1//===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a pattern matching instruction selector for PowerPC,
11// converting from a legalized dag to a PPC dag.
12//
13//===----------------------------------------------------------------------===//
14
15#include "PPC.h"
16#include "MCTargetDesc/PPCPredicates.h"
17#include "PPCMachineFunctionInfo.h"
18#include "PPCTargetMachine.h"
19#include "llvm/Analysis/BranchProbabilityInfo.h"
20#include "llvm/CodeGen/FunctionLoweringInfo.h"
21#include "llvm/CodeGen/MachineFunction.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineRegisterInfo.h"
24#include "llvm/CodeGen/SelectionDAG.h"
25#include "llvm/CodeGen/SelectionDAGISel.h"
26#include "llvm/IR/Constants.h"
27#include "llvm/IR/Function.h"
28#include "llvm/IR/GlobalAlias.h"
29#include "llvm/IR/GlobalValue.h"
30#include "llvm/IR/GlobalVariable.h"
31#include "llvm/IR/Intrinsics.h"
32#include "llvm/IR/Module.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/raw_ostream.h"
38#include "llvm/Target/TargetOptions.h"
39using namespace llvm;
40
41#define DEBUG_TYPE "ppc-codegen"
42
43// FIXME: Remove this once the bug has been fixed!
44cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug",
45cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden);
46
47static cl::opt<bool>
48    UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true),
49                       cl::desc("use aggressive ppc isel for bit permutations"),
50                       cl::Hidden);
51static cl::opt<bool> BPermRewriterNoMasking(
52    "ppc-bit-perm-rewriter-stress-rotates",
53    cl::desc("stress rotate selection in aggressive ppc isel for "
54             "bit permutations"),
55    cl::Hidden);
56
57static cl::opt<bool> EnableBranchHint(
58  "ppc-use-branch-hint", cl::init(true),
59    cl::desc("Enable static hinting of branches on ppc"),
60    cl::Hidden);
61
62namespace {
63  //===--------------------------------------------------------------------===//
64  /// PPCDAGToDAGISel - PPC specific code to select PPC machine
65  /// instructions for SelectionDAG operations.
66  ///
67  class PPCDAGToDAGISel : public SelectionDAGISel {
68    const PPCTargetMachine &TM;
69    const PPCSubtarget *PPCSubTarget;
70    const PPCTargetLowering *PPCLowering;
71    unsigned GlobalBaseReg;
72  public:
73    explicit PPCDAGToDAGISel(PPCTargetMachine &tm)
74        : SelectionDAGISel(tm), TM(tm) {}
75
76    bool runOnMachineFunction(MachineFunction &MF) override {
77      // Make sure we re-emit a set of the global base reg if necessary
78      GlobalBaseReg = 0;
79      PPCSubTarget = &MF.getSubtarget<PPCSubtarget>();
80      PPCLowering = PPCSubTarget->getTargetLowering();
81      SelectionDAGISel::runOnMachineFunction(MF);
82
83      if (!PPCSubTarget->isSVR4ABI())
84        InsertVRSaveCode(MF);
85
86      return true;
87    }
88
89    void PreprocessISelDAG() override;
90    void PostprocessISelDAG() override;
91
92    /// getI32Imm - Return a target constant with the specified value, of type
93    /// i32.
94    inline SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
95      return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
96    }
97
98    /// getI64Imm - Return a target constant with the specified value, of type
99    /// i64.
100    inline SDValue getI64Imm(uint64_t Imm, const SDLoc &dl) {
101      return CurDAG->getTargetConstant(Imm, dl, MVT::i64);
102    }
103
104    /// getSmallIPtrImm - Return a target constant of pointer type.
105    inline SDValue getSmallIPtrImm(unsigned Imm, const SDLoc &dl) {
106      return CurDAG->getTargetConstant(
107          Imm, dl, PPCLowering->getPointerTy(CurDAG->getDataLayout()));
108    }
109
110    /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
111    /// rotate and mask opcode and mask operation.
112    static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask,
113                                unsigned &SH, unsigned &MB, unsigned &ME);
114
115    /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
116    /// base register.  Return the virtual register that holds this value.
117    SDNode *getGlobalBaseReg();
118
119    void selectFrameIndex(SDNode *SN, SDNode *N, unsigned Offset = 0);
120
121    // Select - Convert the specified operand from a target-independent to a
122    // target-specific node if it hasn't already been changed.
123    void Select(SDNode *N) override;
124
125    bool tryBitfieldInsert(SDNode *N);
126    bool tryBitPermutation(SDNode *N);
127
128    /// SelectCC - Select a comparison of the specified values with the
129    /// specified condition code, returning the CR# of the expression.
130    SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
131                     const SDLoc &dl);
132
133    /// SelectAddrImm - Returns true if the address N can be represented by
134    /// a base register plus a signed 16-bit displacement [r+imm].
135    bool SelectAddrImm(SDValue N, SDValue &Disp,
136                       SDValue &Base) {
137      return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, false);
138    }
139
140    /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
141    /// immediate field.  Note that the operand at this point is already the
142    /// result of a prior SelectAddressRegImm call.
143    bool SelectAddrImmOffs(SDValue N, SDValue &Out) const {
144      if (N.getOpcode() == ISD::TargetConstant ||
145          N.getOpcode() == ISD::TargetGlobalAddress) {
146        Out = N;
147        return true;
148      }
149
150      return false;
151    }
152
153    /// SelectAddrIdx - Given the specified addressed, check to see if it can be
154    /// represented as an indexed [r+r] operation.  Returns false if it can
155    /// be represented by [r+imm], which are preferred.
156    bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) {
157      return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG);
158    }
159
160    /// SelectAddrIdxOnly - Given the specified addressed, force it to be
161    /// represented as an indexed [r+r] operation.
162    bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) {
163      return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
164    }
165
166    /// SelectAddrImmX4 - Returns true if the address N can be represented by
167    /// a base register plus a signed 16-bit displacement that is a multiple of 4.
168    /// Suitable for use by STD and friends.
169    bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) {
170      return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, true);
171    }
172
173    // Select an address into a single register.
174    bool SelectAddr(SDValue N, SDValue &Base) {
175      Base = N;
176      return true;
177    }
178
179    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
180    /// inline asm expressions.  It is always correct to compute the value into
181    /// a register.  The case of adding a (possibly relocatable) constant to a
182    /// register can be improved, but it is wrong to substitute Reg+Reg for
183    /// Reg in an asm, because the load or store opcode would have to change.
184    bool SelectInlineAsmMemoryOperand(const SDValue &Op,
185                                      unsigned ConstraintID,
186                                      std::vector<SDValue> &OutOps) override {
187
188      switch(ConstraintID) {
189      default:
190        errs() << "ConstraintID: " << ConstraintID << "\n";
191        llvm_unreachable("Unexpected asm memory constraint");
192      case InlineAsm::Constraint_es:
193      case InlineAsm::Constraint_i:
194      case InlineAsm::Constraint_m:
195      case InlineAsm::Constraint_o:
196      case InlineAsm::Constraint_Q:
197      case InlineAsm::Constraint_Z:
198      case InlineAsm::Constraint_Zy:
199        // We need to make sure that this one operand does not end up in r0
200        // (because we might end up lowering this as 0(%op)).
201        const TargetRegisterInfo *TRI = PPCSubTarget->getRegisterInfo();
202        const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1);
203        SDLoc dl(Op);
204        SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32);
205        SDValue NewOp =
206          SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
207                                         dl, Op.getValueType(),
208                                         Op, RC), 0);
209
210        OutOps.push_back(NewOp);
211        return false;
212      }
213      return true;
214    }
215
216    void InsertVRSaveCode(MachineFunction &MF);
217
218    const char *getPassName() const override {
219      return "PowerPC DAG->DAG Pattern Instruction Selection";
220    }
221
222// Include the pieces autogenerated from the target description.
223#include "PPCGenDAGISel.inc"
224
225private:
226    bool trySETCC(SDNode *N);
227
228    void PeepholePPC64();
229    void PeepholePPC64ZExt();
230    void PeepholeCROps();
231
232    SDValue combineToCMPB(SDNode *N);
233    void foldBoolExts(SDValue &Res, SDNode *&N);
234
235    bool AllUsersSelectZero(SDNode *N);
236    void SwapAllSelectUsers(SDNode *N);
237
238    void transferMemOperands(SDNode *N, SDNode *Result);
239  };
240}
241
242/// InsertVRSaveCode - Once the entire function has been instruction selected,
243/// all virtual registers are created and all machine instructions are built,
244/// check to see if we need to save/restore VRSAVE.  If so, do it.
245void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) {
246  // Check to see if this function uses vector registers, which means we have to
247  // save and restore the VRSAVE register and update it with the regs we use.
248  //
249  // In this case, there will be virtual registers of vector type created
250  // by the scheduler.  Detect them now.
251  bool HasVectorVReg = false;
252  for (unsigned i = 0, e = RegInfo->getNumVirtRegs(); i != e; ++i) {
253    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
254    if (RegInfo->getRegClass(Reg) == &PPC::VRRCRegClass) {
255      HasVectorVReg = true;
256      break;
257    }
258  }
259  if (!HasVectorVReg) return;  // nothing to do.
260
261  // If we have a vector register, we want to emit code into the entry and exit
262  // blocks to save and restore the VRSAVE register.  We do this here (instead
263  // of marking all vector instructions as clobbering VRSAVE) for two reasons:
264  //
265  // 1. This (trivially) reduces the load on the register allocator, by not
266  //    having to represent the live range of the VRSAVE register.
267  // 2. This (more significantly) allows us to create a temporary virtual
268  //    register to hold the saved VRSAVE value, allowing this temporary to be
269  //    register allocated, instead of forcing it to be spilled to the stack.
270
271  // Create two vregs - one to hold the VRSAVE register that is live-in to the
272  // function and one for the value after having bits or'd into it.
273  unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
274  unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
275
276  const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo();
277  MachineBasicBlock &EntryBB = *Fn.begin();
278  DebugLoc dl;
279  // Emit the following code into the entry block:
280  // InVRSAVE = MFVRSAVE
281  // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE
282  // MTVRSAVE UpdatedVRSAVE
283  MachineBasicBlock::iterator IP = EntryBB.begin();  // Insert Point
284  BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE);
285  BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE),
286          UpdatedVRSAVE).addReg(InVRSAVE);
287  BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE);
288
289  // Find all return blocks, outputting a restore in each epilog.
290  for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
291    if (BB->isReturnBlock()) {
292      IP = BB->end(); --IP;
293
294      // Skip over all terminator instructions, which are part of the return
295      // sequence.
296      MachineBasicBlock::iterator I2 = IP;
297      while (I2 != BB->begin() && (--I2)->isTerminator())
298        IP = I2;
299
300      // Emit: MTVRSAVE InVRSave
301      BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE);
302    }
303  }
304}
305
306
307/// getGlobalBaseReg - Output the instructions required to put the
308/// base address to use for accessing globals into a register.
309///
310SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
311  if (!GlobalBaseReg) {
312    const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo();
313    // Insert the set of GlobalBaseReg into the first MBB of the function
314    MachineBasicBlock &FirstMBB = MF->front();
315    MachineBasicBlock::iterator MBBI = FirstMBB.begin();
316    const Module *M = MF->getFunction()->getParent();
317    DebugLoc dl;
318
319    if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) == MVT::i32) {
320      if (PPCSubTarget->isTargetELF()) {
321        GlobalBaseReg = PPC::R30;
322        if (M->getPICLevel() == PICLevel::SmallPIC) {
323          BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR));
324          BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
325          MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
326        } else {
327          BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
328          BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
329          unsigned TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
330          BuildMI(FirstMBB, MBBI, dl,
331                  TII.get(PPC::UpdateGBR), GlobalBaseReg)
332                  .addReg(TempReg, RegState::Define).addReg(GlobalBaseReg);
333          MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
334        }
335      } else {
336        GlobalBaseReg =
337          RegInfo->createVirtualRegister(&PPC::GPRC_NOR0RegClass);
338        BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
339        BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
340      }
341    } else {
342      GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_NOX0RegClass);
343      BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8));
344      BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg);
345    }
346  }
347  return CurDAG->getRegister(GlobalBaseReg,
348                             PPCLowering->getPointerTy(CurDAG->getDataLayout()))
349      .getNode();
350}
351
352/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
353/// or 64-bit immediate, and if the value can be accurately represented as a
354/// sign extension from a 16-bit value.  If so, this returns true and the
355/// immediate.
356static bool isIntS16Immediate(SDNode *N, short &Imm) {
357  if (N->getOpcode() != ISD::Constant)
358    return false;
359
360  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
361  if (N->getValueType(0) == MVT::i32)
362    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
363  else
364    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
365}
366
367static bool isIntS16Immediate(SDValue Op, short &Imm) {
368  return isIntS16Immediate(Op.getNode(), Imm);
369}
370
371
372/// isInt32Immediate - This method tests to see if the node is a 32-bit constant
373/// operand. If so Imm will receive the 32-bit value.
374static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
375  if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
376    Imm = cast<ConstantSDNode>(N)->getZExtValue();
377    return true;
378  }
379  return false;
380}
381
382/// isInt64Immediate - This method tests to see if the node is a 64-bit constant
383/// operand.  If so Imm will receive the 64-bit value.
384static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
385  if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
386    Imm = cast<ConstantSDNode>(N)->getZExtValue();
387    return true;
388  }
389  return false;
390}
391
392// isInt32Immediate - This method tests to see if a constant operand.
393// If so Imm will receive the 32 bit value.
394static bool isInt32Immediate(SDValue N, unsigned &Imm) {
395  return isInt32Immediate(N.getNode(), Imm);
396}
397
398static unsigned getBranchHint(unsigned PCC, FunctionLoweringInfo *FuncInfo,
399                              const SDValue &DestMBB) {
400  assert(isa<BasicBlockSDNode>(DestMBB));
401
402  if (!FuncInfo->BPI) return PPC::BR_NO_HINT;
403
404  const BasicBlock *BB = FuncInfo->MBB->getBasicBlock();
405  const TerminatorInst *BBTerm = BB->getTerminator();
406
407  if (BBTerm->getNumSuccessors() != 2) return PPC::BR_NO_HINT;
408
409  const BasicBlock *TBB = BBTerm->getSuccessor(0);
410  const BasicBlock *FBB = BBTerm->getSuccessor(1);
411
412  auto TProb = FuncInfo->BPI->getEdgeProbability(BB, TBB);
413  auto FProb = FuncInfo->BPI->getEdgeProbability(BB, FBB);
414
415  // We only want to handle cases which are easy to predict at static time, e.g.
416  // C++ throw statement, that is very likely not taken, or calling never
417  // returned function, e.g. stdlib exit(). So we set Threshold to filter
418  // unwanted cases.
419  //
420  // Below is LLVM branch weight table, we only want to handle case 1, 2
421  //
422  // Case                  Taken:Nontaken  Example
423  // 1. Unreachable        1048575:1       C++ throw, stdlib exit(),
424  // 2. Invoke-terminating 1:1048575
425  // 3. Coldblock          4:64            __builtin_expect
426  // 4. Loop Branch        124:4           For loop
427  // 5. PH/ZH/FPH          20:12
428  const uint32_t Threshold = 10000;
429
430  if (std::max(TProb, FProb) / Threshold < std::min(TProb, FProb))
431    return PPC::BR_NO_HINT;
432
433  DEBUG(dbgs() << "Use branch hint for '" << FuncInfo->Fn->getName() << "::"
434               << BB->getName() << "'\n"
435               << " -> " << TBB->getName() << ": " << TProb << "\n"
436               << " -> " << FBB->getName() << ": " << FProb << "\n");
437
438  const BasicBlockSDNode *BBDN = cast<BasicBlockSDNode>(DestMBB);
439
440  // If Dest BasicBlock is False-BasicBlock (FBB), swap branch probabilities,
441  // because we want 'TProb' stands for 'branch probability' to Dest BasicBlock
442  if (BBDN->getBasicBlock()->getBasicBlock() != TBB)
443    std::swap(TProb, FProb);
444
445  return (TProb > FProb) ? PPC::BR_TAKEN_HINT : PPC::BR_NONTAKEN_HINT;
446}
447
448// isOpcWithIntImmediate - This method tests to see if the node is a specific
449// opcode and that it has a immediate integer right operand.
450// If so Imm will receive the 32 bit value.
