TargetRegisterInfo.h revision f8c7394781f7cf27ac52ca087e289436d36844da
1//=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes an abstract interface used to get information about a
11// target machines register file.  This information is used for a variety of
12// purposed, especially register allocation.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_TARGET_TARGETREGISTERINFO_H
17#define LLVM_TARGET_TARGETREGISTERINFO_H
18
19#include "llvm/CodeGen/MachineBasicBlock.h"
20#include "llvm/CodeGen/ValueTypes.h"
21#include "llvm/ADT/DenseSet.h"
22#include <cassert>
23#include <functional>
24
25namespace llvm {
26
27class BitVector;
28class MachineFunction;
29class MachineMove;
30class RegScavenger;
31
32/// TargetRegisterDesc - This record contains all of the information known about
33/// a particular register.  The AliasSet field (if not null) contains a pointer
34/// to a Zero terminated array of registers that this register aliases.  This is
35/// needed for architectures like X86 which have AL alias AX alias EAX.
36/// Registers that this does not apply to simply should set this to null.
37/// The SubRegs field is a zero terminated array of registers that are
38/// sub-registers of the specific register, e.g. AL, AH are sub-registers of AX.
39/// The SuperRegs field is a zero terminated array of registers that are
40/// super-registers of the specific register, e.g. RAX, EAX, are super-registers
41/// of AX.
42///
43struct TargetRegisterDesc {
44  const char     *AsmName;      // Assembly language name for the register
45  const char     *Name;         // Printable name for the reg (for debugging)
46  const unsigned *AliasSet;     // Register Alias Set, described above
47  const unsigned *SubRegs;      // Sub-register set, described above
48  const unsigned *SuperRegs;    // Super-register set, described above
49};
50
51class TargetRegisterClass {
52public:
53  typedef const unsigned* iterator;
54  typedef const unsigned* const_iterator;
55
56  typedef const MVT* vt_iterator;
57  typedef const TargetRegisterClass* const * sc_iterator;
58private:
59  unsigned ID;
60  const char *Name;
61  bool  isSubClass;
62  const vt_iterator VTs;
63  const sc_iterator SubClasses;
64  const sc_iterator SuperClasses;
65  const sc_iterator SubRegClasses;
66  const sc_iterator SuperRegClasses;
67  const unsigned RegSize, Alignment;    // Size & Alignment of register in bytes
68  const int CopyCost;
69  const iterator RegsBegin, RegsEnd;
70  DenseSet<unsigned> RegSet;
71public:
72  TargetRegisterClass(unsigned id,
73                      const char *name,
74                      const MVT *vts,
75                      const TargetRegisterClass * const *subcs,
76                      const TargetRegisterClass * const *supcs,
77                      const TargetRegisterClass * const *subregcs,
78                      const TargetRegisterClass * const *superregcs,
79                      unsigned RS, unsigned Al, int CC,
80                      iterator RB, iterator RE)
81    : ID(id), Name(name), VTs(vts), SubClasses(subcs), SuperClasses(supcs),
82    SubRegClasses(subregcs), SuperRegClasses(superregcs),
83    RegSize(RS), Alignment(Al), CopyCost(CC), RegsBegin(RB), RegsEnd(RE) {
84      for (iterator I = RegsBegin, E = RegsEnd; I != E; ++I)
85        RegSet.insert(*I);
86    }
87  virtual ~TargetRegisterClass() {}     // Allow subclasses
88
89  /// getID() - Return the register class ID number.
90  ///
91  unsigned getID() const { return ID; }
92
93  /// getName() - Return the register class name for debugging.
94  ///
95  const char *getName() const { return Name; }
96
97  /// begin/end - Return all of the registers in this class.
98  ///
99  iterator       begin() const { return RegsBegin; }
100  iterator         end() const { return RegsEnd; }
101
102  /// getNumRegs - Return the number of registers in this class.
103  ///
104  unsigned getNumRegs() const { return (unsigned)(RegsEnd-RegsBegin); }
105
106  /// getRegister - Return the specified register in the class.
107  ///
108  unsigned getRegister(unsigned i) const {
109    assert(i < getNumRegs() && "Register number out of range!");
110    return RegsBegin[i];
111  }
112
113  /// contains - Return true if the specified register is included in this
114  /// register class.
