1//===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the primary stateless implementation of the
11// Alias Analysis interface that implements identities (two different
12// globals cannot alias, etc), but does no stateful analysis.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/BasicAliasAnalysis.h"
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/ADT/Statistic.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/CFG.h"
21#include "llvm/Analysis/CaptureTracking.h"
22#include "llvm/Analysis/InstructionSimplify.h"
23#include "llvm/Analysis/LoopInfo.h"
24#include "llvm/Analysis/MemoryBuiltins.h"
25#include "llvm/Analysis/ValueTracking.h"
26#include "llvm/Analysis/AssumptionCache.h"
27#include "llvm/IR/Constants.h"
28#include "llvm/IR/DataLayout.h"
29#include "llvm/IR/DerivedTypes.h"
30#include "llvm/IR/Dominators.h"
31#include "llvm/IR/GlobalAlias.h"
32#include "llvm/IR/GlobalVariable.h"
33#include "llvm/IR/Instructions.h"
34#include "llvm/IR/IntrinsicInst.h"
35#include "llvm/IR/LLVMContext.h"
36#include "llvm/IR/Operator.h"
37#include "llvm/Pass.h"
38#include "llvm/Support/ErrorHandling.h"
39#include <algorithm>
40
41#define DEBUG_TYPE "basicaa"
42
43using namespace llvm;
44
45/// Enable analysis of recursive PHI nodes.
46static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden,
47                                          cl::init(false));
48/// SearchLimitReached / SearchTimes shows how often the limit of
49/// to decompose GEPs is reached. It will affect the precision
50/// of basic alias analysis.
51STATISTIC(SearchLimitReached, "Number of times the limit to "
52                              "decompose GEPs is reached");
53STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
54
55/// Cutoff after which to stop analysing a set of phi nodes potentially involved
56/// in a cycle. Because we are analysing 'through' phi nodes, we need to be
57/// careful with value equivalence. We use reachability to make sure a value
58/// cannot be involved in a cycle.
59const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
60
61// The max limit of the search depth in DecomposeGEPExpression() and
62// GetUnderlyingObject(), both functions need to use the same search
63// depth otherwise the algorithm in aliasGEP will assert.
64static const unsigned MaxLookupSearchDepth = 6;
65
66//===----------------------------------------------------------------------===//
67// Useful predicates
68//===----------------------------------------------------------------------===//
69
70/// Returns true if the pointer is to a function-local object that never
71/// escapes from the function.
72static bool isNonEscapingLocalObject(const Value *V) {
73  // If this is a local allocation, check to see if it escapes.
74  if (isa<AllocaInst>(V) || isNoAliasCall(V))
75    // Set StoreCaptures to True so that we can assume in our callers that the
76    // pointer is not the result of a load instruction. Currently
77    // PointerMayBeCaptured doesn't have any special analysis for the
78    // StoreCaptures=false case; if it did, our callers could be refined to be
79    // more precise.
80    return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
81
82  // If this is an argument that corresponds to a byval or noalias argument,
83  // then it has not escaped before entering the function.  Check if it escapes
84  // inside the function.
85  if (const Argument *A = dyn_cast<Argument>(V))
86    if (A->hasByValAttr() || A->hasNoAliasAttr())
87      // Note even if the argument is marked nocapture, we still need to check
88      // for copies made inside the function. The nocapture attribute only
89      // specifies that there are no copies made that outlive the function.
90      return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
91
92  return false;
93}
94
95/// Returns true if the pointer is one which would have been considered an
96/// escape by isNonEscapingLocalObject.
97static bool isEscapeSource(const Value *V) {
98  if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V))
99    return true;
100
101  // The load case works because isNonEscapingLocalObject considers all
102  // stores to be escapes (it passes true for the StoreCaptures argument
103  // to PointerMayBeCaptured).
104  if (isa<LoadInst>(V))
105    return true;
106
107  return false;
108}
109
110/// Returns the size of the object specified by V or UnknownSize if unknown.
111static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
112                              const TargetLibraryInfo &TLI,
113                              bool RoundToAlign = false) {
114  uint64_t Size;
115  if (getObjectSize(V, Size, DL, &TLI, RoundToAlign))
116    return Size;
117  return MemoryLocation::UnknownSize;
118}
119
120/// Returns true if we can prove that the object specified by V is smaller than
121/// Size.
122static bool isObjectSmallerThan(const Value *V, uint64_t Size,
123                                const DataLayout &DL,
124                                const TargetLibraryInfo &TLI) {
125  // Note that the meanings of the "object" are slightly different in the
126  // following contexts:
127  //    c1: llvm::getObjectSize()
128  //    c2: llvm.objectsize() intrinsic
129  //    c3: isObjectSmallerThan()
130  // c1 and c2 share the same meaning; however, the meaning of "object" in c3
131  // refers to the "entire object".
132  //
133  //  Consider this example:
134  //     char *p = (char*)malloc(100)
135  //     char *q = p+80;
136  //
137  //  In the context of c1 and c2, the "object" pointed by q refers to the
138  // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
139  //
140  //  However, in the context of c3, the "object" refers to the chunk of memory
141  // being allocated. So, the "object" has 100 bytes, and q points to the middle
142  // the "object". In case q is passed to isObjectSmallerThan() as the 1st
143  // parameter, before the llvm::getObjectSize() is called to get the size of
144  // entire object, we should:
145  //    - either rewind the pointer q to the base-address of the object in
146  //      question (in this case rewind to p), or
147  //    - just give up. It is up to caller to make sure the pointer is pointing
148  //      to the base address the object.
149  //
150  // We go for 2nd option for simplicity.
151  if (!isIdentifiedObject(V))
152    return false;
153
154  // This function needs to use the aligned object size because we allow
155  // reads a bit past the end given sufficient alignment.
156  uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/ true);
157
158  return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
159}
160
161/// Returns true if we can prove that the object specified by V has size Size.
162static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
163                         const TargetLibraryInfo &TLI) {
164  uint64_t ObjectSize = getObjectSize(V, DL, TLI);
165  return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
166}
167
168//===----------------------------------------------------------------------===//
169// GetElementPtr Instruction Decomposition and Analysis
170//===----------------------------------------------------------------------===//
171
172/// Analyzes the specified value as a linear expression: "A*V + B", where A and
173/// B are constant integers.
174///
175/// Returns the scale and offset values as APInts and return V as a Value*, and
176/// return whether we looked through any sign or zero extends.  The incoming
177/// Value is known to have IntegerType, and it may already be sign or zero
178/// extended.
179///
180/// Note that this looks through extends, so the high bits may not be
181/// represented in the result.
182/*static*/ const Value *BasicAAResult::GetLinearExpression(
183    const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits,
184    unsigned &SExtBits, const DataLayout &DL, unsigned Depth,
185    AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) {
186  assert(V->getType()->isIntegerTy() && "Not an integer value");
187
188  // Limit our recursion depth.
189  if (Depth == 6) {
190    Scale = 1;
191    Offset = 0;
192    return V;
193  }
194
195  if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) {
196    // If it's a constant, just convert it to an offset and remove the variable.
197    // If we've been called recursively, the Offset bit width will be greater
198    // than the constant's (the Offset's always as wide as the outermost call),
199    // so we'll zext here and process any extension in the isa<SExtInst> &
200    // isa<ZExtInst> cases below.
201    Offset += Const->getValue().zextOrSelf(Offset.getBitWidth());
202    assert(Scale == 0 && "Constant values don't have a scale");
203    return V;
204  }
205
206  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
207    if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
208
209      // If we've been called recursively, then Offset and Scale will be wider
210      // than the BOp operands. We'll always zext it here as we'll process sign
211      // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases).
212      APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth());
213
214      switch (BOp->getOpcode()) {
215      default:
216        // We don't understand this instruction, so we can't decompose it any
217        // further.
218        Scale = 1;
219        Offset = 0;
220        return V;
221      case Instruction::Or:
222        // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
223        // analyze it.
224        if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
225                               BOp, DT)) {
226          Scale = 1;
227          Offset = 0;
228          return V;
229        }
230      // FALL THROUGH.