451static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
452  return N->getOpcode() == Opc
453         && isInt32Immediate(N->getOperand(1).getNode(), Imm);
454}
455
456void PPCDAGToDAGISel::selectFrameIndex(SDNode *SN, SDNode *N, unsigned Offset) {
457  SDLoc dl(SN);
458  int FI = cast<FrameIndexSDNode>(N)->getIndex();
459  SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
460  unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
461  if (SN->hasOneUse())
462    CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI,
463                         getSmallIPtrImm(Offset, dl));
464  else
465    ReplaceNode(SN, CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI,
466                                           getSmallIPtrImm(Offset, dl)));
467}
468
469bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
470                                      bool isShiftMask, unsigned &SH,
471                                      unsigned &MB, unsigned &ME) {
472  // Don't even go down this path for i64, since different logic will be
473  // necessary for rldicl/rldicr/rldimi.
474  if (N->getValueType(0) != MVT::i32)
475    return false;
476
477  unsigned Shift  = 32;
478  unsigned Indeterminant = ~0;  // bit mask marking indeterminant results
479  unsigned Opcode = N->getOpcode();
480  if (N->getNumOperands() != 2 ||
481      !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31))
482    return false;
483
484  if (Opcode == ISD::SHL) {
485    // apply shift left to mask if it comes first
486    if (isShiftMask) Mask = Mask << Shift;
487    // determine which bits are made indeterminant by shift
488    Indeterminant = ~(0xFFFFFFFFu << Shift);
489  } else if (Opcode == ISD::SRL) {
490    // apply shift right to mask if it comes first
491    if (isShiftMask) Mask = Mask >> Shift;
492    // determine which bits are made indeterminant by shift
493    Indeterminant = ~(0xFFFFFFFFu >> Shift);
494    // adjust for the left rotate
495    Shift = 32 - Shift;
496  } else if (Opcode == ISD::ROTL) {
497    Indeterminant = 0;
498  } else {
499    return false;
500  }
501
502  // if the mask doesn't intersect any Indeterminant bits
503  if (Mask && !(Mask & Indeterminant)) {
504    SH = Shift & 31;
505    // make sure the mask is still a mask (wrap arounds may not be)
506    return isRunOfOnes(Mask, MB, ME);
507  }
508  return false;
509}
510
511/// Turn an or of two masked values into the rotate left word immediate then
512/// mask insert (rlwimi) instruction.
513bool PPCDAGToDAGISel::tryBitfieldInsert(SDNode *N) {
514  SDValue Op0 = N->getOperand(0);
515  SDValue Op1 = N->getOperand(1);
516  SDLoc dl(N);
517
518  APInt LKZ, LKO, RKZ, RKO;
519  CurDAG->computeKnownBits(Op0, LKZ, LKO);
520  CurDAG->computeKnownBits(Op1, RKZ, RKO);
521
522  unsigned TargetMask = LKZ.getZExtValue();
523  unsigned InsertMask = RKZ.getZExtValue();
524
525  if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
526    unsigned Op0Opc = Op0.getOpcode();
527    unsigned Op1Opc = Op1.getOpcode();
528    unsigned Value, SH = 0;
529    TargetMask = ~TargetMask;
530    InsertMask = ~InsertMask;
531
532    // If the LHS has a foldable shift and the RHS does not, then swap it to the
533    // RHS so that we can fold the shift into the insert.
534    if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
535      if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
536          Op0.getOperand(0).getOpcode() == ISD::SRL) {
537        if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
538            Op1.getOperand(0).getOpcode() != ISD::SRL) {
539          std::swap(Op0, Op1);
540          std::swap(Op0Opc, Op1Opc);
541          std::swap(TargetMask, InsertMask);
542        }
543      }
544    } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
545      if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
546          Op1.getOperand(0).getOpcode() != ISD::SRL) {
547        std::swap(Op0, Op1);
548        std::swap(Op0Opc, Op1Opc);
549        std::swap(TargetMask, InsertMask);
550      }
551    }
552
553    unsigned MB, ME;
554    if (isRunOfOnes(InsertMask, MB, ME)) {
555      SDValue Tmp1, Tmp2;
556
557      if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
558          isInt32Immediate(Op1.getOperand(1), Value)) {
559        Op1 = Op1.getOperand(0);
560        SH  = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
561      }
562      if (Op1Opc == ISD::AND) {
563       // The AND mask might not be a constant, and we need to make sure that
564       // if we're going to fold the masking with the insert, all bits not
565       // know to be zero in the mask are known to be one.
566        APInt MKZ, MKO;
567        CurDAG->computeKnownBits(Op1.getOperand(1), MKZ, MKO);
568        bool CanFoldMask = InsertMask == MKO.getZExtValue();
569
570        unsigned SHOpc = Op1.getOperand(0).getOpcode();
571        if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask &&
572            isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
573          // Note that Value must be in range here (less than 32) because
574          // otherwise there would not be any bits set in InsertMask.
575          Op1 = Op1.getOperand(0).getOperand(0);
576          SH  = (SHOpc == ISD::SHL) ? Value : 32 - Value;
577        }
578      }
579
580      SH &= 31;
581      SDValue Ops[] = { Op0, Op1, getI32Imm(SH, dl), getI32Imm(MB, dl),
582                          getI32Imm(ME, dl) };
583      ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops));
584      return true;
585    }
586  }
587  return false;
588}
589
590// Predict the number of instructions that would be generated by calling
591// getInt64(N).
592static unsigned getInt64CountDirect(int64_t Imm) {
593  // Assume no remaining bits.
594  unsigned Remainder = 0;
595  // Assume no shift required.
596  unsigned Shift = 0;
597
598  // If it can't be represented as a 32 bit value.
599  if (!isInt<32>(Imm)) {
600    Shift = countTrailingZeros<uint64_t>(Imm);
601    int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
602
603    // If the shifted value fits 32 bits.
604    if (isInt<32>(ImmSh)) {
605      // Go with the shifted value.
606      Imm = ImmSh;
607    } else {
608      // Still stuck with a 64 bit value.
609      Remainder = Imm;
610      Shift = 32;
611      Imm >>= 32;
612    }
613  }
614
615  // Intermediate operand.
616  unsigned Result = 0;
617
618  // Handle first 32 bits.
619  unsigned Lo = Imm & 0xFFFF;
620
621  // Simple value.
622  if (isInt<16>(Imm)) {
623    // Just the Lo bits.
624    ++Result;
625  } else if (Lo) {
626    // Handle the Hi bits and Lo bits.
627    Result += 2;
628  } else {
629    // Just the Hi bits.
630    ++Result;
631  }
632
633  // If no shift, we're done.
634  if (!Shift) return Result;
635
636  // Shift for next step if the upper 32-bits were not zero.
637  if (Imm)
638    ++Result;
639
640  // Add in the last bits as required.
641  if ((Remainder >> 16) & 0xFFFF)
642    ++Result;
643  if (Remainder & 0xFFFF)
644    ++Result;
645
646  return Result;
647}
648
649static uint64_t Rot64(uint64_t Imm, unsigned R) {
650  return (Imm << R) | (Imm >> (64 - R));
651}
652
653static unsigned getInt64Count(int64_t Imm) {
654  unsigned Count = getInt64CountDirect(Imm);
655  if (Count == 1)
656    return Count;
657
658  for (unsigned r = 1; r < 63; ++r) {
659    uint64_t RImm = Rot64(Imm, r);
660    unsigned RCount = getInt64CountDirect(RImm) + 1;
661    Count = std::min(Count, RCount);
662
663    // See comments in getInt64 for an explanation of the logic below.
664    unsigned LS = findLastSet(RImm);
665    if (LS != r-1)
666      continue;
667
668    uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1));
669    uint64_t RImmWithOnes = RImm | OnesMask;
670
671    RCount = getInt64CountDirect(RImmWithOnes) + 1;
672    Count = std::min(Count, RCount);
673  }
674
675  return Count;
676}
677
678// Select a 64-bit constant. For cost-modeling purposes, getInt64Count
679// (above) needs to be kept in sync with this function.
680static SDNode *getInt64Direct(SelectionDAG *CurDAG, const SDLoc &dl,
681                              int64_t Imm) {
682  // Assume no remaining bits.
683  unsigned Remainder = 0;
684  // Assume no shift required.
685  unsigned Shift = 0;
686
687  // If it can't be represented as a 32 bit value.
688  if (!isInt<32>(Imm)) {
689    Shift = countTrailingZeros<uint64_t>(Imm);
690    int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
691
692    // If the shifted value fits 32 bits.
693    if (isInt<32>(ImmSh)) {
694      // Go with the shifted value.
695      Imm = ImmSh;
696    } else {
697      // Still stuck with a 64 bit value.
698      Remainder = Imm;
699      Shift = 32;
700      Imm >>= 32;
701    }
702  }
703
704  // Intermediate operand.
705  SDNode *Result;
706
707  // Handle first 32 bits.
708  unsigned Lo = Imm & 0xFFFF;
709  unsigned Hi = (Imm >> 16) & 0xFFFF;
710
711  auto getI32Imm = [CurDAG, dl](unsigned Imm) {
712      return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
713  };
714
715  // Simple value.
716  if (isInt<16>(Imm)) {
717    // Just the Lo bits.
718    Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, getI32Imm(Lo));
719  } else if (Lo) {
720    // Handle the Hi bits.
721    unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8;
722    Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi));
723    // And Lo bits.
724    Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
725                                    SDValue(Result, 0), getI32Imm(Lo));
726  } else {
727    // Just the Hi bits.
728    Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi));
729  }
730
731  // If no shift, we're done.
732  if (!Shift) return Result;
733
734  // Shift for next step if the upper 32-bits were not zero.
735  if (Imm) {
736    Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64,
737                                    SDValue(Result, 0),
738                                    getI32Imm(Shift),
739                                    getI32Imm(63 - Shift));
740  }
741
742  // Add in the last bits as required.
743  if ((Hi = (Remainder >> 16) & 0xFFFF)) {
744    Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64,
745                                    SDValue(Result, 0), getI32Imm(Hi));
746  }
747  if ((Lo = Remainder & 0xFFFF)) {
748    Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
749                                    SDValue(Result, 0), getI32Imm(Lo));
750  }
751
752  return Result;
753}
754
755static SDNode *getInt64(SelectionDAG *CurDAG, const SDLoc &dl, int64_t Imm) {
756  unsigned Count = getInt64CountDirect(Imm);
757  if (Count == 1)
758    return getInt64Direct(CurDAG, dl, Imm);
759
760  unsigned RMin = 0;
761
762  int64_t MatImm;
763  unsigned MaskEnd;
764
765  for (unsigned r = 1; r < 63; ++r) {
766    uint64_t RImm = Rot64(Imm, r);
767    unsigned RCount = getInt64CountDirect(RImm) + 1;
768    if (RCount < Count) {
769      Count = RCount;
770      RMin = r;
771      MatImm = RImm;
772      MaskEnd = 63;
773    }
774
775    // If the immediate to generate has many trailing zeros, it might be
776    // worthwhile to generate a rotated value with too many leading ones
777    // (because that's free with li/lis's sign-extension semantics), and then
778    // mask them off after rotation.
779
780    unsigned LS = findLastSet(RImm);
781    // We're adding (63-LS) higher-order ones, and we expect to mask them off
782    // after performing the inverse rotation by (64-r). So we need that:
783    //   63-LS == 64-r => LS == r-1
784    if (LS != r-1)
785      continue;
786
787    uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1));
788    uint64_t RImmWithOnes = RImm | OnesMask;
789
790    RCount = getInt64CountDirect(RImmWithOnes) + 1;
791    if (RCount < Count) {
792      Count = RCount;
793      RMin = r;
794      MatImm = RImmWithOnes;
795      MaskEnd = LS;
796    }
797  }
798
799  if (!RMin)
800    return getInt64Direct(CurDAG, dl, Imm);
801
802  auto getI32Imm = [CurDAG, dl](unsigned Imm) {
803      return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
804  };
805
806  SDValue Val = SDValue(getInt64Direct(CurDAG, dl, MatImm), 0);
807  return CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Val,
808                                getI32Imm(64 - RMin), getI32Imm(MaskEnd));
809}
810
811// Select a 64-bit constant.
812static SDNode *getInt64(SelectionDAG *CurDAG, SDNode *N) {
813  SDLoc dl(N);
814
815  // Get 64 bit value.
816  int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue();
817  return getInt64(CurDAG, dl, Imm);
818}
819
820namespace {
821class BitPermutationSelector {
822  struct ValueBit {
823    SDValue V;
824
825    // The bit number in the value, using a convention where bit 0 is the
826    // lowest-order bit.
827    unsigned Idx;
828
829    enum Kind {
830      ConstZero,
831      Variable
832    } K;
833
834    ValueBit(SDValue V, unsigned I, Kind K = Variable)
835      : V(V), Idx(I), K(K) {}
836    ValueBit(Kind K = Variable)
837      : V(SDValue(nullptr, 0)), Idx(UINT32_MAX), K(K) {}
838
839    bool isZero() const {
840      return K == ConstZero;
841    }
842
843    bool hasValue() const {
844      return K == Variable;
845    }
846
847    SDValue getValue() const {
848      assert(hasValue() && "Cannot get the value of a constant bit");
849      return V;
850    }
851
852    unsigned getValueBitIndex() const {
853      assert(hasValue() && "Cannot get the value bit index of a constant bit");
854      return Idx;
855    }
856  };
857
858  // A bit group has the same underlying value and the same rotate factor.
859  struct BitGroup {
860    SDValue V;
861    unsigned RLAmt;
862    unsigned StartIdx, EndIdx;
863
864    // This rotation amount assumes that the lower 32 bits of the quantity are
865    // replicated in the high 32 bits by the rotation operator (which is done
866    // by rlwinm and friends in 64-bit mode).
867    bool Repl32;
868    // Did converting to Repl32 == true change the rotation factor? If it did,
869    // it decreased it by 32.
870    bool Repl32CR;
871    // Was this group coalesced after setting Repl32 to true?
872    bool Repl32Coalesced;
873
874    BitGroup(SDValue V, unsigned R, unsigned S, unsigned E)
875      : V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false),
876        Repl32Coalesced(false) {
877      DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << R <<
878                      " [" << S << ", " << E << "]\n");
879    }
880  };
881
882  // Information on each (Value, RLAmt) pair (like the number of groups
883  // associated with each) used to choose the lowering method.
884  struct ValueRotInfo {
885    SDValue V;
886    unsigned RLAmt;
887    unsigned NumGroups;
888    unsigned FirstGroupStartIdx;
889    bool Repl32;
890
891    ValueRotInfo()
892      : RLAmt(UINT32_MAX), NumGroups(0), FirstGroupStartIdx(UINT32_MAX),
893        Repl32(false) {}
894
895    // For sorting (in reverse order) by NumGroups, and then by
896    // FirstGroupStartIdx.
897    bool operator < (const ValueRotInfo &Other) const {
898      // We need to sort so that the non-Repl32 come first because, when we're
899      // doing masking, the Repl32 bit groups might be subsumed into the 64-bit
900      // masking operation.
901      if (Repl32 < Other.Repl32)
902        return true;
903      else if (Repl32 > Other.Repl32)
904        return false;
905      else if (NumGroups > Other.NumGroups)
906        return true;
907      else if (NumGroups < Other.NumGroups)
908        return false;
909      else if (FirstGroupStartIdx < Other.FirstGroupStartIdx)
910        return true;
911      return false;
912    }
913  };
914
915  // Return true if something interesting was deduced, return false if we're
916  // providing only a generic representation of V (or something else likewise
917  // uninteresting for instruction selection).
918  bool getValueBits(SDValue V, SmallVector<ValueBit, 64> &Bits) {
919    switch (V.getOpcode()) {
920    default: break;
921    case ISD::ROTL:
922      if (isa<ConstantSDNode>(V.getOperand(1))) {
923        unsigned RotAmt = V.getConstantOperandVal(1);
924
925        SmallVector<ValueBit, 64> LHSBits(Bits.size());
926        getValueBits(V.getOperand(0), LHSBits);
927
928        for (unsigned i = 0; i < Bits.size(); ++i)
929          Bits[i] = LHSBits[i < RotAmt ? i + (Bits.size() - RotAmt) : i - RotAmt];
930
931        return true;
932      }
933      break;
934    case ISD::SHL:
935      if (isa<ConstantSDNode>(V.getOperand(1))) {
936        unsigned ShiftAmt = V.getConstantOperandVal(1);
937
938        SmallVector<ValueBit, 64> LHSBits(Bits.size());
939        getValueBits(V.getOperand(0), LHSBits);
940
941        for (unsigned i = ShiftAmt; i < Bits.size(); ++i)
942          Bits[i] = LHSBits[i - ShiftAmt];
943
944        for (unsigned i = 0; i < ShiftAmt; ++i)
945          Bits[i] = ValueBit(ValueBit::ConstZero);
946
947        return true;
948      }
949      break;
950    case ISD::SRL:
951      if (isa<ConstantSDNode>(V.getOperand(1))) {
952        unsigned ShiftAmt = V.getConstantOperandVal(1);
953
954        SmallVector<ValueBit, 64> LHSBits(Bits.size());
955        getValueBits(V.getOperand(0), LHSBits);
956
957        for (unsigned i = 0; i < Bits.size() - ShiftAmt; ++i)
958          Bits[i] = LHSBits[i + ShiftAmt];
959
960        for (unsigned i = Bits.size() - ShiftAmt; i < Bits.size(); ++i)
961          Bits[i] = ValueBit(ValueBit::ConstZero);
962
963        return true;
964      }
965      break;
966    case ISD::AND:
967      if (isa<ConstantSDNode>(V.getOperand(1))) {
968        uint64_t Mask = V.getConstantOperandVal(1);
969
970        SmallVector<ValueBit, 64> LHSBits(Bits.size());
971        bool LHSTrivial = getValueBits(V.getOperand(0), LHSBits);
972
973        for (unsigned i = 0; i < Bits.size(); ++i)
974          if (((Mask >> i) & 1) == 1)
975            Bits[i] = LHSBits[i];
976          else
977            Bits[i] = ValueBit(ValueBit::ConstZero);
978
979        // Mark this as interesting, only if the LHS was also interesting. This
980        // prevents the overall procedure from matching a single immediate 'and'
981        // (which is non-optimal because such an and might be folded with other
982        // things if we don't select it here).
