RuntimeDyldMachO.cpp revision 4b0b8ef1b0edc2c343145f6b029c43b00a6f5c13
1//===-- RuntimeDyldMachO.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Implementation of the MC-JIT runtime dynamic linker.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "dyld"
15#include "llvm/ADT/OwningPtr.h"
16#include "llvm/ADT/StringRef.h"
17#include "llvm/ADT/STLExtras.h"
18#include "RuntimeDyldMachO.h"
19using namespace llvm;
20using namespace llvm::object;
21
22namespace llvm {
23
24void RuntimeDyldMachO::resolveRelocation(uint8_t *LocalAddress,
25                                         uint64_t FinalAddress,
26                                         uint64_t Value,
27                                         uint32_t Type,
28                                         int64_t Addend) {
29  bool isPCRel = (Type >> 24) & 1;
30  unsigned MachoType = (Type >> 28) & 0xf;
31  unsigned Size = 1 << ((Type >> 25) & 3);
32
33  DEBUG(dbgs() << "resolveRelocation LocalAddress: " << format("%p", LocalAddress)
34        << " FinalAddress: " << format("%p", FinalAddress)
35        << " Value: " << format("%p", Value)
36        << " Addend: " << Addend
37        << " isPCRel: " << isPCRel
38        << " MachoType: " << MachoType
39        << " Size: " << Size
40        << "\n");
41
42  // This just dispatches to the proper target specific routine.
43  switch (Arch) {
44  default: llvm_unreachable("Unsupported CPU type!");
45  case Triple::x86_64:
46    resolveX86_64Relocation(LocalAddress,
47                            FinalAddress,
48                            (uintptr_t)Value,
49                            isPCRel,
50                            MachoType,
51                            Size,
52                            Addend);
53    break;
54  case Triple::x86:
55    resolveI386Relocation(LocalAddress,
56                                 FinalAddress,
57                                 (uintptr_t)Value,
58                                 isPCRel,
59                                 Type,
60                                 Size,
61                                 Addend);
62    break;
63  case Triple::arm:    // Fall through.
64  case Triple::thumb:
65    resolveARMRelocation(LocalAddress,
66                         FinalAddress,
67                         (uintptr_t)Value,
68                         isPCRel,
69                         MachoType,
70                         Size,
71                         Addend);
72    break;
73  }
74}
75
76bool RuntimeDyldMachO::
77resolveI386Relocation(uint8_t *LocalAddress,
78                      uint64_t FinalAddress,
79                      uint64_t Value,
80                      bool isPCRel,
81                      unsigned Type,
82                      unsigned Size,
83                      int64_t Addend) {
84  if (isPCRel)
85    Value -= FinalAddress + 4; // see resolveX86_64Relocation
86
87  switch (Type) {
88  default:
89    llvm_unreachable("Invalid relocation type!");
90  case macho::RIT_Vanilla: {
91    uint8_t *p = LocalAddress;
92    uint64_t ValueToWrite = Value + Addend;
93    for (unsigned i = 0; i < Size; ++i) {
94      *p++ = (uint8_t)(ValueToWrite & 0xff);
95      ValueToWrite >>= 8;
96    }
97  }
98  case macho::RIT_Difference:
99  case macho::RIT_Generic_LocalDifference:
100  case macho::RIT_Generic_PreboundLazyPointer:
101    return Error("Relocation type not implemented yet!");
102  }
103}
104
105bool RuntimeDyldMachO::
106resolveX86_64Relocation(uint8_t *LocalAddress,
107                        uint64_t FinalAddress,
108                        uint64_t Value,
109                        bool isPCRel,
110                        unsigned Type,
111                        unsigned Size,
112                        int64_t Addend) {
113  // If the relocation is PC-relative, the value to be encoded is the
114  // pointer difference.
115  if (isPCRel)
116    // FIXME: It seems this value needs to be adjusted by 4 for an effective PC
117    // address. Is that expected? Only for branches, perhaps?
118    Value -= FinalAddress + 4;
119
120  switch(Type) {
121  default:
122    llvm_unreachable("Invalid relocation type!");
123  case macho::RIT_X86_64_Signed1:
124  case macho::RIT_X86_64_Signed2:
125  case macho::RIT_X86_64_Signed4:
126  case macho::RIT_X86_64_Signed:
127  case macho::RIT_X86_64_Unsigned:
128  case macho::RIT_X86_64_Branch: {
129    Value += Addend;
130    // Mask in the target value a byte at a time (we don't have an alignment
131    // guarantee for the target address, so this is safest).
132    uint8_t *p = (uint8_t*)LocalAddress;
133    for (unsigned i = 0; i < Size; ++i) {
134      *p++ = (uint8_t)Value;
135      Value >>= 8;
136    }
137    return false;
138  }
139  case macho::RIT_X86_64_GOTLoad:
140  case macho::RIT_X86_64_GOT:
141  case macho::RIT_X86_64_Subtractor:
142  case macho::RIT_X86_64_TLV:
143    return Error("Relocation type not implemented yet!");
144  }
145}
146
147bool RuntimeDyldMachO::
148resolveARMRelocation(uint8_t *LocalAddress,
149                     uint64_t FinalAddress,
150                     uint64_t Value,
151                     bool isPCRel,
152                     unsigned Type,
153                     unsigned Size,
154                     int64_t Addend) {
155  // If the relocation is PC-relative, the value to be encoded is the
156  // pointer difference.
157  if (isPCRel) {
158    Value -= FinalAddress;
159    // ARM PCRel relocations have an effective-PC offset of two instructions
160    // (four bytes in Thumb mode, 8 bytes in ARM mode).