231      case Instruction::Add:
232        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
233                                SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
234        Offset += RHS;
235        break;
236      case Instruction::Sub:
237        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
238                                SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
239        Offset -= RHS;
240        break;
241      case Instruction::Mul:
242        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
243                                SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
244        Offset *= RHS;
245        Scale *= RHS;
246        break;
247      case Instruction::Shl:
248        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
249                                SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
250        Offset <<= RHS.getLimitedValue();
251        Scale <<= RHS.getLimitedValue();
252        // the semantics of nsw and nuw for left shifts don't match those of
253        // multiplications, so we won't propagate them.
254        NSW = NUW = false;
255        return V;
256      }
257
258      if (isa<OverflowingBinaryOperator>(BOp)) {
259        NUW &= BOp->hasNoUnsignedWrap();
260        NSW &= BOp->hasNoSignedWrap();
261      }
262      return V;
263    }
264  }
265
266  // Since GEP indices are sign extended anyway, we don't care about the high
267  // bits of a sign or zero extended value - just scales and offsets.  The
268  // extensions have to be consistent though.
269  if (isa<SExtInst>(V) || isa<ZExtInst>(V)) {
270    Value *CastOp = cast<CastInst>(V)->getOperand(0);
271    unsigned NewWidth = V->getType()->getPrimitiveSizeInBits();
272    unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
273    unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits;
274    const Value *Result =
275        GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL,
276                            Depth + 1, AC, DT, NSW, NUW);
277
278    // zext(zext(%x)) == zext(%x), and similiarly for sext; we'll handle this
279    // by just incrementing the number of bits we've extended by.
280    unsigned ExtendedBy = NewWidth - SmallWidth;
281
282    if (isa<SExtInst>(V) && ZExtBits == 0) {
283      // sext(sext(%x, a), b) == sext(%x, a + b)
284
285      if (NSW) {
286        // We haven't sign-wrapped, so it's valid to decompose sext(%x + c)
287        // into sext(%x) + sext(c). We'll sext the Offset ourselves:
288        unsigned OldWidth = Offset.getBitWidth();
289        Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth);
290      } else {
291        // We may have signed-wrapped, so don't decompose sext(%x + c) into
292        // sext(%x) + sext(c)
293        Scale = 1;
294        Offset = 0;
295        Result = CastOp;
296        ZExtBits = OldZExtBits;
297        SExtBits = OldSExtBits;
298      }
299      SExtBits += ExtendedBy;
300    } else {
301      // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b)
302
303      if (!NUW) {
304        // We may have unsigned-wrapped, so don't decompose zext(%x + c) into
305        // zext(%x) + zext(c)
306        Scale = 1;
307        Offset = 0;
308        Result = CastOp;
309        ZExtBits = OldZExtBits;
310        SExtBits = OldSExtBits;
311      }
312      ZExtBits += ExtendedBy;
313    }
314
315    return Result;
316  }
317
318  Scale = 1;
319  Offset = 0;
320  return V;
321}
322
323/// To ensure a pointer offset fits in an integer of size PointerSize
324/// (in bits) when that size is smaller than 64. This is an issue in
325/// particular for 32b programs with negative indices that rely on two's
326/// complement wrap-arounds for precise alias information.
327static int64_t adjustToPointerSize(int64_t Offset, unsigned PointerSize) {
328  assert(PointerSize <= 64 && "Invalid PointerSize!");
329  unsigned ShiftBits = 64 - PointerSize;
330  return (int64_t)((uint64_t)Offset << ShiftBits) >> ShiftBits;
331}
332
333/// If V is a symbolic pointer expression, decompose it into a base pointer
334/// with a constant offset and a number of scaled symbolic offsets.
335///
336/// The scaled symbolic offsets (represented by pairs of a Value* and a scale
337/// in the VarIndices vector) are Value*'s that are known to be scaled by the
338/// specified amount, but which may have other unrepresented high bits. As
339/// such, the gep cannot necessarily be reconstructed from its decomposed form.
340///
341/// When DataLayout is around, this function is capable of analyzing everything
342/// that GetUnderlyingObject can look through. To be able to do that
343/// GetUnderlyingObject and DecomposeGEPExpression must use the same search
344/// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks
345/// through pointer casts.
346bool BasicAAResult::DecomposeGEPExpression(const Value *V,
347       DecomposedGEP &Decomposed, const DataLayout &DL, AssumptionCache *AC,
348       DominatorTree *DT) {
349  // Limit recursion depth to limit compile time in crazy cases.
350  unsigned MaxLookup = MaxLookupSearchDepth;
351  SearchTimes++;
352
353  Decomposed.StructOffset = 0;
354  Decomposed.OtherOffset = 0;
355  Decomposed.VarIndices.clear();
356  do {
357    // See if this is a bitcast or GEP.
358    const Operator *Op = dyn_cast<Operator>(V);
359    if (!Op) {
360      // The only non-operator case we can handle are GlobalAliases.
361      if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
362        if (!GA->isInterposable()) {
363          V = GA->getAliasee();
364          continue;
365        }
366      }
367      Decomposed.Base = V;
368      return false;
369    }
370
371    if (Op->getOpcode() == Instruction::BitCast ||
372        Op->getOpcode() == Instruction::AddrSpaceCast) {
373      V = Op->getOperand(0);
374      continue;
375    }
376
377    const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
378    if (!GEPOp) {
379      if (auto CS = ImmutableCallSite(V))
380        if (const Value *RV = CS.getReturnedArgOperand()) {
381          V = RV;
382          continue;
383        }
384
385      // If it's not a GEP, hand it off to SimplifyInstruction to see if it
386      // can come up with something. This matches what GetUnderlyingObject does.
387      if (const Instruction *I = dyn_cast<Instruction>(V))
388        // TODO: Get a DominatorTree and AssumptionCache and use them here
389        // (these are both now available in this function, but this should be
390        // updated when GetUnderlyingObject is updated). TLI should be
391        // provided also.
392        if (const Value *Simplified =
393                SimplifyInstruction(const_cast<Instruction *>(I), DL)) {
394          V = Simplified;
395          continue;
396        }
397
398      Decomposed.Base = V;
399      return false;
400    }
401
402    // Don't attempt to analyze GEPs over unsized objects.
403    if (!GEPOp->getSourceElementType()->isSized()) {
404      Decomposed.Base = V;
405      return false;
406    }
407
408    unsigned AS = GEPOp->getPointerAddressSpace();
409    // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
410    gep_type_iterator GTI = gep_type_begin(GEPOp);
411    unsigned PointerSize = DL.getPointerSizeInBits(AS);
412    for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
413         I != E; ++I) {
414      const Value *Index = *I;
415      // Compute the (potentially symbolic) offset in bytes for this index.
416      if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
417        // For a struct, add the member offset.
418        unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
419        if (FieldNo == 0)
420          continue;
421
422        Decomposed.StructOffset +=
423          DL.getStructLayout(STy)->getElementOffset(FieldNo);
424        continue;
425      }
426
427      // For an array/pointer, add the element offset, explicitly scaled.
428      if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
429        if (CIdx->isZero())
430          continue;
431        Decomposed.OtherOffset +=
432          DL.getTypeAllocSize(*GTI) * CIdx->getSExtValue();
433        continue;
434      }
435
436      uint64_t Scale = DL.getTypeAllocSize(*GTI);
437      unsigned ZExtBits = 0, SExtBits = 0;
438
439      // If the integer type is smaller than the pointer size, it is implicitly
440      // sign extended to pointer size.
441      unsigned Width = Index->getType()->getIntegerBitWidth();
442      if (PointerSize > Width)
443        SExtBits += PointerSize - Width;
444
445      // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
446      APInt IndexScale(Width, 0), IndexOffset(Width, 0);
447      bool NSW = true, NUW = true;
448      Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits,
449                                  SExtBits, DL, 0, AC, DT, NSW, NUW);
450
451      // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
452      // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
453      Decomposed.OtherOffset += IndexOffset.getSExtValue() * Scale;
454      Scale *= IndexScale.getSExtValue();
455
456      // If we already had an occurrence of this index variable, merge this
457      // scale into it.  For example, we want to handle:
458      //   A[x][x] -> x*16 + x*4 -> x*20
459      // This also ensures that 'x' only appears in the index list once.