983        return LHSTrivial;
984      }
985      break;
986    case ISD::OR: {
987      SmallVector<ValueBit, 64> LHSBits(Bits.size()), RHSBits(Bits.size());
988      getValueBits(V.getOperand(0), LHSBits);
989      getValueBits(V.getOperand(1), RHSBits);
990
991      bool AllDisjoint = true;
992      for (unsigned i = 0; i < Bits.size(); ++i)
993        if (LHSBits[i].isZero())
994          Bits[i] = RHSBits[i];
995        else if (RHSBits[i].isZero())
996          Bits[i] = LHSBits[i];
997        else {
998          AllDisjoint = false;
999          break;
1000        }
1001
1002      if (!AllDisjoint)
1003        break;
1004
1005      return true;
1006    }
1007    }
1008
1009    for (unsigned i = 0; i < Bits.size(); ++i)
1010      Bits[i] = ValueBit(V, i);
1011
1012    return false;
1013  }
1014
1015  // For each value (except the constant ones), compute the left-rotate amount
1016  // to get it from its original to final position.
1017  void computeRotationAmounts() {
1018    HasZeros = false;
1019    RLAmt.resize(Bits.size());
1020    for (unsigned i = 0; i < Bits.size(); ++i)
1021      if (Bits[i].hasValue()) {
1022        unsigned VBI = Bits[i].getValueBitIndex();
1023        if (i >= VBI)
1024          RLAmt[i] = i - VBI;
1025        else
1026          RLAmt[i] = Bits.size() - (VBI - i);
1027      } else if (Bits[i].isZero()) {
1028        HasZeros = true;
1029        RLAmt[i] = UINT32_MAX;
1030      } else {
1031        llvm_unreachable("Unknown value bit type");
1032      }
1033  }
1034
1035  // Collect groups of consecutive bits with the same underlying value and
1036  // rotation factor. If we're doing late masking, we ignore zeros, otherwise
1037  // they break up groups.
1038  void collectBitGroups(bool LateMask) {
1039    BitGroups.clear();
1040
1041    unsigned LastRLAmt = RLAmt[0];
1042    SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue();
1043    unsigned LastGroupStartIdx = 0;
1044    for (unsigned i = 1; i < Bits.size(); ++i) {
1045      unsigned ThisRLAmt = RLAmt[i];
1046      SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue();
1047      if (LateMask && !ThisValue) {
1048        ThisValue = LastValue;
1049        ThisRLAmt = LastRLAmt;
1050        // If we're doing late masking, then the first bit group always starts
1051        // at zero (even if the first bits were zero).
1052        if (BitGroups.empty())
1053          LastGroupStartIdx = 0;
1054      }
1055
1056      // If this bit has the same underlying value and the same rotate factor as
1057      // the last one, then they're part of the same group.
1058      if (ThisRLAmt == LastRLAmt && ThisValue == LastValue)
1059        continue;
1060
1061      if (LastValue.getNode())
1062        BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
1063                                     i-1));
1064      LastRLAmt = ThisRLAmt;
1065      LastValue = ThisValue;
1066      LastGroupStartIdx = i;
1067    }
1068    if (LastValue.getNode())
1069      BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
1070                                   Bits.size()-1));
1071
1072    if (BitGroups.empty())
1073      return;
1074
1075    // We might be able to combine the first and last groups.
1076    if (BitGroups.size() > 1) {
1077      // If the first and last groups are the same, then remove the first group
1078      // in favor of the last group, making the ending index of the last group
1079      // equal to the ending index of the to-be-removed first group.
1080      if (BitGroups[0].StartIdx == 0 &&
1081          BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 &&
1082          BitGroups[0].V == BitGroups[BitGroups.size()-1].V &&
1083          BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) {
1084        DEBUG(dbgs() << "\tcombining final bit group with initial one\n");
1085        BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx;
1086        BitGroups.erase(BitGroups.begin());
1087      }
1088    }
1089  }
1090
1091  // Take all (SDValue, RLAmt) pairs and sort them by the number of groups
1092  // associated with each. If there is a degeneracy, pick the one that occurs
1093  // first (in the final value).
1094  void collectValueRotInfo() {
1095    ValueRots.clear();
1096
1097    for (auto &BG : BitGroups) {
1098      unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0);
1099      ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)];
1100      VRI.V = BG.V;
1101      VRI.RLAmt = BG.RLAmt;
1102      VRI.Repl32 = BG.Repl32;
1103      VRI.NumGroups += 1;
1104      VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx);
1105    }
1106
1107    // Now that we've collected the various ValueRotInfo instances, we need to
1108    // sort them.
1109    ValueRotsVec.clear();
1110    for (auto &I : ValueRots) {
1111      ValueRotsVec.push_back(I.second);
1112    }
1113    std::sort(ValueRotsVec.begin(), ValueRotsVec.end());
1114  }
1115
1116  // In 64-bit mode, rlwinm and friends have a rotation operator that
1117  // replicates the low-order 32 bits into the high-order 32-bits. The mask
1118  // indices of these instructions can only be in the lower 32 bits, so they
1119  // can only represent some 64-bit bit groups. However, when they can be used,
1120  // the 32-bit replication can be used to represent, as a single bit group,
1121  // otherwise separate bit groups. We'll convert to replicated-32-bit bit
1122  // groups when possible. Returns true if any of the bit groups were
1123  // converted.
1124  void assignRepl32BitGroups() {
1125    // If we have bits like this:
1126    //
1127    // Indices:    15 14 13 12 11 10 9 8  7  6  5  4  3  2  1  0
1128    // V bits: ... 7  6  5  4  3  2  1 0 31 30 29 28 27 26 25 24
1129    // Groups:    |      RLAmt = 8      |      RLAmt = 40       |
1130    //
1131    // But, making use of a 32-bit operation that replicates the low-order 32
1132    // bits into the high-order 32 bits, this can be one bit group with a RLAmt
1133    // of 8.
1134
1135    auto IsAllLow32 = [this](BitGroup & BG) {
1136      if (BG.StartIdx <= BG.EndIdx) {
1137        for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) {
1138          if (!Bits[i].hasValue())
1139            continue;
1140          if (Bits[i].getValueBitIndex() >= 32)
1141            return false;
1142        }
1143      } else {
1144        for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) {
1145          if (!Bits[i].hasValue())
1146            continue;
1147          if (Bits[i].getValueBitIndex() >= 32)
1148            return false;
1149        }
1150        for (unsigned i = 0; i <= BG.EndIdx; ++i) {
1151          if (!Bits[i].hasValue())
1152            continue;
1153          if (Bits[i].getValueBitIndex() >= 32)
1154            return false;
1155        }
1156      }
1157
1158      return true;
1159    };
1160
1161    for (auto &BG : BitGroups) {
1162      if (BG.StartIdx < 32 && BG.EndIdx < 32) {
1163        if (IsAllLow32(BG)) {
1164          if (BG.RLAmt >= 32) {
1165            BG.RLAmt -= 32;
1166            BG.Repl32CR = true;
1167          }
1168
1169          BG.Repl32 = true;
1170
1171          DEBUG(dbgs() << "\t32-bit replicated bit group for " <<
1172                          BG.V.getNode() << " RLAmt = " << BG.RLAmt <<
1173                          " [" << BG.StartIdx << ", " << BG.EndIdx << "]\n");
1174        }
1175      }
1176    }
1177
1178    // Now walk through the bit groups, consolidating where possible.
1179    for (auto I = BitGroups.begin(); I != BitGroups.end();) {
1180      // We might want to remove this bit group by merging it with the previous
1181      // group (which might be the ending group).
1182      auto IP = (I == BitGroups.begin()) ?
1183                std::prev(BitGroups.end()) : std::prev(I);
1184      if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt &&
1185          I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) {
1186
1187        DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for " <<
1188                        I->V.getNode() << " RLAmt = " << I->RLAmt <<
1189                        " [" << I->StartIdx << ", " << I->EndIdx <<
1190                        "] with group with range [" <<
1191                        IP->StartIdx << ", " << IP->EndIdx << "]\n");
1192
1193        IP->EndIdx = I->EndIdx;
1194        IP->Repl32CR = IP->Repl32CR || I->Repl32CR;
1195        IP->Repl32Coalesced = true;
1196        I = BitGroups.erase(I);
1197        continue;
1198      } else {
1199        // There is a special case worth handling: If there is a single group
1200        // covering the entire upper 32 bits, and it can be merged with both
1201        // the next and previous groups (which might be the same group), then
1202        // do so. If it is the same group (so there will be only one group in
1203        // total), then we need to reverse the order of the range so that it
1204        // covers the entire 64 bits.
1205        if (I->StartIdx == 32 && I->EndIdx == 63) {
1206          assert(std::next(I) == BitGroups.end() &&
1207                 "bit group ends at index 63 but there is another?");
1208          auto IN = BitGroups.begin();
1209
1210          if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V &&
1211              (I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt &&
1212              IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP &&
1213              IsAllLow32(*I)) {
1214
1215            DEBUG(dbgs() << "\tcombining bit group for " <<
1216                            I->V.getNode() << " RLAmt = " << I->RLAmt <<
1217                            " [" << I->StartIdx << ", " << I->EndIdx <<
1218                            "] with 32-bit replicated groups with ranges [" <<
1219                            IP->StartIdx << ", " << IP->EndIdx << "] and [" <<
1220                            IN->StartIdx << ", " << IN->EndIdx << "]\n");
1221
1222            if (IP == IN) {
1223              // There is only one other group; change it to cover the whole
1224              // range (backward, so that it can still be Repl32 but cover the
1225              // whole 64-bit range).
1226              IP->StartIdx = 31;
1227              IP->EndIdx = 30;
1228              IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32;
1229              IP->Repl32Coalesced = true;
1230              I = BitGroups.erase(I);
1231            } else {
1232              // There are two separate groups, one before this group and one
1233              // after us (at the beginning). We're going to remove this group,
1234              // but also the group at the very beginning.
1235              IP->EndIdx = IN->EndIdx;
1236              IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32;
1237              IP->Repl32Coalesced = true;
1238              I = BitGroups.erase(I);
1239              BitGroups.erase(BitGroups.begin());
1240            }
1241
1242            // This must be the last group in the vector (and we might have
1243            // just invalidated the iterator above), so break here.
1244            break;
1245          }
1246        }
1247      }
1248
1249      ++I;
1250    }
1251  }
1252
1253  SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
1254    return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
1255  }
1256
1257  uint64_t getZerosMask() {
1258    uint64_t Mask = 0;
1259    for (unsigned i = 0; i < Bits.size(); ++i) {
1260      if (Bits[i].hasValue())
1261        continue;
1262      Mask |= (UINT64_C(1) << i);
1263    }
1264
1265    return ~Mask;
1266  }
1267
1268  // Depending on the number of groups for a particular value, it might be
1269  // better to rotate, mask explicitly (using andi/andis), and then or the
1270  // result. Select this part of the result first.
1271  void SelectAndParts32(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) {
1272    if (BPermRewriterNoMasking)
1273      return;
1274
1275    for (ValueRotInfo &VRI : ValueRotsVec) {
1276      unsigned Mask = 0;
1277      for (unsigned i = 0; i < Bits.size(); ++i) {
1278        if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V)
1279          continue;
1280        if (RLAmt[i] != VRI.RLAmt)
1281          continue;
1282        Mask |= (1u << i);
1283      }
1284
1285      // Compute the masks for andi/andis that would be necessary.
1286      unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
1287      assert((ANDIMask != 0 || ANDISMask != 0) &&
1288             "No set bits in mask for value bit groups");
1289      bool NeedsRotate = VRI.RLAmt != 0;
1290
1291      // We're trying to minimize the number of instructions. If we have one
1292      // group, using one of andi/andis can break even.  If we have three
1293      // groups, we can use both andi and andis and break even (to use both
1294      // andi and andis we also need to or the results together). We need four
1295      // groups if we also need to rotate. To use andi/andis we need to do more
1296      // than break even because rotate-and-mask instructions tend to be easier
1297      // to schedule.
1298
1299      // FIXME: We've biased here against using andi/andis, which is right for
1300      // POWER cores, but not optimal everywhere. For example, on the A2,
1301      // andi/andis have single-cycle latency whereas the rotate-and-mask
1302      // instructions take two cycles, and it would be better to bias toward
1303      // andi/andis in break-even cases.
1304
1305      unsigned NumAndInsts = (unsigned) NeedsRotate +
1306                             (unsigned) (ANDIMask != 0) +
1307                             (unsigned) (ANDISMask != 0) +
1308                             (unsigned) (ANDIMask != 0 && ANDISMask != 0) +
1309                             (unsigned) (bool) Res;
1310
1311      DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() <<
1312                      " RL: " << VRI.RLAmt << ":" <<
1313                      "\n\t\t\tisel using masking: " << NumAndInsts <<
1314                      " using rotates: " << VRI.NumGroups << "\n");
1315
1316      if (NumAndInsts >= VRI.NumGroups)
1317        continue;
1318
1319      DEBUG(dbgs() << "\t\t\t\tusing masking\n");
1320
1321      if (InstCnt) *InstCnt += NumAndInsts;
1322
1323      SDValue VRot;
1324      if (VRI.RLAmt) {
1325        SDValue Ops[] =
1326          { VRI.V, getI32Imm(VRI.RLAmt, dl), getI32Imm(0, dl),
1327            getI32Imm(31, dl) };
1328        VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
1329                                              Ops), 0);
1330      } else {
1331        VRot = VRI.V;
1332      }
1333
1334      SDValue ANDIVal, ANDISVal;
1335      if (ANDIMask != 0)
1336        ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32,
1337                            VRot, getI32Imm(ANDIMask, dl)), 0);
1338      if (ANDISMask != 0)
1339        ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32,
1340                             VRot, getI32Imm(ANDISMask, dl)), 0);
1341
1342      SDValue TotalVal;
1343      if (!ANDIVal)
1344        TotalVal = ANDISVal;
1345      else if (!ANDISVal)
1346        TotalVal = ANDIVal;
1347      else
1348        TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
1349                             ANDIVal, ANDISVal), 0);
1350
1351      if (!Res)
1352        Res = TotalVal;
1353      else
1354        Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
1355                        Res, TotalVal), 0);
1356
1357      // Now, remove all groups with this underlying value and rotation
1358      // factor.
1359      eraseMatchingBitGroups([VRI](const BitGroup &BG) {
1360        return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt;
1361      });
1362    }
1363  }
1364
1365  // Instruction selection for the 32-bit case.
1366  SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) {
1367    SDLoc dl(N);
1368    SDValue Res;
1369
1370    if (InstCnt) *InstCnt = 0;
1371
1372    // Take care of cases that should use andi/andis first.
1373    SelectAndParts32(dl, Res, InstCnt);
1374
1375    // If we've not yet selected a 'starting' instruction, and we have no zeros
1376    // to fill in, select the (Value, RLAmt) with the highest priority (largest
1377    // number of groups), and start with this rotated value.
1378    if ((!HasZeros || LateMask) && !Res) {
1379      ValueRotInfo &VRI = ValueRotsVec[0];
1380      if (VRI.RLAmt) {
1381        if (InstCnt) *InstCnt += 1;
1382        SDValue Ops[] =
1383          { VRI.V, getI32Imm(VRI.RLAmt, dl), getI32Imm(0, dl),
1384            getI32Imm(31, dl) };
1385        Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops),
1386                      0);
1387      } else {
1388        Res = VRI.V;
1389      }
1390
1391      // Now, remove all groups with this underlying value and rotation factor.
