RegAllocBasic.cpp revision 89cab93fe999f6d81b4b99a71ac797b7ecfec277
1//===-- RegAllocBasic.cpp - basic register allocator ----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the RABasic function pass, which provides a minimal
11// implementation of the basic register allocator.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc"
16#include "LiveIntervalUnion.h"
17#include "RegAllocBase.h"
18#include "RenderMachineFunction.h"
19#include "Spiller.h"
20#include "VirtRegMap.h"
21#include "VirtRegRewriter.h"
22#include "llvm/ADT/OwningPtr.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/Function.h"
25#include "llvm/PassAnalysisSupport.h"
26#include "llvm/CodeGen/CalcSpillWeights.h"
27#include "llvm/CodeGen/LiveIntervalAnalysis.h"
28#include "llvm/CodeGen/LiveStackAnalysis.h"
29#include "llvm/CodeGen/MachineFunctionPass.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/CodeGen/MachineLoopInfo.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/CodeGen/Passes.h"
34#include "llvm/CodeGen/RegAllocRegistry.h"
35#include "llvm/CodeGen/RegisterCoalescer.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/Target/TargetOptions.h"
38#include "llvm/Target/TargetRegisterInfo.h"
39#ifndef NDEBUG
40#include "llvm/ADT/SparseBitVector.h"
41#endif
42#include "llvm/Support/Debug.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/raw_ostream.h"
45#include "llvm/Support/Timer.h"
46
47#include <cstdlib>
48
49using namespace llvm;
50
51static RegisterRegAlloc basicRegAlloc("basic", "basic register allocator",
52                                      createBasicRegisterAllocator);
53
54// Temporary verification option until we can put verification inside
55// MachineVerifier.
56static cl::opt<bool, true>
57VerifyRegAlloc("verify-regalloc", cl::location(RegAllocBase::VerifyEnabled),
58               cl::desc("Verify during register allocation"));
59
60const char *RegAllocBase::TimerGroupName = "Register Allocation";
61bool RegAllocBase::VerifyEnabled = false;
62
63namespace {
64/// RABasic provides a minimal implementation of the basic register allocation
65/// algorithm. It prioritizes live virtual registers by spill weight and spills
66/// whenever a register is unavailable. This is not practical in production but
67/// provides a useful baseline both for measuring other allocators and comparing
68/// the speed of the basic algorithm against other styles of allocators.
69class RABasic : public MachineFunctionPass, public RegAllocBase
70{
71  // context
72  MachineFunction *MF;
73  BitVector ReservedRegs;
74
75  // analyses
76  LiveStacks *LS;
77  RenderMachineFunction *RMF;
78
79  // state
80  std::auto_ptr<Spiller> SpillerInstance;
81
82public:
83  RABasic();
84
85  /// Return the pass name.
86  virtual const char* getPassName() const {
87    return "Basic Register Allocator";
88  }
89
90  /// RABasic analysis usage.
91  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
92
93  virtual void releaseMemory();
94
95  virtual Spiller &spiller() { return *SpillerInstance; }
96
97  virtual float getPriority(LiveInterval *LI) { return LI->weight; }
98
99  virtual unsigned selectOrSplit(LiveInterval &VirtReg,
100                                 SmallVectorImpl<LiveInterval*> &SplitVRegs);
101
102  /// Perform register allocation.
103  virtual bool runOnMachineFunction(MachineFunction &mf);
104
105  static char ID;
106};
107
108char RABasic::ID = 0;
109
110} // end anonymous namespace
111
112RABasic::RABasic(): MachineFunctionPass(ID) {
113  initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
114  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
115  initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
116  initializeRegisterCoalescerAnalysisGroup(*PassRegistry::getPassRegistry());
117  initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
118  initializeLiveStacksPass(*PassRegistry::getPassRegistry());
119  initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
120  initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
121  initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
122  initializeRenderMachineFunctionPass(*PassRegistry::getPassRegistry());
123}
124
125void RABasic::getAnalysisUsage(AnalysisUsage &AU) const {
126  AU.setPreservesCFG();
127  AU.addRequired<AliasAnalysis>();
128  AU.addPreserved<AliasAnalysis>();
129  AU.addRequired<LiveIntervals>();
130  AU.addPreserved<SlotIndexes>();
131  if (StrongPHIElim)
132    AU.addRequiredID(StrongPHIEliminationID);
133  AU.addRequiredTransitive<RegisterCoalescer>();
134  AU.addRequired<CalculateSpillWeights>();
135  AU.addRequired<LiveStacks>();
136  AU.addPreserved<LiveStacks>();
137  AU.addRequiredID(MachineDominatorsID);
138  AU.addPreservedID(MachineDominatorsID);
139  AU.addRequired<MachineLoopInfo>();
140  AU.addPreserved<MachineLoopInfo>();
141  AU.addRequired<VirtRegMap>();
142  AU.addPreserved<VirtRegMap>();
143  DEBUG(AU.addRequired<RenderMachineFunction>());
144  MachineFunctionPass::getAnalysisUsage(AU);
145}
146
147void RABasic::releaseMemory() {
148  SpillerInstance.reset(0);
149  RegAllocBase::releaseMemory();
150}
151
152#ifndef NDEBUG
153// Verify each LiveIntervalUnion.