460      for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) {
461        if (Decomposed.VarIndices[i].V == Index &&
462            Decomposed.VarIndices[i].ZExtBits == ZExtBits &&
463            Decomposed.VarIndices[i].SExtBits == SExtBits) {
464          Scale += Decomposed.VarIndices[i].Scale;
465          Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i);
466          break;
467        }
468      }
469
470      // Make sure that we have a scale that makes sense for this target's
471      // pointer size.
472      Scale = adjustToPointerSize(Scale, PointerSize);
473
474      if (Scale) {
475        VariableGEPIndex Entry = {Index, ZExtBits, SExtBits,
476                                  static_cast<int64_t>(Scale)};
477        Decomposed.VarIndices.push_back(Entry);
478      }
479    }
480
481    // Take care of wrap-arounds
482    Decomposed.StructOffset =
483      adjustToPointerSize(Decomposed.StructOffset, PointerSize);
484    Decomposed.OtherOffset =
485      adjustToPointerSize(Decomposed.OtherOffset, PointerSize);
486
487    // Analyze the base pointer next.
488    V = GEPOp->getOperand(0);
489  } while (--MaxLookup);
490
491  // If the chain of expressions is too deep, just return early.
492  Decomposed.Base = V;
493  SearchLimitReached++;
494  return true;
495}
496
497/// Returns whether the given pointer value points to memory that is local to
498/// the function, with global constants being considered local to all
499/// functions.
500bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
501                                           bool OrLocal) {
502  assert(Visited.empty() && "Visited must be cleared after use!");
503
504  unsigned MaxLookup = 8;
505  SmallVector<const Value *, 16> Worklist;
506  Worklist.push_back(Loc.Ptr);
507  do {
508    const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL);
509    if (!Visited.insert(V).second) {
510      Visited.clear();
511      return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
512    }
513
514    // An alloca instruction defines local memory.
515    if (OrLocal && isa<AllocaInst>(V))
516      continue;
517
518    // A global constant counts as local memory for our purposes.
519    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
520      // Note: this doesn't require GV to be "ODR" because it isn't legal for a
521      // global to be marked constant in some modules and non-constant in
522      // others.  GV may even be a declaration, not a definition.
523      if (!GV->isConstant()) {
524        Visited.clear();
525        return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
526      }
527      continue;
528    }
529
530    // If both select values point to local memory, then so does the select.
531    if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
532      Worklist.push_back(SI->getTrueValue());
533      Worklist.push_back(SI->getFalseValue());
534      continue;
535    }
536
537    // If all values incoming to a phi node point to local memory, then so does
538    // the phi.
539    if (const PHINode *PN = dyn_cast<PHINode>(V)) {
540      // Don't bother inspecting phi nodes with many operands.
541      if (PN->getNumIncomingValues() > MaxLookup) {
542        Visited.clear();
543        return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
544      }
545      for (Value *IncValue : PN->incoming_values())
546        Worklist.push_back(IncValue);
547      continue;
548    }
549
550    // Otherwise be conservative.
551    Visited.clear();
552    return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
553
554  } while (!Worklist.empty() && --MaxLookup);
555
556  Visited.clear();
557  return Worklist.empty();
558}
559
560/// Returns the behavior when calling the given call site.
561FunctionModRefBehavior BasicAAResult::getModRefBehavior(ImmutableCallSite CS) {
562  if (CS.doesNotAccessMemory())
563    // Can't do better than this.
564    return FMRB_DoesNotAccessMemory;
565
566  FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
567
568  // If the callsite knows it only reads memory, don't return worse
569  // than that.
570  if (CS.onlyReadsMemory())
571    Min = FMRB_OnlyReadsMemory;
572  else if (CS.doesNotReadMemory())
573    Min = FMRB_DoesNotReadMemory;
574
575  if (CS.onlyAccessesArgMemory())
576    Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
577
578  // If CS has operand bundles then aliasing attributes from the function it
579  // calls do not directly apply to the CallSite.  This can be made more
580  // precise in the future.
581  if (!CS.hasOperandBundles())
582    if (const Function *F = CS.getCalledFunction())
583      Min =
584          FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F));
585
586  return Min;
587}
588
589/// Returns the behavior when calling the given function. For use when the call
590/// site is not known.
591FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
592  // If the function declares it doesn't access memory, we can't do better.
593  if (F->doesNotAccessMemory())
594    return FMRB_DoesNotAccessMemory;
595
596  FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
597
598  // If the function declares it only reads memory, go with that.
599  if (F->onlyReadsMemory())
600    Min = FMRB_OnlyReadsMemory;
601  else if (F->doesNotReadMemory())
602    Min = FMRB_DoesNotReadMemory;
603
604  if (F->onlyAccessesArgMemory())
605    Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
606
607  return Min;
608}
609
610/// Returns true if this is a writeonly (i.e Mod only) parameter.
611static bool isWriteOnlyParam(ImmutableCallSite CS, unsigned ArgIdx,
612                             const TargetLibraryInfo &TLI) {
613  if (CS.paramHasAttr(ArgIdx + 1, Attribute::WriteOnly))
614    return true;
615
616  // We can bound the aliasing properties of memset_pattern16 just as we can
617  // for memcpy/memset.  This is particularly important because the
618  // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
619  // whenever possible.
620  // FIXME Consider handling this in InferFunctionAttr.cpp together with other
621  // attributes.
622  LibFunc::Func F;
623  if (CS.getCalledFunction() && TLI.getLibFunc(*CS.getCalledFunction(), F) &&
624      F == LibFunc::memset_pattern16 && TLI.has(F))
625    if (ArgIdx == 0)
626      return true;
627
628  // TODO: memset_pattern4, memset_pattern8
629  // TODO: _chk variants
630  // TODO: strcmp, strcpy
631
632  return false;
633}
634
635ModRefInfo BasicAAResult::getArgModRefInfo(ImmutableCallSite CS,
636                                           unsigned ArgIdx) {
637
638  // Checking for known builtin intrinsics and target library functions.
639  if (isWriteOnlyParam(CS, ArgIdx, TLI))
640    return MRI_Mod;
641
642  if (CS.paramHasAttr(ArgIdx + 1, Attribute::ReadOnly))
643    return MRI_Ref;
644
645  if (CS.paramHasAttr(ArgIdx + 1, Attribute::ReadNone))
646    return MRI_NoModRef;
647
648  return AAResultBase::getArgModRefInfo(CS, ArgIdx);
649}
650
651static bool isIntrinsicCall(ImmutableCallSite CS, Intrinsic::ID IID) {
652  const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
653  return II && II->getIntrinsicID() == IID;
654}
655
656#ifndef NDEBUG
657static const Function *getParent(const Value *V) {
658  if (const Instruction *inst = dyn_cast<Instruction>(V))
659    return inst->getParent()->getParent();
660
661  if (const Argument *arg = dyn_cast<Argument>(V))
662    return arg->getParent();
663
664  return nullptr;
665}
666
667static bool notDifferentParent(const Value *O1, const Value *O2) {
668
669  const Function *F1 = getParent(O1);
670  const Function *F2 = getParent(O2);
671
672  return !F1 || !F2 || F1 == F2;
673}
674#endif
675
676AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
677                                 const MemoryLocation &LocB) {
678  assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
679         "BasicAliasAnalysis doesn't support interprocedural queries.");
680
681  // If we have a directly cached entry for these locations, we have recursed
682  // through this once, so just return the cached results. Notably, when this
683  // happens, we don't clear the cache.
684  auto CacheIt = AliasCache.find(LocPair(LocA, LocB));
685  if (CacheIt != AliasCache.end())
686    return CacheIt->second;
687
688  AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr,
689                                 LocB.Size, LocB.AATags);
690  // AliasCache rarely has more than 1 or 2 elements, always use
691  // shrink_and_clear so it quickly returns to the inline capacity of the
692  // SmallDenseMap if it ever grows larger.
693  // FIXME: This should really be shrink_to_inline_capacity_and_clear().
694  AliasCache.shrink_and_clear();
695  VisitedPhiBBs.clear();
696  return Alias;
697}
698
699/// Checks to see if the specified callsite can clobber the specified memory
700/// object.
701///
702/// Since we only look at local properties of this function, we really can't
703/// say much about this query.  We do, however, use simple "address taken"
704/// analysis on local objects.
705ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS,
706                                        const MemoryLocation &Loc) {
707  assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) &&
708         "AliasAnalysis query involving multiple functions!");
709
710  const Value *Object = GetUnderlyingObject(Loc.Ptr, DL);
711
712  // If this is a tail call and Loc.Ptr points to a stack location, we know that
713  // the tail call cannot access or modify the local stack.
714  // We cannot exclude byval arguments here; these belong to the caller of
715  // the current function not to the current function, and a tail callee
716  // may reference them.
717  if (isa<AllocaInst>(Object))
718    if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
719      if (CI->isTailCall())
720        return MRI_NoModRef;
721
722  // If the pointer is to a locally allocated object that does not escape,
723  // then the call can not mod/ref the pointer unless the call takes the pointer
724  // as an argument, and itself doesn't capture it.
725  if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
726      isNonEscapingLocalObject(Object)) {
727    bool PassedAsArg = false;
728    unsigned OperandNo = 0;
729    for (auto CI = CS.data_operands_begin(), CE = CS.data_operands_end();
730         CI != CE; ++CI, ++OperandNo) {
731      // Only look at the no-capture or byval pointer arguments.  If this
732      // pointer were passed to arguments that were neither of these, then it
733      // couldn't be no-capture.
734      if (!(*CI)->getType()->isPointerTy() ||
735          (!CS.doesNotCapture(OperandNo) && !CS.isByValArgument(OperandNo)))
736        continue;
737
738      // If this is a no-capture pointer argument, see if we can tell that it
739      // is impossible to alias the pointer we're checking.  If not, we have to
740      // assume that the call could touch the pointer, even though it doesn't
741      // escape.
742      AliasResult AR =
743          getBestAAResults().alias(MemoryLocation(*CI), MemoryLocation(Object));
744      if (AR) {
745        PassedAsArg = true;
746        break;
747      }
748    }
749
750    if (!PassedAsArg)
751      return MRI_NoModRef;
752  }
753
754  // If the CallSite is to malloc or calloc, we can assume that it doesn't
755  // modify any IR visible value.  This is only valid because we assume these
756  // routines do not read values visible in the IR.  TODO: Consider special
757  // casing realloc and strdup routines which access only their arguments as
758  // well.  Or alternatively, replace all of this with inaccessiblememonly once
759  // that's implemented fully.
760  auto *Inst = CS.getInstruction();
761  if (isMallocLikeFn(Inst, &TLI) || isCallocLikeFn(Inst, &TLI)) {
762    // Be conservative if the accessed pointer may alias the allocation -
763    // fallback to the generic handling below.
764    if (getBestAAResults().alias(MemoryLocation(Inst), Loc) == NoAlias)
765      return MRI_NoModRef;
766  }
767
768  // While the assume intrinsic is marked as arbitrarily writing so that
769  // proper control dependencies will be maintained, it never aliases any
770  // particular memory location.
771  if (isIntrinsicCall(CS, Intrinsic::assume))
772    return MRI_NoModRef;
773
774  // Like assumes, guard intrinsics are also marked as arbitrarily writing so
775  // that proper control dependencies are maintained but they never mods any
776  // particular memory location.
777  //
778  // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
779  // heap state at the point the guard is issued needs to be consistent in case
780  // the guard invokes the "deopt" continuation.
781  if (isIntrinsicCall(CS, Intrinsic::experimental_guard))
782    return MRI_Ref;
783
784  // The AAResultBase base class has some smarts, lets use them.
785  return AAResultBase::getModRefInfo(CS, Loc);
786}
787
788ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS1,
789                                        ImmutableCallSite CS2) {
790  // While the assume intrinsic is marked as arbitrarily writing so that
791  // proper control dependencies will be maintained, it never aliases any
792  // particular memory location.
793  if (isIntrinsicCall(CS1, Intrinsic::assume) ||
794      isIntrinsicCall(CS2, Intrinsic::assume))
795    return MRI_NoModRef;
796
797  // Like assumes, guard intrinsics are also marked as arbitrarily writing so
798  // that proper control dependencies are maintained but they never mod any
799  // particular memory location.
800  //
801  // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
802  // heap state at the point the guard is issued needs to be consistent in case
803  // the guard invokes the "deopt" continuation.
804
805  // NB! This function is *not* commutative, so we specical case two
806  // possibilities for guard intrinsics.
807
808  if (isIntrinsicCall(CS1, Intrinsic::experimental_guard))
809    return getModRefBehavior(CS2) & MRI_Mod ? MRI_Ref : MRI_NoModRef;
810
811  if (isIntrinsicCall(CS2, Intrinsic::experimental_guard))
812    return getModRefBehavior(CS1) & MRI_Mod ? MRI_Mod : MRI_NoModRef;
813
814  // The AAResultBase base class has some smarts, lets use them.
815  return AAResultBase::getModRefInfo(CS1, CS2);
816}
817
818/// Provide ad-hoc rules to disambiguate accesses through two GEP operators,
819/// both having the exact same pointer operand.
820static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1,
821                                            uint64_t V1Size,
822                                            const GEPOperator *GEP2,
823                                            uint64_t V2Size,
824                                            const DataLayout &DL) {
825
826  assert(GEP1->getPointerOperand()->stripPointerCasts() ==
827         GEP2->getPointerOperand()->stripPointerCasts() &&
828         GEP1->getPointerOperand()->getType() ==
829         GEP2->getPointerOperand()->getType() &&
830         "Expected GEPs with the same pointer operand");
831
832  // Try to determine whether GEP1 and GEP2 index through arrays, into structs,
833  // such that the struct field accesses provably cannot alias.
834  // We also need at least two indices (the pointer, and the struct field).
835  if (GEP1->getNumIndices() != GEP2->getNumIndices() ||
836      GEP1->getNumIndices() < 2)
837    return MayAlias;
838
839  // If we don't know the size of the accesses through both GEPs, we can't
840  // determine whether the struct fields accessed can't alias.
841  if (V1Size == MemoryLocation::UnknownSize ||
842      V2Size == MemoryLocation::UnknownSize)
843    return MayAlias;
844
845  ConstantInt *C1 =
846      dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1));
847  ConstantInt *C2 =
848      dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1));
849
850  // If the last (struct) indices are constants and are equal, the other indices
851  // might be also be dynamically equal, so the GEPs can alias.
852  if (C1 && C2 && C1->getSExtValue() == C2->getSExtValue())
853    return MayAlias;
854
855  // Find the last-indexed type of the GEP, i.e., the type you'd get if
856  // you stripped the last index.
857  // On the way, look at each indexed type.  If there's something other
858  // than an array, different indices can lead to different final types.
859  SmallVector<Value *, 8> IntermediateIndices;
860
861  // Insert the first index; we don't need to check the type indexed
862  // through it as it only drops the pointer indirection.
863  assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine");
864  IntermediateIndices.push_back(GEP1->getOperand(1));
865
866  // Insert all the remaining indices but the last one.
867  // Also, check that they all index through arrays.
868  for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) {
869    if (!isa<ArrayType>(GetElementPtrInst::getIndexedType(
870            GEP1->getSourceElementType(), IntermediateIndices)))
871      return MayAlias;
872    IntermediateIndices.push_back(GEP1->getOperand(i + 1));
873  }
874
875  auto *Ty = GetElementPtrInst::getIndexedType(
876    GEP1->getSourceElementType(), IntermediateIndices);
877  StructType *LastIndexedStruct = dyn_cast<StructType>(Ty);
878
879  if (isa<SequentialType>(Ty)) {
880    // We know that:
881    // - both GEPs begin indexing from the exact same pointer;
882    // - the last indices in both GEPs are constants, indexing into a sequential
883    //   type (array or pointer);
884    // - both GEPs only index through arrays prior to that.
885    //
886    // Because array indices greater than the number of elements are valid in
887    // GEPs, unless we know the intermediate indices are identical between
888    // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't
889    // partially overlap. We also need to check that the loaded size matches
890    // the element size, otherwise we could still have overlap.
891    const uint64_t ElementSize =
892        DL.getTypeStoreSize(cast<SequentialType>(Ty)->getElementType());
893    if (V1Size != ElementSize || V2Size != ElementSize)
894      return MayAlias;
895
896    for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i)
897      if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1))
898        return MayAlias;
899
900    // Now we know that the array/pointer that GEP1 indexes into and that
901    // that GEP2 indexes into must either precisely overlap or be disjoint.
