1//===--- HexagonExpandCondsets.cpp ----------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10// Replace mux instructions with the corresponding legal instructions.
11// It is meant to work post-SSA, but still on virtual registers. It was
12// originally placed between register coalescing and machine instruction
13// scheduler.
14// In this place in the optimization sequence, live interval analysis had
15// been performed, and the live intervals should be preserved. A large part
16// of the code deals with preserving the liveness information.
17//
18// Liveness tracking aside, the main functionality of this pass is divided
19// into two steps. The first step is to replace an instruction
20//   vreg0 = C2_mux vreg1, vreg2, vreg3
21// with a pair of conditional transfers
22//   vreg0 = A2_tfrt vreg1, vreg2
23//   vreg0 = A2_tfrf vreg1, vreg3
24// It is the intention that the execution of this pass could be terminated
25// after this step, and the code generated would be functionally correct.
26//
27// If the uses of the source values vreg1 and vreg2 are kills, and their
28// definitions are predicable, then in the second step, the conditional
29// transfers will then be rewritten as predicated instructions. E.g.
30//   vreg0 = A2_or vreg1, vreg2
31//   vreg3 = A2_tfrt vreg99, vreg0<kill>
32// will be rewritten as
33//   vreg3 = A2_port vreg99, vreg1, vreg2
34//
35// This replacement has two variants: "up" and "down". Consider this case:
36//   vreg0 = A2_or vreg1, vreg2
37//   ... [intervening instructions] ...
38//   vreg3 = A2_tfrt vreg99, vreg0<kill>
39// variant "up":
40//   vreg3 = A2_port vreg99, vreg1, vreg2
41//   ... [intervening instructions, vreg0->vreg3] ...
42//   [deleted]
43// variant "down":
44//   [deleted]
45//   ... [intervening instructions] ...
46//   vreg3 = A2_port vreg99, vreg1, vreg2
47//
48// Both, one or none of these variants may be valid, and checks are made
49// to rule out inapplicable variants.
50//
51// As an additional optimization, before either of the two steps above is
52// executed, the pass attempts to coalesce the target register with one of
53// the source registers, e.g. given an instruction
54//   vreg3 = C2_mux vreg0, vreg1, vreg2
55// vreg3 will be coalesced with either vreg1 or vreg2. If this succeeds,
56// the instruction would then be (for example)
57//   vreg3 = C2_mux vreg0, vreg3, vreg2
58// and, under certain circumstances, this could result in only one predicated
59// instruction:
60//   vreg3 = A2_tfrf vreg0, vreg2
61//
62
63// Splitting a definition of a register into two predicated transfers
64// creates a complication in liveness tracking. Live interval computation
65// will see both instructions as actual definitions, and will mark the
66// first one as dead. The definition is not actually dead, and this
67// situation will need to be fixed. For example:
68//   vreg1<def,dead> = A2_tfrt ...  ; marked as dead
69//   vreg1<def> = A2_tfrf ...
70//
71// Since any of the individual predicated transfers may end up getting
72// removed (in case it is an identity copy), some pre-existing def may
73// be marked as dead after live interval recomputation:
74//   vreg1<def,dead> = ...          ; marked as dead
75//   ...
76//   vreg1<def> = A2_tfrf ...       ; if A2_tfrt is removed
77// This case happens if vreg1 was used as a source in A2_tfrt, which means
78// that is it actually live at the A2_tfrf, and so the now dead definition
79// of vreg1 will need to be updated to non-dead at some point.
80//
81// This issue could be remedied by adding implicit uses to the predicated
82// transfers, but this will create a problem with subsequent predication,
83// since the transfers will no longer be possible to reorder. To avoid
84// that, the initial splitting will not add any implicit uses. These
85// implicit uses will be added later, after predication. The extra price,
86// however, is that finding the locations where the implicit uses need
87// to be added, and updating the live ranges will be more involved.
88//
89// An additional problem appears when subregister liveness tracking is
90// enabled. In such a scenario, the live interval for the super-register
91// will have live ranges for each subregister (i.e. subranges). This sub-
92// range contains all liveness information about the subregister, except
93// for one case: a "read-undef" flag from another subregister will not
94// be reflected: given
95//   vreg1:subreg_hireg<def,read-undef> = ...  ; "undefines" subreg_loreg
96// the subrange for subreg_loreg will not have any indication that it is
97// undefined at this point. Calculating subregister liveness based only
98// on the information from the subrange may create a segment which spans
99// over such a "read-undef" flag. This would create inconsistencies in
100// the liveness data, resulting in assertions or incorrect code.
101// Example:
102//   vreg1:subreg_loreg<def> = ...
103//   vreg1:subreg_hireg<def, read-undef> = ... ; "undefines" subreg_loreg
104//   ...
105//   vreg1:subreg_loreg<def> = A2_tfrt ...     ; may end up with imp-use
106//                                             ; of subreg_loreg
107// The remedy takes advantage of the fact, that at this point we have
108// an unconditional definition of the subregister. What this means is
109// that any preceding value in this subregister will be overwritten,
110// or in other words, the last use before this def is a kill. This also
111// implies that the first of the predicated transfers at this location
112// should not have any implicit uses.
113// Assume for a moment that no part of the corresponding super-register
114// is used as a source. In such case, the entire super-register can be
115// considered undefined immediately before this instruction. Because of
116// that, we can insert an IMPLICIT_DEF of the super-register at this
117// location, which will cause it to be reflected in all the associated
118// subranges. What is important here is that if an IMPLICIT_DEF of
119// subreg_loreg was used, we would lose the indication that subreg_hireg
120// is also considered undefined. This could lead to having implicit uses
121// incorrectly added.
122//
123// What is left is the two cases when the super-register is used as a
124// source.
125// * Case 1: the used part is the same as the one that is defined:
126//   vreg1<def> = ...
127//   ...
128//   vreg1:subreg_loreg<def,read-undef> = C2_mux ..., vreg1:subreg_loreg
129// In the end, the subreg_loreg should be marked as live at the point of
130// the splitting:
131//   vreg1:subreg_loreg<def,read-undef> = A2_tfrt ; should have imp-use
132//   vreg1:subreg_loreg<def,read-undef> = A2_tfrf ; should have imp-use
133// Hence, an IMPLICIT_DEF of only vreg1:subreg_hireg would be sufficient.
134// * Case 2: the used part does not overlap the part being defined:
135//   vreg1<def> = ...
136//   ...
137//   vreg1:subreg_loreg<def,read-undef> = C2_mux ..., vreg1:subreg_hireg
138// For this case, we insert an IMPLICIT_DEF of vreg1:subreg_hireg after
139// the C2_mux.