1392      eraseMatchingBitGroups([VRI](const BitGroup &BG) {
1393        return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt;
1394      });
1395    }
1396
1397    if (InstCnt) *InstCnt += BitGroups.size();
1398
1399    // Insert the other groups (one at a time).
1400    for (auto &BG : BitGroups) {
1401      if (!Res) {
1402        SDValue Ops[] =
1403          { BG.V, getI32Imm(BG.RLAmt, dl),
1404            getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
1405            getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
1406        Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
1407      } else {
1408        SDValue Ops[] =
1409          { Res, BG.V, getI32Imm(BG.RLAmt, dl),
1410              getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
1411            getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
1412        Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0);
1413      }
1414    }
1415
1416    if (LateMask) {
1417      unsigned Mask = (unsigned) getZerosMask();
1418
1419      unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
1420      assert((ANDIMask != 0 || ANDISMask != 0) &&
1421             "No set bits in zeros mask?");
1422
1423      if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
1424                               (unsigned) (ANDISMask != 0) +
1425                               (unsigned) (ANDIMask != 0 && ANDISMask != 0);
1426
1427      SDValue ANDIVal, ANDISVal;
1428      if (ANDIMask != 0)
1429        ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32,
1430                            Res, getI32Imm(ANDIMask, dl)), 0);
1431      if (ANDISMask != 0)
1432        ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32,
1433                             Res, getI32Imm(ANDISMask, dl)), 0);
1434
1435      if (!ANDIVal)
1436        Res = ANDISVal;
1437      else if (!ANDISVal)
1438        Res = ANDIVal;
1439      else
1440        Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
1441                        ANDIVal, ANDISVal), 0);
1442    }
1443
1444    return Res.getNode();
1445  }
1446
1447  unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32,
1448                                unsigned MaskStart, unsigned MaskEnd,
1449                                bool IsIns) {
1450    // In the notation used by the instructions, 'start' and 'end' are reversed
1451    // because bits are counted from high to low order.
1452    unsigned InstMaskStart = 64 - MaskEnd - 1,
1453             InstMaskEnd   = 64 - MaskStart - 1;
1454
1455    if (Repl32)
1456      return 1;
1457
1458    if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) ||
1459        InstMaskEnd == 63 - RLAmt)
1460      return 1;
1461
1462    return 2;
1463  }
1464
1465  // For 64-bit values, not all combinations of rotates and masks are
1466  // available. Produce one if it is available.
1467  SDValue SelectRotMask64(SDValue V, const SDLoc &dl, unsigned RLAmt,
1468                          bool Repl32, unsigned MaskStart, unsigned MaskEnd,
1469                          unsigned *InstCnt = nullptr) {
1470    // In the notation used by the instructions, 'start' and 'end' are reversed
1471    // because bits are counted from high to low order.
1472    unsigned InstMaskStart = 64 - MaskEnd - 1,
1473             InstMaskEnd   = 64 - MaskStart - 1;
1474
1475    if (InstCnt) *InstCnt += 1;
1476
1477    if (Repl32) {
1478      // This rotation amount assumes that the lower 32 bits of the quantity
1479      // are replicated in the high 32 bits by the rotation operator (which is
1480      // done by rlwinm and friends).
1481      assert(InstMaskStart >= 32 && "Mask cannot start out of range");
1482      assert(InstMaskEnd   >= 32 && "Mask cannot end out of range");
1483      SDValue Ops[] =
1484        { V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart - 32, dl),
1485          getI32Imm(InstMaskEnd - 32, dl) };
1486      return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64,
1487                                            Ops), 0);
1488    }
1489
1490    if (InstMaskEnd == 63) {
1491      SDValue Ops[] =
1492        { V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart, dl) };
1493      return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0);
1494    }
1495
1496    if (InstMaskStart == 0) {
1497      SDValue Ops[] =
1498        { V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskEnd, dl) };
1499      return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0);
1500    }
1501
1502    if (InstMaskEnd == 63 - RLAmt) {
1503      SDValue Ops[] =
1504        { V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart, dl) };
1505      return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0);
1506    }
1507
1508    // We cannot do this with a single instruction, so we'll use two. The
1509    // problem is that we're not free to choose both a rotation amount and mask
1510    // start and end independently. We can choose an arbitrary mask start and
1511    // end, but then the rotation amount is fixed. Rotation, however, can be
1512    // inverted, and so by applying an "inverse" rotation first, we can get the
1513    // desired result.
1514    if (InstCnt) *InstCnt += 1;
1515
1516    // The rotation mask for the second instruction must be MaskStart.
1517    unsigned RLAmt2 = MaskStart;
1518    // The first instruction must rotate V so that the overall rotation amount
1519    // is RLAmt.
1520    unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
1521    if (RLAmt1)
1522      V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
1523    return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd);
1524  }
1525
1526  // For 64-bit values, not all combinations of rotates and masks are
1527  // available. Produce a rotate-mask-and-insert if one is available.
1528  SDValue SelectRotMaskIns64(SDValue Base, SDValue V, const SDLoc &dl,
1529                             unsigned RLAmt, bool Repl32, unsigned MaskStart,
1530                             unsigned MaskEnd, unsigned *InstCnt = nullptr) {
1531    // In the notation used by the instructions, 'start' and 'end' are reversed
1532    // because bits are counted from high to low order.
1533    unsigned InstMaskStart = 64 - MaskEnd - 1,
1534             InstMaskEnd   = 64 - MaskStart - 1;
1535
1536    if (InstCnt) *InstCnt += 1;
1537
1538    if (Repl32) {
1539      // This rotation amount assumes that the lower 32 bits of the quantity
1540      // are replicated in the high 32 bits by the rotation operator (which is
1541      // done by rlwinm and friends).
1542      assert(InstMaskStart >= 32 && "Mask cannot start out of range");
1543      assert(InstMaskEnd   >= 32 && "Mask cannot end out of range");
1544      SDValue Ops[] =
1545        { Base, V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart - 32, dl),
1546          getI32Imm(InstMaskEnd - 32, dl) };
1547      return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64,
1548                                            Ops), 0);
1549    }
1550
1551    if (InstMaskEnd == 63 - RLAmt) {
1552      SDValue Ops[] =
1553        { Base, V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart, dl) };
1554      return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0);
1555    }
1556
1557    // We cannot do this with a single instruction, so we'll use two. The
1558    // problem is that we're not free to choose both a rotation amount and mask
1559    // start and end independently. We can choose an arbitrary mask start and
1560    // end, but then the rotation amount is fixed. Rotation, however, can be
1561    // inverted, and so by applying an "inverse" rotation first, we can get the
1562    // desired result.
1563    if (InstCnt) *InstCnt += 1;
1564
1565    // The rotation mask for the second instruction must be MaskStart.
1566    unsigned RLAmt2 = MaskStart;
1567    // The first instruction must rotate V so that the overall rotation amount
1568    // is RLAmt.
1569    unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
1570    if (RLAmt1)
1571      V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
1572    return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd);
1573  }
1574
1575  void SelectAndParts64(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) {
1576    if (BPermRewriterNoMasking)
1577      return;
1578
1579    // The idea here is the same as in the 32-bit version, but with additional
1580    // complications from the fact that Repl32 might be true. Because we
1581    // aggressively convert bit groups to Repl32 form (which, for small
1582    // rotation factors, involves no other change), and then coalesce, it might
1583    // be the case that a single 64-bit masking operation could handle both
1584    // some Repl32 groups and some non-Repl32 groups. If converting to Repl32
1585    // form allowed coalescing, then we must use a 32-bit rotaton in order to
1586    // completely capture the new combined bit group.
1587
1588    for (ValueRotInfo &VRI : ValueRotsVec) {
1589      uint64_t Mask = 0;
1590
1591      // We need to add to the mask all bits from the associated bit groups.
1592      // If Repl32 is false, we need to add bits from bit groups that have
1593      // Repl32 true, but are trivially convertable to Repl32 false. Such a
1594      // group is trivially convertable if it overlaps only with the lower 32
1595      // bits, and the group has not been coalesced.
1596      auto MatchingBG = [VRI](const BitGroup &BG) {
1597        if (VRI.V != BG.V)
1598          return false;
1599
1600        unsigned EffRLAmt = BG.RLAmt;
1601        if (!VRI.Repl32 && BG.Repl32) {
1602          if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx &&
1603              !BG.Repl32Coalesced) {
1604            if (BG.Repl32CR)
1605              EffRLAmt += 32;
1606          } else {
1607            return false;
1608          }
1609        } else if (VRI.Repl32 != BG.Repl32) {
1610          return false;
1611        }
1612
1613        return VRI.RLAmt == EffRLAmt;
1614      };
1615
1616      for (auto &BG : BitGroups) {
1617        if (!MatchingBG(BG))
1618          continue;
1619
1620        if (BG.StartIdx <= BG.EndIdx) {
1621          for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i)
1622            Mask |= (UINT64_C(1) << i);
1623        } else {
1624          for (unsigned i = BG.StartIdx; i < Bits.size(); ++i)
1625            Mask |= (UINT64_C(1) << i);
1626          for (unsigned i = 0; i <= BG.EndIdx; ++i)
1627            Mask |= (UINT64_C(1) << i);
1628        }
1629      }
1630
1631      // We can use the 32-bit andi/andis technique if the mask does not
1632      // require any higher-order bits. This can save an instruction compared
1633      // to always using the general 64-bit technique.
1634      bool Use32BitInsts = isUInt<32>(Mask);
1635      // Compute the masks for andi/andis that would be necessary.
1636      unsigned ANDIMask = (Mask & UINT16_MAX),
1637               ANDISMask = (Mask >> 16) & UINT16_MAX;
1638
1639      bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask));
1640
1641      unsigned NumAndInsts = (unsigned) NeedsRotate +
1642                             (unsigned) (bool) Res;
1643      if (Use32BitInsts)
1644        NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) +
1645                       (unsigned) (ANDIMask != 0 && ANDISMask != 0);
1646      else
1647        NumAndInsts += getInt64Count(Mask) + /* and */ 1;
1648
1649      unsigned NumRLInsts = 0;
1650      bool FirstBG = true;
1651      for (auto &BG : BitGroups) {
1652        if (!MatchingBG(BG))
1653          continue;
1654        NumRLInsts +=
1655          SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx,
1656                               !FirstBG);
1657        FirstBG = false;
1658      }
1659
1660      DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() <<
1661                      " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":") <<
1662                      "\n\t\t\tisel using masking: " << NumAndInsts <<
1663                      " using rotates: " << NumRLInsts << "\n");
1664
1665      // When we'd use andi/andis, we bias toward using the rotates (andi only
1666      // has a record form, and is cracked on POWER cores). However, when using
1667      // general 64-bit constant formation, bias toward the constant form,
1668      // because that exposes more opportunities for CSE.
1669      if (NumAndInsts > NumRLInsts)
1670        continue;
1671      if (Use32BitInsts && NumAndInsts == NumRLInsts)
1672        continue;
1673
1674      DEBUG(dbgs() << "\t\t\t\tusing masking\n");
1675
1676      if (InstCnt) *InstCnt += NumAndInsts;
1677
1678      SDValue VRot;
1679      // We actually need to generate a rotation if we have a non-zero rotation
1680      // factor or, in the Repl32 case, if we care about any of the
1681      // higher-order replicated bits. In the latter case, we generate a mask
1682      // backward so that it actually includes the entire 64 bits.
1683      if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)))
1684        VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
1685                               VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63);
1686      else
1687        VRot = VRI.V;
1688
1689      SDValue TotalVal;
1690      if (Use32BitInsts) {
1691        assert((ANDIMask != 0 || ANDISMask != 0) &&
1692               "No set bits in mask when using 32-bit ands for 64-bit value");
1693
1694        SDValue ANDIVal, ANDISVal;
1695        if (ANDIMask != 0)
1696          ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64,
1697                              VRot, getI32Imm(ANDIMask, dl)), 0);
1698        if (ANDISMask != 0)
1699          ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64,
1700                               VRot, getI32Imm(ANDISMask, dl)), 0);
1701
1702        if (!ANDIVal)
1703          TotalVal = ANDISVal;
1704        else if (!ANDISVal)
1705          TotalVal = ANDIVal;
1706        else
1707          TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
1708                               ANDIVal, ANDISVal), 0);
1709      } else {
1710        TotalVal = SDValue(getInt64(CurDAG, dl, Mask), 0);
1711        TotalVal =
1712          SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
1713                                         VRot, TotalVal), 0);
1714     }
1715
1716      if (!Res)
1717        Res = TotalVal;
1718      else
1719        Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
1720                                             Res, TotalVal), 0);
1721
1722      // Now, remove all groups with this underlying value and rotation
1723      // factor.
1724      eraseMatchingBitGroups(MatchingBG);
1725    }
1726  }
1727
1728  // Instruction selection for the 64-bit case.
1729  SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) {
1730    SDLoc dl(N);
1731    SDValue Res;
1732
1733    if (InstCnt) *InstCnt = 0;
1734
1735    // Take care of cases that should use andi/andis first.
1736    SelectAndParts64(dl, Res, InstCnt);
1737
1738    // If we've not yet selected a 'starting' instruction, and we have no zeros
1739    // to fill in, select the (Value, RLAmt) with the highest priority (largest
1740    // number of groups), and start with this rotated value.
1741    if ((!HasZeros || LateMask) && !Res) {
1742      // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32
1743      // groups will come first, and so the VRI representing the largest number
1744      // of groups might not be first (it might be the first Repl32 groups).
1745      unsigned MaxGroupsIdx = 0;
1746      if (!ValueRotsVec[0].Repl32) {
1747        for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i)
1748          if (ValueRotsVec[i].Repl32) {
1749            if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups)
1750              MaxGroupsIdx = i;
1751            break;
1752          }
1753      }
1754
1755      ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx];
1756      bool NeedsRotate = false;
1757      if (VRI.RLAmt) {
1758        NeedsRotate = true;
1759      } else if (VRI.Repl32) {
1760        for (auto &BG : BitGroups) {
1761          if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt ||
1762              BG.Repl32 != VRI.Repl32)
1763            continue;
1764
1765          // We don't need a rotate if the bit group is confined to the lower
1766          // 32 bits.
1767          if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx)
1768            continue;
1769
1770          NeedsRotate = true;
1771          break;
1772        }
1773      }
1774
1775      if (NeedsRotate)
1776        Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
1777                              VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63,
1778                              InstCnt);
1779      else
1780        Res = VRI.V;
1781
1782      // Now, remove all groups with this underlying value and rotation factor.
1783      if (Res)
1784        eraseMatchingBitGroups([VRI](const BitGroup &BG) {
1785          return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt &&
1786                 BG.Repl32 == VRI.Repl32;
1787        });
1788    }
1789
1790    // Because 64-bit rotates are more flexible than inserts, we might have a
1791    // preference regarding which one we do first (to save one instruction).
1792    if (!Res)
1793      for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) {
1794        if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
1795                                false) <
1796            SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
1797                                true)) {
1798          if (I != BitGroups.begin()) {
1799            BitGroup BG = *I;
1800            BitGroups.erase(I);
1801            BitGroups.insert(BitGroups.begin(), BG);
1802          }
1803
1804          break;
1805        }
1806      }
1807
1808    // Insert the other groups (one at a time).
1809    for (auto &BG : BitGroups) {
1810      if (!Res)
1811        Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx,
1812                              BG.EndIdx, InstCnt);
1813      else
1814        Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32,
1815                                 BG.StartIdx, BG.EndIdx, InstCnt);
1816    }
1817
1818    if (LateMask) {
1819      uint64_t Mask = getZerosMask();
1820
1821      // We can use the 32-bit andi/andis technique if the mask does not
1822      // require any higher-order bits. This can save an instruction compared
1823      // to always using the general 64-bit technique.
1824      bool Use32BitInsts = isUInt<32>(Mask);
1825      // Compute the masks for andi/andis that would be necessary.
1826      unsigned ANDIMask = (Mask & UINT16_MAX),
1827               ANDISMask = (Mask >> 16) & UINT16_MAX;
1828
1829      if (Use32BitInsts) {
1830        assert((ANDIMask != 0 || ANDISMask != 0) &&
1831               "No set bits in mask when using 32-bit ands for 64-bit value");
1832
1833        if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
1834                                 (unsigned) (ANDISMask != 0) +
1835                                 (unsigned) (ANDIMask != 0 && ANDISMask != 0);
1836
1837        SDValue ANDIVal, ANDISVal;
1838        if (ANDIMask != 0)
1839          ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64,
1840                              Res, getI32Imm(ANDIMask, dl)), 0);
1841        if (ANDISMask != 0)
1842          ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64,
1843                               Res, getI32Imm(ANDISMask, dl)), 0);
1844
1845        if (!ANDIVal)
1846          Res = ANDISVal;
1847        else if (!ANDISVal)
1848          Res = ANDIVal;
1849        else
1850          Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
1851                          ANDIVal, ANDISVal), 0);
1852      } else {
1853        if (InstCnt) *InstCnt += getInt64Count(Mask) + /* and */ 1;
1854
1855        SDValue MaskVal = SDValue(getInt64(CurDAG, dl, Mask), 0);
1856        Res =
1857          SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
1858                                         Res, MaskVal), 0);
1859      }
1860    }
1861
1862    return Res.getNode();
1863  }
1864
1865  SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) {
1866    // Fill in BitGroups.
