SparsePropagation.cpp revision 28a8dbc35fe6da6b7d2633529b73453aca254207
1//===- SparsePropagation.cpp - Sparse Conditional Property Propagation ----===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements an abstract sparse conditional propagation algorithm, 11// modeled after SCCP, but with a customizable lattice function. 12// 13//===----------------------------------------------------------------------===// 14 15#define DEBUG_TYPE "sparseprop" 16#include "llvm/Analysis/SparsePropagation.h" 17#include "llvm/Constants.h" 18#include "llvm/Function.h" 19#include "llvm/Instructions.h" 20#include "llvm/Support/Debug.h" 21using namespace llvm; 22 23//===----------------------------------------------------------------------===// 24// AbstractLatticeFunction Implementation 25//===----------------------------------------------------------------------===// 26 27AbstractLatticeFunction::~AbstractLatticeFunction() {} 28 29/// PrintValue - Render the specified lattice value to the specified stream. 30void AbstractLatticeFunction::PrintValue(LatticeVal V, std::ostream &OS) { 31 if (V == UndefVal) 32 OS << "undefined"; 33 else if (V == OverdefinedVal) 34 OS << "overdefined"; 35 else if (V == UntrackedVal) 36 OS << "untracked"; 37 else 38 OS << "unknown lattice value"; 39} 40 41//===----------------------------------------------------------------------===// 42// SparseSolver Implementation 43//===----------------------------------------------------------------------===// 44 45/// getOrInitValueState - Return the LatticeVal object that corresponds to the 46/// value, initializing the value's state if it hasn't been entered into the 47/// map yet. This function is necessary because not all values should start 48/// out in the underdefined state... Arguments should be overdefined, and 49/// constants should be marked as constants. 50/// 51SparseSolver::LatticeVal SparseSolver::getOrInitValueState(Value *V) { 52 DenseMap<Value*, LatticeVal>::iterator I = ValueState.find(V); 53 if (I != ValueState.end()) return I->second; // Common case, in the map 54 55 LatticeVal LV; 56 if (LatticeFunc->IsUntrackedValue(V)) 57 return LatticeFunc->getUntrackedVal(); 58 else if (Constant *C = dyn_cast<Constant>(V)) 59 LV = LatticeFunc->ComputeConstant(C); 60 else if (!isa<Instruction>(V)) 61 // Non-instructions (e.g. formal arguments) are overdefined. 62 LV = LatticeFunc->getOverdefinedVal(); 63 else 64 // All instructions are underdefined by default. 65 LV = LatticeFunc->getUndefVal(); 66 67 // If this value is untracked, don't add it to the map. 68 if (LV == LatticeFunc->getUntrackedVal()) 69 return LV; 70 return ValueState[V] = LV; 71} 72 73/// UpdateState - When the state for some instruction is potentially updated, 74/// this function notices and adds I to the worklist if needed. 75void SparseSolver::UpdateState(Instruction &Inst, LatticeVal V) { 76 DenseMap<Value*, LatticeVal>::iterator I = ValueState.find(&Inst); 77 if (I != ValueState.end() && I->second == V) 78 return; // No change. 79 80 // An update. Visit uses of I. 81 ValueState[&Inst] = V; 82 InstWorkList.push_back(&Inst); 83} 84 85/// MarkBlockExecutable - This method can be used by clients to mark all of 86/// the blocks that are known to be intrinsically live in the processed unit. 87void SparseSolver::MarkBlockExecutable(BasicBlock *BB) { 88 DOUT << "Marking Block Executable: " << BB->getNameStart() << "\n"; 89 BBExecutable.insert(BB); // Basic block is executable! 90 BBWorkList.push_back(BB); // Add the block to the work list! 91} 92 93/// markEdgeExecutable - Mark a basic block as executable, adding it to the BB 94/// work list if it is not already executable... 95void SparseSolver::markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { 96 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) 97 return; // This edge is already known to be executable! 