902    // Because they cannot partially overlap and because fields in an array
903    // cannot overlap, if we can prove the final indices are different between
904    // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias.
905
906    // If the last indices are constants, we've already checked they don't
907    // equal each other so we can exit early.
908    if (C1 && C2)
909      return NoAlias;
910    if (isKnownNonEqual(GEP1->getOperand(GEP1->getNumOperands() - 1),
911                        GEP2->getOperand(GEP2->getNumOperands() - 1),
912                        DL))
913      return NoAlias;
914    return MayAlias;
915  } else if (!LastIndexedStruct || !C1 || !C2) {
916    return MayAlias;
917  }
918
919  // We know that:
920  // - both GEPs begin indexing from the exact same pointer;
921  // - the last indices in both GEPs are constants, indexing into a struct;
922  // - said indices are different, hence, the pointed-to fields are different;
923  // - both GEPs only index through arrays prior to that.
924  //
925  // This lets us determine that the struct that GEP1 indexes into and the
926  // struct that GEP2 indexes into must either precisely overlap or be
927  // completely disjoint.  Because they cannot partially overlap, indexing into
928  // different non-overlapping fields of the struct will never alias.
929
930  // Therefore, the only remaining thing needed to show that both GEPs can't
931  // alias is that the fields are not overlapping.
932  const StructLayout *SL = DL.getStructLayout(LastIndexedStruct);
933  const uint64_t StructSize = SL->getSizeInBytes();
934  const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue());
935  const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue());
936
937  auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size,
938                                      uint64_t V2Off, uint64_t V2Size) {
939    return V1Off < V2Off && V1Off + V1Size <= V2Off &&
940           ((V2Off + V2Size <= StructSize) ||
941            (V2Off + V2Size - StructSize <= V1Off));
942  };
943
944  if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) ||
945      EltsDontOverlap(V2Off, V2Size, V1Off, V1Size))
946    return NoAlias;
947
948  return MayAlias;
949}
950
951// If a we have (a) a GEP and (b) a pointer based on an alloca, and the
952// beginning of the object the GEP points would have a negative offset with
953// repsect to the alloca, that means the GEP can not alias pointer (b).
954// Note that the pointer based on the alloca may not be a GEP. For
955// example, it may be the alloca itself.
956// The same applies if (b) is based on a GlobalVariable. Note that just being
957// based on isIdentifiedObject() is not enough - we need an identified object
958// that does not permit access to negative offsets. For example, a negative
959// offset from a noalias argument or call can be inbounds w.r.t the actual
960// underlying object.
961//
962// For example, consider:
963//
964//   struct { int f0, int f1, ...} foo;
965//   foo alloca;
966//   foo* random = bar(alloca);
967//   int *f0 = &alloca.f0
968//   int *f1 = &random->f1;
969//
970// Which is lowered, approximately, to:
971//
972//  %alloca = alloca %struct.foo
973//  %random = call %struct.foo* @random(%struct.foo* %alloca)
974//  %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0
975//  %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1
976//
977// Assume %f1 and %f0 alias. Then %f1 would point into the object allocated
978// by %alloca. Since the %f1 GEP is inbounds, that means %random must also
979// point into the same object. But since %f0 points to the beginning of %alloca,
980// the highest %f1 can be is (%alloca + 3). This means %random can not be higher
981// than (%alloca - 1), and so is not inbounds, a contradiction.
982bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp,
983      const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject,
984      uint64_t ObjectAccessSize) {
985  // If the object access size is unknown, or the GEP isn't inbounds, bail.
986  if (ObjectAccessSize == MemoryLocation::UnknownSize || !GEPOp->isInBounds())
987    return false;
988
989  // We need the object to be an alloca or a globalvariable, and want to know
990  // the offset of the pointer from the object precisely, so no variable
991  // indices are allowed.
992  if (!(isa<AllocaInst>(DecompObject.Base) ||
993        isa<GlobalVariable>(DecompObject.Base)) ||
994      !DecompObject.VarIndices.empty())
995    return false;
996
997  int64_t ObjectBaseOffset = DecompObject.StructOffset +
998                             DecompObject.OtherOffset;
999
1000  // If the GEP has no variable indices, we know the precise offset
1001  // from the base, then use it. If the GEP has variable indices, we're in
1002  // a bit more trouble: we can't count on the constant offsets that come
1003  // from non-struct sources, since these can be "rewound" by a negative
1004  // variable offset. So use only offsets that came from structs.
1005  int64_t GEPBaseOffset = DecompGEP.StructOffset;
1006  if (DecompGEP.VarIndices.empty())
1007    GEPBaseOffset += DecompGEP.OtherOffset;
1008
1009  return (GEPBaseOffset >= ObjectBaseOffset + (int64_t)ObjectAccessSize);
1010}
1011
1012/// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
1013/// another pointer.
1014///
1015/// We know that V1 is a GEP, but we don't know anything about V2.
1016/// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for
1017/// V2.
1018AliasResult BasicAAResult::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
1019                                    const AAMDNodes &V1AAInfo, const Value *V2,
1020                                    uint64_t V2Size, const AAMDNodes &V2AAInfo,
1021                                    const Value *UnderlyingV1,
1022                                    const Value *UnderlyingV2) {
1023  DecomposedGEP DecompGEP1, DecompGEP2;
1024  bool GEP1MaxLookupReached =
1025    DecomposeGEPExpression(GEP1, DecompGEP1, DL, &AC, DT);
1026  bool GEP2MaxLookupReached =
1027    DecomposeGEPExpression(V2, DecompGEP2, DL, &AC, DT);
1028
1029  int64_t GEP1BaseOffset = DecompGEP1.StructOffset + DecompGEP1.OtherOffset;
1030  int64_t GEP2BaseOffset = DecompGEP2.StructOffset + DecompGEP2.OtherOffset;
1031
1032  assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 &&
1033         "DecomposeGEPExpression returned a result different from "
1034         "GetUnderlyingObject");
1035
1036  // If the GEP's offset relative to its base is such that the base would
1037  // fall below the start of the object underlying V2, then the GEP and V2
1038  // cannot alias.
1039  if (!GEP1MaxLookupReached && !GEP2MaxLookupReached &&
1040      isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size))
1041    return NoAlias;
1042  // If we have two gep instructions with must-alias or not-alias'ing base
1043  // pointers, figure out if the indexes to the GEP tell us anything about the
1044  // derived pointer.
1045  if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
1046    // Check for the GEP base being at a negative offset, this time in the other
1047    // direction.
1048    if (!GEP1MaxLookupReached && !GEP2MaxLookupReached &&
1049        isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size))
1050      return NoAlias;
1051    // Do the base pointers alias?
1052    AliasResult BaseAlias =
1053        aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, AAMDNodes(),
1054                   UnderlyingV2, MemoryLocation::UnknownSize, AAMDNodes());
1055
1056    // Check for geps of non-aliasing underlying pointers where the offsets are
1057    // identical.
1058    if ((BaseAlias == MayAlias) && V1Size == V2Size) {
1059      // Do the base pointers alias assuming type and size.
1060      AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, V1AAInfo,
1061                                                UnderlyingV2, V2Size, V2AAInfo);
1062      if (PreciseBaseAlias == NoAlias) {
1063        // See if the computed offset from the common pointer tells us about the
1064        // relation of the resulting pointer.
1065        // If the max search depth is reached the result is undefined
1066        if (GEP2MaxLookupReached || GEP1MaxLookupReached)
1067          return MayAlias;
1068
1069        // Same offsets.
1070        if (GEP1BaseOffset == GEP2BaseOffset &&
1071            DecompGEP1.VarIndices == DecompGEP2.VarIndices)
1072          return NoAlias;
1073      }
1074    }
1075
1076    // If we get a No or May, then return it immediately, no amount of analysis
1077    // will improve this situation.
1078    if (BaseAlias != MustAlias)
1079      return BaseAlias;
1080
1081    // Otherwise, we have a MustAlias.  Since the base pointers alias each other
1082    // exactly, see if the computed offset from the common pointer tells us
1083    // about the relation of the resulting pointer.
1084    // If we know the two GEPs are based off of the exact same pointer (and not
1085    // just the same underlying object), see if that tells us anything about
1086    // the resulting pointers.