140
141#define DEBUG_TYPE "expand-condsets"
142
143#include "HexagonTargetMachine.h"
144#include "llvm/ADT/SetVector.h"
145#include "llvm/CodeGen/Passes.h"
146#include "llvm/CodeGen/LiveInterval.h"
147#include "llvm/CodeGen/LiveIntervalAnalysis.h"
148#include "llvm/CodeGen/MachineDominators.h"
149#include "llvm/CodeGen/MachineFunction.h"
150#include "llvm/CodeGen/MachineInstrBuilder.h"
151#include "llvm/CodeGen/MachineRegisterInfo.h"
152#include "llvm/Target/TargetInstrInfo.h"
153#include "llvm/Target/TargetMachine.h"
154#include "llvm/Target/TargetRegisterInfo.h"
155#include "llvm/Support/CommandLine.h"
156#include "llvm/Support/Debug.h"
157#include "llvm/Support/raw_ostream.h"
158
159#include <algorithm>
160#include <iterator>
161#include <set>
162#include <utility>
163
164using namespace llvm;
165
166static cl::opt<unsigned> OptTfrLimit("expand-condsets-tfr-limit",
167  cl::init(~0U), cl::Hidden, cl::desc("Max number of mux expansions"));
168static cl::opt<unsigned> OptCoaLimit("expand-condsets-coa-limit",
169  cl::init(~0U), cl::Hidden, cl::desc("Max number of segment coalescings"));
170
171namespace llvm {
172  void initializeHexagonExpandCondsetsPass(PassRegistry&);
173  FunctionPass *createHexagonExpandCondsets();
174}
175
176namespace {
177  class HexagonExpandCondsets : public MachineFunctionPass {
178  public:
179    static char ID;
180    HexagonExpandCondsets() :
181        MachineFunctionPass(ID), HII(0), TRI(0), MRI(0),
182        LIS(0), CoaLimitActive(false),
183        TfrLimitActive(false), CoaCounter(0), TfrCounter(0) {
184      if (OptCoaLimit.getPosition())
185        CoaLimitActive = true, CoaLimit = OptCoaLimit;
186      if (OptTfrLimit.getPosition())
187        TfrLimitActive = true, TfrLimit = OptTfrLimit;
188      initializeHexagonExpandCondsetsPass(*PassRegistry::getPassRegistry());
189    }
190
191    const char *getPassName() const override {
192      return "Hexagon Expand Condsets";
193    }
194    void getAnalysisUsage(AnalysisUsage &AU) const override {
195      AU.addRequired<LiveIntervals>();
196      AU.addPreserved<LiveIntervals>();
197      AU.addPreserved<SlotIndexes>();
198      AU.addRequired<MachineDominatorTree>();
199      AU.addPreserved<MachineDominatorTree>();
200      MachineFunctionPass::getAnalysisUsage(AU);
201    }
202    bool runOnMachineFunction(MachineFunction &MF) override;
203
204  private:
205    const HexagonInstrInfo *HII;
206    const TargetRegisterInfo *TRI;
207    MachineDominatorTree *MDT;
208    MachineRegisterInfo *MRI;
209    LiveIntervals *LIS;
210    std::set<MachineInstr*> LocalImpDefs;
211
212    bool CoaLimitActive, TfrLimitActive;
213    unsigned CoaLimit, TfrLimit, CoaCounter, TfrCounter;
214
215    struct RegisterRef {
216      RegisterRef(const MachineOperand &Op) : Reg(Op.getReg()),
217          Sub(Op.getSubReg()) {}
218      RegisterRef(unsigned R = 0, unsigned S = 0) : Reg(R), Sub(S) {}
219      bool operator== (RegisterRef RR) const {
220        return Reg == RR.Reg && Sub == RR.Sub;
221      }
222      bool operator!= (RegisterRef RR) const { return !operator==(RR); }
223      bool operator< (RegisterRef RR) const {
224        return Reg < RR.Reg || (Reg == RR.Reg && Sub < RR.Sub);
225      }
226      unsigned Reg, Sub;
227    };
228
229    typedef DenseMap<unsigned,unsigned> ReferenceMap;
230    enum { Sub_Low = 0x1, Sub_High = 0x2, Sub_None = (Sub_Low | Sub_High) };
231    enum { Exec_Then = 0x10, Exec_Else = 0x20 };
232    unsigned getMaskForSub(unsigned Sub);
233    bool isCondset(const MachineInstr &MI);
234    LaneBitmask getLaneMask(unsigned Reg, unsigned Sub);
235
236    void addRefToMap(RegisterRef RR, ReferenceMap &Map, unsigned Exec);
237    bool isRefInMap(RegisterRef, ReferenceMap &Map, unsigned Exec);
238
239    void removeImpDefSegments(LiveRange &Range);
240    void updateDeadsInRange(unsigned Reg, LaneBitmask LM, LiveRange &Range);
241    void updateKillFlags(unsigned Reg);
242    void updateDeadFlags(unsigned Reg);
243    void recalculateLiveInterval(unsigned Reg);
244    void removeInstr(MachineInstr &MI);
245    void updateLiveness(std::set<unsigned> &RegSet, bool Recalc,
246        bool UpdateKills, bool UpdateDeads);
247
248    unsigned getCondTfrOpcode(const MachineOperand &SO, bool Cond);
249    MachineInstr *genCondTfrFor(MachineOperand &SrcOp,
250        MachineBasicBlock::iterator At, unsigned DstR,
251        unsigned DstSR, const MachineOperand &PredOp, bool PredSense,
252        bool ReadUndef, bool ImpUse);
253    bool split(MachineInstr &MI, std::set<unsigned> &UpdRegs);
254    bool splitInBlock(MachineBasicBlock &B, std::set<unsigned> &UpdRegs);
255
256    bool isPredicable(MachineInstr *MI);
257    MachineInstr *getReachingDefForPred(RegisterRef RD,
258        MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond);
259    bool canMoveOver(MachineInstr &MI, ReferenceMap &Defs, ReferenceMap &Uses);
260    bool canMoveMemTo(MachineInstr &MI, MachineInstr &ToI, bool IsDown);
261    void predicateAt(const MachineOperand &DefOp, MachineInstr &MI,
262                     MachineBasicBlock::iterator Where,
263                     const MachineOperand &PredOp, bool Cond,
264                     std::set<unsigned> &UpdRegs);
265    void renameInRange(RegisterRef RO, RegisterRef RN, unsigned PredR,
266        bool Cond, MachineBasicBlock::iterator First,
267        MachineBasicBlock::iterator Last);
268    bool predicate(MachineInstr &TfrI, bool Cond, std::set<unsigned> &UpdRegs);
269    bool predicateInBlock(MachineBasicBlock &B,
270        std::set<unsigned> &UpdRegs);
271
272    bool isIntReg(RegisterRef RR, unsigned &BW);
273    bool isIntraBlocks(LiveInterval &LI);
274    bool coalesceRegisters(RegisterRef R1, RegisterRef R2);
275    bool coalesceSegments(MachineFunction &MF);
276  };
277}
278
279char HexagonExpandCondsets::ID = 0;
280
281INITIALIZE_PASS_BEGIN(HexagonExpandCondsets, "expand-condsets",
282  "Hexagon Expand Condsets", false, false)
283INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
284INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
285INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
286INITIALIZE_PASS_END(HexagonExpandCondsets, "expand-condsets",
287  "Hexagon Expand Condsets", false, false)
288
289unsigned HexagonExpandCondsets::getMaskForSub(unsigned Sub) {
290  switch (Sub) {
291    case Hexagon::subreg_loreg:
292      return Sub_Low;
293    case Hexagon::subreg_hireg:
294      return Sub_High;
295    case Hexagon::NoSubRegister:
296      return Sub_None;
297  }
298  llvm_unreachable("Invalid subregister");
299}
300
301bool HexagonExpandCondsets::isCondset(const MachineInstr &MI) {
302  unsigned Opc = MI.getOpcode();
303  switch (Opc) {
304    case Hexagon::C2_mux:
305    case Hexagon::C2_muxii:
306    case Hexagon::C2_muxir:
307    case Hexagon::C2_muxri:
308    case Hexagon::MUX64_rr:
309        return true;
310      break;
311  }
312  return false;
313}
314
315
316LaneBitmask HexagonExpandCondsets::getLaneMask(unsigned Reg, unsigned Sub) {
317  assert(TargetRegisterInfo::isVirtualRegister(Reg));
318  return Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
319                  : MRI->getMaxLaneMaskForVReg(Reg);
320}
321
322
323void HexagonExpandCondsets::addRefToMap(RegisterRef RR, ReferenceMap &Map,
324      unsigned Exec) {
325  unsigned Mask = getMaskForSub(RR.Sub) | Exec;
326  ReferenceMap::iterator F = Map.find(RR.Reg);
327  if (F == Map.end())
328    Map.insert(std::make_pair(RR.Reg, Mask));
329  else
330    F->second |= Mask;
331}
332
333
334bool HexagonExpandCondsets::isRefInMap(RegisterRef RR, ReferenceMap &Map,
335      unsigned Exec) {
336  ReferenceMap::iterator F = Map.find(RR.Reg);
337  if (F == Map.end())
338    return false;
339  unsigned Mask = getMaskForSub(RR.Sub) | Exec;
340  if (Mask & F->second)
341    return true;
342  return false;
343}
344
345
346void HexagonExpandCondsets::updateKillFlags(unsigned Reg) {
347  auto KillAt = [this,Reg] (SlotIndex K, LaneBitmask LM) -> void {
348    // Set the <kill> flag on a use of Reg whose lane mask is contained in LM.