154void RegAllocBase::verify() {
155  LiveVirtRegBitSet VisitedVRegs;
156  OwningArrayPtr<LiveVirtRegBitSet>
157    unionVRegs(new LiveVirtRegBitSet[PhysReg2LiveUnion.numRegs()]);
158
159  // Verify disjoint unions.
160  for (unsigned PhysReg = 0; PhysReg < PhysReg2LiveUnion.numRegs(); ++PhysReg) {
161    DEBUG(PhysReg2LiveUnion[PhysReg].print(dbgs(), TRI));
162    LiveVirtRegBitSet &VRegs = unionVRegs[PhysReg];
163    PhysReg2LiveUnion[PhysReg].verify(VRegs);
164    // Union + intersection test could be done efficiently in one pass, but
165    // don't add a method to SparseBitVector unless we really need it.
166    assert(!VisitedVRegs.intersects(VRegs) && "vreg in multiple unions");
167    VisitedVRegs |= VRegs;
168  }
169
170  // Verify vreg coverage.
171  for (LiveIntervals::iterator liItr = LIS->begin(), liEnd = LIS->end();
172       liItr != liEnd; ++liItr) {
173    unsigned reg = liItr->first;
174    if (TargetRegisterInfo::isPhysicalRegister(reg)) continue;
175    if (!VRM->hasPhys(reg)) continue; // spilled?
176    unsigned PhysReg = VRM->getPhys(reg);
177    if (!unionVRegs[PhysReg].test(reg)) {
178      dbgs() << "LiveVirtReg " << reg << " not in union " <<
179        TRI->getName(PhysReg) << "\n";
180      llvm_unreachable("unallocated live vreg");
181    }
182  }
183  // FIXME: I'm not sure how to verify spilled intervals.
184}
185#endif //!NDEBUG
186
187//===----------------------------------------------------------------------===//
188//                         RegAllocBase Implementation
189//===----------------------------------------------------------------------===//
190
191// Instantiate a LiveIntervalUnion for each physical register.
192void RegAllocBase::LiveUnionArray::init(LiveIntervalUnion::Allocator &allocator,
193                                        unsigned NRegs) {
194  NumRegs = NRegs;
195  Array =
196    static_cast<LiveIntervalUnion*>(malloc(sizeof(LiveIntervalUnion)*NRegs));
197  for (unsigned r = 0; r != NRegs; ++r)
198    new(Array + r) LiveIntervalUnion(r, allocator);
199}
200
201void RegAllocBase::init(VirtRegMap &vrm, LiveIntervals &lis) {
202  NamedRegionTimer T("Initialize", TimerGroupName, TimePassesIsEnabled);
203  TRI = &vrm.getTargetRegInfo();
204  MRI = &vrm.getRegInfo();
205  VRM = &vrm;
206  LIS = &lis;
207  PhysReg2LiveUnion.init(UnionAllocator, TRI->getNumRegs());
208  // Cache an interferece query for each physical reg
209  Queries.reset(new LiveIntervalUnion::Query[PhysReg2LiveUnion.numRegs()]);
210}
211
212void RegAllocBase::LiveUnionArray::clear() {
213  if (!Array)
214    return;
215  for (unsigned r = 0; r != NumRegs; ++r)
216    Array[r].~LiveIntervalUnion();
217  free(Array);
218  NumRegs =  0;
219  Array = 0;
220}
221
222void RegAllocBase::releaseMemory() {
223  PhysReg2LiveUnion.clear();
224}
225
226// Visit all the live virtual registers. If they are already assigned to a
227// physical register, unify them with the corresponding LiveIntervalUnion,
228// otherwise push them on the priority queue for later assignment.