1087    if (GEP1->getPointerOperand()->stripPointerCasts() ==
1088        GEP2->getPointerOperand()->stripPointerCasts() &&
1089        GEP1->getPointerOperand()->getType() ==
1090        GEP2->getPointerOperand()->getType()) {
1091      AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL);
1092      // If we couldn't find anything interesting, don't abandon just yet.
1093      if (R != MayAlias)
1094        return R;
1095    }
1096
1097    // If the max search depth is reached, the result is undefined
1098    if (GEP2MaxLookupReached || GEP1MaxLookupReached)
1099      return MayAlias;
1100
1101    // Subtract the GEP2 pointer from the GEP1 pointer to find out their
1102    // symbolic difference.
1103    GEP1BaseOffset -= GEP2BaseOffset;
1104    GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices);
1105
1106  } else {
1107    // Check to see if these two pointers are related by the getelementptr
1108    // instruction.  If one pointer is a GEP with a non-zero index of the other
1109    // pointer, we know they cannot alias.
1110
1111    // If both accesses are unknown size, we can't do anything useful here.
1112    if (V1Size == MemoryLocation::UnknownSize &&
1113        V2Size == MemoryLocation::UnknownSize)
1114      return MayAlias;
1115
1116    AliasResult R = aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize,
1117                               AAMDNodes(), V2, V2Size, V2AAInfo);
1118    if (R != MustAlias)
1119      // If V2 may alias GEP base pointer, conservatively returns MayAlias.
1120      // If V2 is known not to alias GEP base pointer, then the two values
1121      // cannot alias per GEP semantics: "A pointer value formed from a
1122      // getelementptr instruction is associated with the addresses associated
1123      // with the first operand of the getelementptr".
1124      return R;
1125
1126    // If the max search depth is reached the result is undefined
1127    if (GEP1MaxLookupReached)
1128      return MayAlias;
1129  }
1130
1131  // In the two GEP Case, if there is no difference in the offsets of the
1132  // computed pointers, the resultant pointers are a must alias.  This
1133  // happens when we have two lexically identical GEP's (for example).
1134  //
1135  // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
1136  // must aliases the GEP, the end result is a must alias also.
1137  if (GEP1BaseOffset == 0 && DecompGEP1.VarIndices.empty())
1138    return MustAlias;
1139
1140  // If there is a constant difference between the pointers, but the difference
1141  // is less than the size of the associated memory object, then we know
1142  // that the objects are partially overlapping.  If the difference is
1143  // greater, we know they do not overlap.
1144  if (GEP1BaseOffset != 0 && DecompGEP1.VarIndices.empty()) {
1145    if (GEP1BaseOffset >= 0) {
1146      if (V2Size != MemoryLocation::UnknownSize) {
1147        if ((uint64_t)GEP1BaseOffset < V2Size)
1148          return PartialAlias;
1149        return NoAlias;
1150      }
1151    } else {
1152      // We have the situation where:
1153      // +                +
1154      // | BaseOffset     |
1155      // ---------------->|
1156      // |-->V1Size       |-------> V2Size
1157      // GEP1             V2
1158      // We need to know that V2Size is not unknown, otherwise we might have
1159      // stripped a gep with negative index ('gep <ptr>, -1, ...).
1160      if (V1Size != MemoryLocation::UnknownSize &&
1161          V2Size != MemoryLocation::UnknownSize) {
1162        if (-(uint64_t)GEP1BaseOffset < V1Size)
1163          return PartialAlias;
1164        return NoAlias;
1165      }
1166    }
1167  }
1168
1169  if (!DecompGEP1.VarIndices.empty()) {
1170    uint64_t Modulo = 0;
1171    bool AllPositive = true;
1172    for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) {
1173
1174      // Try to distinguish something like &A[i][1] against &A[42][0].
1175      // Grab the least significant bit set in any of the scales. We
1176      // don't need std::abs here (even if the scale's negative) as we'll
1177      // be ^'ing Modulo with itself later.
1178      Modulo |= (uint64_t)DecompGEP1.VarIndices[i].Scale;
1179
1180      if (AllPositive) {
1181        // If the Value could change between cycles, then any reasoning about
1182        // the Value this cycle may not hold in the next cycle. We'll just
1183        // give up if we can't determine conditions that hold for every cycle:
1184        const Value *V = DecompGEP1.VarIndices[i].V;
1185
1186        bool SignKnownZero, SignKnownOne;
1187        ComputeSignBit(const_cast<Value *>(V), SignKnownZero, SignKnownOne, DL,
1188                       0, &AC, nullptr, DT);
1189
1190        // Zero-extension widens the variable, and so forces the sign
1191        // bit to zero.
1192        bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V);
1193        SignKnownZero |= IsZExt;
1194        SignKnownOne &= !IsZExt;
1195
1196        // If the variable begins with a zero then we know it's
1197        // positive, regardless of whether the value is signed or
1198        // unsigned.
1199        int64_t Scale = DecompGEP1.VarIndices[i].Scale;
1200        AllPositive =
1201            (SignKnownZero && Scale >= 0) || (SignKnownOne && Scale < 0);
1202      }
1203    }
1204
1205    Modulo = Modulo ^ (Modulo & (Modulo - 1));
1206
1207    // We can compute the difference between the two addresses
1208    // mod Modulo. Check whether that difference guarantees that the
1209    // two locations do not alias.
1210    uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1);
1211    if (V1Size != MemoryLocation::UnknownSize &&
1212        V2Size != MemoryLocation::UnknownSize && ModOffset >= V2Size &&
1213        V1Size <= Modulo - ModOffset)
1214      return NoAlias;
1215
1216    // If we know all the variables are positive, then GEP1 >= GEP1BasePtr.
1217    // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers
1218    // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr.
1219    if (AllPositive && GEP1BaseOffset > 0 && V2Size <= (uint64_t)GEP1BaseOffset)
1220      return NoAlias;
1221
1222    if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size,
1223                                GEP1BaseOffset, &AC, DT))
1224      return NoAlias;
1225  }
1226
1227  // Statically, we can see that the base objects are the same, but the
1228  // pointers have dynamic offsets which we can't resolve. And none of our
1229  // little tricks above worked.
1230  //
1231  // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the
1232  // practical effect of this is protecting TBAA in the case of dynamic
1233  // indices into arrays of unions or malloc'd memory.
1234  return PartialAlias;
1235}
1236
1237static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
1238  // If the results agree, take it.
1239  if (A == B)
1240    return A;
1241  // A mix of PartialAlias and MustAlias is PartialAlias.
1242  if ((A == PartialAlias && B == MustAlias) ||
1243      (B == PartialAlias && A == MustAlias))
1244    return PartialAlias;
1245  // Otherwise, we don't know anything.
1246  return MayAlias;
1247}
1248
1249/// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
1250/// against another.
1251AliasResult BasicAAResult::aliasSelect(const SelectInst *SI, uint64_t SISize,
1252                                       const AAMDNodes &SIAAInfo,
1253                                       const Value *V2, uint64_t V2Size,
1254                                       const AAMDNodes &V2AAInfo) {
1255  // If the values are Selects with the same condition, we can do a more precise
1256  // check: just check for aliases between the values on corresponding arms.
1257  if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1258    if (SI->getCondition() == SI2->getCondition()) {
1259      AliasResult Alias = aliasCheck(SI->getTrueValue(), SISize, SIAAInfo,
1260                                     SI2->getTrueValue(), V2Size, V2AAInfo);
1261      if (Alias == MayAlias)
1262        return MayAlias;
1263      AliasResult ThisAlias =
1264          aliasCheck(SI->getFalseValue(), SISize, SIAAInfo,
1265                     SI2->getFalseValue(), V2Size, V2AAInfo);
1266      return MergeAliasResults(ThisAlias, Alias);
1267    }
1268
1269  // If both arms of the Select node NoAlias or MustAlias V2, then returns
1270  // NoAlias / MustAlias. Otherwise, returns MayAlias.
1271  AliasResult Alias =
1272      aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), SISize, SIAAInfo);
1273  if (Alias == MayAlias)
1274    return MayAlias;
1275
1276  AliasResult ThisAlias =
1277      aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo);
1278  return MergeAliasResults(ThisAlias, Alias);
1279}
1280
1281/// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
1282/// another.
