1//===--- StringMap.cpp - String Hash table map implementation -------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the StringMap class. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/ADT/StringMap.h" 15#include "llvm/ADT/StringExtras.h" 16#include "llvm/Support/Compiler.h" 17#include <cassert> 18using namespace llvm; 19 20/// Returns the number of buckets to allocate to ensure that the DenseMap can 21/// accommodate \p NumEntries without need to grow(). 22static unsigned getMinBucketToReserveForEntries(unsigned NumEntries) { 23 // Ensure that "NumEntries * 4 < NumBuckets * 3" 24 if (NumEntries == 0) 25 return 0; 26 // +1 is required because of the strict equality. 27 // For example if NumEntries is 48, we need to return 401. 28 return NextPowerOf2(NumEntries * 4 / 3 + 1); 29} 30 31StringMapImpl::StringMapImpl(unsigned InitSize, unsigned itemSize) { 32 ItemSize = itemSize; 33 34 // If a size is specified, initialize the table with that many buckets. 35 if (InitSize) { 36 // The table will grow when the number of entries reach 3/4 of the number of 37 // buckets. To guarantee that "InitSize" number of entries can be inserted 38 // in the table without growing, we allocate just what is needed here. 39 init(getMinBucketToReserveForEntries(InitSize)); 40 return; 41 } 42 43 // Otherwise, initialize it with zero buckets to avoid the allocation. 44 TheTable = nullptr; 45 NumBuckets = 0; 46 NumItems = 0; 47 NumTombstones = 0; 48} 49 50void StringMapImpl::init(unsigned InitSize) { 51 assert((InitSize & (InitSize-1)) == 0 && 52 "Init Size must be a power of 2 or zero!"); 53 NumBuckets = InitSize ? InitSize : 16; 54 NumItems = 0; 55 NumTombstones = 0; 56 57 TheTable = (StringMapEntryBase **)calloc(NumBuckets+1, 58 sizeof(StringMapEntryBase **) + 59 sizeof(unsigned)); 60 61 // Allocate one extra bucket, set it to look filled so the iterators stop at 62 // end. 63 TheTable[NumBuckets] = (StringMapEntryBase*)2; 64} 65 66 67/// LookupBucketFor - Look up the bucket that the specified string should end 68/// up in. If it already exists as a key in the map, the Item pointer for the 69/// specified bucket will be non-null. Otherwise, it will be null. In either 70/// case, the FullHashValue field of the bucket will be set to the hash value 71/// of the string. 72unsigned StringMapImpl::LookupBucketFor(StringRef Name) { 73 unsigned HTSize = NumBuckets; 74 if (HTSize == 0) { // Hash table unallocated so far? 75 init(16); 76 HTSize = NumBuckets; 77 } 78 unsigned FullHashValue = HashString(Name); 79 unsigned BucketNo = FullHashValue & (HTSize-1); 80 unsigned *HashTable = (unsigned *)(TheTable + NumBuckets + 1); 81 82 unsigned ProbeAmt = 1; 83 int FirstTombstone = -1; 84 while (1) { 85 StringMapEntryBase *BucketItem = TheTable[BucketNo]; 86 // If we found an empty bucket, this key isn't in the table yet, return it. 87 if (LLVM_LIKELY(!BucketItem)) { 88 // If we found a tombstone, we want to reuse the tombstone instead of an 89 // empty bucket. This reduces probing. 90 if (FirstTombstone != -1) { 91 HashTable[FirstTombstone] = FullHashValue; 92 return FirstTombstone; 93 } 94 95 HashTable[BucketNo] = FullHashValue; 96 return BucketNo; 97 } 98 99 if (BucketItem == getTombstoneVal()) { 100 // Skip over tombstones. However, remember the first one we see. 101 if (FirstTombstone == -1) FirstTombstone = BucketNo; 102 } else if (LLVM_LIKELY(HashTable[BucketNo] == FullHashValue)) { 103 // If the full hash value matches, check deeply for a match. The common 104 // case here is that we are only looking at the buckets (for item info 105 // being non-null and for the full hash value) not at the items. This 106 // is important for cache locality. 107 108 // Do the comparison like this because Name isn't necessarily 109 // null-terminated! 110 char *ItemStr = (char*)BucketItem+ItemSize; 111 if (Name == StringRef(ItemStr, BucketItem->getKeyLength())) { 112 // We found a match! 113 return BucketNo; 114 } 115 } 116 117 // Okay, we didn't find the item. Probe to the next bucket. 118 BucketNo = (BucketNo+ProbeAmt) & (HTSize-1); 119 120 // Use quadratic probing, it has fewer clumping artifacts than linear 121 // probing and has good cache behavior in the common case. 122 ++ProbeAmt; 123 } 124} 125 126 127/// FindKey - Look up the bucket that contains the specified key. If it exists 128/// in the map, return the bucket number of the key. Otherwise return -1. 129/// This does not modify the map. 130int StringMapImpl::FindKey(StringRef Key) const { 131 unsigned HTSize = NumBuckets; 132 if (HTSize == 0) return -1; // Really empty table? 