161    // FIXME: For now, assume ARM mode.
162    Value -= 8;
163  }
164
165  switch(Type) {
166  default:
167    llvm_unreachable("Invalid relocation type!");
168  case macho::RIT_Vanilla: {
169    // Mask in the target value a byte at a time (we don't have an alignment
170    // guarantee for the target address, so this is safest).
171    uint8_t *p = (uint8_t*)LocalAddress;
172    for (unsigned i = 0; i < Size; ++i) {
173      *p++ = (uint8_t)Value;
174      Value >>= 8;
175    }
176    break;
177  }
178  case macho::RIT_ARM_Branch24Bit: {
179    // Mask the value into the target address. We know instructions are
180    // 32-bit aligned, so we can do it all at once.
181    uint32_t *p = (uint32_t*)LocalAddress;
182    // The low two bits of the value are not encoded.
183    Value >>= 2;
184    // Mask the value to 24 bits.
185    Value &= 0xffffff;
186    // FIXME: If the destination is a Thumb function (and the instruction
187    // is a non-predicated BL instruction), we need to change it to a BLX
188    // instruction instead.
189
190    // Insert the value into the instruction.
191    *p = (*p & ~0xffffff) | Value;
192    break;
193  }
194  case macho::RIT_ARM_ThumbBranch22Bit:
195  case macho::RIT_ARM_ThumbBranch32Bit:
196  case macho::RIT_ARM_Half:
197  case macho::RIT_ARM_HalfDifference:
198  case macho::RIT_Pair:
199  case macho::RIT_Difference:
200  case macho::RIT_ARM_LocalDifference:
201  case macho::RIT_ARM_PreboundLazyPointer:
202    return Error("Relocation type not implemented yet!");
203  }
204  return false;
205}
206
207void RuntimeDyldMachO::processRelocationRef(const ObjRelocationInfo &Rel,
208                                            const ObjectFile &Obj,
209                                            ObjSectionToIDMap &ObjSectionToID,
210                                            LocalSymbolMap &Symbols,
211                                            StubMap &Stubs) {
212
213  uint32_t RelType = (uint32_t) (Rel.Type & 0xffffffffL);
214  RelocationValueRef Value;
215  SectionEntry &Section = Sections[Rel.SectionID];
216  uint8_t *Target = Section.Address + Rel.Offset;
217
218  bool isExtern = (RelType >> 27) & 1;
219  if (isExtern) {
220    StringRef TargetName;
221    const SymbolRef &Symbol = Rel.Symbol;
222    Symbol.getName(TargetName);
223    // First look the symbol in object file symbols.
224    LocalSymbolMap::iterator lsi = Symbols.find(TargetName.data());
225    if (lsi != Symbols.end()) {
226      Value.SectionID = lsi->second.first;
227      Value.Addend = lsi->second.second;
228    } else {
229      // Second look the symbol in global symbol table.
230      StringMap<SymbolLoc>::iterator gsi = SymbolTable.find(TargetName.data());
231      if (gsi != SymbolTable.end()) {
232        Value.SectionID = gsi->second.first;
233        Value.Addend = gsi->second.second;
234      } else
235        Value.SymbolName = TargetName.data();
236    }
237  } else {
238    error_code err;
239    uint8_t sectionIndex = static_cast<uint8_t>(RelType & 0xFF);
240    section_iterator si = Obj.begin_sections(),
241                     se = Obj.end_sections();
242    for (uint8_t i = 1; i < sectionIndex; i++) {
243      error_code err;
244      si.increment(err);
245      if (si == se)
246        break;
247    }
248    assert(si != se && "No section containing relocation!");
249    Value.SectionID = findOrEmitSection(*si, true, ObjSectionToID);
250    Value.Addend = *(const intptr_t *)Target;
251    if (Value.Addend) {
252      // The MachO addend is offset from the current section, we need set it
253      // as offset from destination section
254      Value.Addend += Section.ObjAddress - Sections[Value.SectionID].ObjAddress;
255    }
256  }
257
258  if (Arch == Triple::arm && RelType == macho::RIT_ARM_Branch24Bit) {
259    // This is an ARM branch relocation, need to use a stub function.
260
261    //  Look up for existing stub.
262    StubMap::const_iterator i = Stubs.find(Value);
263    if (i != Stubs.end())
264      resolveRelocation(Target, (uint64_t)Target,
265                        (uint64_t)Section.Address + i->second,
266                        RelType, 0);
267    else {
268      // Create a new stub function.
269      Stubs[Value] = Section.StubOffset;
270      uint8_t *StubTargetAddr = createStubFunction(Section.Address +
271                                                   Section.StubOffset);
272      AddRelocation(Value, Rel.SectionID, StubTargetAddr - Section.Address,
273                    macho::RIT_Vanilla);
274      resolveRelocation(Target, (uint64_t)Target,
275                        (uint64_t)Section.Address + Section.StubOffset,
276                        RelType, 0);
277      Section.StubOffset += getMaxStubSize();
278    }
279  } else
280    AddRelocation(Value, Rel.SectionID, Rel.Offset, RelType);
281}
282
283
284bool RuntimeDyldMachO::isCompatibleFormat(const MemoryBuffer *InputBuffer) const {
285  StringRef Magic = InputBuffer->getBuffer().slice(0, 4);
286  if (Magic == "\xFE\xED\xFA\xCE") return true;
287  if (Magic == "\xCE\xFA\xED\xFE") return true;
288  if (Magic == "\xFE\xED\xFA\xCF") return true;
289  if (Magic == "\xCF\xFA\xED\xFE") return true;
290  return false;
291}
292
293} // end namespace llvm
294