1283AliasResult BasicAAResult::aliasPHI(const PHINode *PN, uint64_t PNSize,
1284                                    const AAMDNodes &PNAAInfo, const Value *V2,
1285                                    uint64_t V2Size,
1286                                    const AAMDNodes &V2AAInfo) {
1287  // Track phi nodes we have visited. We use this information when we determine
1288  // value equivalence.
1289  VisitedPhiBBs.insert(PN->getParent());
1290
1291  // If the values are PHIs in the same block, we can do a more precise
1292  // as well as efficient check: just check for aliases between the values
1293  // on corresponding edges.
1294  if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1295    if (PN2->getParent() == PN->getParent()) {
1296      LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo),
1297                   MemoryLocation(V2, V2Size, V2AAInfo));
1298      if (PN > V2)
1299        std::swap(Locs.first, Locs.second);
1300      // Analyse the PHIs' inputs under the assumption that the PHIs are
1301      // NoAlias.
1302      // If the PHIs are May/MustAlias there must be (recursively) an input
1303      // operand from outside the PHIs' cycle that is MayAlias/MustAlias or
1304      // there must be an operation on the PHIs within the PHIs' value cycle
1305      // that causes a MayAlias.
1306      // Pretend the phis do not alias.
1307      AliasResult Alias = NoAlias;
1308      assert(AliasCache.count(Locs) &&
1309             "There must exist an entry for the phi node");
1310      AliasResult OrigAliasResult = AliasCache[Locs];
1311      AliasCache[Locs] = NoAlias;
1312
1313      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1314        AliasResult ThisAlias =
1315            aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo,
1316                       PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
1317                       V2Size, V2AAInfo);
1318        Alias = MergeAliasResults(ThisAlias, Alias);
1319        if (Alias == MayAlias)
1320          break;
1321      }
1322
1323      // Reset if speculation failed.
1324      if (Alias != NoAlias)
1325        AliasCache[Locs] = OrigAliasResult;
1326
1327      return Alias;
1328    }
1329
1330  SmallPtrSet<Value *, 4> UniqueSrc;
1331  SmallVector<Value *, 4> V1Srcs;
1332  bool isRecursive = false;
1333  for (Value *PV1 : PN->incoming_values()) {
1334    if (isa<PHINode>(PV1))
1335      // If any of the source itself is a PHI, return MayAlias conservatively
1336      // to avoid compile time explosion. The worst possible case is if both
1337      // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
1338      // and 'n' are the number of PHI sources.
1339      return MayAlias;
1340
1341    if (EnableRecPhiAnalysis)
1342      if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) {
1343        // Check whether the incoming value is a GEP that advances the pointer
1344        // result of this PHI node (e.g. in a loop). If this is the case, we
1345        // would recurse and always get a MayAlias. Handle this case specially
1346        // below.
1347        if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 &&
1348            isa<ConstantInt>(PV1GEP->idx_begin())) {
1349          isRecursive = true;
1350          continue;
1351        }
1352      }
1353
1354    if (UniqueSrc.insert(PV1).second)
1355      V1Srcs.push_back(PV1);
1356  }
1357
1358  // If this PHI node is recursive, set the size of the accessed memory to
1359  // unknown to represent all the possible values the GEP could advance the
1360  // pointer to.
1361  if (isRecursive)
1362    PNSize = MemoryLocation::UnknownSize;
1363
1364  AliasResult Alias =
1365      aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], PNSize, PNAAInfo);
1366
1367  // Early exit if the check of the first PHI source against V2 is MayAlias.
1368  // Other results are not possible.
1369  if (Alias == MayAlias)
1370    return MayAlias;
1371
1372  // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1373  // NoAlias / MustAlias. Otherwise, returns MayAlias.
1374  for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1375    Value *V = V1Srcs[i];
1376
1377    AliasResult ThisAlias =
1378        aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo);
1379    Alias = MergeAliasResults(ThisAlias, Alias);
1380    if (Alias == MayAlias)
1381      break;
1382  }
1383
1384  return Alias;
1385}
1386
1387/// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
1388/// array references.
1389AliasResult BasicAAResult::aliasCheck(const Value *V1, uint64_t V1Size,
1390                                      AAMDNodes V1AAInfo, const Value *V2,
1391                                      uint64_t V2Size, AAMDNodes V2AAInfo) {
1392  // If either of the memory references is empty, it doesn't matter what the
1393  // pointer values are.
1394  if (V1Size == 0 || V2Size == 0)
1395    return NoAlias;
1396
1397  // Strip off any casts if they exist.
1398  V1 = V1->stripPointerCasts();
1399  V2 = V2->stripPointerCasts();
1400
1401  // If V1 or V2 is undef, the result is NoAlias because we can always pick a
1402  // value for undef that aliases nothing in the program.
1403  if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
1404    return NoAlias;
1405
1406  // Are we checking for alias of the same value?
1407  // Because we look 'through' phi nodes, we could look at "Value" pointers from
1408  // different iterations. We must therefore make sure that this is not the
1409  // case. The function isValueEqualInPotentialCycles ensures that this cannot
1410  // happen by looking at the visited phi nodes and making sure they cannot
1411  // reach the value.
1412  if (isValueEqualInPotentialCycles(V1, V2))
1413    return MustAlias;
1414
1415  if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1416    return NoAlias; // Scalars cannot alias each other
1417
1418  // Figure out what objects these things are pointing to if we can.
1419  const Value *O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth);
1420  const Value *O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth);
1421
1422  // Null values in the default address space don't point to any object, so they
1423  // don't alias any other pointer.
1424  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1425    if (CPN->getType()->getAddressSpace() == 0)
1426      return NoAlias;
1427  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1428    if (CPN->getType()->getAddressSpace() == 0)
1429      return NoAlias;
1430
1431  if (O1 != O2) {
1432    // If V1/V2 point to two different objects, we know that we have no alias.
1433    if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1434      return NoAlias;
1435
1436    // Constant pointers can't alias with non-const isIdentifiedObject objects.
1437    if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1438        (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1439      return NoAlias;
1440
1441    // Function arguments can't alias with things that are known to be
1442    // unambigously identified at the function level.
1443    if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
1444        (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
1445      return NoAlias;
1446
1447    // Most objects can't alias null.
1448    if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) ||
1449        (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2)))
1450      return NoAlias;
1451
1452    // If one pointer is the result of a call/invoke or load and the other is a
1453    // non-escaping local object within the same function, then we know the
1454    // object couldn't escape to a point where the call could return it.
1455    //
1456    // Note that if the pointers are in different functions, there are a
1457    // variety of complications. A call with a nocapture argument may still
1458    // temporary store the nocapture argument's value in a temporary memory
1459    // location if that memory location doesn't escape. Or it may pass a
1460    // nocapture value to other functions as long as they don't capture it.
1461    if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
1462      return NoAlias;
1463    if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
1464      return NoAlias;
1465  }
1466
1467  // If the size of one access is larger than the entire object on the other
1468  // side, then we know such behavior is undefined and can assume no alias.
1469  if ((V1Size != MemoryLocation::UnknownSize &&
1470       isObjectSmallerThan(O2, V1Size, DL, TLI)) ||
1471      (V2Size != MemoryLocation::UnknownSize &&
1472       isObjectSmallerThan(O1, V2Size, DL, TLI)))
1473    return NoAlias;
1474
1475  // Check the cache before climbing up use-def chains. This also terminates
1476  // otherwise infinitely recursive queries.
1477  LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo),
1478               MemoryLocation(V2, V2Size, V2AAInfo));
1479  if (V1 > V2)
1480    std::swap(Locs.first, Locs.second);
1481  std::pair<AliasCacheTy::iterator, bool> Pair =
1482      AliasCache.insert(std::make_pair(Locs, MayAlias));
1483  if (!Pair.second)
1484    return Pair.first->second;
1485
1486  // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
1487  // GEP can't simplify, we don't even look at the PHI cases.