115  bool contains(unsigned Reg) const {
116    return RegSet.count(Reg);
117  }
118
119  /// hasType - return true if this TargetRegisterClass has the ValueType vt.
120  ///
121  bool hasType(MVT vt) const {
122    for(int i = 0; VTs[i] != MVT::Other; ++i)
123      if (VTs[i] == vt)
124        return true;
125    return false;
126  }
127
128  /// vt_begin / vt_end - Loop over all of the value types that can be
129  /// represented by values in this register class.
130  vt_iterator vt_begin() const {
131    return VTs;
132  }
133
134  vt_iterator vt_end() const {
135    vt_iterator I = VTs;
136    while (*I != MVT::Other) ++I;
137    return I;
138  }
139
140  /// subregclasses_begin / subregclasses_end - Loop over all of
141  /// the subreg register classes of this register class.
142  sc_iterator subregclasses_begin() const {
143    return SubRegClasses;
144  }
145
146  sc_iterator subregclasses_end() const {
147    sc_iterator I = SubRegClasses;
148    while (*I != NULL) ++I;
149    return I;
150  }
151
152  /// superregclasses_begin / superregclasses_end - Loop over all of
153  /// the superreg register classes of this register class.
154  sc_iterator superregclasses_begin() const {
155    return SuperRegClasses;
156  }
157
158  sc_iterator superregclasses_end() const {
159    sc_iterator I = SuperRegClasses;
160    while (*I != NULL) ++I;
161    return I;
162  }
163
164  /// hasSubClass - return true if the the specified TargetRegisterClass
165  /// is a proper subset of this TargetRegisterClass.
166  bool hasSubClass(const TargetRegisterClass *cs) const {
167    for (int i = 0; SubClasses[i] != NULL; ++i)
168      if (SubClasses[i] == cs)
169        return true;
170    return false;
171  }
172
173  /// subclasses_begin / subclasses_end - Loop over all of the classes
174  /// that are proper subsets of this register class.
175  sc_iterator subclasses_begin() const {
176    return SubClasses;
177  }
178
179  sc_iterator subclasses_end() const {
180    sc_iterator I = SubClasses;
181    while (*I != NULL) ++I;
182    return I;
183  }
184
185  /// hasSuperClass - return true if the specified TargetRegisterClass is a
186  /// proper superset of this TargetRegisterClass.
187  bool hasSuperClass(const TargetRegisterClass *cs) const {
188    for (int i = 0; SuperClasses[i] != NULL; ++i)
189      if (SuperClasses[i] == cs)
190        return true;
191    return false;
192  }
193
194  /// superclasses_begin / superclasses_end - Loop over all of the classes
195  /// that are proper supersets of this register class.
196  sc_iterator superclasses_begin() const {
197    return SuperClasses;
198  }
199
200  sc_iterator superclasses_end() const {
201    sc_iterator I = SuperClasses;
202    while (*I != NULL) ++I;
203    return I;
204  }
205
206  /// isASubClass - return true if this TargetRegisterClass is a subset
207  /// class of at least one other TargetRegisterClass.
208  bool isASubClass() const {
209    return SuperClasses[0] != 0;
210  }
211
212  /// allocation_order_begin/end - These methods define a range of registers
213  /// which specify the registers in this class that are valid to register
214  /// allocate, and the preferred order to allocate them in.  For example,
215  /// callee saved registers should be at the end of the list, because it is
216  /// cheaper to allocate caller saved registers.
217  ///
218  /// These methods take a MachineFunction argument, which can be used to tune
219  /// the allocatable registers based on the characteristics of the function.
220  /// One simple example is that the frame pointer register can be used if
221  /// frame-pointer-elimination is performed.
222  ///
223  /// By default, these methods return all registers in the class.
224  ///
225  virtual iterator allocation_order_begin(const MachineFunction &MF) const {
226    return begin();
227  }
228  virtual iterator allocation_order_end(const MachineFunction &MF)   const {
229    return end();
230  }
231
232
233
234  /// getSize - Return the size of the register in bytes, which is also the size
235  /// of a stack slot allocated to hold a spilled copy of this register.