1867    collectBitGroups(LateMask);
1868    if (BitGroups.empty())
1869      return nullptr;
1870
1871    // For 64-bit values, figure out when we can use 32-bit instructions.
1872    if (Bits.size() == 64)
1873      assignRepl32BitGroups();
1874
1875    // Fill in ValueRotsVec.
1876    collectValueRotInfo();
1877
1878    if (Bits.size() == 32) {
1879      return Select32(N, LateMask, InstCnt);
1880    } else {
1881      assert(Bits.size() == 64 && "Not 64 bits here?");
1882      return Select64(N, LateMask, InstCnt);
1883    }
1884
1885    return nullptr;
1886  }
1887
1888  void eraseMatchingBitGroups(function_ref<bool(const BitGroup &)> F) {
1889    BitGroups.erase(std::remove_if(BitGroups.begin(), BitGroups.end(), F),
1890                    BitGroups.end());
1891  }
1892
1893  SmallVector<ValueBit, 64> Bits;
1894
1895  bool HasZeros;
1896  SmallVector<unsigned, 64> RLAmt;
1897
1898  SmallVector<BitGroup, 16> BitGroups;
1899
1900  DenseMap<std::pair<SDValue, unsigned>, ValueRotInfo> ValueRots;
1901  SmallVector<ValueRotInfo, 16> ValueRotsVec;
1902
1903  SelectionDAG *CurDAG;
1904
1905public:
1906  BitPermutationSelector(SelectionDAG *DAG)
1907    : CurDAG(DAG) {}
1908
1909  // Here we try to match complex bit permutations into a set of
1910  // rotate-and-shift/shift/and/or instructions, using a set of heuristics
1911  // known to produce optimial code for common cases (like i32 byte swapping).
1912  SDNode *Select(SDNode *N) {
1913    Bits.resize(N->getValueType(0).getSizeInBits());
1914    if (!getValueBits(SDValue(N, 0), Bits))
1915      return nullptr;
1916
1917    DEBUG(dbgs() << "Considering bit-permutation-based instruction"
1918                    " selection for:    ");
1919    DEBUG(N->dump(CurDAG));
1920
1921    // Fill it RLAmt and set HasZeros.
1922    computeRotationAmounts();
1923
1924    if (!HasZeros)
1925      return Select(N, false);
1926
1927    // We currently have two techniques for handling results with zeros: early
1928    // masking (the default) and late masking. Late masking is sometimes more
1929    // efficient, but because the structure of the bit groups is different, it
1930    // is hard to tell without generating both and comparing the results. With
1931    // late masking, we ignore zeros in the resulting value when inserting each
1932    // set of bit groups, and then mask in the zeros at the end. With early
1933    // masking, we only insert the non-zero parts of the result at every step.
1934
1935    unsigned InstCnt, InstCntLateMask;
1936    DEBUG(dbgs() << "\tEarly masking:\n");
1937    SDNode *RN = Select(N, false, &InstCnt);
1938    DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n");
1939
1940    DEBUG(dbgs() << "\tLate masking:\n");
1941    SDNode *RNLM = Select(N, true, &InstCntLateMask);
1942    DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask <<
1943                    " instructions\n");
1944
1945    if (InstCnt <= InstCntLateMask) {
1946      DEBUG(dbgs() << "\tUsing early-masking for isel\n");
1947      return RN;
1948    }
1949
1950    DEBUG(dbgs() << "\tUsing late-masking for isel\n");
1951    return RNLM;
1952  }
1953};
1954} // anonymous namespace
1955
1956bool PPCDAGToDAGISel::tryBitPermutation(SDNode *N) {
1957  if (N->getValueType(0) != MVT::i32 &&
1958      N->getValueType(0) != MVT::i64)
1959    return false;
1960
1961  if (!UseBitPermRewriter)
1962    return false;
1963
1964  switch (N->getOpcode()) {
1965  default: break;
1966  case ISD::ROTL:
1967  case ISD::SHL:
1968  case ISD::SRL:
1969  case ISD::AND:
1970  case ISD::OR: {
1971    BitPermutationSelector BPS(CurDAG);
1972    if (SDNode *New = BPS.Select(N)) {
1973      ReplaceNode(N, New);
1974      return true;
1975    }
1976    return false;
1977  }
1978  }
1979
1980  return false;
1981}
1982
1983/// SelectCC - Select a comparison of the specified values with the specified
1984/// condition code, returning the CR# of the expression.
1985SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1986                                  const SDLoc &dl) {
1987  // Always select the LHS.
1988  unsigned Opc;
1989
1990  if (LHS.getValueType() == MVT::i32) {
1991    unsigned Imm;
1992    if (CC == ISD::SETEQ || CC == ISD::SETNE) {
1993      if (isInt32Immediate(RHS, Imm)) {
1994        // SETEQ/SETNE comparison with 16-bit immediate, fold it.
1995        if (isUInt<16>(Imm))
1996          return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
1997                                                getI32Imm(Imm & 0xFFFF, dl)),
1998                         0);
1999        // If this is a 16-bit signed immediate, fold it.
2000        if (isInt<16>((int)Imm))
2001          return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
2002                                                getI32Imm(Imm & 0xFFFF, dl)),
2003                         0);
2004
2005        // For non-equality comparisons, the default code would materialize the
2006        // constant, then compare against it, like this:
2007        //   lis r2, 4660
2008        //   ori r2, r2, 22136
2009        //   cmpw cr0, r3, r2
2010        // Since we are just comparing for equality, we can emit this instead:
2011        //   xoris r0,r3,0x1234
2012        //   cmplwi cr0,r0,0x5678
2013        //   beq cr0,L6
2014        SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS,
2015                                           getI32Imm(Imm >> 16, dl)), 0);
2016        return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor,
2017                                              getI32Imm(Imm & 0xFFFF, dl)), 0);
2018      }
2019      Opc = PPC::CMPLW;
2020    } else if (ISD::isUnsignedIntSetCC(CC)) {
2021      if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm))
2022        return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
2023                                              getI32Imm(Imm & 0xFFFF, dl)), 0);
2024      Opc = PPC::CMPLW;
2025    } else {
2026      short SImm;
2027      if (isIntS16Immediate(RHS, SImm))
2028        return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
2029                                              getI32Imm((int)SImm & 0xFFFF,
2030                                                        dl)),
2031                         0);
2032      Opc = PPC::CMPW;
2033    }
2034  } else if (LHS.getValueType() == MVT::i64) {
2035    uint64_t Imm;
2036    if (CC == ISD::SETEQ || CC == ISD::SETNE) {
2037      if (isInt64Immediate(RHS.getNode(), Imm)) {
2038        // SETEQ/SETNE comparison with 16-bit immediate, fold it.
2039        if (isUInt<16>(Imm))
2040          return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
2041                                                getI32Imm(Imm & 0xFFFF, dl)),
2042                         0);
2043        // If this is a 16-bit signed immediate, fold it.
2044        if (isInt<16>(Imm))
2045          return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
2046                                                getI32Imm(Imm & 0xFFFF, dl)),
2047                         0);
2048
2049        // For non-equality comparisons, the default code would materialize the
2050        // constant, then compare against it, like this:
2051        //   lis r2, 4660
2052        //   ori r2, r2, 22136
2053        //   cmpd cr0, r3, r2
2054        // Since we are just comparing for equality, we can emit this instead:
2055        //   xoris r0,r3,0x1234
2056        //   cmpldi cr0,r0,0x5678
2057        //   beq cr0,L6
2058        if (isUInt<32>(Imm)) {
2059          SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS,
2060                                             getI64Imm(Imm >> 16, dl)), 0);
2061          return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor,
2062                                                getI64Imm(Imm & 0xFFFF, dl)),
2063                         0);
2064        }
2065      }
2066      Opc = PPC::CMPLD;
2067    } else if (ISD::isUnsignedIntSetCC(CC)) {
2068      if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm))
2069        return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
2070                                              getI64Imm(Imm & 0xFFFF, dl)), 0);
2071      Opc = PPC::CMPLD;
2072    } else {
2073      short SImm;
2074      if (isIntS16Immediate(RHS, SImm))
2075        return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
2076                                              getI64Imm(SImm & 0xFFFF, dl)),
2077                         0);
2078      Opc = PPC::CMPD;
2079    }
2080  } else if (LHS.getValueType() == MVT::f32) {
2081    Opc = PPC::FCMPUS;
2082  } else {
2083    assert(LHS.getValueType() == MVT::f64 && "Unknown vt!");
2084    Opc = PPCSubTarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD;
2085  }
2086  return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0);
2087}
2088
2089static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) {
2090  switch (CC) {
2091  case ISD::SETUEQ:
2092  case ISD::SETONE:
2093  case ISD::SETOLE:
2094  case ISD::SETOGE:
2095    llvm_unreachable("Should be lowered by legalize!");
2096  default: llvm_unreachable("Unknown condition!");
2097  case ISD::SETOEQ:
2098  case ISD::SETEQ:  return PPC::PRED_EQ;
2099  case ISD::SETUNE:
2100  case ISD::SETNE:  return PPC::PRED_NE;
2101  case ISD::SETOLT:
2102  case ISD::SETLT:  return PPC::PRED_LT;
2103  case ISD::SETULE:
2104  case ISD::SETLE:  return PPC::PRED_LE;
2105  case ISD::SETOGT:
2106  case ISD::SETGT:  return PPC::PRED_GT;
2107  case ISD::SETUGE:
2108  case ISD::SETGE:  return PPC::PRED_GE;
2109  case ISD::SETO:   return PPC::PRED_NU;
2110  case ISD::SETUO:  return PPC::PRED_UN;
2111    // These two are invalid for floating point.  Assume we have int.
2112  case ISD::SETULT: return PPC::PRED_LT;
2113  case ISD::SETUGT: return PPC::PRED_GT;
2114  }
2115}
2116
2117/// getCRIdxForSetCC - Return the index of the condition register field
2118/// associated with the SetCC condition, and whether or not the field is
2119/// treated as inverted.  That is, lt = 0; ge = 0 inverted.
2120static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) {
2121  Invert = false;
2122  switch (CC) {
2123  default: llvm_unreachable("Unknown condition!");
2124  case ISD::SETOLT:
2125  case ISD::SETLT:  return 0;                  // Bit #0 = SETOLT
2126  case ISD::SETOGT:
2127  case ISD::SETGT:  return 1;                  // Bit #1 = SETOGT
2128  case ISD::SETOEQ:
2129  case ISD::SETEQ:  return 2;                  // Bit #2 = SETOEQ
2130  case ISD::SETUO:  return 3;                  // Bit #3 = SETUO
2131  case ISD::SETUGE:
2132  case ISD::SETGE:  Invert = true; return 0;   // !Bit #0 = SETUGE
2133  case ISD::SETULE:
2134  case ISD::SETLE:  Invert = true; return 1;   // !Bit #1 = SETULE
2135  case ISD::SETUNE:
2136  case ISD::SETNE:  Invert = true; return 2;   // !Bit #2 = SETUNE
2137  case ISD::SETO:   Invert = true; return 3;   // !Bit #3 = SETO
2138  case ISD::SETUEQ:
2139  case ISD::SETOGE:
2140  case ISD::SETOLE:
2141  case ISD::SETONE:
2142    llvm_unreachable("Invalid branch code: should be expanded by legalize");
2143  // These are invalid for floating point.  Assume integer.
2144  case ISD::SETULT: return 0;
2145  case ISD::SETUGT: return 1;
2146  }
2147}
2148
2149// getVCmpInst: return the vector compare instruction for the specified
2150// vector type and condition code. Since this is for altivec specific code,
2151// only support the altivec types (v16i8, v8i16, v4i32, v2i64, and v4f32).
2152static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC,
2153                                bool HasVSX, bool &Swap, bool &Negate) {
2154  Swap = false;
2155  Negate = false;
2156
2157  if (VecVT.isFloatingPoint()) {
2158    /* Handle some cases by swapping input operands.  */
2159    switch (CC) {
2160      case ISD::SETLE: CC = ISD::SETGE; Swap = true; break;
2161      case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
2162      case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break;
2163      case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break;
2164      case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
2165      case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break;
2166      default: break;
2167    }
2168    /* Handle some cases by negating the result.  */
2169    switch (CC) {
2170      case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
2171      case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break;
2172      case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break;
2173      case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break;
2174      default: break;
2175    }
2176    /* We have instructions implementing the remaining cases.  */
2177    switch (CC) {
2178      case ISD::SETEQ:
2179      case ISD::SETOEQ:
2180        if (VecVT == MVT::v4f32)
2181          return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP;
2182        else if (VecVT == MVT::v2f64)
2183          return PPC::XVCMPEQDP;
2184        break;
2185      case ISD::SETGT:
2186      case ISD::SETOGT:
2187        if (VecVT == MVT::v4f32)
2188          return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP;
2189        else if (VecVT == MVT::v2f64)
2190          return PPC::XVCMPGTDP;
2191        break;
2192      case ISD::SETGE:
2193      case ISD::SETOGE:
2194        if (VecVT == MVT::v4f32)
2195          return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP;
2196        else if (VecVT == MVT::v2f64)
2197          return PPC::XVCMPGEDP;
2198        break;
2199      default:
2200        break;
2201    }
2202    llvm_unreachable("Invalid floating-point vector compare condition");
2203  } else {
2204    /* Handle some cases by swapping input operands.  */
2205    switch (CC) {
2206      case ISD::SETGE: CC = ISD::SETLE; Swap = true; break;
2207      case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
2208      case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
2209      case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break;
2210      default: break;
2211    }
2212    /* Handle some cases by negating the result.  */
2213    switch (CC) {
2214      case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
2215      case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break;
2216      case ISD::SETLE: CC = ISD::SETGT; Negate = true; break;
2217      case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break;
2218      default: break;
2219    }
2220    /* We have instructions implementing the remaining cases.  */
2221    switch (CC) {
2222      case ISD::SETEQ:
2223      case ISD::SETUEQ:
2224        if (VecVT == MVT::v16i8)
2225          return PPC::VCMPEQUB;
2226        else if (VecVT == MVT::v8i16)
2227          return PPC::VCMPEQUH;
2228        else if (VecVT == MVT::v4i32)
2229          return PPC::VCMPEQUW;
2230        else if (VecVT == MVT::v2i64)
2231          return PPC::VCMPEQUD;
2232        break;
2233      case ISD::SETGT:
2234        if (VecVT == MVT::v16i8)
2235          return PPC::VCMPGTSB;
2236        else if (VecVT == MVT::v8i16)
2237          return PPC::VCMPGTSH;
2238        else if (VecVT == MVT::v4i32)
2239          return PPC::VCMPGTSW;
2240        else if (VecVT == MVT::v2i64)
2241          return PPC::VCMPGTSD;
2242        break;
2243      case ISD::SETUGT:
2244        if (VecVT == MVT::v16i8)
2245          return PPC::VCMPGTUB;
2246        else if (VecVT == MVT::v8i16)
2247          return PPC::VCMPGTUH;
2248        else if (VecVT == MVT::v4i32)
2249          return PPC::VCMPGTUW;
2250        else if (VecVT == MVT::v2i64)
2251          return PPC::VCMPGTUD;
2252        break;
2253      default:
2254        break;
2255    }
2256    llvm_unreachable("Invalid integer vector compare condition");
2257  }
2258}
2259
2260bool PPCDAGToDAGISel::trySETCC(SDNode *N) {
2261  SDLoc dl(N);
2262  unsigned Imm;
2263  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
2264  EVT PtrVT =
2265      CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout());
2266  bool isPPC64 = (PtrVT == MVT::i64);
2267
2268  if (!PPCSubTarget->useCRBits() &&
2269      isInt32Immediate(N->getOperand(1), Imm)) {
2270    // We can codegen setcc op, imm very efficiently compared to a brcond.
2271    // Check for those cases here.