133 unsigned FullHashValue = HashString(Key); 134 unsigned BucketNo = FullHashValue & (HTSize-1); 135 unsigned *HashTable = (unsigned *)(TheTable + NumBuckets + 1); 136 137 unsigned ProbeAmt = 1; 138 while (1) { 139 StringMapEntryBase *BucketItem = TheTable[BucketNo]; 140 // If we found an empty bucket, this key isn't in the table yet, return. 141 if (LLVM_LIKELY(!BucketItem)) 142 return -1; 143 144 if (BucketItem == getTombstoneVal()) { 145 // Ignore tombstones. 146 } else if (LLVM_LIKELY(HashTable[BucketNo] == FullHashValue)) { 147 // If the full hash value matches, check deeply for a match. The common 148 // case here is that we are only looking at the buckets (for item info 149 // being non-null and for the full hash value) not at the items. This 150 // is important for cache locality. 151 152 // Do the comparison like this because NameStart isn't necessarily 153 // null-terminated! 154 char *ItemStr = (char*)BucketItem+ItemSize; 155 if (Key == StringRef(ItemStr, BucketItem->getKeyLength())) { 156 // We found a match! 157 return BucketNo; 158 } 159 } 160 161 // Okay, we didn't find the item. Probe to the next bucket. 162 BucketNo = (BucketNo+ProbeAmt) & (HTSize-1); 163 164 // Use quadratic probing, it has fewer clumping artifacts than linear 165 // probing and has good cache behavior in the common case. 166 ++ProbeAmt; 167 } 168} 169 170/// RemoveKey - Remove the specified StringMapEntry from the table, but do not 171/// delete it. This aborts if the value isn't in the table. 172void StringMapImpl::RemoveKey(StringMapEntryBase *V) { 173 const char *VStr = (char*)V + ItemSize; 174 StringMapEntryBase *V2 = RemoveKey(StringRef(VStr, V->getKeyLength())); 175 (void)V2; 176 assert(V == V2 && "Didn't find key?"); 177} 178 179/// RemoveKey - Remove the StringMapEntry for the specified key from the 180/// table, returning it. If the key is not in the table, this returns null. 181StringMapEntryBase *StringMapImpl::RemoveKey(StringRef Key) { 182 int Bucket = FindKey(Key); 183 if (Bucket == -1) return nullptr; 184 185 StringMapEntryBase *Result = TheTable[Bucket]; 186 TheTable[Bucket] = getTombstoneVal(); 187 --NumItems; 188 ++NumTombstones; 189 assert(NumItems + NumTombstones <= NumBuckets); 190 191 return Result; 192} 193 194 195 196/// RehashTable - Grow the table, redistributing values into the buckets with 197/// the appropriate mod-of-hashtable-size. 198unsigned StringMapImpl::RehashTable(unsigned BucketNo) { 199 unsigned NewSize; 200 unsigned *HashTable = (unsigned *)(TheTable + NumBuckets + 1); 201 202 // If the hash table is now more than 3/4 full, or if fewer than 1/8 of 203 // the buckets are empty (meaning that many are filled with tombstones), 204 // grow/rehash the table. 205 if (LLVM_UNLIKELY(NumItems * 4 > NumBuckets * 3)) { 206 NewSize = NumBuckets*2; 207 } else if (LLVM_UNLIKELY(NumBuckets - (NumItems + NumTombstones) <= 208 NumBuckets / 8)) { 209 NewSize = NumBuckets; 210 } else { 211 return BucketNo; 212 } 213 214 unsigned NewBucketNo = BucketNo; 215 // Allocate one extra bucket which will always be non-empty. This allows the 216 // iterators to stop at end. 217 StringMapEntryBase **NewTableArray = 218 (StringMapEntryBase **)calloc(NewSize+1, sizeof(StringMapEntryBase *) + 219 sizeof(unsigned)); 220 unsigned *NewHashArray = (unsigned *)(NewTableArray + NewSize + 1); 221 NewTableArray[NewSize] = (StringMapEntryBase*)2; 222 223 // Rehash all the items into their new buckets. Luckily :) we already have 224 // the hash values available, so we don't have to rehash any strings. 225 for (unsigned I = 0, E = NumBuckets; I != E; ++I) { 226 StringMapEntryBase *Bucket = TheTable[I]; 227 if (Bucket && Bucket != getTombstoneVal()) { 228 // Fast case, bucket available. 229 unsigned FullHash = HashTable[I]; 230 unsigned NewBucket = FullHash & (NewSize-1); 231 if (!NewTableArray[NewBucket]) { 232 NewTableArray[FullHash & (NewSize-1)] = Bucket; 233 NewHashArray[FullHash & (NewSize-1)] = FullHash; 234 if (I == BucketNo) 235 NewBucketNo = NewBucket; 236 continue; 237 } 238 239 // Otherwise probe for a spot. 240 unsigned ProbeSize = 1; 241 do { 242 NewBucket = (NewBucket + ProbeSize++) & (NewSize-1); 243 } while (NewTableArray[NewBucket]); 244 245 // Finally found a slot. Fill it in. 246 NewTableArray[NewBucket] = Bucket; 247 NewHashArray[NewBucket] = FullHash; 248 if (I == BucketNo) 249 NewBucketNo = NewBucket; 250 } 251 } 252 253 free(TheTable); 254 255 TheTable = NewTableArray; 256 NumBuckets = NewSize; 257 NumTombstones = 0; 258 return NewBucketNo; 259} 260