1488  if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
1489    std::swap(V1, V2);
1490    std::swap(V1Size, V2Size);
1491    std::swap(O1, O2);
1492    std::swap(V1AAInfo, V2AAInfo);
1493  }
1494  if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1495    AliasResult Result =
1496        aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2);
1497    if (Result != MayAlias)
1498      return AliasCache[Locs] = Result;
1499  }
1500
1501  if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
1502    std::swap(V1, V2);
1503    std::swap(V1Size, V2Size);
1504    std::swap(V1AAInfo, V2AAInfo);
1505  }
1506  if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1507    AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo, V2, V2Size, V2AAInfo);
1508    if (Result != MayAlias)
1509      return AliasCache[Locs] = Result;
1510  }
1511
1512  if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
1513    std::swap(V1, V2);
1514    std::swap(V1Size, V2Size);
1515    std::swap(V1AAInfo, V2AAInfo);
1516  }
1517  if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1518    AliasResult Result =
1519        aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo);
1520    if (Result != MayAlias)
1521      return AliasCache[Locs] = Result;
1522  }
1523
1524  // If both pointers are pointing into the same object and one of them
1525  // accesses the entire object, then the accesses must overlap in some way.
1526  if (O1 == O2)
1527    if ((V1Size != MemoryLocation::UnknownSize &&
1528         isObjectSize(O1, V1Size, DL, TLI)) ||
1529        (V2Size != MemoryLocation::UnknownSize &&
1530         isObjectSize(O2, V2Size, DL, TLI)))
1531      return AliasCache[Locs] = PartialAlias;
1532
1533  // Recurse back into the best AA results we have, potentially with refined
1534  // memory locations. We have already ensured that BasicAA has a MayAlias
1535  // cache result for these, so any recursion back into BasicAA won't loop.
1536  AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second);
1537  return AliasCache[Locs] = Result;
1538}
1539
1540/// Check whether two Values can be considered equivalent.
1541///
1542/// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
1543/// they can not be part of a cycle in the value graph by looking at all
1544/// visited phi nodes an making sure that the phis cannot reach the value. We
1545/// have to do this because we are looking through phi nodes (That is we say
1546/// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
1547bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
1548                                                  const Value *V2) {
1549  if (V != V2)
1550    return false;
1551
1552  const Instruction *Inst = dyn_cast<Instruction>(V);
1553  if (!Inst)
1554    return true;
1555
1556  if (VisitedPhiBBs.empty())
1557    return true;
1558
1559  if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
1560    return false;
1561
1562  // Make sure that the visited phis cannot reach the Value. This ensures that
1563  // the Values cannot come from different iterations of a potential cycle the
1564  // phi nodes could be involved in.
1565  for (auto *P : VisitedPhiBBs)
1566    if (isPotentiallyReachable(&P->front(), Inst, DT, LI))
1567      return false;
1568
1569  return true;
1570}
1571
1572/// Computes the symbolic difference between two de-composed GEPs.
1573///
1574/// Dest and Src are the variable indices from two decomposed GetElementPtr
1575/// instructions GEP1 and GEP2 which have common base pointers.
1576void BasicAAResult::GetIndexDifference(
1577    SmallVectorImpl<VariableGEPIndex> &Dest,
1578    const SmallVectorImpl<VariableGEPIndex> &Src) {
1579  if (Src.empty())
1580    return;
1581
1582  for (unsigned i = 0, e = Src.size(); i != e; ++i) {
1583    const Value *V = Src[i].V;
1584    unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits;
1585    int64_t Scale = Src[i].Scale;
1586
1587    // Find V in Dest.  This is N^2, but pointer indices almost never have more
1588    // than a few variable indexes.
1589    for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
1590      if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
1591          Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits)
1592        continue;
1593
1594      // If we found it, subtract off Scale V's from the entry in Dest.  If it
1595      // goes to zero, remove the entry.
1596      if (Dest[j].Scale != Scale)
1597        Dest[j].Scale -= Scale;
1598      else
1599        Dest.erase(Dest.begin() + j);
1600      Scale = 0;
1601      break;
1602    }
1603
1604    // If we didn't consume this entry, add it to the end of the Dest list.
1605    if (Scale) {
1606      VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale};
1607      Dest.push_back(Entry);
1608    }
1609  }
1610}
1611
1612bool BasicAAResult::constantOffsetHeuristic(
1613    const SmallVectorImpl<VariableGEPIndex> &VarIndices, uint64_t V1Size,
1614    uint64_t V2Size, int64_t BaseOffset, AssumptionCache *AC,
1615    DominatorTree *DT) {
1616  if (VarIndices.size() != 2 || V1Size == MemoryLocation::UnknownSize ||
1617      V2Size == MemoryLocation::UnknownSize)
1618    return false;
1619
1620  const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1];
1621
1622  if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits ||
1623      Var0.Scale != -Var1.Scale)
1624    return false;
1625
1626  unsigned Width = Var1.V->getType()->getIntegerBitWidth();
1627
1628  // We'll strip off the Extensions of Var0 and Var1 and do another round
1629  // of GetLinearExpression decomposition. In the example above, if Var0
1630  // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
1631
1632  APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0),
1633      V1Offset(Width, 0);
1634  bool NSW = true, NUW = true;
1635  unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0;
1636  const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits,
1637                                        V0SExtBits, DL, 0, AC, DT, NSW, NUW);
1638  NSW = true;
1639  NUW = true;
1640  const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits,
1641                                        V1SExtBits, DL, 0, AC, DT, NSW, NUW);
1642
1643  if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits ||
1644      V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1))
1645    return false;
1646
1647  // We have a hit - Var0 and Var1 only differ by a constant offset!
1648
1649  // If we've been sext'ed then zext'd the maximum difference between Var0 and
1650  // Var1 is possible to calculate, but we're just interested in the absolute
1651  // minimum difference between the two. The minimum distance may occur due to
1652  // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
1653  // the minimum distance between %i and %i + 5 is 3.
1654  APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff;
1655  MinDiff = APIntOps::umin(MinDiff, Wrapped);
1656  uint64_t MinDiffBytes = MinDiff.getZExtValue() * std::abs(Var0.Scale);
1657
1658  // We can't definitely say whether GEP1 is before or after V2 due to wrapping
1659  // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
1660  // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
1661  // V2Size can fit in the MinDiffBytes gap.
1662  return V1Size + std::abs(BaseOffset) <= MinDiffBytes &&
1663         V2Size + std::abs(BaseOffset) <= MinDiffBytes;
1664}
1665
1666//===----------------------------------------------------------------------===//
1667// BasicAliasAnalysis Pass
1668//===----------------------------------------------------------------------===//
1669
1670char BasicAA::PassID;
1671
1672BasicAAResult BasicAA::run(Function &F, AnalysisManager<Function> &AM) {
1673  return BasicAAResult(F.getParent()->getDataLayout(),
1674                       AM.getResult<TargetLibraryAnalysis>(F),
1675                       AM.getResult<AssumptionAnalysis>(F),
1676                       &AM.getResult<DominatorTreeAnalysis>(F),
1677                       AM.getCachedResult<LoopAnalysis>(F));
1678}
1679
1680BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
1681    initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
1682}
1683
1684char BasicAAWrapperPass::ID = 0;
1685void BasicAAWrapperPass::anchor() {}
1686
1687INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basicaa",
1688                      "Basic Alias Analysis (stateless AA impl)", true, true)
1689INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1690INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1691INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1692INITIALIZE_PASS_END(BasicAAWrapperPass, "basicaa",
1693                    "Basic Alias Analysis (stateless AA impl)", true, true)
1694
1695FunctionPass *llvm::createBasicAAWrapperPass() {
1696  return new BasicAAWrapperPass();
1697}
1698
1699bool BasicAAWrapperPass::runOnFunction(Function &F) {
1700  auto &ACT = getAnalysis<AssumptionCacheTracker>();
1701  auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
1702  auto &DTWP = getAnalysis<DominatorTreeWrapperPass>();
1703  auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
1704
1705  Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), TLIWP.getTLI(),
1706                                 ACT.getAssumptionCache(F), &DTWP.getDomTree(),
1707                                 LIWP ? &LIWP->getLoopInfo() : nullptr));
1708
1709  return false;
1710}
1711
1712void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1713  AU.setPreservesAll();
1714  AU.addRequired<AssumptionCacheTracker>();
1715  AU.addRequired<DominatorTreeWrapperPass>();
1716  AU.addRequired<TargetLibraryInfoWrapperPass>();
1717}
1718
1719BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) {
1720  return BasicAAResult(
1721      F.getParent()->getDataLayout(),
1722      P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
1723      P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
1724}
1725