229void RegAllocBase::
230seedLiveVirtRegs(std::priority_queue<std::pair<float, unsigned> > &VirtRegQ) {
231  for (LiveIntervals::iterator I = LIS->begin(), E = LIS->end(); I != E; ++I) {
232    unsigned RegNum = I->first;
233    LiveInterval &VirtReg = *I->second;
234    if (TargetRegisterInfo::isPhysicalRegister(RegNum))
235      PhysReg2LiveUnion[RegNum].unify(VirtReg);
236    else
237      VirtRegQ.push(std::make_pair(getPriority(&VirtReg), RegNum));
238  }
239}
240
241// Top-level driver to manage the queue of unassigned VirtRegs and call the
242// selectOrSplit implementation.
243void RegAllocBase::allocatePhysRegs() {
244
245  // Push each vreg onto a queue or "precolor" by adding it to a physreg union.
246  std::priority_queue<std::pair<float, unsigned> > VirtRegQ;
247  seedLiveVirtRegs(VirtRegQ);
248
249  // Continue assigning vregs one at a time to available physical registers.
250  while (!VirtRegQ.empty()) {
251    // Pop the highest priority vreg.
252    LiveInterval &VirtReg = LIS->getInterval(VirtRegQ.top().second);
253    VirtRegQ.pop();
254
255    // selectOrSplit requests the allocator to return an available physical
256    // register if possible and populate a list of new live intervals that
257    // result from splitting.
258    DEBUG(dbgs() << "\nselectOrSplit " << MRI->getRegClass(VirtReg.reg)->getName()
259                 << ':' << VirtReg << '\n');
260    typedef SmallVector<LiveInterval*, 4> VirtRegVec;
261    VirtRegVec SplitVRegs;
262    unsigned AvailablePhysReg = selectOrSplit(VirtReg, SplitVRegs);
263
264    if (AvailablePhysReg) {
265      DEBUG(dbgs() << "allocating: " << TRI->getName(AvailablePhysReg)
266                   << " for " << VirtReg << '\n');
267      assert(!VRM->hasPhys(VirtReg.reg) && "duplicate vreg in union");
268      VRM->assignVirt2Phys(VirtReg.reg, AvailablePhysReg);
269      PhysReg2LiveUnion[AvailablePhysReg].unify(VirtReg);
270    }
271    for (VirtRegVec::iterator I = SplitVRegs.begin(), E = SplitVRegs.end();
272         I != E; ++I) {
273      LiveInterval* SplitVirtReg = *I;
274      if (SplitVirtReg->empty()) continue;
275      DEBUG(dbgs() << "queuing new interval: " << *SplitVirtReg << "\n");
276      assert(TargetRegisterInfo::isVirtualRegister(SplitVirtReg->reg) &&
277             "expect split value in virtual register");
278      VirtRegQ.push(std::make_pair(getPriority(SplitVirtReg),
279                                   SplitVirtReg->reg));
280    }
281  }
282}
283
284// Check if this live virtual register interferes with a physical register. If
285// not, then check for interference on each register that aliases with the
286// physical register. Return the interfering register.
287unsigned RegAllocBase::checkPhysRegInterference(LiveInterval &VirtReg,
288                                                unsigned PhysReg) {
289  for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI)
290    if (query(VirtReg, *AliasI).checkInterference())
291      return *AliasI;
292  return 0;
293}
294
295// Helper for spillInteferences() that spills all interfering vregs currently
296// assigned to this physical register.
297void RegAllocBase::spillReg(LiveInterval& VirtReg, unsigned PhysReg,
298                            SmallVectorImpl<LiveInterval*> &SplitVRegs) {
299  LiveIntervalUnion::Query &Q = query(VirtReg, PhysReg);
300  assert(Q.seenAllInterferences() && "need collectInterferences()");
301  const SmallVectorImpl<LiveInterval*> &PendingSpills = Q.interferingVRegs();
302
303  for (SmallVectorImpl<LiveInterval*>::const_iterator I = PendingSpills.begin(),
304         E = PendingSpills.end(); I != E; ++I) {
305    LiveInterval &SpilledVReg = **I;
306    DEBUG(dbgs() << "extracting from " <<
307          TRI->getName(PhysReg) << " " << SpilledVReg << '\n');
308
309    // Deallocate the interfering vreg by removing it from the union.