236  unsigned getSize() const { return RegSize; }
237
238  /// getAlignment - Return the minimum required alignment for a register of
239  /// this class.
240  unsigned getAlignment() const { return Alignment; }
241
242  /// getCopyCost - Return the cost of copying a value between two registers in
243  /// this class. A negative number means the register class is very expensive
244  /// to copy e.g. status flag register classes.
245  int getCopyCost() const { return CopyCost; }
246};
247
248
249/// TargetRegisterInfo base class - We assume that the target defines a static
250/// array of TargetRegisterDesc objects that represent all of the machine
251/// registers that the target has.  As such, we simply have to track a pointer
252/// to this array so that we can turn register number into a register
253/// descriptor.
254///
255class TargetRegisterInfo {
256protected:
257  const unsigned* SubregHash;
258  const unsigned SubregHashSize;
259  const unsigned* SuperregHash;
260  const unsigned SuperregHashSize;
261  const unsigned* AliasesHash;
262  const unsigned AliasesHashSize;
263public:
264  typedef const TargetRegisterClass * const * regclass_iterator;
265private:
266  const TargetRegisterDesc *Desc;             // Pointer to the descriptor array
267  unsigned NumRegs;                           // Number of entries in the array
268
269  regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses
270
271  int CallFrameSetupOpcode, CallFrameDestroyOpcode;
272protected:
273  TargetRegisterInfo(const TargetRegisterDesc *D, unsigned NR,
274                     regclass_iterator RegClassBegin,
275                     regclass_iterator RegClassEnd,
276                     int CallFrameSetupOpcode = -1,
277                     int CallFrameDestroyOpcode = -1,
278                     const unsigned* subregs = 0,
279                     const unsigned subregsize = 0,
280		     const unsigned* superregs = 0,
281		     const unsigned superregsize = 0,
282		     const unsigned* aliases = 0,
283		     const unsigned aliasessize = 0);
284  virtual ~TargetRegisterInfo();
285public:
286
287  enum {                        // Define some target independent constants
288    /// NoRegister - This physical register is not a real target register.  It
289    /// is useful as a sentinal.
290    NoRegister = 0,
291
292    /// FirstVirtualRegister - This is the first register number that is
293    /// considered to be a 'virtual' register, which is part of the SSA
294    /// namespace.  This must be the same for all targets, which means that each
295    /// target is limited to 1024 registers.
296    FirstVirtualRegister = 1024
297  };
298
299  /// isPhysicalRegister - Return true if the specified register number is in
300  /// the physical register namespace.
301  static bool isPhysicalRegister(unsigned Reg) {
302    assert(Reg && "this is not a register!");
303    return Reg < FirstVirtualRegister;
304  }
305
306  /// isVirtualRegister - Return true if the specified register number is in
307  /// the virtual register namespace.
308  static bool isVirtualRegister(unsigned Reg) {
309    assert(Reg && "this is not a register!");
310    return Reg >= FirstVirtualRegister;
311  }
312
313  /// getPhysicalRegisterRegClass - Returns the Register Class of a physical
314  /// register of the given type. If type is MVT::Other, then just return any
315  /// register class the register belongs to.
316  virtual const TargetRegisterClass *
317    getPhysicalRegisterRegClass(unsigned Reg, MVT VT = MVT::Other) const;
318
319  /// getAllocatableSet - Returns a bitset indexed by register number
320  /// indicating if a register is allocatable or not. If a register class is
321  /// specified, returns the subset for the class.
322  BitVector getAllocatableSet(MachineFunction &MF,
323                              const TargetRegisterClass *RC = NULL) const;
324
325  const TargetRegisterDesc &operator[](unsigned RegNo) const {
326    assert(RegNo < NumRegs &&
327           "Attempting to access record for invalid register number!");
328    return Desc[RegNo];
329  }
330
331  /// Provide a get method, equivalent to [], but more useful if we have a
332  /// pointer to this object.
333  ///
334  const TargetRegisterDesc &get(unsigned RegNo) const {
335    return operator[](RegNo);
336  }
337
338  /// getAliasSet - Return the set of registers aliased by the specified
339  /// register, or a null list of there are none.  The list returned is zero
340  /// terminated.
