index is
530  /// supported by the full GR32 register class in 64-bit mode, but only by the
531  /// GR32_ABCD regiister class in 32-bit mode.
532  ///
533  /// TableGen will synthesize missing RC sub-classes.
534  virtual const TargetRegisterClass *
535  getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const {
536    assert(Idx == 0 && "Target has no sub-registers");
537    return RC;
538  }
539
540  /// Return the subregister index you get from composing
541  /// two subregister indices.
542  ///
543  /// The special null sub-register index composes as the identity.
544  ///
545  /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b)
546  /// returns c. Note that composeSubRegIndices does not tell you about illegal
547  /// compositions. If R does not have a subreg a, or R:a does not have a subreg
548  /// b, composeSubRegIndices doesn't tell you.
549  ///
550  /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has
551  /// ssub_0:S0 - ssub_3:S3 subregs.
552  /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2.
553  ///
554  unsigned composeSubRegIndices(unsigned a, unsigned b) const {
555    if (!a) return b;
556    if (!b) return a;
557    return composeSubRegIndicesImpl(a, b);
558  }
559
560  /// Transforms a LaneMask computed for one subregister to the lanemask that
561  /// would have been computed when composing the subsubregisters with IdxA
562  /// first. @sa composeSubRegIndices()
563  LaneBitmask composeSubRegIndexLaneMask(unsigned IdxA,
564                                         LaneBitmask Mask) const {
565    if (!IdxA)
566      return Mask;
567    return composeSubRegIndexLaneMaskImpl(IdxA, Mask);
568  }
569
570  /// Transform a lanemask given for a virtual register to the corresponding
571  /// lanemask before using subregister with index \p IdxA.
572  /// This is the reverse of composeSubRegIndexLaneMask(), assuming Mask is a
573  /// valie lane mask (no invalid bits set) the following holds:
574  /// X0 = composeSubRegIndexLaneMask(Idx, Mask)
575  /// X1 = reverseComposeSubRegIndexLaneMask(Idx, X0)
576  /// => X1 == Mask
577  LaneBitmask reverseComposeSubRegIndexLaneMask(unsigned IdxA,
578                                                LaneBitmask LaneMask) const {
579    if (!IdxA)
580      return LaneMask;
581    return reverseComposeSubRegIndexLaneMaskImpl(IdxA, LaneMask);
582  }
583
584  /// Debugging helper: dump register in human readable form to dbgs() stream.
585  static void dumpReg(unsigned Reg, unsigned SubRegIndex = 0,
586                      const TargetRegisterInfo* TRI = nullptr);
587
588protected:
589  /// Overridden by TableGen in targets that have sub-registers.
590  virtual unsigned composeSubRegIndicesImpl(unsigned, unsigned) const {
591    llvm_unreachable("Target has no sub-registers");
592  }
593
594  /// Overridden by TableGen in targets that have sub-registers.
595  virtual LaneBitmask
596  composeSubRegIndexLaneMaskImpl(unsigned, LaneBitmask) const {
597    llvm_unreachable("Target has no sub-registers");
598  }
599
600  virtual LaneBitmask reverseComposeSubRegIndexLaneMaskImpl(unsigned,
601                                                            LaneBitmask) const {
602    llvm_unreachable("Target has no sub-registers");
603  }
604
605public:
606  /// Find a common super-register class if it exists.
607  ///
608  /// Find a register class, SuperRC and two sub-register indices, PreA and
609  /// PreB, such that:
610  ///
611  ///   1. PreA + SubA == PreB + SubB  (using composeSubRegIndices()), and
612  ///
613  ///   2. For all Reg in SuperRC: Reg:PreA in RCA and Reg:PreB in RCB, and
614  ///
615  ///   3. SuperRC->getSize() >= max(RCA->getSize(), RCB->getSize()).
616  ///
617  /// SuperRC will be chosen such that no super-class of SuperRC satisfies the
618  /// requirements, and there is no register class with a smaller spill size
619  /// that satisfies the requirements.
620  ///
621  /// SubA and SubB must not be 0. Use getMatchingSuperRegClass() instead.