2272    // setcc op, 0
2273    if (Imm == 0) {
2274      SDValue Op = N->getOperand(0);
2275      switch (CC) {
2276      default: break;
2277      case ISD::SETEQ: {
2278        Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0);
2279        SDValue Ops[] = { Op, getI32Imm(27, dl), getI32Imm(5, dl),
2280                          getI32Imm(31, dl) };
2281        CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
2282        return true;
2283      }
2284      case ISD::SETNE: {
2285        if (isPPC64) break;
2286        SDValue AD =
2287          SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
2288                                         Op, getI32Imm(~0U, dl)), 0);
2289        CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1));
2290        return true;
2291      }
2292      case ISD::SETLT: {
2293        SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
2294                          getI32Imm(31, dl) };
2295        CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
2296        return true;
2297      }
2298      case ISD::SETGT: {
2299        SDValue T =
2300          SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0);
2301        T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0);
2302        SDValue Ops[] = { T, getI32Imm(1, dl), getI32Imm(31, dl),
2303                          getI32Imm(31, dl) };
2304        CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
2305        return true;
2306      }
2307      }
2308    } else if (Imm == ~0U) {        // setcc op, -1
2309      SDValue Op = N->getOperand(0);
2310      switch (CC) {
2311      default: break;
2312      case ISD::SETEQ:
2313        if (isPPC64) break;
2314        Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
2315                                            Op, getI32Imm(1, dl)), 0);
2316        CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
2317                             SDValue(CurDAG->getMachineNode(PPC::LI, dl,
2318                                                            MVT::i32,
2319                                                            getI32Imm(0, dl)),
2320                                     0), Op.getValue(1));
2321        return true;
2322      case ISD::SETNE: {
2323        if (isPPC64) break;
2324        Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0);
2325        SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
2326                                            Op, getI32Imm(~0U, dl));
2327        CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0), Op,
2328                             SDValue(AD, 1));
2329        return true;
2330      }
2331      case ISD::SETLT: {
2332        SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op,
2333                                                    getI32Imm(1, dl)), 0);
2334        SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD,
2335                                                    Op), 0);
2336        SDValue Ops[] = { AN, getI32Imm(1, dl), getI32Imm(31, dl),
2337                          getI32Imm(31, dl) };
2338        CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
2339        return true;
2340      }
2341      case ISD::SETGT: {
2342        SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
2343                          getI32Imm(31, dl) };
2344        Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
2345        CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1, dl));
2346        return true;
2347      }
2348      }
2349    }
2350  }
2351
2352  SDValue LHS = N->getOperand(0);
2353  SDValue RHS = N->getOperand(1);
2354
2355  // Altivec Vector compare instructions do not set any CR register by default and
2356  // vector compare operations return the same type as the operands.
2357  if (LHS.getValueType().isVector()) {
2358    if (PPCSubTarget->hasQPX())
2359      return false;
2360
2361    EVT VecVT = LHS.getValueType();
2362    bool Swap, Negate;
2363    unsigned int VCmpInst = getVCmpInst(VecVT.getSimpleVT(), CC,
2364                                        PPCSubTarget->hasVSX(), Swap, Negate);
2365    if (Swap)
2366      std::swap(LHS, RHS);
2367
2368    EVT ResVT = VecVT.changeVectorElementTypeToInteger();
2369    if (Negate) {
2370      SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, ResVT, LHS, RHS), 0);
2371      CurDAG->SelectNodeTo(N, PPCSubTarget->hasVSX() ? PPC::XXLNOR : PPC::VNOR,
2372                           ResVT, VCmp, VCmp);
2373      return true;
2374    }
2375
2376    CurDAG->SelectNodeTo(N, VCmpInst, ResVT, LHS, RHS);
2377    return true;
2378  }
2379
2380  if (PPCSubTarget->useCRBits())
2381    return false;
2382
2383  bool Inv;
2384  unsigned Idx = getCRIdxForSetCC(CC, Inv);
2385  SDValue CCReg = SelectCC(LHS, RHS, CC, dl);
2386  SDValue IntCR;
2387
2388  // Force the ccreg into CR7.
2389  SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
2390
2391  SDValue InFlag(nullptr, 0);  // Null incoming flag value.
2392  CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg,
2393                               InFlag).getValue(1);
2394
2395  IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg,
2396                                         CCReg), 0);
2397
2398  SDValue Ops[] = { IntCR, getI32Imm((32 - (3 - Idx)) & 31, dl),
2399                      getI32Imm(31, dl), getI32Imm(31, dl) };
2400  if (!Inv) {
2401    CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
2402    return true;
2403  }
2404
2405  // Get the specified bit.
2406  SDValue Tmp =
2407    SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
2408  CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1, dl));
2409  return true;
2410}
2411
2412void PPCDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) {
2413  // Transfer memoperands.
2414  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
2415  MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
2416  cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1);
2417}
2418
2419
2420// Select - Convert the specified operand from a target-independent to a
2421// target-specific node if it hasn't already been changed.
2422void PPCDAGToDAGISel::Select(SDNode *N) {
2423  SDLoc dl(N);
2424  if (N->isMachineOpcode()) {
2425    N->setNodeId(-1);
2426    return;   // Already selected.
2427  }
2428
2429  // In case any misguided DAG-level optimizations form an ADD with a
2430  // TargetConstant operand, crash here instead of miscompiling (by selecting
2431  // an r+r add instead of some kind of r+i add).
2432  if (N->getOpcode() == ISD::ADD &&
2433      N->getOperand(1).getOpcode() == ISD::TargetConstant)
2434    llvm_unreachable("Invalid ADD with TargetConstant operand");
2435
2436  // Try matching complex bit permutations before doing anything else.
2437  if (tryBitPermutation(N))
2438    return;
2439
2440  switch (N->getOpcode()) {
2441  default: break;
2442
2443  case ISD::Constant: {
2444    if (N->getValueType(0) == MVT::i64) {
2445      ReplaceNode(N, getInt64(CurDAG, N));
2446      return;
2447    }
2448    break;
2449  }
2450
2451  case ISD::SETCC: {
2452    if (trySETCC(N))
2453      return;
2454    break;
2455  }
2456  case PPCISD::GlobalBaseReg:
2457    ReplaceNode(N, getGlobalBaseReg());
2458    return;
2459
2460  case ISD::FrameIndex:
2461    selectFrameIndex(N, N);
2462    return;
2463
2464  case PPCISD::MFOCRF: {
2465    SDValue InFlag = N->getOperand(1);
2466    ReplaceNode(N, CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32,
2467                                          N->getOperand(0), InFlag));
2468    return;
2469  }
2470
2471  case PPCISD::READ_TIME_BASE: {
2472    ReplaceNode(N, CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32,
2473                                          MVT::Other, N->getOperand(0)));
2474    return;
2475  }
2476
2477  case PPCISD::SRA_ADDZE: {
2478    SDValue N0 = N->getOperand(0);
2479    SDValue ShiftAmt =
2480      CurDAG->getTargetConstant(*cast<ConstantSDNode>(N->getOperand(1))->
2481                                  getConstantIntValue(), dl,
2482                                  N->getValueType(0));
2483    if (N->getValueType(0) == MVT::i64) {
2484      SDNode *Op =
2485        CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue,
2486                               N0, ShiftAmt);
2487      CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64, SDValue(Op, 0),
2488                           SDValue(Op, 1));
2489      return;
2490    } else {
2491      assert(N->getValueType(0) == MVT::i32 &&
2492             "Expecting i64 or i32 in PPCISD::SRA_ADDZE");
2493      SDNode *Op =
2494        CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
2495                               N0, ShiftAmt);
2496      CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, SDValue(Op, 0),
2497                           SDValue(Op, 1));
2498      return;
2499    }
2500  }
2501
2502  case ISD::LOAD: {
2503    // Handle preincrement loads.
2504    LoadSDNode *LD = cast<LoadSDNode>(N);
2505    EVT LoadedVT = LD->getMemoryVT();
2506
2507    // Normal loads are handled by code generated from the .td file.
2508    if (LD->getAddressingMode() != ISD::PRE_INC)
2509      break;
2510
2511    SDValue Offset = LD->getOffset();
2512    if (Offset.getOpcode() == ISD::TargetConstant ||
2513        Offset.getOpcode() == ISD::TargetGlobalAddress) {
2514
2515      unsigned Opcode;
2516      bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
2517      if (LD->getValueType(0) != MVT::i64) {
2518        // Handle PPC32 integer and normal FP loads.
2519        assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
2520        switch (LoadedVT.getSimpleVT().SimpleTy) {
2521          default: llvm_unreachable("Invalid PPC load type!");
2522          case MVT::f64: Opcode = PPC::LFDU; break;
2523          case MVT::f32: Opcode = PPC::LFSU; break;
2524          case MVT::i32: Opcode = PPC::LWZU; break;
2525          case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
2526          case MVT::i1:
2527          case MVT::i8:  Opcode = PPC::LBZU; break;
2528        }
2529      } else {
2530        assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
2531        assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
2532        switch (LoadedVT.getSimpleVT().SimpleTy) {
2533          default: llvm_unreachable("Invalid PPC load type!");
2534          case MVT::i64: Opcode = PPC::LDU; break;
2535          case MVT::i32: Opcode = PPC::LWZU8; break;
2536          case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
2537          case MVT::i1:
2538          case MVT::i8:  Opcode = PPC::LBZU8; break;
2539        }
2540      }
2541
2542      SDValue Chain = LD->getChain();
2543      SDValue Base = LD->getBasePtr();
2544      SDValue Ops[] = { Offset, Base, Chain };
2545      SDNode *MN = CurDAG->getMachineNode(
2546          Opcode, dl, LD->getValueType(0),
2547          PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops);
2548      transferMemOperands(N, MN);
2549      ReplaceNode(N, MN);
2550      return;
2551    } else {
2552      unsigned Opcode;
2553      bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
2554      if (LD->getValueType(0) != MVT::i64) {
2555        // Handle PPC32 integer and normal FP loads.
2556        assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
2557        switch (LoadedVT.getSimpleVT().SimpleTy) {
2558          default: llvm_unreachable("Invalid PPC load type!");
2559          case MVT::v4f64: Opcode = PPC::QVLFDUX; break; // QPX
2560          case MVT::v4f32: Opcode = PPC::QVLFSUX; break; // QPX
2561          case MVT::f64: Opcode = PPC::LFDUX; break;
2562          case MVT::f32: Opcode = PPC::LFSUX; break;
2563          case MVT::i32: Opcode = PPC::LWZUX; break;
2564          case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break;
2565          case MVT::i1:
2566          case MVT::i8:  Opcode = PPC::LBZUX; break;
2567        }
2568      } else {
2569        assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
2570        assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) &&
2571               "Invalid sext update load");
2572        switch (LoadedVT.getSimpleVT().SimpleTy) {
2573          default: llvm_unreachable("Invalid PPC load type!");
2574          case MVT::i64: Opcode = PPC::LDUX; break;
2575          case MVT::i32: Opcode = isSExt ? PPC::LWAUX  : PPC::LWZUX8; break;
2576          case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break;
2577          case MVT::i1:
2578          case MVT::i8:  Opcode = PPC::LBZUX8; break;
2579        }
2580      }
2581
2582      SDValue Chain = LD->getChain();
2583      SDValue Base = LD->getBasePtr();
2584      SDValue Ops[] = { Base, Offset, Chain };
2585      SDNode *MN = CurDAG->getMachineNode(
2586          Opcode, dl, LD->getValueType(0),
2587          PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops);
2588      transferMemOperands(N, MN);
2589      ReplaceNode(N, MN);
2590      return;
2591    }
2592  }
2593
2594  case ISD::AND: {
2595    unsigned Imm, Imm2, SH, MB, ME;
2596    uint64_t Imm64;
2597
2598    // If this is an and of a value rotated between 0 and 31 bits and then and'd
2599    // with a mask, emit rlwinm
2600    if (isInt32Immediate(N->getOperand(1), Imm) &&
2601        isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) {
2602      SDValue Val = N->getOperand(0).getOperand(0);
2603      SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl),
2604                        getI32Imm(ME, dl) };
2605      CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
2606      return;
2607    }
2608    // If this is just a masked value where the input is not handled above, and
2609    // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
2610    if (isInt32Immediate(N->getOperand(1), Imm) &&
2611        isRunOfOnes(Imm, MB, ME) &&
2612        N->getOperand(0).getOpcode() != ISD::ROTL) {
2613      SDValue Val = N->getOperand(0);
2614      SDValue Ops[] = { Val, getI32Imm(0, dl), getI32Imm(MB, dl),
2615                        getI32Imm(ME, dl) };
2616      CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
2617      return;
2618    }
2619    // If this is a 64-bit zero-extension mask, emit rldicl.
2620    if (isInt64Immediate(N->getOperand(1).getNode(), Imm64) &&
2621        isMask_64(Imm64)) {
2622      SDValue Val = N->getOperand(0);
2623      MB = 64 - countTrailingOnes(Imm64);
2624      SH = 0;
2625
2626      // If the operand is a logical right shift, we can fold it into this
2627      // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb)
2628      // for n <= mb. The right shift is really a left rotate followed by a
2629      // mask, and this mask is a more-restrictive sub-mask of the mask implied
2630      // by the shift.
2631      if (Val.getOpcode() == ISD::SRL &&
2632          isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) {
2633        assert(Imm < 64 && "Illegal shift amount");
2634        Val = Val.getOperand(0);
2635        SH = 64 - Imm;
2636      }
2637
2638      SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl) };
2639      CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
2640      return;
2641    }
2642    // AND X, 0 -> 0, not "rlwinm 32".
2643    if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) {
2644      ReplaceUses(SDValue(N, 0), N->getOperand(1));
2645      return;
2646    }
2647    // ISD::OR doesn't get all the bitfield insertion fun.
2648    // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) might be a
2649    // bitfield insert.
2650    if (isInt32Immediate(N->getOperand(1), Imm) &&
2651        N->getOperand(0).getOpcode() == ISD::OR &&
2652        isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) {
2653      // The idea here is to check whether this is equivalent to:
2654      //   (c1 & m) | (x & ~m)
2655      // where m is a run-of-ones mask. The logic here is that, for each bit in
2656      // c1 and c2:
2657      //  - if both are 1, then the output will be 1.
2658      //  - if both are 0, then the output will be 0.
2659      //  - if the bit in c1 is 0, and the bit in c2 is 1, then the output will
2660      //    come from x.
2661      //  - if the bit in c1 is 1, and the bit in c2 is 0, then the output will
2662      //    be 0.
2663      //  If that last condition is never the case, then we can form m from the
2664      //  bits that are the same between c1 and c2.
2665      unsigned MB, ME;
2666      if (isRunOfOnes(~(Imm^Imm2), MB, ME) && !(~Imm & Imm2)) {
2667        SDValue Ops[] = { N->getOperand(0).getOperand(0),
2668                            N->getOperand(0).getOperand(1),
2669                            getI32Imm(0, dl), getI32Imm(MB, dl),
2670                            getI32Imm(ME, dl) };
2671        ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops));
2672        return;
2673      }
2674    }
2675
2676    // Other cases are autogenerated.
2677    break;
2678  }
2679  case ISD::OR: {
2680    if (N->getValueType(0) == MVT::i32)
2681      if (tryBitfieldInsert(N))
2682        return;
2683
2684    short Imm;
2685    if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
2686        isIntS16Immediate(N->getOperand(1), Imm)) {
2687      APInt LHSKnownZero, LHSKnownOne;
2688      CurDAG->computeKnownBits(N->getOperand(0), LHSKnownZero, LHSKnownOne);
2689
2690      // If this is equivalent to an add, then we can fold it with the
2691      // FrameIndex calculation.
2692      if ((LHSKnownZero.getZExtValue()|~(uint64_t)Imm) == ~0ULL) {
2693        selectFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
2694        return;
2695      }
2696    }
2697
2698    // Other cases are autogenerated.
2699    break;
2700  }
2701  case ISD::ADD: {
2702    short Imm;
2703    if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
2704        isIntS16Immediate(N->getOperand(1), Imm)) {
2705      selectFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
2706      return;
2707    }
2708
2709    break;
2710  }
2711  case ISD::SHL: {
2712    unsigned Imm, SH, MB, ME;
2713    if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
2714        isRotateAndMask(N, Imm, true, SH, MB, ME)) {
2715      SDValue Ops[] = { N->getOperand(0).getOperand(0),
2716                          getI32Imm(SH, dl), getI32Imm(MB, dl),
2717                          getI32Imm(ME, dl) };
2718      CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
2719      return;
2720    }
2721
2722    // Other cases are autogenerated.
2723    break;
2724  }
2725  case ISD::SRL: {
2726    unsigned Imm, SH, MB, ME;
2727    if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
2728        isRotateAndMask(N, Imm, true, SH, MB, ME)) {
2729      SDValue Ops[] = { N->getOperand(0).getOperand(0),
2730                          getI32Imm(SH, dl), getI32Imm(MB, dl),
2731                          getI32Imm(ME, dl) };
2732      CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
2733      return;
2734    }
2735
2736    // Other cases are autogenerated.