310    // A LiveInterval instance may not be in a union during modification!
311    PhysReg2LiveUnion[PhysReg].extract(SpilledVReg);
312
313    // Clear the vreg assignment.
314    VRM->clearVirt(SpilledVReg.reg);
315
316    // Spill the extracted interval.
317    spiller().spill(&SpilledVReg, SplitVRegs, PendingSpills);
318  }
319  // After extracting segments, the query's results are invalid. But keep the
320  // contents valid until we're done accessing pendingSpills.
321  Q.clear();
322}
323
324// Spill or split all live virtual registers currently unified under PhysReg
325// that interfere with VirtReg. The newly spilled or split live intervals are
326// returned by appending them to SplitVRegs.
327bool
328RegAllocBase::spillInterferences(LiveInterval &VirtReg, unsigned PhysReg,
329                                 SmallVectorImpl<LiveInterval*> &SplitVRegs) {
330  // Record each interference and determine if all are spillable before mutating
331  // either the union or live intervals.
332  unsigned NumInterferences = 0;
333  // Collect interferences assigned to any alias of the physical register.
334  for (const unsigned *asI = TRI->getOverlaps(PhysReg); *asI; ++asI) {
335    LiveIntervalUnion::Query &QAlias = query(VirtReg, *asI);
336    NumInterferences += QAlias.collectInterferingVRegs();
337    if (QAlias.seenUnspillableVReg()) {
338      return false;
339    }
340  }
341  DEBUG(dbgs() << "spilling " << TRI->getName(PhysReg) <<
342        " interferences with " << VirtReg << "\n");
343  assert(NumInterferences > 0 && "expect interference");
344
345  // Spill each interfering vreg allocated to PhysReg or an alias.
346  for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI)
347    spillReg(VirtReg, *AliasI, SplitVRegs);
348  return true;
349}
350
351// Add newly allocated physical registers to the MBB live in sets.
352void RegAllocBase::addMBBLiveIns(MachineFunction *MF) {
353  NamedRegionTimer T("MBB Live Ins", TimerGroupName, TimePassesIsEnabled);
354  typedef SmallVector<MachineBasicBlock*, 8> MBBVec;
355  MBBVec liveInMBBs;
356  MachineBasicBlock &entryMBB = *MF->begin();
357
358  for (unsigned PhysReg = 0; PhysReg < PhysReg2LiveUnion.numRegs(); ++PhysReg) {
359    LiveIntervalUnion &LiveUnion = PhysReg2LiveUnion[PhysReg];
360    if (LiveUnion.empty())
361      continue;
362    for (LiveIntervalUnion::SegmentIter SI = LiveUnion.begin(); SI.valid();
363         ++SI) {
364
365      // Find the set of basic blocks which this range is live into...
366      liveInMBBs.clear();
367      if (!LIS->findLiveInMBBs(SI.start(), SI.stop(), liveInMBBs)) continue;
368
369      // And add the physreg for this interval to their live-in sets.
370      for (MBBVec::iterator I = liveInMBBs.begin(), E = liveInMBBs.end();
371           I != E; ++I) {
372        MachineBasicBlock *MBB = *I;
373        if (MBB == &entryMBB) continue;
374        if (MBB->isLiveIn(PhysReg)) continue;
375        MBB->addLiveIn(PhysReg);
376      }
377    }
378  }
379}
380
381
382//===----------------------------------------------------------------------===//
383//                         RABasic Implementation
384//===----------------------------------------------------------------------===//
385
386// Driver for the register assignment and splitting heuristics.
387// Manages iteration over the LiveIntervalUnions.
388//
389// This is a minimal implementation of register assignment and splitting that
390// spills whenever we run out of registers.
391//
392// selectOrSplit can only be called once per live virtual register. We then do a
393// single interference test for each register the correct class until we find an
394// available register. So, the number of interference tests in the worst case is
395// |vregs| * |machineregs|. And since the number of interference tests is
396// minimal, there is no value in caching them outside the scope of
397// selectOrSplit().
398unsigned RABasic::selectOrSplit(LiveInterval &VirtReg,
399                                SmallVectorImpl<LiveInterval*> &SplitVRegs) {
400  // Populate a list of physical register spill candidates.