622  ///
623  /// Either of the PreA and PreB sub-register indices may be returned as 0. In
624  /// that case, the returned register class will be a sub-class of the
625  /// corresponding argument register class.
626  ///
627  /// The function returns NULL if no register class can be found.
628  ///
629  const TargetRegisterClass*
630  getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
631                         const TargetRegisterClass *RCB, unsigned SubB,
632                         unsigned &PreA, unsigned &PreB) const;
633
634  //===--------------------------------------------------------------------===//
635  // Register Class Information
636  //
637
638  /// Register class iterators
639  ///
640  regclass_iterator regclass_begin() const { return RegClassBegin; }
641  regclass_iterator regclass_end() const { return RegClassEnd; }
642
643  unsigned getNumRegClasses() const {
644    return (unsigned)(regclass_end()-regclass_begin());
645  }
646
647  /// Returns the register class associated with the enumeration value.
648  /// See class MCOperandInfo.
649  const TargetRegisterClass *getRegClass(unsigned i) const {
650    assert(i < getNumRegClasses() && "Register Class ID out of range");
651    return RegClassBegin[i];
652  }
653
654  /// Returns the name of the register class.
655  const char *getRegClassName(const TargetRegisterClass *Class) const {
656    return MCRegisterInfo::getRegClassName(Class->MC);
657  }
658
659  /// Find the largest common subclass of A and B.
660  /// Return NULL if there is no common subclass.
661  /// The common subclass should contain
662  /// simple value type SVT if it is not the Any type.
663  const TargetRegisterClass *
664  getCommonSubClass(const TargetRegisterClass *A,
665                    const TargetRegisterClass *B,
666                    const MVT::SimpleValueType SVT =
667                    MVT::SimpleValueType::Any) const;
668
669  /// Returns a TargetRegisterClass used for pointer values.
670  /// If a target supports multiple different pointer register classes,
671  /// kind specifies which one is indicated.
672  virtual const TargetRegisterClass *
673  getPointerRegClass(const MachineFunction &MF, unsigned Kind=0) const {
674    llvm_unreachable("Target didn't implement getPointerRegClass!");
675  }
676
677  /// Returns a legal register class to copy a register in the specified class
678  /// to or from. If it is possible to copy the register directly without using
679  /// a cross register class copy, return the specified RC. Returns NULL if it
680  /// is not possible to copy between two registers of the specified class.
681  virtual const TargetRegisterClass *
682  getCrossCopyRegClass(const TargetRegisterClass *RC) const {
683    return RC;
684  }
685
686  /// Returns the largest super class of RC that is legal to use in the current
687  /// sub-target and has the same spill size.
688  /// The returned register class can be used to create virtual registers which
689  /// means that all its registers can be copied and spilled.
690  virtual const TargetRegisterClass *
691  getLargestLegalSuperClass(const TargetRegisterClass *RC,
692                            const MachineFunction &) const {
693    /// The default implementation is very conservative and doesn't allow the
694    /// register allocator to inflate register classes.
695    return RC;
696  }
697
698  /// Return the register pressure "high water mark" for the specific register
699  /// class. The scheduler is in high register pressure mode (for the specific
700  /// register class) if it goes over the limit.
701  ///
702  /// Note: this is the old register pressure model that relies on a manually
703  /// specified representative register class per value type.
704  virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC,
705                                       MachineFunction &MF) const {
706    return 0;
707  }
708
709  /// Return a heuristic for the machine scheduler to compare the profitability
710  /// of increasing one register pressure set versus another.  The scheduler
711  /// will prefer increasing the register pressure of the set which returns
712  /// the largest value for this function.
713  virtual unsigned getRegPressureSetScore(const MachineFunction &MF,
714                                          unsigned PSetID) const {
715    return PSetID;
716  }
717
718  /// Get the weight in units of pressure for this register class.
719  virtual const RegClassWeight &getRegClassWeight(
720    const TargetRegisterClass *RC) const = 0;
721
722  /// Get the weight in units of pressure for this register unit.
723  virtual unsigned getRegUnitWeight(unsigned RegUnit) const = 0;
724
725  /// Get the number of dimensions of register pressure.