2737    break;
2738  }
2739  // FIXME: Remove this once the ANDI glue bug is fixed:
2740  case PPCISD::ANDIo_1_EQ_BIT:
2741  case PPCISD::ANDIo_1_GT_BIT: {
2742    if (!ANDIGlueBug)
2743      break;
2744
2745    EVT InVT = N->getOperand(0).getValueType();
2746    assert((InVT == MVT::i64 || InVT == MVT::i32) &&
2747           "Invalid input type for ANDIo_1_EQ_BIT");
2748
2749    unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDIo8 : PPC::ANDIo;
2750    SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue,
2751                                        N->getOperand(0),
2752                                        CurDAG->getTargetConstant(1, dl, InVT)),
2753                 0);
2754    SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
2755    SDValue SRIdxVal =
2756      CurDAG->getTargetConstant(N->getOpcode() == PPCISD::ANDIo_1_EQ_BIT ?
2757                                PPC::sub_eq : PPC::sub_gt, dl, MVT::i32);
2758
2759    CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1, CR0Reg,
2760                         SRIdxVal, SDValue(AndI.getNode(), 1) /* glue */);
2761    return;
2762  }
2763  case ISD::SELECT_CC: {
2764    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
2765    EVT PtrVT =
2766        CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout());
2767    bool isPPC64 = (PtrVT == MVT::i64);
2768
2769    // If this is a select of i1 operands, we'll pattern match it.
2770    if (PPCSubTarget->useCRBits() &&
2771        N->getOperand(0).getValueType() == MVT::i1)
2772      break;
2773
2774    // Handle the setcc cases here.  select_cc lhs, 0, 1, 0, cc
2775    if (!isPPC64)
2776      if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2777        if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
2778          if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
2779            if (N1C->isNullValue() && N3C->isNullValue() &&
2780                N2C->getZExtValue() == 1ULL && CC == ISD::SETNE &&
2781                // FIXME: Implement this optzn for PPC64.
2782                N->getValueType(0) == MVT::i32) {
2783              SDNode *Tmp =
2784                CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
2785                                       N->getOperand(0), getI32Imm(~0U, dl));
2786              CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(Tmp, 0),
2787                                   N->getOperand(0), SDValue(Tmp, 1));
2788              return;
2789            }
2790
2791    SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
2792
2793    if (N->getValueType(0) == MVT::i1) {
2794      // An i1 select is: (c & t) | (!c & f).
2795      bool Inv;
2796      unsigned Idx = getCRIdxForSetCC(CC, Inv);
2797
2798      unsigned SRI;
2799      switch (Idx) {
2800      default: llvm_unreachable("Invalid CC index");
2801      case 0: SRI = PPC::sub_lt; break;
2802      case 1: SRI = PPC::sub_gt; break;
2803      case 2: SRI = PPC::sub_eq; break;
2804      case 3: SRI = PPC::sub_un; break;
2805      }
2806
2807      SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg);
2808
2809      SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1,
2810                                              CCBit, CCBit), 0);
2811      SDValue C =    Inv ? NotCCBit : CCBit,
2812              NotC = Inv ? CCBit    : NotCCBit;
2813
2814      SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
2815                                           C, N->getOperand(2)), 0);
2816      SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
2817                                              NotC, N->getOperand(3)), 0);
2818
2819      CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF);
2820      return;
2821    }
2822
2823    unsigned BROpc = getPredicateForSetCC(CC);
2824
2825    unsigned SelectCCOp;
2826    if (N->getValueType(0) == MVT::i32)
2827      SelectCCOp = PPC::SELECT_CC_I4;
2828    else if (N->getValueType(0) == MVT::i64)
2829      SelectCCOp = PPC::SELECT_CC_I8;
2830    else if (N->getValueType(0) == MVT::f32)
2831      if (PPCSubTarget->hasP8Vector())
2832        SelectCCOp = PPC::SELECT_CC_VSSRC;
2833      else
2834        SelectCCOp = PPC::SELECT_CC_F4;
2835    else if (N->getValueType(0) == MVT::f64)
2836      if (PPCSubTarget->hasVSX())
2837        SelectCCOp = PPC::SELECT_CC_VSFRC;
2838      else
2839        SelectCCOp = PPC::SELECT_CC_F8;
2840    else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f64)
2841      SelectCCOp = PPC::SELECT_CC_QFRC;
2842    else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f32)
2843      SelectCCOp = PPC::SELECT_CC_QSRC;
2844    else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4i1)
2845      SelectCCOp = PPC::SELECT_CC_QBRC;
2846    else if (N->getValueType(0) == MVT::v2f64 ||
2847             N->getValueType(0) == MVT::v2i64)
2848      SelectCCOp = PPC::SELECT_CC_VSRC;
2849    else
2850      SelectCCOp = PPC::SELECT_CC_VRRC;
2851
2852    SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
2853                        getI32Imm(BROpc, dl) };
2854    CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops);
2855    return;
2856  }
2857  case ISD::VSELECT:
2858    if (PPCSubTarget->hasVSX()) {
2859      SDValue Ops[] = { N->getOperand(2), N->getOperand(1), N->getOperand(0) };
2860      CurDAG->SelectNodeTo(N, PPC::XXSEL, N->getValueType(0), Ops);
2861      return;
2862    }
2863
2864    break;
2865  case ISD::VECTOR_SHUFFLE:
2866    if (PPCSubTarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 ||
2867                                  N->getValueType(0) == MVT::v2i64)) {
2868      ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
2869
2870      SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1),
2871              Op2 = N->getOperand(SVN->getMaskElt(1) < 2 ? 0 : 1);
2872      unsigned DM[2];
2873
2874      for (int i = 0; i < 2; ++i)
2875        if (SVN->getMaskElt(i) <= 0 || SVN->getMaskElt(i) == 2)
2876          DM[i] = 0;
2877        else
2878          DM[i] = 1;
2879
2880      if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 &&
2881          Op1.getOpcode() == ISD::SCALAR_TO_VECTOR &&
2882          isa<LoadSDNode>(Op1.getOperand(0))) {
2883        LoadSDNode *LD = cast<LoadSDNode>(Op1.getOperand(0));
2884        SDValue Base, Offset;
2885
2886        if (LD->isUnindexed() && LD->hasOneUse() && Op1.hasOneUse() &&
2887            (LD->getMemoryVT() == MVT::f64 ||
2888             LD->getMemoryVT() == MVT::i64) &&
2889            SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) {
2890          SDValue Chain = LD->getChain();
2891          SDValue Ops[] = { Base, Offset, Chain };
2892          CurDAG->SelectNodeTo(N, PPC::LXVDSX, N->getValueType(0), Ops);
2893          return;
2894        }
2895      }
2896
2897      // For little endian, we must swap the input operands and adjust
2898      // the mask elements (reverse and invert them).
2899      if (PPCSubTarget->isLittleEndian()) {
2900        std::swap(Op1, Op2);
2901        unsigned tmp = DM[0];
2902        DM[0] = 1 - DM[1];
2903        DM[1] = 1 - tmp;
2904      }
2905
2906      SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), dl,
2907                                              MVT::i32);
2908      SDValue Ops[] = { Op1, Op2, DMV };
2909      CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops);
2910      return;
2911    }
2912
2913    break;
2914  case PPCISD::BDNZ:
2915  case PPCISD::BDZ: {
2916    bool IsPPC64 = PPCSubTarget->isPPC64();
2917    SDValue Ops[] = { N->getOperand(1), N->getOperand(0) };
2918    CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ
2919                                ? (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
2920                                : (IsPPC64 ? PPC::BDZ8 : PPC::BDZ),
2921                         MVT::Other, Ops);
2922    return;
2923  }
2924  case PPCISD::COND_BRANCH: {
2925    // Op #0 is the Chain.
2926    // Op #1 is the PPC::PRED_* number.
2927    // Op #2 is the CR#
2928    // Op #3 is the Dest MBB
2929    // Op #4 is the Flag.
2930    // Prevent PPC::PRED_* from being selected into LI.
2931    unsigned PCC = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2932    if (EnableBranchHint)
2933      PCC |= getBranchHint(PCC, FuncInfo, N->getOperand(3));
2934
2935    SDValue Pred = getI32Imm(PCC, dl);
2936    SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
2937      N->getOperand(0), N->getOperand(4) };
2938    CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
2939    return;
2940  }
2941  case ISD::BR_CC: {
2942    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
2943    unsigned PCC = getPredicateForSetCC(CC);
2944
2945    if (N->getOperand(2).getValueType() == MVT::i1) {
2946      unsigned Opc;
2947      bool Swap;
2948      switch (PCC) {
2949      default: llvm_unreachable("Unexpected Boolean-operand predicate");
2950      case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true;  break;
2951      case PPC::PRED_LE: Opc = PPC::CRORC;  Swap = true;  break;
2952      case PPC::PRED_EQ: Opc = PPC::CREQV;  Swap = false; break;
2953      case PPC::PRED_GE: Opc = PPC::CRORC;  Swap = false; break;
2954      case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break;
2955      case PPC::PRED_NE: Opc = PPC::CRXOR;  Swap = false; break;
2956      }
2957
2958      SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1,
2959                                             N->getOperand(Swap ? 3 : 2),
2960                                             N->getOperand(Swap ? 2 : 3)), 0);
2961      CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other, BitComp, N->getOperand(4),
2962                           N->getOperand(0));
2963      return;
2964    }
2965
2966    if (EnableBranchHint)
2967      PCC |= getBranchHint(PCC, FuncInfo, N->getOperand(4));
2968
2969    SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl);
2970    SDValue Ops[] = { getI32Imm(PCC, dl), CondCode,
2971                        N->getOperand(4), N->getOperand(0) };
2972    CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
2973    return;
2974  }
2975  case ISD::BRIND: {
2976    // FIXME: Should custom lower this.
2977    SDValue Chain = N->getOperand(0);
2978    SDValue Target = N->getOperand(1);
2979    unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
2980    unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8;
2981    Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target,
2982                                           Chain), 0);
2983    CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain);
2984    return;
2985  }
2986  case PPCISD::TOC_ENTRY: {
2987    assert ((PPCSubTarget->isPPC64() || PPCSubTarget->isSVR4ABI()) &&
2988            "Only supported for 64-bit ABI and 32-bit SVR4");
2989    if (PPCSubTarget->isSVR4ABI() && !PPCSubTarget->isPPC64()) {
2990      SDValue GA = N->getOperand(0);
2991      SDNode *MN = CurDAG->getMachineNode(PPC::LWZtoc, dl, MVT::i32, GA,
2992                                          N->getOperand(1));
2993      transferMemOperands(N, MN);
2994      ReplaceNode(N, MN);
2995      return;
2996    }
2997
2998    // For medium and large code model, we generate two instructions as
2999    // described below.  Otherwise we allow SelectCodeCommon to handle this,
3000    // selecting one of LDtoc, LDtocJTI, LDtocCPT, and LDtocBA.
3001    CodeModel::Model CModel = TM.getCodeModel();
3002    if (CModel != CodeModel::Medium && CModel != CodeModel::Large)
3003      break;
3004
3005    // The first source operand is a TargetGlobalAddress or a TargetJumpTable.
3006    // If it must be toc-referenced according to PPCSubTarget, we generate:
3007    //   LDtocL(<ga:@sym>, ADDIStocHA(%X2, <ga:@sym>))
3008    // Otherwise we generate:
3009    //   ADDItocL(ADDIStocHA(%X2, <ga:@sym>), <ga:@sym>)
3010    SDValue GA = N->getOperand(0);
3011    SDValue TOCbase = N->getOperand(1);
3012    SDNode *Tmp = CurDAG->getMachineNode(PPC::ADDIStocHA, dl, MVT::i64,
3013                                         TOCbase, GA);
3014
3015    if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA) ||
3016        CModel == CodeModel::Large) {
3017      SDNode *MN = CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA,
3018                                          SDValue(Tmp, 0));
3019      transferMemOperands(N, MN);
3020      ReplaceNode(N, MN);
3021      return;
3022    }
3023
3024    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) {
3025      const GlobalValue *GV = G->getGlobal();
3026      unsigned char GVFlags = PPCSubTarget->classifyGlobalReference(GV);
3027      if (GVFlags & PPCII::MO_NLP_FLAG) {
3028        SDNode *MN = CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA,
3029                                            SDValue(Tmp, 0));
3030        transferMemOperands(N, MN);
3031        ReplaceNode(N, MN);
3032        return;
3033      }
3034    }
3035
3036    ReplaceNode(N, CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64,
3037                                          SDValue(Tmp, 0), GA));
3038    return;
3039  }
3040  case PPCISD::PPC32_PICGOT: {
3041    // Generate a PIC-safe GOT reference.
3042    assert(!PPCSubTarget->isPPC64() && PPCSubTarget->isSVR4ABI() &&
3043      "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4");
3044    CurDAG->SelectNodeTo(N, PPC::PPC32PICGOT,
3045                         PPCLowering->getPointerTy(CurDAG->getDataLayout()),
3046                         MVT::i32);
3047    return;
3048  }
3049  case PPCISD::VADD_SPLAT: {
3050    // This expands into one of three sequences, depending on whether
3051    // the first operand is odd or even, positive or negative.
3052    assert(isa<ConstantSDNode>(N->getOperand(0)) &&
3053           isa<ConstantSDNode>(N->getOperand(1)) &&
3054           "Invalid operand on VADD_SPLAT!");
3055
3056    int Elt     = N->getConstantOperandVal(0);
3057    int EltSize = N->getConstantOperandVal(1);
3058    unsigned Opc1, Opc2, Opc3;
3059    EVT VT;
3060
3061    if (EltSize == 1) {
3062      Opc1 = PPC::VSPLTISB;
3063      Opc2 = PPC::VADDUBM;
3064      Opc3 = PPC::VSUBUBM;
3065      VT = MVT::v16i8;
3066    } else if (EltSize == 2) {
3067      Opc1 = PPC::VSPLTISH;
3068      Opc2 = PPC::VADDUHM;
3069      Opc3 = PPC::VSUBUHM;
3070      VT = MVT::v8i16;
3071    } else {
3072      assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!");
3073      Opc1 = PPC::VSPLTISW;
3074      Opc2 = PPC::VADDUWM;
3075      Opc3 = PPC::VSUBUWM;
3076      VT = MVT::v4i32;
3077    }
3078
3079    if ((Elt & 1) == 0) {
3080      // Elt is even, in the range [-32,-18] + [16,30].
3081      //
3082      // Convert: VADD_SPLAT elt, size
3083      // Into:    tmp = VSPLTIS[BHW] elt
3084      //          VADDU[BHW]M tmp, tmp
3085      // Where:   [BHW] = B for size = 1, H for size = 2, W for size = 4
3086      SDValue EltVal = getI32Imm(Elt >> 1, dl);
3087      SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
3088      SDValue TmpVal = SDValue(Tmp, 0);
3089      ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal));
3090      return;
3091
3092    } else if (Elt > 0) {
3093      // Elt is odd and positive, in the range [17,31].
3094      //
3095      // Convert: VADD_SPLAT elt, size
3096      // Into:    tmp1 = VSPLTIS[BHW] elt-16
3097      //          tmp2 = VSPLTIS[BHW] -16
3098      //          VSUBU[BHW]M tmp1, tmp2
3099      SDValue EltVal = getI32Imm(Elt - 16, dl);
3100      SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
3101      EltVal = getI32Imm(-16, dl);
3102      SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
3103      ReplaceNode(N, CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0),
3104                                            SDValue(Tmp2, 0)));
3105      return;
3106
3107    } else {
3108      // Elt is odd and negative, in the range [-31,-17].
3109      //
3110      // Convert: VADD_SPLAT elt, size
3111      // Into:    tmp1 = VSPLTIS[BHW] elt+16
3112      //          tmp2 = VSPLTIS[BHW] -16
3113      //          VADDU[BHW]M tmp1, tmp2
3114      SDValue EltVal = getI32Imm(Elt + 16, dl);
3115      SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
3116      EltVal = getI32Imm(-16, dl);
3117      SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
3118      ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0),
3119                                            SDValue(Tmp2, 0)));
3120      return;
3121    }
3122  }
3123  }
3124
3125  SelectCode(N);
3126}
3127
3128// If the target supports the cmpb instruction, do the idiom recognition here.
3129// We don't do this as a DAG combine because we don't want to do it as nodes
3130// are being combined (because we might miss part of the eventual idiom). We
3131// don't want to do it during instruction selection because we want to reuse
3132// the logic for lowering the masking operations already part of the
3133// instruction selector.