349    MachineInstr *MI = LIS->getInstructionFromIndex(K);
350    for (auto &Op : MI->operands()) {
351      if (!Op.isReg() || !Op.isUse() || Op.getReg() != Reg)
352        continue;
353      LaneBitmask SLM = getLaneMask(Reg, Op.getSubReg());
354      if ((SLM & LM) == SLM) {
355        // Only set the kill flag on the first encountered use of Reg in this
356        // instruction.
357        Op.setIsKill(true);
358        break;
359      }
360    }
361  };
362
363  LiveInterval &LI = LIS->getInterval(Reg);
364  for (auto I = LI.begin(), E = LI.end(); I != E; ++I) {
365    if (!I->end.isRegister())
366      continue;
367    // Do not mark the end of the segment as <kill>, if the next segment
368    // starts with a predicated instruction.
369    auto NextI = std::next(I);
370    if (NextI != E && NextI->start.isRegister()) {
371      MachineInstr *DefI = LIS->getInstructionFromIndex(NextI->start);
372      if (HII->isPredicated(*DefI))
373        continue;
374    }
375    bool WholeReg = true;
376    if (LI.hasSubRanges()) {
377      auto EndsAtI = [I] (LiveInterval::SubRange &S) -> bool {
378        LiveRange::iterator F = S.find(I->end);
379        return F != S.end() && I->end == F->end;
380      };
381      // Check if all subranges end at I->end. If so, make sure to kill
382      // the whole register.
383      for (LiveInterval::SubRange &S : LI.subranges()) {
384        if (EndsAtI(S))
385          KillAt(I->end, S.LaneMask);
386        else
387          WholeReg = false;
388      }
389    }
390    if (WholeReg)
391      KillAt(I->end, MRI->getMaxLaneMaskForVReg(Reg));
392  }
393}
394
395
396void HexagonExpandCondsets::removeImpDefSegments(LiveRange &Range) {
397  auto StartImpDef = [this] (LiveRange::Segment &S) -> bool {
398    return S.start.isRegister() &&
399           LocalImpDefs.count(LIS->getInstructionFromIndex(S.start));
400  };
401  Range.segments.erase(std::remove_if(Range.begin(), Range.end(), StartImpDef),
402                       Range.end());
403}
404
405void HexagonExpandCondsets::updateDeadsInRange(unsigned Reg, LaneBitmask LM,
406      LiveRange &Range) {
407  assert(TargetRegisterInfo::isVirtualRegister(Reg));
408  if (Range.empty())
409    return;
410
411  auto IsRegDef = [this,Reg,LM] (MachineOperand &Op) -> bool {
412    if (!Op.isReg() || !Op.isDef())
413      return false;
414    unsigned DR = Op.getReg(), DSR = Op.getSubReg();
415    if (!TargetRegisterInfo::isVirtualRegister(DR) || DR != Reg)
416      return false;
417    LaneBitmask SLM = getLaneMask(DR, DSR);
418    return (SLM & LM) != 0;
419  };
420
421  // The splitting step will create pairs of predicated definitions without
422  // any implicit uses (since implicit uses would interfere with predication).
423  // This can cause the reaching defs to become dead after live range
424  // recomputation, even though they are not really dead.
425  // We need to identify predicated defs that need implicit uses, and
426  // dead defs that are not really dead, and correct both problems.
427
428  SetVector<MachineBasicBlock*> Defs;
429  auto Dominate = [this] (SetVector<MachineBasicBlock*> &Defs,
430                          MachineBasicBlock *Dest) -> bool {
431    for (MachineBasicBlock *D : Defs)
432      if (D != Dest && MDT->dominates(D, Dest))
433        return true;
434
435    MachineBasicBlock *Entry = &Dest->getParent()->front();
436    SetVector<MachineBasicBlock*> Work(Dest->pred_begin(), Dest->pred_end());
437    for (unsigned i = 0; i < Work.size(); ++i) {
438      MachineBasicBlock *B = Work[i];
439      if (Defs.count(B))
440        continue;
441      if (B == Entry)
442        return false;
443      for (auto *P : B->predecessors())
444        Work.insert(P);
445    }
446    return true;
447  };
448
449  // First, try to extend live range within individual basic blocks. This
450  // will leave us only with dead defs that do not reach any predicated
451  // defs in the same block.
452  SmallVector<SlotIndex,4> PredDefs;
453  for (auto &Seg : Range) {
454    if (!Seg.start.isRegister())
455      continue;
456    MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start);
457    if (LocalImpDefs.count(DefI))
458      continue;
459    Defs.insert(DefI->getParent());
460    if (HII->isPredicated(*DefI))
461      PredDefs.push_back(Seg.start);
462  }
463  for (auto &SI : PredDefs) {
464    MachineBasicBlock *BB = LIS->getMBBFromIndex(SI);
465    if (Range.extendInBlock(LIS->getMBBStartIdx(BB), SI))
466      SI = SlotIndex();
467  }
468
469  // Calculate reachability for those predicated defs that were not handled
470  // by the in-block extension.
471  SmallVector<SlotIndex,4> ExtTo;
472  for (auto &SI : PredDefs) {
473    if (!SI.isValid())
474      continue;
475    MachineBasicBlock *BB = LIS->getMBBFromIndex(SI);
476    if (BB->pred_empty())
477      continue;
478    // If the defs from this range reach SI via all predecessors, it is live.