726  virtual unsigned getNumRegPressureSets() const = 0;
727
728  /// Get the name of this register unit pressure set.
729  virtual const char *getRegPressureSetName(unsigned Idx) const = 0;
730
731  /// Get the register unit pressure limit for this dimension.
732  /// This limit must be adjusted dynamically for reserved registers.
733  virtual unsigned getRegPressureSetLimit(const MachineFunction &MF,
734                                          unsigned Idx) const = 0;
735
736  /// Get the dimensions of register pressure impacted by this register class.
737  /// Returns a -1 terminated array of pressure set IDs.
738  virtual const int *getRegClassPressureSets(
739    const TargetRegisterClass *RC) const = 0;
740
741  /// Get the dimensions of register pressure impacted by this register unit.
742  /// Returns a -1 terminated array of pressure set IDs.
743  virtual const int *getRegUnitPressureSets(unsigned RegUnit) const = 0;
744
745  /// Get a list of 'hint' registers that the register allocator should try
746  /// first when allocating a physical register for the virtual register
747  /// VirtReg. These registers are effectively moved to the front of the
748  /// allocation order.
749  ///
750  /// The Order argument is the allocation order for VirtReg's register class
751  /// as returned from RegisterClassInfo::getOrder(). The hint registers must
752  /// come from Order, and they must not be reserved.
753  ///
754  /// The default implementation of this function can resolve
755  /// target-independent hints provided to MRI::setRegAllocationHint with
756  /// HintType == 0. Targets that override this function should defer to the
757  /// default implementation if they have no reason to change the allocation
758  /// order for VirtReg. There may be target-independent hints.
759  virtual void getRegAllocationHints(unsigned VirtReg,
760                                     ArrayRef<MCPhysReg> Order,
761                                     SmallVectorImpl<MCPhysReg> &Hints,
762                                     const MachineFunction &MF,
763                                     const VirtRegMap *VRM = nullptr,
764                                     const LiveRegMatrix *Matrix = nullptr)
765    const;
766
767  /// A callback to allow target a chance to update register allocation hints
768  /// when a register is "changed" (e.g. coalesced) to another register.
769  /// e.g. On ARM, some virtual registers should target register pairs,
770  /// if one of pair is coalesced to another register, the allocation hint of
771  /// the other half of the pair should be changed to point to the new register.
772  virtual void updateRegAllocHint(unsigned Reg, unsigned NewReg,
773                                  MachineFunction &MF) const {
774    // Do nothing.
775  }
776
777  /// Allow the target to reverse allocation order of local live ranges. This
778  /// will generally allocate shorter local live ranges first. For targets with
779  /// many registers, this could reduce regalloc compile time by a large
780  /// factor. It is disabled by default for three reasons:
781  /// (1) Top-down allocation is simpler and easier to debug for targets that
782  /// don't benefit from reversing the order.
783  /// (2) Bottom-up allocation could result in poor evicition decisions on some
784  /// targets affecting the performance of compiled code.
785  /// (3) Bottom-up allocation is no longer guaranteed to optimally color.
786  virtual bool reverseLocalAssignment() const { return false; }
787
788  /// Allow the target to override the cost of using a callee-saved register for
789  /// the first time. Default value of 0 means we will use a callee-saved
790  /// register if it is available.
791  virtual unsigned getCSRFirstUseCost() const { return 0; }
792
793  /// Returns true if the target requires (and can make use of) the register
794  /// scavenger.
795  virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
796    return false;
797  }
798
799  /// Returns true if the target wants to use frame pointer based accesses to
800  /// spill to the scavenger emergency spill slot.
801  virtual bool useFPForScavengingIndex(const MachineFunction &MF) const {
802    return true;
803  }
804
805  /// Returns true if the target requires post PEI scavenging of registers for
806  /// materializing frame index constants.
807  virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const {
808    return false;
809  }
810
811  /// Returns true if the target wants the LocalStackAllocation pass to be run
812  /// and virtual base registers used for more efficient stack access.