341  ///
342  const unsigned *getAliasSet(unsigned RegNo) const {
343    return get(RegNo).AliasSet;
344  }
345
346  /// getSubRegisters - Return the list of registers that are sub-registers of
347  /// the specified register, or a null list of there are none. The list
348  /// returned is zero terminated and sorted according to super-sub register
349  /// relations. e.g. X86::RAX's sub-register list is EAX, AX, AL, AH.
350  ///
351  const unsigned *getSubRegisters(unsigned RegNo) const {
352    return get(RegNo).SubRegs;
353  }
354
355  /// getSuperRegisters - Return the list of registers that are super-registers
356  /// of the specified register, or a null list of there are none. The list
357  /// returned is zero terminated and sorted according to super-sub register
358  /// relations. e.g. X86::AL's super-register list is RAX, EAX, AX.
359  ///
360  const unsigned *getSuperRegisters(unsigned RegNo) const {
361    return get(RegNo).SuperRegs;
362  }
363
364  /// getAsmName - Return the symbolic target-specific name for the
365  /// specified physical register.
366  const char *getAsmName(unsigned RegNo) const {
367    return get(RegNo).AsmName;
368  }
369
370  /// getName - Return the human-readable symbolic target-specific name for the
371  /// specified physical register.
372  const char *getName(unsigned RegNo) const {
373    return get(RegNo).Name;
374  }
375
376  /// getNumRegs - Return the number of registers this target has (useful for
377  /// sizing arrays holding per register information)
378  unsigned getNumRegs() const {
379    return NumRegs;
380  }
381
382  /// areAliases - Returns true if the two registers alias each other, false
383  /// otherwise
384  bool areAliases(unsigned regA, unsigned regB) const {
385    size_t index = (regA + regB * 37) & (AliasesHashSize-1);
386    unsigned ProbeAmt = 0;
387    while (AliasesHash[index*2] != 0 &&
388	   AliasesHash[index*2+1] != 0) {
389      if (AliasesHash[index*2] == regA && AliasesHash[index*2+1] == regB)
390	return true;
391
392      index = (index + ProbeAmt) & (AliasesHashSize-1);
393      ProbeAmt += 2;
394    }
395
396    return false;
397  }
398
399  /// regsOverlap - Returns true if the two registers are equal or alias each
400  /// other. The registers may be virtual register.
401  bool regsOverlap(unsigned regA, unsigned regB) const {
402    if (regA == regB)
403      return true;
404
405    if (isVirtualRegister(regA) || isVirtualRegister(regB))
406      return false;
407    return areAliases(regA, regB);
408  }
409
410  /// isSubRegister - Returns true if regB is a sub-register of regA.
411  ///
412  bool isSubRegister(unsigned regA, unsigned regB) const {
413    // SubregHash is a simple quadratically probed hash table.
414    size_t index = (regA + regB * 37) & (SubregHashSize-1);
415    unsigned ProbeAmt = 2;
416    while (SubregHash[index*2] != 0 &&
417           SubregHash[index*2+1] != 0) {
418      if (SubregHash[index*2] == regA && SubregHash[index*2+1] == regB)
419        return true;
420
421      index = (index + ProbeAmt) & (SubregHashSize-1);
422      ProbeAmt += 2;
423    }
424
425    return false;
426  }
427
428  /// isSuperRegister - Returns true if regB is a super-register of regA.
429  ///
430  bool isSuperRegister(unsigned regA, unsigned regB) const {
431    // SuperregHash is a simple quadratically probed hash table.
432    size_t index = (regA + regB * 37) & (SuperregHashSize-1);
433    unsigned ProbeAmt = 2;
434    while (SuperregHash[index*2] != 0 &&
435           SuperregHash[index*2+1] != 0) {
436      if (SuperregHash[index*2] == regA && SuperregHash[index*2+1] == regB)
437        return true;
438
439      index = (index + ProbeAmt) & (SuperregHashSize-1);
440      ProbeAmt += 2;
441    }
442
443    return false;
444  }
445
446  /// getCalleeSavedRegs - Return a null-terminated list of all of the
447  /// callee saved registers on this target. The register should be in the
448  /// order of desired callee-save stack frame offset. The first register is
449  /// closed to the incoming stack pointer if stack grows down, and vice versa.