479    if (Dominate(Defs, BB))
480      ExtTo.push_back(SI);
481  }
482  LIS->extendToIndices(Range, ExtTo);
483
484  // Remove <dead> flags from all defs that are not dead after live range
485  // extension, and collect all def operands. They will be used to generate
486  // the necessary implicit uses.
487  std::set<RegisterRef> DefRegs;
488  for (auto &Seg : Range) {
489    if (!Seg.start.isRegister())
490      continue;
491    MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start);
492    if (LocalImpDefs.count(DefI))
493      continue;
494    for (auto &Op : DefI->operands()) {
495      if (Seg.start.isDead() || !IsRegDef(Op))
496        continue;
497      DefRegs.insert(Op);
498      Op.setIsDead(false);
499    }
500  }
501
502
503  // Finally, add implicit uses to each predicated def that is reached
504  // by other defs. Remove segments started by implicit-defs first, since
505  // they do not define registers.
506  removeImpDefSegments(Range);
507
508  for (auto &Seg : Range) {
509    if (!Seg.start.isRegister() || !Range.liveAt(Seg.start.getPrevSlot()))
510      continue;
511    MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start);
512    if (!HII->isPredicated(*DefI))
513      continue;
514    MachineFunction &MF = *DefI->getParent()->getParent();
515    // Construct the set of all necessary implicit uses, based on the def
516    // operands in the instruction.
517    std::set<RegisterRef> ImpUses;
518    for (auto &Op : DefI->operands())
519      if (Op.isReg() && Op.isDef() && DefRegs.count(Op))
520        ImpUses.insert(Op);
521    for (RegisterRef R : ImpUses)
522      MachineInstrBuilder(MF, DefI).addReg(R.Reg, RegState::Implicit, R.Sub);
523  }
524}
525
526
527void HexagonExpandCondsets::updateDeadFlags(unsigned Reg) {
528  LiveInterval &LI = LIS->getInterval(Reg);
529  if (LI.hasSubRanges()) {
530    for (LiveInterval::SubRange &S : LI.subranges()) {
531      updateDeadsInRange(Reg, S.LaneMask, S);
532      LIS->shrinkToUses(S, Reg);
533      // LI::shrinkToUses will add segments started by implicit-defs.
534      // Remove them again.
535      removeImpDefSegments(S);
536    }
537    LI.clear();
538    LIS->constructMainRangeFromSubranges(LI);
539  } else {
540    updateDeadsInRange(Reg, MRI->getMaxLaneMaskForVReg(Reg), LI);
541  }
542}
543
544
545void HexagonExpandCondsets::recalculateLiveInterval(unsigned Reg) {
546  LIS->removeInterval(Reg);
547  LIS->createAndComputeVirtRegInterval(Reg);
548}
549
550void HexagonExpandCondsets::removeInstr(MachineInstr &MI) {
551  LIS->RemoveMachineInstrFromMaps(MI);
552  MI.eraseFromParent();
553}
554
555
556void HexagonExpandCondsets::updateLiveness(std::set<unsigned> &RegSet,
557      bool Recalc, bool UpdateKills, bool UpdateDeads) {
558  UpdateKills |= UpdateDeads;
559  for (auto R : RegSet) {
560    if (Recalc)
561      recalculateLiveInterval(R);
562    if (UpdateKills)
563      MRI->clearKillFlags(R);
564    if (UpdateDeads)
565      updateDeadFlags(R);
566    // Fixing <dead> flags may extend live ranges, so reset <kill> flags
567    // after that.
568    if (UpdateKills)
569      updateKillFlags(R);
570    LIS->getInterval(R).verify();
571  }
572}
573
574
575/// Get the opcode for a conditional transfer of the value in SO (source
576/// operand). The condition (true/false) is given in Cond.
577unsigned HexagonExpandCondsets::getCondTfrOpcode(const MachineOperand &SO,
578      bool IfTrue) {
579  using namespace Hexagon;
580  if (SO.isReg()) {
581    unsigned PhysR;
582    RegisterRef RS = SO;
583    if (TargetRegisterInfo::isVirtualRegister(RS.Reg)) {
584      const TargetRegisterClass *VC = MRI->getRegClass(RS.Reg);
585      assert(VC->begin() != VC->end() && "Empty register class");
586      PhysR = *VC->begin();
587    } else {
588      assert(TargetRegisterInfo::isPhysicalRegister(RS.Reg));
589      PhysR = RS.Reg;
590    }
591    unsigned PhysS = (RS.Sub == 0) ? PhysR : TRI->getSubReg(PhysR, RS.Sub);
592    const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(PhysS);
593    switch (RC->getSize()) {
594      case 4:
595        return IfTrue ? A2_tfrt : A2_tfrf;
596      case 8:
597        return IfTrue ? A2_tfrpt : A2_tfrpf;
598    }
599    llvm_unreachable("Invalid register operand");
600  }
601  if (SO.isImm() || SO.isFPImm())
602    return IfTrue ? C2_cmoveit : C2_cmoveif;
603  llvm_unreachable("Unexpected source operand");
604}
605
606
607/// Generate a conditional transfer, copying the value SrcOp to the
608/// destination register DstR:DstSR, and using the predicate register from
609/// PredOp. The Cond argument specifies whether the predicate is to be
610/// if(PredOp), or if(!PredOp).
611MachineInstr *HexagonExpandCondsets::genCondTfrFor(MachineOperand &SrcOp,
612      MachineBasicBlock::iterator At,
613      unsigned DstR, unsigned DstSR, const MachineOperand &PredOp,
614      bool PredSense, bool ReadUndef, bool ImpUse) {
615  MachineInstr *MI = SrcOp.getParent();
616  MachineBasicBlock &B = *At->getParent();
617  const DebugLoc &DL = MI->getDebugLoc();
618
619  // Don't avoid identity copies here (i.e. if the source and the destination
620  // are the same registers). It is actually better to generate them here,
621  // since this would cause the copy to potentially be predicated in the next
622  // step. The predication will remove such a copy if it is unable to
623  /// predicate.
624
625  unsigned Opc = getCondTfrOpcode(SrcOp, PredSense);
626  unsigned State = RegState::Define | (ReadUndef ? RegState::Undef : 0);
627  MachineInstrBuilder MIB = BuildMI(B, At, DL, HII->get(Opc))
628        .addReg(DstR, State, DstSR)
629        .addOperand(PredOp)
630        .addOperand(SrcOp);
631
632  // We don't want any kills yet.
633  MIB->clearKillInfo();
634  DEBUG(dbgs() << "created an initial copy: " << *MIB);
635  return &*MIB;
636}
637
638
639/// Replace a MUX instruction MI with a pair A2_tfrt/A2_tfrf. This function
640/// performs all necessary changes to complete the replacement.
