SparsePropagation.cpp revision 28a8dbc35fe6da6b7d2633529b73453aca254207
1//===- SparsePropagation.cpp - Sparse Conditional Property Propagation ----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements an abstract sparse conditional propagation algorithm,
11// modeled after SCCP, but with a customizable lattice function.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "sparseprop"
16#include "llvm/Analysis/SparsePropagation.h"
17#include "llvm/Constants.h"
18#include "llvm/Function.h"
19#include "llvm/Instructions.h"
20#include "llvm/Support/Debug.h"
21using namespace llvm;
22
23//===----------------------------------------------------------------------===//
24//                  AbstractLatticeFunction Implementation
25//===----------------------------------------------------------------------===//
26
27AbstractLatticeFunction::~AbstractLatticeFunction() {}
28
29/// PrintValue - Render the specified lattice value to the specified stream.
30void AbstractLatticeFunction::PrintValue(LatticeVal V, std::ostream &OS) {
31  if (V == UndefVal)
32    OS << "undefined";
33  else if (V == OverdefinedVal)
34    OS << "overdefined";
35  else if (V == UntrackedVal)
36    OS << "untracked";
37  else
38    OS << "unknown lattice value";
39}
40
41//===----------------------------------------------------------------------===//
42//                          SparseSolver Implementation
43//===----------------------------------------------------------------------===//
44
45/// getOrInitValueState - Return the LatticeVal object that corresponds to the
46/// value, initializing the value's state if it hasn't been entered into the
47/// map yet.   This function is necessary because not all values should start
48/// out in the underdefined state... Arguments should be overdefined, and
49/// constants should be marked as constants.
50///
51SparseSolver::LatticeVal SparseSolver::getOrInitValueState(Value *V) {
52  DenseMap<Value*, LatticeVal>::iterator I = ValueState.find(V);
53  if (I != ValueState.end()) return I->second;  // Common case, in the map
54
55  LatticeVal LV;
56  if (LatticeFunc->IsUntrackedValue(V))
57    return LatticeFunc->getUntrackedVal();
58  else if (Constant *C = dyn_cast<Constant>(V))
59    LV = LatticeFunc->ComputeConstant(C);
60  else if (!isa<Instruction>(V))
61    // Non-instructions (e.g. formal arguments) are overdefined.
62    LV = LatticeFunc->getOverdefinedVal();
63  else
64    // All instructions are underdefined by default.
65    LV = LatticeFunc->getUndefVal();
66
67  // If this value is untracked, don't add it to the map.
68  if (LV == LatticeFunc->getUntrackedVal())
69    return LV;
70  return ValueState[V] = LV;
71}
72
73/// UpdateState - When the state for some instruction is potentially updated,
74/// this function notices and adds I to the worklist if needed.
75void SparseSolver::UpdateState(Instruction &Inst, LatticeVal V) {
76  DenseMap<Value*, LatticeVal>::iterator I = ValueState.find(&Inst);
77  if (I != ValueState.end() && I->second == V)
78    return;  // No change.
79
80  // An update.  Visit uses of I.
81  ValueState[&Inst] = V;
82  InstWorkList.push_back(&Inst);
83}
84
85/// MarkBlockExecutable - This method can be used by clients to mark all of
86/// the blocks that are known to be intrinsically live in the processed unit.
87void SparseSolver::MarkBlockExecutable(BasicBlock *BB) {
88  DOUT << "Marking Block Executable: " << BB->getNameStart() << "\n";
89  BBExecutable.insert(BB);   // Basic block is executable!
90  BBWorkList.push_back(BB);  // Add the block to the work list!
91}
92
93/// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
94/// work list if it is not already executable...
95void SparseSolver::markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
96  if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
97    return;  // This edge is already known to be executable!
98
99  if (BBExecutable.count(Dest)) {
100    DOUT << "Marking Edge Executable: " << Source->getNameStart()
101    << " -> " << Dest->getNameStart() << "\n";
102
103    // The destination is already executable, but we just made an edge
104    // feasible that wasn't before.  Revisit the PHI nodes in the block
105    // because they have potentially new operands.
