RuntimeDyldMachO.cpp revision a307a1cf859f4a523951ac887d094039547adeb5
1//===-- RuntimeDyldMachO.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Implementation of the MC-JIT runtime dynamic linker.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "dyld"
15#include "llvm/ADT/OwningPtr.h"
16#include "llvm/ADT/StringRef.h"
17#include "llvm/ADT/STLExtras.h"
18#include "RuntimeDyldMachO.h"
19using namespace llvm;
20using namespace llvm::object;
21
22namespace llvm {
23
24void RuntimeDyldMachO::resolveRelocation(const SectionEntry &Section,
25                                         uint64_t Offset,
26                                         uint64_t Value,
27                                         uint32_t Type,
28                                         int64_t Addend) {
29  uint8_t *LocalAddress = Section.Address + Offset;
30  uint64_t FinalAddress = Section.LoadAddress + Offset;
31  bool isPCRel = (Type >> 24) & 1;
32  unsigned MachoType = (Type >> 28) & 0xf;
33  unsigned Size = 1 << ((Type >> 25) & 3);
34
35  DEBUG(dbgs() << "resolveRelocation LocalAddress: "
36        << format("%p", LocalAddress)
37        << " FinalAddress: " << format("%p", FinalAddress)
38        << " Value: " << format("%p", Value)
39        << " Addend: " << Addend
40        << " isPCRel: " << isPCRel
41        << " MachoType: " << MachoType
42        << " Size: " << Size
43        << "\n");
44
45  // This just dispatches to the proper target specific routine.
46  switch (Arch) {
47  default: llvm_unreachable("Unsupported CPU type!");
48  case Triple::x86_64:
49    resolveX86_64Relocation(LocalAddress,
50                            FinalAddress,
51                            (uintptr_t)Value,
52                            isPCRel,
53                            MachoType,
54                            Size,
55                            Addend);
56    break;
57  case Triple::x86:
58    resolveI386Relocation(LocalAddress,
59                          FinalAddress,
60                          (uintptr_t)Value,
61                          isPCRel,
62                          MachoType,
63                          Size,
64                          Addend);
65    break;
66  case Triple::arm:    // Fall through.
67  case Triple::thumb:
68    resolveARMRelocation(LocalAddress,
69                         FinalAddress,
70                         (uintptr_t)Value,
71                         isPCRel,
72                         MachoType,
73                         Size,
74                         Addend);
75    break;
76  }
77}
78
79bool RuntimeDyldMachO::resolveI386Relocation(uint8_t *LocalAddress,
80                                             uint64_t FinalAddress,
81                                             uint64_t Value,
82                                             bool isPCRel,
83                                             unsigned Type,
84                                             unsigned Size,
85                                             int64_t Addend) {
86  if (isPCRel)
87    Value -= FinalAddress + 4; // see resolveX86_64Relocation
88
89  switch (Type) {
90  default:
91    llvm_unreachable("Invalid relocation type!");
92  case macho::RIT_Vanilla: {
93    uint8_t *p = LocalAddress;
94    uint64_t ValueToWrite = Value + Addend;
95    for (unsigned i = 0; i < Size; ++i) {
96      *p++ = (uint8_t)(ValueToWrite & 0xff);
97      ValueToWrite >>= 8;
98    }
99  }
100  case macho::RIT_Difference:
101  case macho::RIT_Generic_LocalDifference:
102  case macho::RIT_Generic_PreboundLazyPointer:
103    return Error("Relocation type not implemented yet!");
104  }
105}
106
107bool RuntimeDyldMachO::resolveX86_64Relocation(uint8_t *LocalAddress,
108                                               uint64_t FinalAddress,
109                                               uint64_t Value,
110                                               bool isPCRel,
111                                               unsigned Type,
112                                               unsigned Size,
113                                               int64_t Addend) {
114  // If the relocation is PC-relative, the value to be encoded is the
115  // pointer difference.
116  if (isPCRel)
117    // FIXME: It seems this value needs to be adjusted by 4 for an effective PC
118    // address. Is that expected? Only for branches, perhaps?