641bool HexagonExpandCondsets::split(MachineInstr &MI,
642                                  std::set<unsigned> &UpdRegs) {
643  if (TfrLimitActive) {
644    if (TfrCounter >= TfrLimit)
645      return false;
646    TfrCounter++;
647  }
648  DEBUG(dbgs() << "\nsplitting BB#" << MI.getParent()->getNumber() << ": "
649               << MI);
650  MachineOperand &MD = MI.getOperand(0);  // Definition
651  MachineOperand &MP = MI.getOperand(1);  // Predicate register
652  MachineOperand &MS1 = MI.getOperand(2); // Source value #1
653  MachineOperand &MS2 = MI.getOperand(3); // Source value #2
654  assert(MD.isDef());
655  unsigned DR = MD.getReg(), DSR = MD.getSubReg();
656  bool ReadUndef = MD.isUndef();
657  MachineBasicBlock::iterator At = MI;
658
659  if (ReadUndef && DSR != 0 && MRI->shouldTrackSubRegLiveness(DR)) {
660    unsigned NewSR = 0;
661    MachineBasicBlock::iterator DefAt = At;
662    bool SameReg = (MS1.isReg() && DR == MS1.getReg()) ||
663                   (MS2.isReg() && DR == MS2.getReg());
664    if (SameReg) {
665      NewSR = (DSR == Hexagon::subreg_loreg) ? Hexagon::subreg_hireg
666                                             : Hexagon::subreg_loreg;
667      // Advance the insertion point if the subregisters differ between
668      // the source and the target (with the same super-register).
669      // Note: this case has never occured during tests.
670      if ((MS1.isReg() && NewSR == MS1.getSubReg()) ||
671          (MS2.isReg() && NewSR == MS2.getSubReg()))
672        ++DefAt;
673    }
674    // Use "At", since "DefAt" may be end().
675    MachineBasicBlock &B = *At->getParent();
676    DebugLoc DL = At->getDebugLoc();
677    auto ImpD = BuildMI(B, DefAt, DL, HII->get(TargetOpcode::IMPLICIT_DEF))
678                  .addReg(DR, RegState::Define, NewSR);
679    LIS->InsertMachineInstrInMaps(*ImpD);
680    LocalImpDefs.insert(&*ImpD);
681  }
682
683  // First, create the two invididual conditional transfers, and add each
684  // of them to the live intervals information. Do that first and then remove
685  // the old instruction from live intervals.
686  MachineInstr *TfrT =
687      genCondTfrFor(MI.getOperand(2), At, DR, DSR, MP, true, ReadUndef, false);
688  MachineInstr *TfrF =
689      genCondTfrFor(MI.getOperand(3), At, DR, DSR, MP, false, ReadUndef, true);
690  LIS->InsertMachineInstrInMaps(*TfrT);
691  LIS->InsertMachineInstrInMaps(*TfrF);
692
693  // Will need to recalculate live intervals for all registers in MI.
694  for (auto &Op : MI.operands())
695    if (Op.isReg())
696      UpdRegs.insert(Op.getReg());
697
698  removeInstr(MI);
699  return true;
700}
701
702
703/// Split all MUX instructions in the given block into pairs of conditional
704/// transfers.
705bool HexagonExpandCondsets::splitInBlock(MachineBasicBlock &B,
706      std::set<unsigned> &UpdRegs) {
707  bool Changed = false;
708  MachineBasicBlock::iterator I, E, NextI;
709  for (I = B.begin(), E = B.end(); I != E; I = NextI) {
710    NextI = std::next(I);
711    if (isCondset(*I))
712      Changed |= split(*I, UpdRegs);
713  }
714  return Changed;
715}
716
717
718bool HexagonExpandCondsets::isPredicable(MachineInstr *MI) {
719  if (HII->isPredicated(*MI) || !HII->isPredicable(*MI))
720    return false;
721  if (MI->hasUnmodeledSideEffects() || MI->mayStore())
722    return false;
723  // Reject instructions with multiple defs (e.g. post-increment loads).
724  bool HasDef = false;
725  for (auto &Op : MI->operands()) {
726    if (!Op.isReg() || !Op.isDef())
727      continue;
728    if (HasDef)
729      return false;
730    HasDef = true;
731  }
732  for (auto &Mo : MI->memoperands())
733    if (Mo->isVolatile())
734      return false;
735  return true;
736}
737
738
739/// Find the reaching definition for a predicated use of RD. The RD is used
740/// under the conditions given by PredR and Cond, and this function will ignore
741/// definitions that set RD under the opposite conditions.
742MachineInstr *HexagonExpandCondsets::getReachingDefForPred(RegisterRef RD,
743      MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond) {
744  MachineBasicBlock &B = *UseIt->getParent();
745  MachineBasicBlock::iterator I = UseIt, S = B.begin();
746  if (I == S)
747    return 0;
748
749  bool PredValid = true;
750  do {
751    --I;
752    MachineInstr *MI = &*I;
753    // Check if this instruction can be ignored, i.e. if it is predicated
754    // on the complementary condition.
755    if (PredValid && HII->isPredicated(*MI)) {
756      if (MI->readsRegister(PredR) && (Cond != HII->isPredicatedTrue(*MI)))
757        continue;
758    }
759
760    // Check the defs. If the PredR is defined, invalidate it. If RD is
761    // defined, return the instruction or 0, depending on the circumstances.
762    for (auto &Op : MI->operands()) {
763      if (!Op.isReg() || !Op.isDef())
764        continue;
765      RegisterRef RR = Op;
766      if (RR.Reg == PredR) {
767        PredValid = false;
768        continue;
769      }
770      if (RR.Reg != RD.Reg)
771        continue;
772      // If the "Reg" part agrees, there is still the subregister to check.
773      // If we are looking for vreg1:loreg, we can skip vreg1:hireg, but
774      // not vreg1 (w/o subregisters).
775      if (RR.Sub == RD.Sub)
776        return MI;
777      if (RR.Sub == 0 || RD.Sub == 0)
778        return 0;
779      // We have different subregisters, so we can continue looking.
780    }
781  } while (I != S);
782
783  return 0;
784}
785
786
787/// Check if the instruction MI can be safely moved over a set of instructions
788/// whose side-effects (in terms of register defs and uses) are expressed in
789/// the maps Defs and Uses. These maps reflect the conditional defs and uses
790/// that depend on the same predicate register to allow moving instructions
791/// over instructions predicated on the opposite condition.
792bool HexagonExpandCondsets::canMoveOver(MachineInstr &MI, ReferenceMap &Defs,
793                                        ReferenceMap &Uses) {
794  // In order to be able to safely move MI over instructions that define
795  // "Defs" and use "Uses", no def operand from MI can be defined or used
796  // and no use operand can be defined.
797  for (auto &Op : MI.operands()) {
798    if (!Op.isReg())
799      continue;
800    RegisterRef RR = Op;
801    // For physical register we would need to check register aliases, etc.
802    // and we don't want to bother with that. It would be of little value
803    // before the actual register rewriting (from virtual to physical).
804    if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
805      return false;
806    // No redefs for any operand.
807    if (isRefInMap(RR, Defs, Exec_Then))
808      return false;
809    // For defs, there cannot be uses.
810    if (Op.isDef() && isRefInMap(RR, Uses, Exec_Then))
811      return false;
812  }
813  return true;
814}
815
816
817/// Check if the instruction accessing memory (TheI) can be moved to the
818/// location ToI.
