1de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar//===- LowerTypeTests.h - type metadata lowering pass -----------*- C++ -*-===//
2ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines//
3ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines//                     The LLVM Compiler Infrastructure
4ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines//
5ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines// This file is distributed under the University of Illinois Open Source
6ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines// License. See LICENSE.TXT for details.
7ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines//
8ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines//===----------------------------------------------------------------------===//
9ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines//
10de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar// This file defines parts of the type test lowering pass implementation that
11de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar// may be usefully unit tested.
12ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines//
13ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines//===----------------------------------------------------------------------===//
14ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
15de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar#ifndef LLVM_TRANSFORMS_IPO_LOWERTYPETESTS_H
16de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar#define LLVM_TRANSFORMS_IPO_LOWERTYPETESTS_H
17ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
18ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines#include "llvm/ADT/DenseMap.h"
19ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines#include "llvm/ADT/SmallVector.h"
20de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar#include "llvm/IR/Module.h"
21de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar#include "llvm/IR/PassManager.h"
22ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
23de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar#include <cstdint>
24de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar#include <cstring>
25ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines#include <limits>
26ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines#include <set>
27ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines#include <vector>
28ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
29ebe69fe11e48d322045d5949c83283927a0d790bStephen Hinesnamespace llvm {
30ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
31ebe69fe11e48d322045d5949c83283927a0d790bStephen Hinesclass DataLayout;
32f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainarclass GlobalObject;
33ebe69fe11e48d322045d5949c83283927a0d790bStephen Hinesclass Value;
34f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainarclass raw_ostream;
35ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
36de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainarnamespace lowertypetests {
37de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
38ebe69fe11e48d322045d5949c83283927a0d790bStephen Hinesstruct BitSetInfo {
394c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar  // The indices of the set bits in the bitset.
404c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar  std::set<uint64_t> Bits;
41ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
42ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  // The byte offset into the combined global represented by the bitset.
43ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  uint64_t ByteOffset;
44ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
45ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  // The size of the bitset in bits.
46ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  uint64_t BitSize;
47ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
48ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  // Log2 alignment of the bit set relative to the combined global.
49ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  // For example, a log2 alignment of 3 means that bits in the bitset
50ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  // represent addresses 8 bytes apart.
51ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  unsigned AlignLog2;
52ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
53ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  bool isSingleOffset() const {
544c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar    return Bits.size() == 1;
55ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  }
56ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
57ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  bool isAllOnes() const {
584c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar    return Bits.size() == BitSize;
59ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  }
60ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
61ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  bool containsGlobalOffset(uint64_t Offset) const;
62ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
634c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar  bool containsValue(const DataLayout &DL,
64f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar                     const DenseMap<GlobalObject *, uint64_t> &GlobalLayout,
65ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines                     Value *V, uint64_t COffset = 0) const;
66f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar
67f3ef5332fa3f4d5ec72c178a2b19dac363a19383Pirama Arumuga Nainar  void print(raw_ostream &OS) const;
68ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines};
69ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
70ebe69fe11e48d322045d5949c83283927a0d790bStephen Hinesstruct BitSetBuilder {
71ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  SmallVector<uint64_t, 16> Offsets;
72ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  uint64_t Min, Max;
73ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
74ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  BitSetBuilder() : Min(std::numeric_limits<uint64_t>::max()), Max(0) {}
75ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
76ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  void addOffset(uint64_t Offset) {
77ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines    if (Min > Offset)
78ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines      Min = Offset;
79ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines    if (Max < Offset)
80ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines      Max = Offset;
81ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
82ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines    Offsets.push_back(Offset);
83ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  }
84ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
85ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  BitSetInfo build();
86ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines};
87ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
88ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines/// This class implements a layout algorithm for globals referenced by bit sets
89ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines/// that tries to keep members of small bit sets together. This can
90ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines/// significantly reduce bit set sizes in many cases.
91ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines///
92ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines/// It works by assembling fragments of layout from sets of referenced globals.
93ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines/// Each set of referenced globals causes the algorithm to create a new
94ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines/// fragment, which is assembled by appending each referenced global in the set
95ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines/// into the fragment. If a referenced global has already been referenced by an
96ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines/// fragment created earlier, we instead delete that fragment and append its
97ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines/// contents into the fragment we are assembling.
98ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines///
99ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines/// By starting with the smallest fragments, we minimize the size of the
100ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines/// fragments that are copied into larger fragments. This is most intuitively
101ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines/// thought about when considering the case where the globals are virtual tables
102ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines/// and the bit sets represent their derived classes: in a single inheritance
103ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines/// hierarchy, the optimum layout would involve a depth-first search of the
104ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines/// class hierarchy (and in fact the computed layout ends up looking a lot like
105ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines/// a DFS), but a naive DFS would not work well in the presence of multiple
106ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines/// inheritance. This aspect of the algorithm ends up fitting smaller
107ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines/// hierarchies inside larger ones where that would be beneficial.
108ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines///
109ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines/// For example, consider this class hierarchy:
110ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines///
111ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines/// A       B
112ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines///   \   / | \
113ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines///     C   D   E
114ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines///
115ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines/// We have five bit sets: bsA (A, C), bsB (B, C, D, E), bsC (C), bsD (D) and
116ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines/// bsE (E). If we laid out our objects by DFS traversing B followed by A, our
117ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines/// layout would be {B, C, D, E, A}. This is optimal for bsB as it needs to
118ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines/// cover the only 4 objects in its hierarchy, but not for bsA as it needs to
119ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines/// cover 5 objects, i.e. the entire layout. Our algorithm proceeds as follows:
120ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines///
121ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines/// Add bsC, fragments {{C}}
122ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines/// Add bsD, fragments {{C}, {D}}
123ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines/// Add bsE, fragments {{C}, {D}, {E}}
124ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines/// Add bsA, fragments {{A, C}, {D}, {E}}
125ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines/// Add bsB, fragments {{B, A, C, D, E}}
126ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines///
127ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines/// This layout is optimal for bsA, as it now only needs to cover two (i.e. 3
128ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines/// fewer) objects, at the cost of bsB needing to cover 1 more object.
129ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines///
130ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines/// The bit set lowering pass assigns an object index to each object that needs
131ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines/// to be laid out, and calls addFragment for each bit set passing the object
132ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines/// indices of its referenced globals. It then assembles a layout from the
133ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines/// computed layout in the Fragments field.
134ebe69fe11e48d322045d5949c83283927a0d790bStephen Hinesstruct GlobalLayoutBuilder {
135ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  /// The computed layout. Each element of this vector contains a fragment of
136ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  /// layout (which may be empty) consisting of object indices.
137ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  std::vector<std::vector<uint64_t>> Fragments;
138ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
139ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  /// Mapping from object index to fragment index.
140ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  std::vector<uint64_t> FragmentMap;
141ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
142ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  GlobalLayoutBuilder(uint64_t NumObjects)
143ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines      : Fragments(1), FragmentMap(NumObjects) {}
144ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
145ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  /// Add F to the layout while trying to keep its indices contiguous.
146ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  /// If a previously seen fragment uses any of F's indices, that
147ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  /// fragment will be laid out inside F.
148ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines  void addFragment(const std::set<uint64_t> &F);
149ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines};
150ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
1514c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar/// This class is used to build a byte array containing overlapping bit sets. By
1524c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar/// loading from indexed offsets into the byte array and applying a mask, a
1534c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar/// program can test bits from the bit set with a relatively short instruction
1544c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar/// sequence. For example, suppose we have 15 bit sets to lay out:
1554c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar///
1564c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar/// A (16 bits), B (15 bits), C (14 bits), D (13 bits), E (12 bits),
1574c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar/// F (11 bits), G (10 bits), H (9 bits), I (7 bits), J (6 bits), K (5 bits),
1584c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar/// L (4 bits), M (3 bits), N (2 bits), O (1 bit)
1594c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar///
1604c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar/// These bits can be laid out in a 16-byte array like this:
1614c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar///
1624c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar///       Byte Offset
1634c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar///     0123456789ABCDEF
1644c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar/// Bit
1654c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar///   7 HHHHHHHHHIIIIIII
1664c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar///   6 GGGGGGGGGGJJJJJJ
1674c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar///   5 FFFFFFFFFFFKKKKK
1684c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar///   4 EEEEEEEEEEEELLLL
1694c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar///   3 DDDDDDDDDDDDDMMM
1704c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar///   2 CCCCCCCCCCCCCCNN
1714c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar///   1 BBBBBBBBBBBBBBBO
1724c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar///   0 AAAAAAAAAAAAAAAA
1734c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar///
1744c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar/// For example, to test bit X of A, we evaluate ((bits[X] & 1) != 0), or to
1754c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar/// test bit X of I, we evaluate ((bits[9 + X] & 0x80) != 0). This can be done
1764c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar/// in 1-2 machine instructions on x86, or 4-6 instructions on ARM.
1774c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar///
1784c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar/// This is a byte array, rather than (say) a 2-byte array or a 4-byte array,
1794c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar/// because for one thing it gives us better packing (the more bins there are,
1804c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar/// the less evenly they will be filled), and for another, the instruction
1814c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar/// sequences can be slightly shorter, both on x86 and ARM.
1824c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainarstruct ByteArrayBuilder {
1834c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar  /// The byte array built so far.
1844c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar  std::vector<uint8_t> Bytes;
1854c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar
1864c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar  enum { BitsPerByte = 8 };
1874c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar
1884c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar  /// The number of bytes allocated so far for each of the bits.
1894c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar  uint64_t BitAllocs[BitsPerByte];
1904c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar
1914c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar  ByteArrayBuilder() {
1924c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar    memset(BitAllocs, 0, sizeof(BitAllocs));
1934c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar  }
1944c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar
1954c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar  /// Allocate BitSize bits in the byte array where Bits contains the bits to
1964c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar  /// set. AllocByteOffset is set to the offset within the byte array and
1974c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar  /// AllocMask is set to the bitmask for those bits. This uses the LPT (Longest
1984c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar  /// Processing Time) multiprocessor scheduling algorithm to lay out the bits
1994c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar  /// efficiently; the pass allocates bit sets in decreasing size order.
2004c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar  void allocate(const std::set<uint64_t> &Bits, uint64_t BitSize,
2014c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar                uint64_t &AllocByteOffset, uint8_t &AllocMask);
2024c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar};
2034c5e43da7792f75567b693105cc53e3f1992ad98Pirama Arumuga Nainar
204de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar} // end namespace lowertypetests
205de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
206de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainarclass LowerTypeTestsPass : public PassInfoMixin<LowerTypeTestsPass> {
207de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainarpublic:
208de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar  PreservedAnalyses run(Module &M, AnalysisManager<Module> &AM);
209de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar};
210de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar
211de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar} // end namespace llvm
212ebe69fe11e48d322045d5949c83283927a0d790bStephen Hines
213de2d8694e25a814696358e95141f4b1aa4d8847ePirama Arumuga Nainar#endif // LLVM_TRANSFORMS_IPO_LOWERTYPETESTS_H
214