813  virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const {
814    return false;
815  }
816
817  /// Return true if target has reserved a spill slot in the stack frame of
818  /// the given function for the specified register. e.g. On x86, if the frame
819  /// register is required, the first fixed stack object is reserved as its
820  /// spill slot. This tells PEI not to create a new stack frame
821  /// object for the given register. It should be called only after
822  /// determineCalleeSaves().
823  virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg,
824                                    int &FrameIdx) const {
825    return false;
826  }
827
828  /// Returns true if the live-ins should be tracked after register allocation.
829  virtual bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const {
830    return false;
831  }
832
833  /// True if the stack can be realigned for the target.
834  virtual bool canRealignStack(const MachineFunction &MF) const;
835
836  /// True if storage within the function requires the stack pointer to be
837  /// aligned more than the normal calling convention calls for.
838  /// This cannot be overriden by the target, but canRealignStack can be
839  /// overridden.
840  bool needsStackRealignment(const MachineFunction &MF) const;
841
842  /// Get the offset from the referenced frame index in the instruction,
843  /// if there is one.
844  virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI,
845                                           int Idx) const {
846    return 0;
847  }
848
849  /// Returns true if the instruction's frame index reference would be better
850  /// served by a base register other than FP or SP.
851  /// Used by LocalStackFrameAllocation to determine which frame index
852  /// references it should create new base registers for.
853  virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
854    return false;
855  }
856
857  /// Insert defining instruction(s) for BaseReg to be a pointer to FrameIdx
858  /// before insertion point I.
859  virtual void materializeFrameBaseRegister(MachineBasicBlock *MBB,
860                                            unsigned BaseReg, int FrameIdx,
861                                            int64_t Offset) const {
862    llvm_unreachable("materializeFrameBaseRegister does not exist on this "
863                     "target");
864  }
865
866  /// Resolve a frame index operand of an instruction
867  /// to reference the indicated base register plus offset instead.
868  virtual void resolveFrameIndex(MachineInstr &MI, unsigned BaseReg,
869                                 int64_t Offset) const {
870    llvm_unreachable("resolveFrameIndex does not exist on this target");
871  }
872
873  /// Determine whether a given base register plus offset immediate is
874  /// encodable to resolve a frame index.
875  virtual bool isFrameOffsetLegal(const MachineInstr *MI, unsigned BaseReg,
876                                  int64_t Offset) const {
877    llvm_unreachable("isFrameOffsetLegal does not exist on this target");
878  }
879
880  /// Spill the register so it can be used by the register scavenger.
881  /// Return true if the register was spilled, false otherwise.
882  /// If this function does not spill the register, the scavenger
883  /// will instead spill it to the emergency spill slot.
884  ///
885  virtual bool saveScavengerRegister(MachineBasicBlock &MBB,
886                                     MachineBasicBlock::iterator I,
887                                     MachineBasicBlock::iterator &UseMI,
888                                     const TargetRegisterClass *RC,
889                                     unsigned Reg) const {
890    return false;
891  }
892
893  /// This method must be overriden to eliminate abstract frame indices from
894  /// instructions which may use them. The instruction referenced by the
895  /// iterator contains an MO_FrameIndex operand which must be eliminated by
896  /// this method. This method may modify or replace the specified instruction,
897  /// as long as it keeps the iterator pointing at the finished product.
898  /// SPAdj is the SP adjustment due to call frame setup instruction.
899  /// FIOperandNum is the FI operand number.
900  virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
901                                   int SPAdj, unsigned FIOperandNum,
902                                   RegScavenger *RS = nullptr) const = 0;
903
904  /// Return the assembly name for \p Reg.
905  virtual StringRef getRegAsmName(unsigned Reg) const {
906    // FIXME: We are assuming that the assembly name is equal to the TableGen
907    // name converted to lower case
908    //
909    // The TableGen name is the name of the definition for this register in the
910    // target's tablegen files.  For example, the TableGen name of
911    // def EAX : Register <...>; is "EAX"
912    return StringRef(getName(Reg));
913  }
914
915  //===--------------------------------------------------------------------===//
916  /// Subtarget Hooks
917
918  /// \brief SrcRC and DstRC will be morphed into NewRC if this returns true.