106    for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
107      visitPHINode(*cast<PHINode>(I));
108
109  } else {
110    MarkBlockExecutable(Dest);
111  }
112}
113
114
115/// getFeasibleSuccessors - Return a vector of booleans to indicate which
116/// successors are reachable from a given terminator instruction.
117void SparseSolver::getFeasibleSuccessors(TerminatorInst &TI,
118                                         SmallVectorImpl<bool> &Succs,
119                                         bool AggressiveUndef) {
120  Succs.resize(TI.getNumSuccessors());
121  if (TI.getNumSuccessors() == 0) return;
122
123  if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
124    if (BI->isUnconditional()) {
125      Succs[0] = true;
126      return;
127    }
128
129    LatticeVal BCValue;
130    if (AggressiveUndef)
131      BCValue = getOrInitValueState(BI->getCondition());
132    else
133      BCValue = getLatticeState(BI->getCondition());
134
135    if (BCValue == LatticeFunc->getOverdefinedVal() ||
136        BCValue == LatticeFunc->getUntrackedVal()) {
137      // Overdefined condition variables can branch either way.
138      Succs[0] = Succs[1] = true;
139      return;
140    }
141
142    // If undefined, neither is feasible yet.
143    if (BCValue == LatticeFunc->getUndefVal())
144      return;
145
146    Constant *C = LatticeFunc->GetConstant(BCValue, BI->getCondition(), *this);
147    if (C == 0 || !isa<ConstantInt>(C)) {
148      // Non-constant values can go either way.
149      Succs[0] = Succs[1] = true;
150      return;
151    }
152
153    // Constant condition variables mean the branch can only go a single way
154    Succs[C == ConstantInt::getFalse()] = true;
155    return;
156  }
157
158  if (isa<InvokeInst>(TI)) {
159    // Invoke instructions successors are always executable.
160    // TODO: Could ask the lattice function if the value can throw.
161    Succs[0] = Succs[1] = true;
162    return;
163  }
164
165  SwitchInst &SI = cast<SwitchInst>(TI);
166  LatticeVal SCValue;
167  if (AggressiveUndef)
168    SCValue = getOrInitValueState(SI.getCondition());
169  else
170    SCValue = getLatticeState(SI.getCondition());
171
172  if (SCValue == LatticeFunc->getOverdefinedVal() ||
173      SCValue == LatticeFunc->getUntrackedVal()) {
174    // All destinations are executable!
175    Succs.assign(TI.getNumSuccessors(), true);
176    return;
177  }
178
179  // If undefined, neither is feasible yet.
180  if (SCValue == LatticeFunc->getUndefVal())
181    return;
182
183  Constant *C = LatticeFunc->GetConstant(SCValue, SI.getCondition(), *this);
184  if (C == 0 || !isa<ConstantInt>(C)) {
185    // All destinations are executable!
186    Succs.assign(TI.getNumSuccessors(), true);
187    return;
188  }
189
190  Succs[SI.findCaseValue(cast<ConstantInt>(C))] = true;
191}
192
193
194/// isEdgeFeasible - Return true if the control flow edge from the 'From'
195/// basic block to the 'To' basic block is currently feasible...
196bool SparseSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To,
197                                  bool AggressiveUndef) {
198  SmallVector<bool, 16> SuccFeasible;
199  TerminatorInst *TI = From->getTerminator();
200  getFeasibleSuccessors(*TI, SuccFeasible, AggressiveUndef);
201
202  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
203    if (TI->getSuccessor(i) == To && SuccFeasible[i])
204      return true;
205
206  return false;
207}
208
209void SparseSolver::visitTerminatorInst(TerminatorInst &TI) {
210  SmallVector<bool, 16> SuccFeasible;
211  getFeasibleSuccessors(TI, SuccFeasible, true);
212
213  BasicBlock *BB = TI.getParent();
214
215  // Mark all feasible successors executable...