819bool HexagonExpandCondsets::canMoveMemTo(MachineInstr &TheI, MachineInstr &ToI,
820                                         bool IsDown) {
821  bool IsLoad = TheI.mayLoad(), IsStore = TheI.mayStore();
822  if (!IsLoad && !IsStore)
823    return true;
824  if (HII->areMemAccessesTriviallyDisjoint(TheI, ToI))
825    return true;
826  if (TheI.hasUnmodeledSideEffects())
827    return false;
828
829  MachineBasicBlock::iterator StartI = IsDown ? TheI : ToI;
830  MachineBasicBlock::iterator EndI = IsDown ? ToI : TheI;
831  bool Ordered = TheI.hasOrderedMemoryRef();
832
833  // Search for aliased memory reference in (StartI, EndI).
834  for (MachineBasicBlock::iterator I = std::next(StartI); I != EndI; ++I) {
835    MachineInstr *MI = &*I;
836    if (MI->hasUnmodeledSideEffects())
837      return false;
838    bool L = MI->mayLoad(), S = MI->mayStore();
839    if (!L && !S)
840      continue;
841    if (Ordered && MI->hasOrderedMemoryRef())
842      return false;
843
844    bool Conflict = (L && IsStore) || S;
845    if (Conflict)
846      return false;
847  }
848  return true;
849}
850
851
852/// Generate a predicated version of MI (where the condition is given via
853/// PredR and Cond) at the point indicated by Where.
854void HexagonExpandCondsets::predicateAt(const MachineOperand &DefOp,
855                                        MachineInstr &MI,
856                                        MachineBasicBlock::iterator Where,
857                                        const MachineOperand &PredOp, bool Cond,
858                                        std::set<unsigned> &UpdRegs) {
859  // The problem with updating live intervals is that we can move one def
860  // past another def. In particular, this can happen when moving an A2_tfrt
861  // over an A2_tfrf defining the same register. From the point of view of
862  // live intervals, these two instructions are two separate definitions,
863  // and each one starts another live segment. LiveIntervals's "handleMove"
864  // does not allow such moves, so we need to handle it ourselves. To avoid
865  // invalidating liveness data while we are using it, the move will be
866  // implemented in 4 steps: (1) add a clone of the instruction MI at the
867  // target location, (2) update liveness, (3) delete the old instruction,
868  // and (4) update liveness again.
869
870  MachineBasicBlock &B = *MI.getParent();
871  DebugLoc DL = Where->getDebugLoc();  // "Where" points to an instruction.
872  unsigned Opc = MI.getOpcode();
873  unsigned PredOpc = HII->getCondOpcode(Opc, !Cond);
874  MachineInstrBuilder MB = BuildMI(B, Where, DL, HII->get(PredOpc));
875  unsigned Ox = 0, NP = MI.getNumOperands();
876  // Skip all defs from MI first.
877  while (Ox < NP) {
878    MachineOperand &MO = MI.getOperand(Ox);
879    if (!MO.isReg() || !MO.isDef())
880      break;
881    Ox++;
882  }
883  // Add the new def, then the predicate register, then the rest of the
884  // operands.
885  MB.addReg(DefOp.getReg(), getRegState(DefOp), DefOp.getSubReg());
886  MB.addReg(PredOp.getReg(), PredOp.isUndef() ? RegState::Undef : 0,
887            PredOp.getSubReg());
888  while (Ox < NP) {
889    MachineOperand &MO = MI.getOperand(Ox);
890    if (!MO.isReg() || !MO.isImplicit())
891      MB.addOperand(MO);
892    Ox++;
893  }
894
895  MachineFunction &MF = *B.getParent();
896  MachineInstr::mmo_iterator I = MI.memoperands_begin();
897  unsigned NR = std::distance(I, MI.memoperands_end());
898  MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(NR);
899  for (unsigned i = 0; i < NR; ++i)
900    MemRefs[i] = *I++;
901  MB.setMemRefs(MemRefs, MemRefs+NR);
902
903  MachineInstr *NewI = MB;
904  NewI->clearKillInfo();
905  LIS->InsertMachineInstrInMaps(*NewI);
906
907  for (auto &Op : NewI->operands())
908    if (Op.isReg())
909      UpdRegs.insert(Op.getReg());
910}
911
912
913/// In the range [First, Last], rename all references to the "old" register RO
914/// to the "new" register RN, but only in instructions predicated on the given
915/// condition.
916void HexagonExpandCondsets::renameInRange(RegisterRef RO, RegisterRef RN,
917      unsigned PredR, bool Cond, MachineBasicBlock::iterator First,
918      MachineBasicBlock::iterator Last) {
919  MachineBasicBlock::iterator End = std::next(Last);
920  for (MachineBasicBlock::iterator I = First; I != End; ++I) {
921    MachineInstr *MI = &*I;
922    // Do not touch instructions that are not predicated, or are predicated
923    // on the opposite condition.
924    if (!HII->isPredicated(*MI))
925      continue;
926    if (!MI->readsRegister(PredR) || (Cond != HII->isPredicatedTrue(*MI)))
927      continue;
928
929    for (auto &Op : MI->operands()) {
930      if (!Op.isReg() || RO != RegisterRef(Op))
931        continue;
932      Op.setReg(RN.Reg);
933      Op.setSubReg(RN.Sub);
934      // In practice, this isn't supposed to see any defs.
935      assert(!Op.isDef() && "Not expecting a def");
936    }
937  }
938}
939
940
941/// For a given conditional copy, predicate the definition of the source of
942/// the copy under the given condition (using the same predicate register as
943/// the copy).
944bool HexagonExpandCondsets::predicate(MachineInstr &TfrI, bool Cond,
945                                      std::set<unsigned> &UpdRegs) {
946  // TfrI - A2_tfr[tf] Instruction (not A2_tfrsi).
947  unsigned Opc = TfrI.getOpcode();
948  (void)Opc;
949  assert(Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf);
950  DEBUG(dbgs() << "\nattempt to predicate if-" << (Cond ? "true" : "false")
951               << ": " << TfrI);
952
953  MachineOperand &MD = TfrI.getOperand(0);
954  MachineOperand &MP = TfrI.getOperand(1);
955  MachineOperand &MS = TfrI.getOperand(2);
956  // The source operand should be a <kill>. This is not strictly necessary,
957  // but it makes things a lot simpler. Otherwise, we would need to rename
958  // some registers, which would complicate the transformation considerably.
959  if (!MS.isKill())
960    return false;
961  // Avoid predicating instructions that define a subregister if subregister
962  // liveness tracking is not enabled.
963  if (MD.getSubReg() && !MRI->shouldTrackSubRegLiveness(MD.getReg()))
964    return false;
965
966  RegisterRef RT(MS);
967  unsigned PredR = MP.getReg();
968  MachineInstr *DefI = getReachingDefForPred(RT, TfrI, PredR, Cond);
969  if (!DefI || !isPredicable(DefI))
970    return false;
971
972  DEBUG(dbgs() << "Source def: " << *DefI);
973
974  // Collect the information about registers defined and used between the
975  // DefI and the TfrI.
976  // Map: reg -> bitmask of subregs
977  ReferenceMap Uses, Defs;
978  MachineBasicBlock::iterator DefIt = DefI, TfrIt = TfrI;
979
980  // Check if the predicate register is valid between DefI and TfrI.