919  virtual bool shouldCoalesce(MachineInstr *MI,
920                              const TargetRegisterClass *SrcRC,
921                              unsigned SubReg,
922                              const TargetRegisterClass *DstRC,
923                              unsigned DstSubReg,
924                              const TargetRegisterClass *NewRC) const
925  { return true; }
926
927  //===--------------------------------------------------------------------===//
928  /// Debug information queries.
929
930  /// getFrameRegister - This method should return the register used as a base
931  /// for values allocated in the current stack frame.
932  virtual unsigned getFrameRegister(const MachineFunction &MF) const = 0;
933};
934
935
936//===----------------------------------------------------------------------===//
937//                           SuperRegClassIterator
938//===----------------------------------------------------------------------===//
939//
940// Iterate over the possible super-registers for a given register class. The
941// iterator will visit a list of pairs (Idx, Mask) corresponding to the
942// possible classes of super-registers.
943//
944// Each bit mask will have at least one set bit, and each set bit in Mask
945// corresponds to a SuperRC such that:
946//
947//   For all Reg in SuperRC: Reg:Idx is in RC.
948//
949// The iterator can include (O, RC->getSubClassMask()) as the first entry which
950// also satisfies the above requirement, assuming Reg:0 == Reg.
951//
952class SuperRegClassIterator {
953  const unsigned RCMaskWords;
954  unsigned SubReg;
955  const uint16_t *Idx;
956  const uint32_t *Mask;
957
958public:
959  /// Create a SuperRegClassIterator that visits all the super-register classes
960  /// of RC. When IncludeSelf is set, also include the (0, sub-classes) entry.
961  SuperRegClassIterator(const TargetRegisterClass *RC,
962                        const TargetRegisterInfo *TRI,
963                        bool IncludeSelf = false)
964    : RCMaskWords((TRI->getNumRegClasses() + 31) / 32),
965      SubReg(0),
966      Idx(RC->getSuperRegIndices()),
967      Mask(RC->getSubClassMask()) {
968    if (!IncludeSelf)
969      ++*this;
970  }
971
972  /// Returns true if this iterator is still pointing at a valid entry.
973  bool isValid() const { return Idx; }
974
975  /// Returns the current sub-register index.
976  unsigned getSubReg() const { return SubReg; }
977
978  /// Returns the bit mask of register classes that getSubReg() projects into
979  /// RC.
980  /// See TargetRegisterClass::getSubClassMask() for how to use it.
981  const uint32_t *getMask() const { return Mask; }
982
983  /// Advance iterator to the next entry.
984  void operator++() {
985    assert(isValid() && "Cannot move iterator past end.");
986    Mask += RCMaskWords;
987    SubReg = *Idx++;
988    if (!SubReg)
989      Idx = nullptr;
990  }
991};
992
993//===----------------------------------------------------------------------===//
994//                           BitMaskClassIterator
995//===----------------------------------------------------------------------===//
996/// This class encapuslates the logic to iterate over bitmask returned by
997/// the various RegClass related APIs.
998/// E.g., this class can be used to iterate over the subclasses provided by
999/// TargetRegisterClass::getSubClassMask or SuperRegClassIterator::getMask.
1000class BitMaskClassIterator {
1001  /// Total number of register classes.
1002  const unsigned NumRegClasses;
1003  /// Base index of CurrentChunk.
1004  /// In other words, the number of bit we read to get at the
1005  /// beginning of that chunck.
1006  unsigned Base;
1007  /// Adjust base index of CurrentChunk.
1008  /// Base index + how many bit we read within CurrentChunk.
1009  unsigned Idx;
1010  /// Current register class ID.
1011  unsigned ID;
1012  /// Mask we are iterating over.
1013  const uint32_t *Mask;
1014  /// Current chunk of the Mask we are traversing.
1015  uint32_t CurrentChunk;
1016
1017  /// Move ID to the next set bit.
1018  void moveToNextID() {
1019    // If the current chunk of memory is empty, move to the next one,
1020    // while making sure we do not go pass the number of register
1021    // classes.
1022    while (!CurrentChunk) {
1023      // Move to the next chunk.