119    Value -= FinalAddress + 4;
120
121  switch(Type) {
122  default:
123    llvm_unreachable("Invalid relocation type!");
124  case macho::RIT_X86_64_Signed1:
125  case macho::RIT_X86_64_Signed2:
126  case macho::RIT_X86_64_Signed4:
127  case macho::RIT_X86_64_Signed:
128  case macho::RIT_X86_64_Unsigned:
129  case macho::RIT_X86_64_Branch: {
130    Value += Addend;
131    // Mask in the target value a byte at a time (we don't have an alignment
132    // guarantee for the target address, so this is safest).
133    uint8_t *p = (uint8_t*)LocalAddress;
134    for (unsigned i = 0; i < Size; ++i) {
135      *p++ = (uint8_t)Value;
136      Value >>= 8;
137    }
138    return false;
139  }
140  case macho::RIT_X86_64_GOTLoad:
141  case macho::RIT_X86_64_GOT:
142  case macho::RIT_X86_64_Subtractor:
143  case macho::RIT_X86_64_TLV:
144    return Error("Relocation type not implemented yet!");
145  }
146}
147
148bool RuntimeDyldMachO::resolveARMRelocation(uint8_t *LocalAddress,
149                                            uint64_t FinalAddress,
150                                            uint64_t Value,
151                                            bool isPCRel,
152                                            unsigned Type,
153                                            unsigned Size,
154                                            int64_t Addend) {
155  // If the relocation is PC-relative, the value to be encoded is the
156  // pointer difference.
157  if (isPCRel) {
158    Value -= FinalAddress;
159    // ARM PCRel relocations have an effective-PC offset of two instructions
160    // (four bytes in Thumb mode, 8 bytes in ARM mode).
161    // FIXME: For now, assume ARM mode.
162    Value -= 8;
163  }
164
165  switch(Type) {
166  default:
167    llvm_unreachable("Invalid relocation type!");
168  case macho::RIT_Vanilla: {
169    // Mask in the target value a byte at a time (we don't have an alignment
170    // guarantee for the target address, so this is safest).
171    uint8_t *p = (uint8_t*)LocalAddress;
172    for (unsigned i = 0; i < Size; ++i) {
173      *p++ = (uint8_t)Value;
174      Value >>= 8;
175    }
176    break;
177  }
178  case macho::RIT_ARM_Branch24Bit: {
179    // Mask the value into the target address. We know instructions are
180    // 32-bit aligned, so we can do it all at once.
181    uint32_t *p = (uint32_t*)LocalAddress;
182    // The low two bits of the value are not encoded.
183    Value >>= 2;
184    // Mask the value to 24 bits.
185    Value &= 0xffffff;
186    // FIXME: If the destination is a Thumb function (and the instruction
187    // is a non-predicated BL instruction), we need to change it to a BLX
188    // instruction instead.
189
190    // Insert the value into the instruction.