98 99 if (BBExecutable.count(Dest)) { 100 DOUT << "Marking Edge Executable: " << Source->getNameStart() 101 << " -> " << Dest->getNameStart() << "\n"; 102 103 // The destination is already executable, but we just made an edge 104 // feasible that wasn't before. Revisit the PHI nodes in the block 105 // because they have potentially new operands. 106 for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I) 107 visitPHINode(*cast<PHINode>(I)); 108 109 } else { 110 MarkBlockExecutable(Dest); 111 } 112} 113 114 115/// getFeasibleSuccessors - Return a vector of booleans to indicate which 116/// successors are reachable from a given terminator instruction. 117void SparseSolver::getFeasibleSuccessors(TerminatorInst &TI, 118 SmallVectorImpl<bool> &Succs, 119 bool AggressiveUndef) { 120 Succs.resize(TI.getNumSuccessors()); 121 if (TI.getNumSuccessors() == 0) return; 122 123 if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) { 124 if (BI->isUnconditional()) { 125 Succs[0] = true; 126 return; 127 } 128 129 LatticeVal BCValue; 130 if (AggressiveUndef) 131 BCValue = getOrInitValueState(BI->getCondition()); 132 else 133 BCValue = getLatticeState(BI->getCondition()); 134 135 if (BCValue == LatticeFunc->getOverdefinedVal() || 136 BCValue == LatticeFunc->getUntrackedVal()) { 137 // Overdefined condition variables can branch either way. 138 Succs[0] = Succs[1] = true; 139 return; 140 } 141 142 // If undefined, neither is feasible yet. 143 if (BCValue == LatticeFunc->getUndefVal()) 144 return; 145 146 Constant *C = LatticeFunc->GetConstant(BCValue, BI->getCondition(), *this); 147 if (C == 0 || !isa<ConstantInt>(C)) { 148 // Non-constant values can go either way. 149 Succs[0] = Succs[1] = true; 150 return; 151 } 152 153 // Constant condition variables mean the branch can only go a single way 154 Succs[C == ConstantInt::getFalse()] = true; 155 return; 156 } 157 158 if (isa<InvokeInst>(TI)) { 159 // Invoke instructions successors are always executable. 160 // TODO: Could ask the lattice function if the value can throw. 161 Succs[0] = Succs[1] = true; 162 return; 163 } 164 165 SwitchInst &SI = cast<SwitchInst>(TI); 166 LatticeVal SCValue; 167 if (AggressiveUndef) 168 SCValue = getOrInitValueState(SI.getCondition()); 169 else 170 SCValue = getLatticeState(SI.getCondition()); 171 172 if (SCValue == LatticeFunc->getOverdefinedVal() || 173 SCValue == LatticeFunc->getUntrackedVal()) { 174 // All destinations are executable! 175 Succs.assign(TI.getNumSuccessors(), true); 176 return; 177 } 178 179 // If undefined, neither is feasible yet. 180 if (SCValue == LatticeFunc->getUndefVal()) 181 return; 182 183 Constant *C = LatticeFunc->GetConstant(SCValue, SI.getCondition(), *this); 184 if (C == 0 || !isa<ConstantInt>(C)) { 185 // All destinations are executable! 186 Succs.assign(TI.getNumSuccessors(), true); 187 return; 188 } 189 190 Succs[SI.findCaseValue(cast<ConstantInt>(C))] = true; 191} 192 193 194/// isEdgeFeasible - Return true if the control flow edge from the 'From' 195/// basic block to the 'To' basic block is currently feasible... 196bool SparseSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To, 197 bool AggressiveUndef) { 198 SmallVector<bool, 16> SuccFeasible; 199 TerminatorInst *TI = From->getTerminator(); 200 getFeasibleSuccessors(*TI, SuccFeasible, AggressiveUndef); 201 202 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 203 if (TI->getSuccessor(i) == To && SuccFeasible[i]) 204 return true; 205 206 return false; 207} 208 209void SparseSolver::visitTerminatorInst(TerminatorInst &TI) { 210 SmallVector<bool, 16> SuccFeasible; 211 getFeasibleSuccessors(TI, SuccFeasible, true); 212 213 BasicBlock *BB = TI.getParent(); 214 215 // Mark all feasible successors executable... 