216  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
217    if (SuccFeasible[i])
218      markEdgeExecutable(BB, TI.getSuccessor(i));
219}
220
221void SparseSolver::visitPHINode(PHINode &PN) {
222  LatticeVal PNIV = getOrInitValueState(&PN);
223  LatticeVal Overdefined = LatticeFunc->getOverdefinedVal();
224
225  // If this value is already overdefined (common) just return.
226  if (PNIV == Overdefined || PNIV == LatticeFunc->getUntrackedVal())
227    return;  // Quick exit
228
229  // Super-extra-high-degree PHI nodes are unlikely to ever be interesting,
230  // and slow us down a lot.  Just mark them overdefined.
231  if (PN.getNumIncomingValues() > 64) {
232    UpdateState(PN, Overdefined);
233    return;
234  }
235
236  // Look at all of the executable operands of the PHI node.  If any of them
237  // are overdefined, the PHI becomes overdefined as well.  Otherwise, ask the
238  // transfer function to give us the merge of the incoming values.
239  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
240    // If the edge is not yet known to be feasible, it doesn't impact the PHI.
241    if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent(), true))
242      continue;
243
244    // Merge in this value.
245    LatticeVal OpVal = getOrInitValueState(PN.getIncomingValue(i));
246    if (OpVal != PNIV)
247      PNIV = LatticeFunc->MergeValues(PNIV, OpVal);
248
249    if (PNIV == Overdefined)
250      break;  // Rest of input values don't matter.
251  }
252
253  // Update the PHI with the compute value, which is the merge of the inputs.
254  UpdateState(PN, PNIV);
255}
256
257
258void SparseSolver::visitInst(Instruction &I) {
259  // PHIs are handled by the propagation logic, they are never passed into the
260  // transfer functions.
261  if (PHINode *PN = dyn_cast<PHINode>(&I))
262    return visitPHINode(*PN);
263
264  // Otherwise, ask the transfer function what the result is.  If this is
265  // something that we care about, remember it.
266  LatticeVal IV = LatticeFunc->ComputeInstructionState(I, *this);
267  if (IV != LatticeFunc->getUntrackedVal())
268    UpdateState(I, IV);
269
270  if (TerminatorInst *TI = dyn_cast<TerminatorInst>(&I))
271    visitTerminatorInst(*TI);
272}
273
274void SparseSolver::Solve(Function &F) {
275  MarkBlockExecutable(F.begin());
276
277  // Process the work lists until they are empty!
278  while (!BBWorkList.empty() || !InstWorkList.empty()) {
279    // Process the instruction work list.
280    while (!InstWorkList.empty()) {
281      Instruction *I = InstWorkList.back();
282      InstWorkList.pop_back();
283
284      DOUT << "\nPopped off I-WL: " << *I;
285
286      // "I" got into the work list because it made a transition.  See if any
287      // users are both live and in need of updating.
288      for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
289           UI != E; ++UI) {
290        Instruction *U = cast<Instruction>(*UI);
291        if (BBExecutable.count(U->getParent()))   // Inst is executable?
292          visitInst(*U);
293      }
294    }
295
296    // Process the basic block work list.
297    while (!BBWorkList.empty()) {
298      BasicBlock *BB = BBWorkList.back();
299      BBWorkList.pop_back();
300
301      DOUT << "\nPopped off BBWL: " << *BB;
302
303      // Notify all instructions in this basic block that they are newly
304      // executable.
305      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
306        visitInst(*I);
307    }
308  }
309}
310
311void SparseSolver::Print(Function &F, std::ostream &OS) {
312  OS << "\nFUNCTION: " << F.getNameStr() << "\n";
313  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
314    if (!BBExecutable.count(BB))
315      OS << "INFEASIBLE: ";
316    OS << "\t";
317    if (BB->hasName())
318      OS << BB->getNameStr() << ":\n";
319    else
320      OS << "; anon bb\n";
321    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
322      LatticeFunc->PrintValue(getLatticeState(I), OS);
323      OS << *I;
324    }
325
326    OS << "\n";
327  }
328}
329
330