1024      Base += 32;
1025      if (Base >= NumRegClasses) {
1026        ID = NumRegClasses;
1027        return;
1028      }
1029      CurrentChunk = *++Mask;
1030      Idx = Base;
1031    }
1032    // Otherwise look for the first bit set from the right
1033    // (representation of the class ID is big endian).
1034    // See getSubClassMask for more details on the representation.
1035    unsigned Offset = countTrailingZeros(CurrentChunk);
1036    // Add the Offset to the adjusted base number of this chunk: Idx.
1037    // This is the ID of the register class.
1038    ID = Idx + Offset;
1039
1040    // Consume the zeros, if any, and the bit we just read
1041    // so that we are at the right spot for the next call.
1042    // Do not do Offset + 1 because Offset may be 31 and 32
1043    // will be UB for the shift, though in that case we could
1044    // have make the chunk being equal to 0, but that would
1045    // have introduced a if statement.
1046    moveNBits(Offset);
1047    moveNBits(1);
1048  }
1049
1050  /// Move \p NumBits Bits forward in CurrentChunk.
1051  void moveNBits(unsigned NumBits) {
1052    assert(NumBits < 32 && "Undefined behavior spotted!");
1053    // Consume the bit we read for the next call.
1054    CurrentChunk >>= NumBits;
1055    // Adjust the base for the chunk.
1056    Idx += NumBits;
1057  }
1058
1059public:
1060  /// Create a BitMaskClassIterator that visits all the register classes
1061  /// represented by \p Mask.
1062  ///
1063  /// \pre \p Mask != nullptr
1064  BitMaskClassIterator(const uint32_t *Mask, const TargetRegisterInfo &TRI)
1065      : NumRegClasses(TRI.getNumRegClasses()), Base(0), Idx(0), ID(0),
1066        Mask(Mask), CurrentChunk(*Mask) {
1067    // Move to the first ID.
1068    moveToNextID();
1069  }
1070
1071  /// Returns true if this iterator is still pointing at a valid entry.
1072  bool isValid() const { return getID() != NumRegClasses; }
1073
1074  /// Returns the current register class ID.
1075  unsigned getID() const { return ID; }
1076
1077  /// Advance iterator to the next entry.
1078  void operator++() {
1079    assert(isValid() && "Cannot move iterator past end.");
1080    moveToNextID();
1081  }
1082};
1083
1084// This is useful when building IndexedMaps keyed on virtual registers
1085struct VirtReg2IndexFunctor : public std::unary_function<unsigned, unsigned> {
1086  unsigned operator()(unsigned Reg) const {
1087    return TargetRegisterInfo::virtReg2Index(Reg);
1088  }
1089};
1090
1091/// Prints virtual and physical registers with or without a TRI instance.
1092///
1093/// The format is:
1094///   %noreg          - NoRegister
1095///   %vreg5          - a virtual register.
1096///   %vreg5:sub_8bit - a virtual register with sub-register index (with TRI).
1097///   %EAX            - a physical register
1098///   %physreg17      - a physical register when no TRI instance given.
1099///
1100/// Usage: OS << PrintReg(Reg, TRI) << '\n';
1101Printable PrintReg(unsigned Reg, const TargetRegisterInfo *TRI = nullptr,
1102                   unsigned SubRegIdx = 0);
1103
1104/// Create Printable object to print register units on a \ref raw_ostream.
1105///
1106/// Register units are named after their root registers:
1107///
1108///   AL      - Single root.
1109///   FP0~ST7 - Dual roots.
1110///
1111/// Usage: OS << PrintRegUnit(Unit, TRI) << '\n';
1112Printable PrintRegUnit(unsigned Unit, const TargetRegisterInfo *TRI);
1113
1114/// \brief Create Printable object to print virtual registers and physical
1115/// registers on a \ref raw_ostream.
1116Printable PrintVRegOrUnit(unsigned VRegOrUnit, const TargetRegisterInfo *TRI);
1117
1118/// Create Printable object to print LaneBitmasks on a \ref raw_ostream.
1119Printable PrintLaneMask(LaneBitmask LaneMask);
1120
1121} // End llvm namespace
1122
1123#endif
1124