216 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) 217 if (SuccFeasible[i]) 218 markEdgeExecutable(BB, TI.getSuccessor(i)); 219} 220 221void SparseSolver::visitPHINode(PHINode &PN) { 222 LatticeVal PNIV = getOrInitValueState(&PN); 223 LatticeVal Overdefined = LatticeFunc->getOverdefinedVal(); 224 225 // If this value is already overdefined (common) just return. 226 if (PNIV == Overdefined || PNIV == LatticeFunc->getUntrackedVal()) 227 return; // Quick exit 228 229 // Super-extra-high-degree PHI nodes are unlikely to ever be interesting, 230 // and slow us down a lot. Just mark them overdefined. 231 if (PN.getNumIncomingValues() > 64) { 232 UpdateState(PN, Overdefined); 233 return; 234 } 235 236 // Look at all of the executable operands of the PHI node. If any of them 237 // are overdefined, the PHI becomes overdefined as well. Otherwise, ask the 238 // transfer function to give us the merge of the incoming values. 239 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 240 // If the edge is not yet known to be feasible, it doesn't impact the PHI. 241 if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent(), true)) 242 continue; 243 244 // Merge in this value. 245 LatticeVal OpVal = getOrInitValueState(PN.getIncomingValue(i)); 246 if (OpVal != PNIV) 247 PNIV = LatticeFunc->MergeValues(PNIV, OpVal); 248 249 if (PNIV == Overdefined) 250 break; // Rest of input values don't matter. 251 } 252 253 // Update the PHI with the compute value, which is the merge of the inputs. 254 UpdateState(PN, PNIV); 255} 256 257 258void SparseSolver::visitInst(Instruction &I) { 259 // PHIs are handled by the propagation logic, they are never passed into the 260 // transfer functions. 261 if (PHINode *PN = dyn_cast<PHINode>(&I)) 262 return visitPHINode(*PN); 263 264 // Otherwise, ask the transfer function what the result is. If this is 265 // something that we care about, remember it. 266 LatticeVal IV = LatticeFunc->ComputeInstructionState(I, *this); 267 if (IV != LatticeFunc->getUntrackedVal()) 268 UpdateState(I, IV); 269 270 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(&I)) 271 visitTerminatorInst(*TI); 272} 273 274void SparseSolver::Solve(Function &F) { 275 MarkBlockExecutable(F.begin()); 276 277 // Process the work lists until they are empty! 278 while (!BBWorkList.empty() || !InstWorkList.empty()) { 279 // Process the instruction work list. 280 while (!InstWorkList.empty()) { 281 Instruction *I = InstWorkList.back(); 282 InstWorkList.pop_back(); 283 284 DOUT << "\nPopped off I-WL: " << *I; 285 286 // "I" got into the work list because it made a transition. See if any 287 // users are both live and in need of updating. 288 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 289 UI != E; ++UI) { 290 Instruction *U = cast<Instruction>(*UI); 291 if (BBExecutable.count(U->getParent())) // Inst is executable? 292 visitInst(*U); 293 } 294 } 295 296 // Process the basic block work list. 297 while (!BBWorkList.empty()) { 298 BasicBlock *BB = BBWorkList.back(); 299 BBWorkList.pop_back(); 300 301 DOUT << "\nPopped off BBWL: " << *BB; 302 303 // Notify all instructions in this basic block that they are newly 304 // executable. 305 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 306 visitInst(*I); 307 } 308 } 309} 310 311void SparseSolver::Print(Function &F, std::ostream &OS) { 312 OS << "\nFUNCTION: " << F.getNameStr() << "\n"; 313 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 314 if (!BBExecutable.count(BB)) 315 OS << "INFEASIBLE: "; 316 OS << "\t"; 317 if (BB->hasName()) 318 OS << BB->getNameStr() << ":\n"; 319 else 320 OS << "; anon bb\n"; 321 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 322 LatticeFunc->PrintValue(getLatticeState(I), OS); 323 OS << *I; 324 } 325 326 OS << "\n"; 327 } 328} 329 330