191    *p = (*p & ~0xffffff) | Value;
192    break;
193  }
194  case macho::RIT_ARM_ThumbBranch22Bit:
195  case macho::RIT_ARM_ThumbBranch32Bit:
196  case macho::RIT_ARM_Half:
197  case macho::RIT_ARM_HalfDifference:
198  case macho::RIT_Pair:
199  case macho::RIT_Difference:
200  case macho::RIT_ARM_LocalDifference:
201  case macho::RIT_ARM_PreboundLazyPointer:
202    return Error("Relocation type not implemented yet!");
203  }
204  return false;
205}
206
207void RuntimeDyldMachO::processRelocationRef(const ObjRelocationInfo &Rel,
208                                            ObjectImage &Obj,
209                                            ObjSectionToIDMap &ObjSectionToID,
210                                            const SymbolTableMap &Symbols,
211                                            StubMap &Stubs) {
212
213  uint32_t RelType = (uint32_t) (Rel.Type & 0xffffffffL);
214  RelocationValueRef Value;
215  SectionEntry &Section = Sections[Rel.SectionID];
216
217  bool isExtern = (RelType >> 27) & 1;
218  if (isExtern) {
219    // Obtain the symbol name which is referenced in the relocation
220    StringRef TargetName;
221    const SymbolRef &Symbol = Rel.Symbol;
222    Symbol.getName(TargetName);
223    // First search for the symbol in the local symbol table
224    SymbolTableMap::const_iterator lsi = Symbols.find(TargetName.data());
225    if (lsi != Symbols.end()) {
226      Value.SectionID = lsi->second.first;
227      Value.Addend = lsi->second.second;
228    } else {
229      // Search for the symbol in the global symbol table
230      SymbolTableMap::const_iterator gsi = GlobalSymbolTable.find(TargetName.data());
231      if (gsi != GlobalSymbolTable.end()) {
232        Value.SectionID = gsi->second.first;
233        Value.Addend = gsi->second.second;
234      } else
235        Value.SymbolName = TargetName.data();
236    }
237  } else {
238    error_code err;
239    uint8_t sectionIndex = static_cast<uint8_t>(RelType & 0xFF);
240    section_iterator si = Obj.begin_sections(),
241                     se = Obj.end_sections();
242    for (uint8_t i = 1; i < sectionIndex; i++) {
243      error_code err;
244      si.increment(err);
245      if (si == se)
246        break;
247    }
248    assert(si != se && "No section containing relocation!");
249    Value.SectionID = findOrEmitSection(Obj, *si, true, ObjSectionToID);
250    Value.Addend = 0;
251    // FIXME: The size and type of the relocation determines if we can
252    // encode an Addend in the target location itself, and if so, how many
253    // bytes we should read in order to get it. We don't yet support doing
254    // that, and just assuming it's sizeof(intptr_t) is blatantly wrong.
255    //Value.Addend = *(const intptr_t *)Target;
256    if (Value.Addend) {
257      // The MachO addend is an offset from the current section.  We need it
258      // to be an offset from the destination section
259      Value.Addend += Section.ObjAddress - Sections[Value.SectionID].ObjAddress;
260    }
261  }
262
263  if (Arch == Triple::arm && (RelType & 0xf) == macho::RIT_ARM_Branch24Bit) {
264    // This is an ARM branch relocation, need to use a stub function.
265
266    //  Look up for existing stub.
267    StubMap::const_iterator i = Stubs.find(Value);
268    if (i != Stubs.end())
269      resolveRelocation(Section, Rel.Offset,
270                        (uint64_t)Section.Address + i->second,
271                        RelType, 0);
272    else {
273      // Create a new stub function.
274      Stubs[Value] = Section.StubOffset;
275      uint8_t *StubTargetAddr = createStubFunction(Section.Address +
276                                                   Section.StubOffset);
277      RelocationEntry RE(Rel.SectionID, StubTargetAddr - Section.Address,
278                         macho::RIT_Vanilla, Value.Addend);
279      if (Value.SymbolName)
280        addRelocationForSymbol(RE, Value.SymbolName);
281      else
282        addRelocationForSection(RE, Value.SectionID);
283      resolveRelocation(Section, Rel.Offset,
284                        (uint64_t)Section.Address + Section.StubOffset,
285                        RelType, 0);
286      Section.StubOffset += getMaxStubSize();
287    }
288  } else {
289    RelocationEntry RE(Rel.SectionID, Rel.Offset, RelType, Value.Addend);
290    if (Value.SymbolName)
291      addRelocationForSymbol(RE, Value.SymbolName);
292    else
293      addRelocationForSection(RE, Value.SectionID);
294  }
295}
296
297
298bool RuntimeDyldMachO::isCompatibleFormat(
299        const ObjectBuffer *InputBuffer) const {
300  if (InputBuffer->getBufferSize() < 4)
301    return false;
302  StringRef Magic(InputBuffer->getBufferStart(), 4);
303  if (Magic == "\xFE\xED\xFA\xCE") return true;
304  if (Magic == "\xCE\xFA\xED\xFE") return true;
305  if (Magic == "\xFE\xED\xFA\xCF") return true;
306  if (Magic == "\xCF\xFA\xED\xFE") return true;
307  return false;
308}
309
310} // end namespace llvm
311