450  virtual const unsigned* getCalleeSavedRegs(const MachineFunction *MF = 0)
451                                                                      const = 0;
452
453  /// getCalleeSavedRegClasses - Return a null-terminated list of the preferred
454  /// register classes to spill each callee saved register with.  The order and
455  /// length of this list match the getCalleeSaveRegs() list.
456  virtual const TargetRegisterClass* const *getCalleeSavedRegClasses(
457                                            const MachineFunction *MF) const =0;
458
459  /// getReservedRegs - Returns a bitset indexed by physical register number
460  /// indicating if a register is a special register that has particular uses
461  /// and should be considered unavailable at all times, e.g. SP, RA. This is
462  /// used by register scavenger to determine what registers are free.
463  virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
464
465  /// getSubReg - Returns the physical register number of sub-register "Index"
466  /// for physical register RegNo. Return zero if the sub-register does not
467  /// exist.
468  virtual unsigned getSubReg(unsigned RegNo, unsigned Index) const = 0;
469
470  //===--------------------------------------------------------------------===//
471  // Register Class Information
472  //
473
474  /// Register class iterators
475  ///
476  regclass_iterator regclass_begin() const { return RegClassBegin; }
477  regclass_iterator regclass_end() const { return RegClassEnd; }
478
479  unsigned getNumRegClasses() const {
480    return (unsigned)(regclass_end()-regclass_begin());
481  }
482
483  /// getRegClass - Returns the register class associated with the enumeration
484  /// value.  See class TargetOperandInfo.
485  const TargetRegisterClass *getRegClass(unsigned i) const {
486    assert(i <= getNumRegClasses() && "Register Class ID out of range");
487    return i ? RegClassBegin[i - 1] : NULL;
488  }
489
490  /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
491  /// values.
492  virtual const TargetRegisterClass *getPointerRegClass() const {
493    assert(0 && "Target didn't implement getPointerRegClass!");
494    return 0; // Must return a value in order to compile with VS 2005
495  }
496
497  /// getCrossCopyRegClass - Returns a legal register class to copy a register
498  /// in the specified class to or from. Returns NULL if it is possible to copy
499  /// between a two registers of the specified class.
500  virtual const TargetRegisterClass *
501  getCrossCopyRegClass(const TargetRegisterClass *RC) const {
502    return NULL;
503  }
504
505  /// targetHandlesStackFrameRounding - Returns true if the target is
506  /// responsible for rounding up the stack frame (probably at emitPrologue
507  /// time).
508  virtual bool targetHandlesStackFrameRounding() const {
509    return false;
510  }
511
512  /// requiresRegisterScavenging - returns true if the target requires (and can
513  /// make use of) the register scavenger.
514  virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
515    return false;
516  }
517
518  /// hasFP - Return true if the specified function should have a dedicated
519  /// frame pointer register. For most targets this is true only if the function
520  /// has variable sized allocas or if frame pointer elimination is disabled.
521  virtual bool hasFP(const MachineFunction &MF) const = 0;
522
523  // hasReservedCallFrame - Under normal circumstances, when a frame pointer is
524  // not required, we reserve argument space for call sites in the function
525  // immediately on entry to the current function. This eliminates the need for
526  // add/sub sp brackets around call sites. Returns true if the call frame is
527  // included as part of the stack frame.
528  virtual bool hasReservedCallFrame(MachineFunction &MF) const {
529    return !hasFP(MF);
530  }
531
532  // needsStackRealignment - true if storage within the function requires the
533  // stack pointer to be aligned more than the normal calling convention calls
534  // for.
535  virtual bool needsStackRealignment(const MachineFunction &MF) const {
536    return false;
537  }
538
539  /// getCallFrameSetup/DestroyOpcode - These methods return the opcode of the
540  /// frame setup/destroy instructions if they exist (-1 otherwise).  Some
541  /// targets use pseudo instructions in order to abstract away the difference
542  /// between operating with a frame pointer and operating without, through the
543  /// use of these two instructions.