401  SmallVector<unsigned, 8> PhysRegSpillCands;
402
403  // Check for an available register in this class.
404  const TargetRegisterClass *TRC = MRI->getRegClass(VirtReg.reg);
405
406  for (TargetRegisterClass::iterator I = TRC->allocation_order_begin(*MF),
407         E = TRC->allocation_order_end(*MF);
408       I != E; ++I) {
409
410    unsigned PhysReg = *I;
411    if (ReservedRegs.test(PhysReg)) continue;
412
413    // Check interference and as a side effect, intialize queries for this
414    // VirtReg and its aliases.
415    unsigned interfReg = checkPhysRegInterference(VirtReg, PhysReg);
416    if (interfReg == 0) {
417      // Found an available register.
418      return PhysReg;
419    }
420    LiveInterval *interferingVirtReg =
421      Queries[interfReg].firstInterference().liveUnionPos().value();
422
423    // The current VirtReg must either be spillable, or one of its interferences
424    // must have less spill weight.
425    if (interferingVirtReg->weight < VirtReg.weight ) {
426      PhysRegSpillCands.push_back(PhysReg);
427    }
428  }
429  // Try to spill another interfering reg with less spill weight.
430  for (SmallVectorImpl<unsigned>::iterator PhysRegI = PhysRegSpillCands.begin(),
431         PhysRegE = PhysRegSpillCands.end(); PhysRegI != PhysRegE; ++PhysRegI) {
432
433    if (!spillInterferences(VirtReg, *PhysRegI, SplitVRegs)) continue;
434
435    assert(checkPhysRegInterference(VirtReg, *PhysRegI) == 0 &&
436           "Interference after spill.");
437    // Tell the caller to allocate to this newly freed physical register.
438    return *PhysRegI;
439  }
440  // No other spill candidates were found, so spill the current VirtReg.
441  DEBUG(dbgs() << "spilling: " << VirtReg << '\n');
442  SmallVector<LiveInterval*, 1> pendingSpills;
443
444  spiller().spill(&VirtReg, SplitVRegs, pendingSpills);
445
446  // The live virtual register requesting allocation was spilled, so tell
447  // the caller not to allocate anything during this round.
448  return 0;
449}
450
451bool RABasic::runOnMachineFunction(MachineFunction &mf) {
452  DEBUG(dbgs() << "********** BASIC REGISTER ALLOCATION **********\n"
453               << "********** Function: "
454               << ((Value*)mf.getFunction())->getName() << '\n');
455
456  MF = &mf;
457  DEBUG(RMF = &getAnalysis<RenderMachineFunction>());
458
459  RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>());
460
461  ReservedRegs = TRI->getReservedRegs(*MF);
462
463  SpillerInstance.reset(createSpiller(*this, *MF, *VRM));
464
465  allocatePhysRegs();
466
467  addMBBLiveIns(MF);
468
469  // Diagnostic output before rewriting
470  DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *VRM << "\n");
471
472  // optional HTML output
473  DEBUG(RMF->renderMachineFunction("After basic register allocation.", VRM));
474
475  // FIXME: Verification currently must run before VirtRegRewriter. We should
476  // make the rewriter a separate pass and override verifyAnalysis instead. When
477  // that happens, verification naturally falls under VerifyMachineCode.
478#ifndef NDEBUG
479  if (VerifyEnabled) {
480    // Verify accuracy of LiveIntervals. The standard machine code verifier
481    // ensures that each LiveIntervals covers all uses of the virtual reg.
482
483    // FIXME: MachineVerifier is badly broken when using the standard
484    // spiller. Always use -spiller=inline with -verify-regalloc. Even with the
485    // inline spiller, some tests fail to verify because the coalescer does not
486    // always generate verifiable code.
487    MF->verify(this, "In RABasic::verify");
488
489    // Verify that LiveIntervals are partitioned into unions and disjoint within
490    // the unions.
491    verify();
492  }
493#endif // !NDEBUG
494
495  // Run rewriter
496  std::auto_ptr<VirtRegRewriter> rewriter(createVirtRegRewriter());
497  rewriter->runOnMachineFunction(*MF, *VRM, LIS);
498
499  // The pass output is in VirtRegMap. Release all the transient data.
500  releaseMemory();
501
502  return true;
503}
504
505FunctionPass* llvm::createBasicRegisterAllocator()
506{
507  return new RABasic();
508}
509