981  // If it is, we can then ignore instructions predicated on the negated
982  // conditions when collecting def and use information.
983  bool PredValid = true;
984  for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) {
985    if (!I->modifiesRegister(PredR, 0))
986      continue;
987    PredValid = false;
988    break;
989  }
990
991  for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) {
992    MachineInstr *MI = &*I;
993    // If this instruction is predicated on the same register, it could
994    // potentially be ignored.
995    // By default assume that the instruction executes on the same condition
996    // as TfrI (Exec_Then), and also on the opposite one (Exec_Else).
997    unsigned Exec = Exec_Then | Exec_Else;
998    if (PredValid && HII->isPredicated(*MI) && MI->readsRegister(PredR))
999      Exec = (Cond == HII->isPredicatedTrue(*MI)) ? Exec_Then : Exec_Else;
1000
1001    for (auto &Op : MI->operands()) {
1002      if (!Op.isReg())
1003        continue;
1004      // We don't want to deal with physical registers. The reason is that
1005      // they can be aliased with other physical registers. Aliased virtual
1006      // registers must share the same register number, and can only differ
1007      // in the subregisters, which we are keeping track of. Physical
1008      // registers ters no longer have subregisters---their super- and
1009      // subregisters are other physical registers, and we are not checking
1010      // that.
1011      RegisterRef RR = Op;
1012      if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
1013        return false;
1014
1015      ReferenceMap &Map = Op.isDef() ? Defs : Uses;
1016      addRefToMap(RR, Map, Exec);
1017    }
1018  }
1019
1020  // The situation:
1021  //   RT = DefI
1022  //   ...
1023  //   RD = TfrI ..., RT
1024
1025  // If the register-in-the-middle (RT) is used or redefined between
1026  // DefI and TfrI, we may not be able proceed with this transformation.
1027  // We can ignore a def that will not execute together with TfrI, and a
1028  // use that will. If there is such a use (that does execute together with
1029  // TfrI), we will not be able to move DefI down. If there is a use that
1030  // executed if TfrI's condition is false, then RT must be available
1031  // unconditionally (cannot be predicated).
1032  // Essentially, we need to be able to rename RT to RD in this segment.
1033  if (isRefInMap(RT, Defs, Exec_Then) || isRefInMap(RT, Uses, Exec_Else))
1034    return false;
1035  RegisterRef RD = MD;
1036  // If the predicate register is defined between DefI and TfrI, the only
1037  // potential thing to do would be to move the DefI down to TfrI, and then
1038  // predicate. The reaching def (DefI) must be movable down to the location
1039  // of the TfrI.
1040  // If the target register of the TfrI (RD) is not used or defined between
1041  // DefI and TfrI, consider moving TfrI up to DefI.
1042  bool CanUp =   canMoveOver(TfrI, Defs, Uses);
1043  bool CanDown = canMoveOver(*DefI, Defs, Uses);
1044  // The TfrI does not access memory, but DefI could. Check if it's safe
1045  // to move DefI down to TfrI.
1046  if (DefI->mayLoad() || DefI->mayStore())
1047    if (!canMoveMemTo(*DefI, TfrI, true))
1048      CanDown = false;
1049
1050  DEBUG(dbgs() << "Can move up: " << (CanUp ? "yes" : "no")
1051               << ", can move down: " << (CanDown ? "yes\n" : "no\n"));
1052  MachineBasicBlock::iterator PastDefIt = std::next(DefIt);
1053  if (CanUp)
1054    predicateAt(MD, *DefI, PastDefIt, MP, Cond, UpdRegs);
1055  else if (CanDown)
1056    predicateAt(MD, *DefI, TfrIt, MP, Cond, UpdRegs);
1057  else
1058    return false;
1059
1060  if (RT != RD) {
1061    renameInRange(RT, RD, PredR, Cond, PastDefIt, TfrIt);
1062    UpdRegs.insert(RT.Reg);
1063  }
1064
1065  removeInstr(TfrI);
1066  removeInstr(*DefI);
1067  return true;
1068}
1069
1070
1071/// Predicate all cases of conditional copies in the specified block.
1072bool HexagonExpandCondsets::predicateInBlock(MachineBasicBlock &B,
1073      std::set<unsigned> &UpdRegs) {
1074  bool Changed = false;
1075  MachineBasicBlock::iterator I, E, NextI;
1076  for (I = B.begin(), E = B.end(); I != E; I = NextI) {
1077    NextI = std::next(I);
1078    unsigned Opc = I->getOpcode();
1079    if (Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf) {
1080      bool Done = predicate(*I, (Opc == Hexagon::A2_tfrt), UpdRegs);
1081      if (!Done) {
1082        // If we didn't predicate I, we may need to remove it in case it is
1083        // an "identity" copy, e.g.  vreg1 = A2_tfrt vreg2, vreg1.
1084        if (RegisterRef(I->getOperand(0)) == RegisterRef(I->getOperand(2))) {
1085          for (auto &Op : I->operands())
1086            if (Op.isReg())
1087              UpdRegs.insert(Op.getReg());
1088          removeInstr(*I);
1089        }
1090      }
1091      Changed |= Done;
1092    }
1093  }
1094  return Changed;
1095}
1096
1097
1098bool HexagonExpandCondsets::isIntReg(RegisterRef RR, unsigned &BW) {
1099  if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
1100    return false;
1101  const TargetRegisterClass *RC = MRI->getRegClass(RR.Reg);
1102  if (RC == &Hexagon::IntRegsRegClass) {
1103    BW = 32;
1104    return true;
1105  }
1106  if (RC == &Hexagon::DoubleRegsRegClass) {
1107    BW = (RR.Sub != 0) ? 32 : 64;
1108    return true;
1109  }
1110  return false;
1111}
1112
1113
1114bool HexagonExpandCondsets::isIntraBlocks(LiveInterval &LI) {
1115  for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
1116    LiveRange::Segment &LR = *I;
1117    // Range must start at a register...
1118    if (!LR.start.isRegister())
1119      return false;
1120    // ...and end in a register or in a dead slot.
1121    if (!LR.end.isRegister() && !LR.end.isDead())
1122      return false;
1123  }
1124  return true;
1125}
1126
1127
1128bool HexagonExpandCondsets::coalesceRegisters(RegisterRef R1, RegisterRef R2) {
1129  if (CoaLimitActive) {
1130    if (CoaCounter >= CoaLimit)
1131      return false;
1132    CoaCounter++;
1133  }
1134  unsigned BW1, BW2;
1135  if (!isIntReg(R1, BW1) || !isIntReg(R2, BW2) || BW1 != BW2)
1136    return false;
1137  if (MRI->isLiveIn(R1.Reg))
1138    return false;
1139  if (MRI->isLiveIn(R2.Reg))
1140    return false;
1141
1142  LiveInterval &L1 = LIS->getInterval(R1.Reg);
1143  LiveInterval &L2 = LIS->getInterval(R2.Reg);
1144  bool Overlap = L1.overlaps(L2);
1145
1146  DEBUG(dbgs() << "compatible registers: ("
1147               << (Overlap ? "overlap" : "disjoint") << ")\n  "
1148               << PrintReg(R1.Reg, TRI, R1.Sub) << "  " << L1 << "\n  "
1149               << PrintReg(R2.Reg, TRI, R2.Sub) << "  " << L2 << "\n");
1150  if (R1.Sub || R2.Sub)
1151    return false;
1152  if (Overlap)
1153    return false;
1154
1155  // Coalescing could have a negative impact on scheduling, so try to limit
1156  // to some reasonable extent. Only consider coalescing segments, when one
1157  // of them does not cross basic block boundaries.