544  ///
545  int getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
546  int getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
547
548  /// eliminateCallFramePseudoInstr - This method is called during prolog/epilog
549  /// code insertion to eliminate call frame setup and destroy pseudo
550  /// instructions (but only if the Target is using them).  It is responsible
551  /// for eliminating these instructions, replacing them with concrete
552  /// instructions.  This method need only be implemented if using call frame
553  /// setup/destroy pseudo instructions.
554  ///
555  virtual void
556  eliminateCallFramePseudoInstr(MachineFunction &MF,
557                                MachineBasicBlock &MBB,
558                                MachineBasicBlock::iterator MI) const {
559    assert(getCallFrameSetupOpcode()== -1 && getCallFrameDestroyOpcode()== -1 &&
560           "eliminateCallFramePseudoInstr must be implemented if using"
561           " call frame setup/destroy pseudo instructions!");
562    assert(0 && "Call Frame Pseudo Instructions do not exist on this target!");
563  }
564
565  /// processFunctionBeforeCalleeSavedScan - This method is called immediately
566  /// before PrologEpilogInserter scans the physical registers used to determine
567  /// what callee saved registers should be spilled. This method is optional.
568  virtual void processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
569                                                RegScavenger *RS = NULL) const {
570
571  }
572
573  /// processFunctionBeforeFrameFinalized - This method is called immediately
574  /// before the specified functions frame layout (MF.getFrameInfo()) is
575  /// finalized.  Once the frame is finalized, MO_FrameIndex operands are
576  /// replaced with direct constants.  This method is optional.
577  ///
578  virtual void processFunctionBeforeFrameFinalized(MachineFunction &MF) const {
579  }
580
581  /// eliminateFrameIndex - This method must be overriden to eliminate abstract
582  /// frame indices from instructions which may use them.  The instruction
583  /// referenced by the iterator contains an MO_FrameIndex operand which must be
584  /// eliminated by this method.  This method may modify or replace the
585  /// specified instruction, as long as it keeps the iterator pointing the the
586  /// finished product. SPAdj is the SP adjustment due to call frame setup
587  /// instruction.
588  virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
589                                   int SPAdj, RegScavenger *RS=NULL) const = 0;
590
591  /// emitProlog/emitEpilog - These methods insert prolog and epilog code into
592  /// the function.
593  virtual void emitPrologue(MachineFunction &MF) const = 0;
594  virtual void emitEpilogue(MachineFunction &MF,
595                            MachineBasicBlock &MBB) const = 0;
596
597  //===--------------------------------------------------------------------===//
598  /// Debug information queries.
599
600  /// getDwarfRegNum - Map a target register to an equivalent dwarf register
601  /// number.  Returns -1 if there is no equivalent value.  The second
602  /// parameter allows targets to use different numberings for EH info and
603  /// debugging info.
604  virtual int getDwarfRegNum(unsigned RegNum, bool isEH) const = 0;
605
606  /// getFrameRegister - This method should return the register used as a base
607  /// for values allocated in the current stack frame.
608  virtual unsigned getFrameRegister(MachineFunction &MF) const = 0;
609
610  /// getFrameIndexOffset - Returns the displacement from the frame register to
611  /// the stack frame of the specified index.
612  virtual int getFrameIndexOffset(MachineFunction &MF, int FI) const;
613
614  /// getRARegister - This method should return the register where the return
615  /// address can be found.
616  virtual unsigned getRARegister() const = 0;
617
618  /// getInitialFrameState - Returns a list of machine moves that are assumed
619  /// on entry to all functions.  Note that LabelID is ignored (assumed to be
620  /// the beginning of the function.)
621  virtual void getInitialFrameState(std::vector<MachineMove> &Moves) const;
622};
623
624// This is useful when building IndexedMaps keyed on virtual registers
625struct VirtReg2IndexFunctor : std::unary_function<unsigned, unsigned> {
626  unsigned operator()(unsigned Reg) const {
627    return Reg - TargetRegisterInfo::FirstVirtualRegister;
628  }
629};
630
631} // End llvm namespace
632
633#endif
634