1158  if (!isIntraBlocks(L1) && !isIntraBlocks(L2))
1159    return false;
1160
1161  MRI->replaceRegWith(R2.Reg, R1.Reg);
1162
1163  // Move all live segments from L2 to L1.
1164  typedef DenseMap<VNInfo*,VNInfo*> ValueInfoMap;
1165  ValueInfoMap VM;
1166  for (LiveInterval::iterator I = L2.begin(), E = L2.end(); I != E; ++I) {
1167    VNInfo *NewVN, *OldVN = I->valno;
1168    ValueInfoMap::iterator F = VM.find(OldVN);
1169    if (F == VM.end()) {
1170      NewVN = L1.getNextValue(I->valno->def, LIS->getVNInfoAllocator());
1171      VM.insert(std::make_pair(OldVN, NewVN));
1172    } else {
1173      NewVN = F->second;
1174    }
1175    L1.addSegment(LiveRange::Segment(I->start, I->end, NewVN));
1176  }
1177  while (L2.begin() != L2.end())
1178    L2.removeSegment(*L2.begin());
1179
1180  updateKillFlags(R1.Reg);
1181  DEBUG(dbgs() << "coalesced: " << L1 << "\n");
1182  L1.verify();
1183
1184  return true;
1185}
1186
1187
1188/// Attempt to coalesce one of the source registers to a MUX intruction with
1189/// the destination register. This could lead to having only one predicated
1190/// instruction in the end instead of two.
1191bool HexagonExpandCondsets::coalesceSegments(MachineFunction &MF) {
1192  SmallVector<MachineInstr*,16> Condsets;
1193  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
1194    MachineBasicBlock &B = *I;
1195    for (MachineBasicBlock::iterator J = B.begin(), F = B.end(); J != F; ++J) {
1196      MachineInstr *MI = &*J;
1197      if (!isCondset(*MI))
1198        continue;
1199      MachineOperand &S1 = MI->getOperand(2), &S2 = MI->getOperand(3);
1200      if (!S1.isReg() && !S2.isReg())
1201        continue;
1202      Condsets.push_back(MI);
1203    }
1204  }
1205
1206  bool Changed = false;
1207  for (unsigned i = 0, n = Condsets.size(); i < n; ++i) {
1208    MachineInstr *CI = Condsets[i];
1209    RegisterRef RD = CI->getOperand(0);
1210    RegisterRef RP = CI->getOperand(1);
1211    MachineOperand &S1 = CI->getOperand(2), &S2 = CI->getOperand(3);
1212    bool Done = false;
1213    // Consider this case:
1214    //   vreg1 = instr1 ...
1215    //   vreg2 = instr2 ...
1216    //   vreg0 = C2_mux ..., vreg1, vreg2
1217    // If vreg0 was coalesced with vreg1, we could end up with the following
1218    // code:
1219    //   vreg0 = instr1 ...
1220    //   vreg2 = instr2 ...
1221    //   vreg0 = A2_tfrf ..., vreg2
1222    // which will later become:
1223    //   vreg0 = instr1 ...
1224    //   vreg0 = instr2_cNotPt ...
1225    // i.e. there will be an unconditional definition (instr1) of vreg0
1226    // followed by a conditional one. The output dependency was there before
1227    // and it unavoidable, but if instr1 is predicable, we will no longer be
1228    // able to predicate it here.
1229    // To avoid this scenario, don't coalesce the destination register with
1230    // a source register that is defined by a predicable instruction.
1231    if (S1.isReg()) {
1232      RegisterRef RS = S1;
1233      MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, true);
1234      if (!RDef || !HII->isPredicable(*RDef))
1235        Done = coalesceRegisters(RD, RegisterRef(S1));
1236    }
1237    if (!Done && S2.isReg()) {
1238      RegisterRef RS = S2;
1239      MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, false);
1240      if (!RDef || !HII->isPredicable(*RDef))
1241        Done = coalesceRegisters(RD, RegisterRef(S2));
1242    }
1243    Changed |= Done;
1244  }
1245  return Changed;
1246}
1247
1248
1249bool HexagonExpandCondsets::runOnMachineFunction(MachineFunction &MF) {
1250  if (skipFunction(*MF.getFunction()))
1251    return false;
1252
1253  HII = static_cast<const HexagonInstrInfo*>(MF.getSubtarget().getInstrInfo());
1254  TRI = MF.getSubtarget().getRegisterInfo();
1255  MDT = &getAnalysis<MachineDominatorTree>();
1256  LIS = &getAnalysis<LiveIntervals>();
1257  MRI = &MF.getRegInfo();
1258  LocalImpDefs.clear();
1259
1260  DEBUG(LIS->print(dbgs() << "Before expand-condsets\n",
1261                   MF.getFunction()->getParent()));
1262
1263  bool Changed = false;
1264  std::set<unsigned> SplitUpd, PredUpd;
1265
1266  // Try to coalesce the target of a mux with one of its sources.
1267  // This could eliminate a register copy in some circumstances.
1268  Changed |= coalesceSegments(MF);
1269
1270  // First, simply split all muxes into a pair of conditional transfers
1271  // and update the live intervals to reflect the new arrangement. The
1272  // goal is to update the kill flags, since predication will rely on
1273  // them.
1274  for (auto &B : MF)
1275    Changed |= splitInBlock(B, SplitUpd);
1276  updateLiveness(SplitUpd, true, true, false);
1277
1278  // Traverse all blocks and collapse predicable instructions feeding
1279  // conditional transfers into predicated instructions.
1280  // Walk over all the instructions again, so we may catch pre-existing
1281  // cases that were not created in the previous step.
1282  for (auto &B : MF)
1283    Changed |= predicateInBlock(B, PredUpd);
1284
1285  updateLiveness(PredUpd, true, true, true);
1286  // Remove from SplitUpd all registers contained in PredUpd to avoid
1287  // unnecessary liveness recalculation.
1288  std::set<unsigned> Diff;
1289  std::set_difference(SplitUpd.begin(), SplitUpd.end(),
1290                      PredUpd.begin(), PredUpd.end(),
1291                      std::inserter(Diff, Diff.begin()));
1292  updateLiveness(Diff, false, false, true);
1293
1294  for (auto *ImpD : LocalImpDefs)
1295    removeInstr(*ImpD);
1296
1297  DEBUG({
1298    if (Changed)
1299      LIS->print(dbgs() << "After expand-condsets\n",
1300                 MF.getFunction()->getParent());
1301  });
1302
1303  return Changed;
1304}
1305
1306
1307//===----------------------------------------------------------------------===//
1308//                         Public Constructor Functions
1309//===----------------------------------------------------------------------===//
1310
1311FunctionPass *llvm::createHexagonExpandCondsets() {
1312  return new HexagonExpandCondsets();
1313}
1314