3134SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) {
3135  SDLoc dl(N);
3136
3137  assert(N->getOpcode() == ISD::OR &&
3138         "Only OR nodes are supported for CMPB");
3139
3140  SDValue Res;
3141  if (!PPCSubTarget->hasCMPB())
3142    return Res;
3143
3144  if (N->getValueType(0) != MVT::i32 &&
3145      N->getValueType(0) != MVT::i64)
3146    return Res;
3147
3148  EVT VT = N->getValueType(0);
3149
3150  SDValue RHS, LHS;
3151  bool BytesFound[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
3152  uint64_t Mask = 0, Alt = 0;
3153
3154  auto IsByteSelectCC = [this](SDValue O, unsigned &b,
3155                               uint64_t &Mask, uint64_t &Alt,
3156                               SDValue &LHS, SDValue &RHS) {
3157    if (O.getOpcode() != ISD::SELECT_CC)
3158      return false;
3159    ISD::CondCode CC = cast<CondCodeSDNode>(O.getOperand(4))->get();
3160
3161    if (!isa<ConstantSDNode>(O.getOperand(2)) ||
3162        !isa<ConstantSDNode>(O.getOperand(3)))
3163      return false;
3164
3165    uint64_t PM = O.getConstantOperandVal(2);
3166    uint64_t PAlt = O.getConstantOperandVal(3);
3167    for (b = 0; b < 8; ++b) {
3168      uint64_t Mask = UINT64_C(0xFF) << (8*b);
3169      if (PM && (PM & Mask) == PM && (PAlt & Mask) == PAlt)
3170        break;
3171    }
3172
3173    if (b == 8)
3174      return false;
3175    Mask |= PM;
3176    Alt  |= PAlt;
3177
3178    if (!isa<ConstantSDNode>(O.getOperand(1)) ||
3179        O.getConstantOperandVal(1) != 0) {
3180      SDValue Op0 = O.getOperand(0), Op1 = O.getOperand(1);
3181      if (Op0.getOpcode() == ISD::TRUNCATE)
3182        Op0 = Op0.getOperand(0);
3183      if (Op1.getOpcode() == ISD::TRUNCATE)
3184        Op1 = Op1.getOperand(0);
3185
3186      if (Op0.getOpcode() == ISD::SRL && Op1.getOpcode() == ISD::SRL &&
3187          Op0.getOperand(1) == Op1.getOperand(1) && CC == ISD::SETEQ &&
3188          isa<ConstantSDNode>(Op0.getOperand(1))) {
3189
3190        unsigned Bits = Op0.getValueType().getSizeInBits();
3191        if (b != Bits/8-1)
3192          return false;
3193        if (Op0.getConstantOperandVal(1) != Bits-8)
3194          return false;
3195
3196        LHS = Op0.getOperand(0);
3197        RHS = Op1.getOperand(0);
3198        return true;
3199      }
3200
3201      // When we have small integers (i16 to be specific), the form present
3202      // post-legalization uses SETULT in the SELECT_CC for the
3203      // higher-order byte, depending on the fact that the
3204      // even-higher-order bytes are known to all be zero, for example:
3205      //   select_cc (xor $lhs, $rhs), 256, 65280, 0, setult
3206      // (so when the second byte is the same, because all higher-order
3207      // bits from bytes 3 and 4 are known to be zero, the result of the
3208      // xor can be at most 255)
3209      if (Op0.getOpcode() == ISD::XOR && CC == ISD::SETULT &&
3210          isa<ConstantSDNode>(O.getOperand(1))) {
3211
3212        uint64_t ULim = O.getConstantOperandVal(1);
3213        if (ULim != (UINT64_C(1) << b*8))
3214          return false;
3215
3216        // Now we need to make sure that the upper bytes are known to be
3217        // zero.
3218        unsigned Bits = Op0.getValueType().getSizeInBits();
3219        if (!CurDAG->MaskedValueIsZero(Op0,
3220              APInt::getHighBitsSet(Bits, Bits - (b+1)*8)))
3221          return false;
3222
3223        LHS = Op0.getOperand(0);
3224        RHS = Op0.getOperand(1);
3225        return true;
3226      }
3227
3228      return false;
3229    }
3230
3231    if (CC != ISD::SETEQ)
3232      return false;
3233
3234    SDValue Op = O.getOperand(0);
3235    if (Op.getOpcode() == ISD::AND) {
3236      if (!isa<ConstantSDNode>(Op.getOperand(1)))
3237        return false;
3238      if (Op.getConstantOperandVal(1) != (UINT64_C(0xFF) << (8*b)))
3239        return false;
3240
3241      SDValue XOR = Op.getOperand(0);
3242      if (XOR.getOpcode() == ISD::TRUNCATE)
3243        XOR = XOR.getOperand(0);
3244      if (XOR.getOpcode() != ISD::XOR)
3245        return false;
3246
3247      LHS = XOR.getOperand(0);
3248      RHS = XOR.getOperand(1);
3249      return true;
3250    } else if (Op.getOpcode() == ISD::SRL) {
3251      if (!isa<ConstantSDNode>(Op.getOperand(1)))
3252        return false;
3253      unsigned Bits = Op.getValueType().getSizeInBits();
3254      if (b != Bits/8-1)
3255        return false;
3256      if (Op.getConstantOperandVal(1) != Bits-8)
3257        return false;
3258
3259      SDValue XOR = Op.getOperand(0);
3260      if (XOR.getOpcode() == ISD::TRUNCATE)
3261        XOR = XOR.getOperand(0);
3262      if (XOR.getOpcode() != ISD::XOR)
3263        return false;
3264
3265      LHS = XOR.getOperand(0);
3266      RHS = XOR.getOperand(1);
3267      return true;
3268    }
3269
3270    return false;
3271  };
3272
3273  SmallVector<SDValue, 8> Queue(1, SDValue(N, 0));
3274  while (!Queue.empty()) {
3275    SDValue V = Queue.pop_back_val();
3276
3277    for (const SDValue &O : V.getNode()->ops()) {
3278      unsigned b;
3279      uint64_t M = 0, A = 0;
3280      SDValue OLHS, ORHS;
3281      if (O.getOpcode() == ISD::OR) {
3282        Queue.push_back(O);
3283      } else if (IsByteSelectCC(O, b, M, A, OLHS, ORHS)) {
3284        if (!LHS) {
3285          LHS = OLHS;
3286          RHS = ORHS;
3287          BytesFound[b] = true;
3288          Mask |= M;
3289          Alt  |= A;
3290        } else if ((LHS == ORHS && RHS == OLHS) ||
3291                   (RHS == ORHS && LHS == OLHS)) {
3292          BytesFound[b] = true;
3293          Mask |= M;
3294          Alt  |= A;
3295        } else {
3296          return Res;
3297        }
3298      } else {
3299        return Res;
3300      }
3301    }
3302  }
3303
3304  unsigned LastB = 0, BCnt = 0;
3305  for (unsigned i = 0; i < 8; ++i)
3306    if (BytesFound[LastB]) {
3307      ++BCnt;
3308      LastB = i;
3309    }
3310
3311  if (!LastB || BCnt < 2)
3312    return Res;
3313
3314  // Because we'll be zero-extending the output anyway if don't have a specific
3315  // value for each input byte (via the Mask), we can 'anyext' the inputs.
3316  if (LHS.getValueType() != VT) {
3317    LHS = CurDAG->getAnyExtOrTrunc(LHS, dl, VT);
3318    RHS = CurDAG->getAnyExtOrTrunc(RHS, dl, VT);
3319  }
3320
3321  Res = CurDAG->getNode(PPCISD::CMPB, dl, VT, LHS, RHS);
3322
3323  bool NonTrivialMask = ((int64_t) Mask) != INT64_C(-1);
3324  if (NonTrivialMask && !Alt) {
3325    // Res = Mask & CMPB
3326    Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
3327                          CurDAG->getConstant(Mask, dl, VT));
3328  } else if (Alt) {
3329    // Res = (CMPB & Mask) | (~CMPB & Alt)
3330    // Which, as suggested here:
3331    //   https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge
3332    // can be written as:
3333    // Res = Alt ^ ((Alt ^ Mask) & CMPB)
3334    // useful because the (Alt ^ Mask) can be pre-computed.
3335    Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
3336                          CurDAG->getConstant(Mask ^ Alt, dl, VT));
3337    Res = CurDAG->getNode(ISD::XOR, dl, VT, Res,
3338                          CurDAG->getConstant(Alt, dl, VT));
3339  }
3340
3341  return Res;
3342}
3343
3344// When CR bit registers are enabled, an extension of an i1 variable to a i32
3345// or i64 value is lowered in terms of a SELECT_I[48] operation, and thus
3346// involves constant materialization of a 0 or a 1 or both. If the result of
3347// the extension is then operated upon by some operator that can be constant
3348// folded with a constant 0 or 1, and that constant can be materialized using
3349// only one instruction (like a zero or one), then we should fold in those
3350// operations with the select.
3351void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) {
3352  if (!PPCSubTarget->useCRBits())
3353    return;
3354
3355  if (N->getOpcode() != ISD::ZERO_EXTEND &&
3356      N->getOpcode() != ISD::SIGN_EXTEND &&
3357      N->getOpcode() != ISD::ANY_EXTEND)
3358    return;
3359
3360  if (N->getOperand(0).getValueType() != MVT::i1)
3361    return;
3362
3363  if (!N->hasOneUse())
3364    return;
3365
3366  SDLoc dl(N);
3367  EVT VT = N->getValueType(0);
3368  SDValue Cond = N->getOperand(0);
3369  SDValue ConstTrue =
3370    CurDAG->getConstant(N->getOpcode() == ISD::SIGN_EXTEND ? -1 : 1, dl, VT);
3371  SDValue ConstFalse = CurDAG->getConstant(0, dl, VT);
3372
3373  do {
3374    SDNode *User = *N->use_begin();
3375    if (User->getNumOperands() != 2)
3376      break;
3377
3378    auto TryFold = [this, N, User, dl](SDValue Val) {
3379      SDValue UserO0 = User->getOperand(0), UserO1 = User->getOperand(1);
3380      SDValue O0 = UserO0.getNode() == N ? Val : UserO0;
3381      SDValue O1 = UserO1.getNode() == N ? Val : UserO1;
3382
3383      return CurDAG->FoldConstantArithmetic(User->getOpcode(), dl,
3384                                            User->getValueType(0),
3385                                            O0.getNode(), O1.getNode());
3386    };
3387
3388    SDValue TrueRes = TryFold(ConstTrue);
3389    if (!TrueRes)
3390      break;
3391    SDValue FalseRes = TryFold(ConstFalse);
3392    if (!FalseRes)
3393      break;
3394
3395    // For us to materialize these using one instruction, we must be able to
3396    // represent them as signed 16-bit integers.
3397    uint64_t True  = cast<ConstantSDNode>(TrueRes)->getZExtValue(),
3398             False = cast<ConstantSDNode>(FalseRes)->getZExtValue();
3399    if (!isInt<16>(True) || !isInt<16>(False))
3400      break;
3401
3402    // We can replace User with a new SELECT node, and try again to see if we
3403    // can fold the select with its user.
3404    Res = CurDAG->getSelect(dl, User->getValueType(0), Cond, TrueRes, FalseRes);
3405    N = User;
3406    ConstTrue = TrueRes;
3407    ConstFalse = FalseRes;
3408  } while (N->hasOneUse());
3409}
3410
3411void PPCDAGToDAGISel::PreprocessISelDAG() {
3412  SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
3413  ++Position;
3414
3415  bool MadeChange = false;
3416  while (Position != CurDAG->allnodes_begin()) {
3417    SDNode *N = &*--Position;
3418    if (N->use_empty())
3419      continue;
3420
3421    SDValue Res;
3422    switch (N->getOpcode()) {
3423    default: break;
3424    case ISD::OR:
3425      Res = combineToCMPB(N);
3426      break;
3427    }
3428
3429    if (!Res)
3430      foldBoolExts(Res, N);
3431
3432    if (Res) {
3433      DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld:    ");
3434      DEBUG(N->dump(CurDAG));
3435      DEBUG(dbgs() << "\nNew: ");
3436      DEBUG(Res.getNode()->dump(CurDAG));
3437      DEBUG(dbgs() << "\n");
3438
3439      CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
3440      MadeChange = true;
3441    }
3442  }
3443
3444  if (MadeChange)
3445    CurDAG->RemoveDeadNodes();
3446}
3447
3448/// PostprocessISelDAG - Perform some late peephole optimizations
3449/// on the DAG representation.
3450void PPCDAGToDAGISel::PostprocessISelDAG() {
3451
3452  // Skip peepholes at -O0.
3453  if (TM.getOptLevel() == CodeGenOpt::None)
3454    return;
3455
3456  PeepholePPC64();
3457  PeepholeCROps();
3458  PeepholePPC64ZExt();
3459}
3460
3461// Check if all users of this node will become isel where the second operand
3462// is the constant zero. If this is so, and if we can negate the condition,
3463// then we can flip the true and false operands. This will allow the zero to
3464// be folded with the isel so that we don't need to materialize a register
3465// containing zero.
3466bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) {
3467  // If we're not using isel, then this does not matter.
3468  if (!PPCSubTarget->hasISEL())
3469    return false;
3470
3471  for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
3472       UI != UE; ++UI) {
3473    SDNode *User = *UI;
3474    if (!User->isMachineOpcode())
3475      return false;
3476    if (User->getMachineOpcode() != PPC::SELECT_I4 &&
3477        User->getMachineOpcode() != PPC::SELECT_I8)
3478      return false;
3479
3480    SDNode *Op2 = User->getOperand(2).getNode();
3481    if (!Op2->isMachineOpcode())
3482      return false;
3483
3484    if (Op2->getMachineOpcode() != PPC::LI &&
3485        Op2->getMachineOpcode() != PPC::LI8)
3486      return false;
3487
3488    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op2->getOperand(0));
3489    if (!C)
3490      return false;
3491
3492    if (!C->isNullValue())
3493      return false;
3494  }
3495
3496  return true;
3497}
3498
3499void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) {
3500  SmallVector<SDNode *, 4> ToReplace;
3501  for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
3502       UI != UE; ++UI) {
3503    SDNode *User = *UI;
3504    assert((User->getMachineOpcode() == PPC::SELECT_I4 ||
3505            User->getMachineOpcode() == PPC::SELECT_I8) &&
3506           "Must have all select users");
3507    ToReplace.push_back(User);
3508  }
3509
3510  for (SmallVector<SDNode *, 4>::iterator UI = ToReplace.begin(),
3511       UE = ToReplace.end(); UI != UE; ++UI) {
3512    SDNode *User = *UI;
3513    SDNode *ResNode =
3514      CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User),
3515                             User->getValueType(0), User->getOperand(0),
3516                             User->getOperand(2),
3517                             User->getOperand(1));
3518
3519      DEBUG(dbgs() << "CR Peephole replacing:\nOld:    ");
3520      DEBUG(User->dump(CurDAG));
3521      DEBUG(dbgs() << "\nNew: ");
3522      DEBUG(ResNode->dump(CurDAG));
3523      DEBUG(dbgs() << "\n");
3524
3525      ReplaceUses(User, ResNode);
3526  }
3527}
3528
3529void PPCDAGToDAGISel::PeepholeCROps() {
3530  bool IsModified;
3531  do {
3532    IsModified = false;
3533    for (SDNode &Node : CurDAG->allnodes()) {
3534      MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(&Node);
3535      if (!MachineNode || MachineNode->use_empty())
3536        continue;
3537      SDNode *ResNode = MachineNode;
3538
3539      bool Op1Set   = false, Op1Unset = false,
3540           Op1Not   = false,
3541           Op2Set   = false, Op2Unset = false,
3542           Op2Not   = false;
3543
3544      unsigned Opcode = MachineNode->getMachineOpcode();
3545      switch (Opcode) {
3546      default: break;
3547      case PPC::CRAND:
3548      case PPC::CRNAND:
3549      case PPC::CROR:
3550      case PPC::CRXOR:
3551      case PPC::CRNOR:
3552      case PPC::CREQV:
3553      case PPC::CRANDC:
3554      case PPC::CRORC: {
3555        SDValue Op = MachineNode->getOperand(1);
3556        if (Op.isMachineOpcode()) {
3557          if (Op.getMachineOpcode() == PPC::CRSET)
3558            Op2Set = true;
3559          else if (Op.getMachineOpcode() == PPC::CRUNSET)
3560            Op2Unset = true;
3561          else if (Op.getMachineOpcode() == PPC::CRNOR &&
3562                   Op.getOperand(0) == Op.getOperand(1))
3563            Op2Not = true;
3564        }
3565        }  // fallthrough
3566      case PPC::BC:
3567      case PPC::BCn:
3568      case PPC::SELECT_I4:
3569      case PPC::SELECT_I8:
3570      case PPC::SELECT_F4:
3571      case PPC::SELECT_F8:
3572      case PPC::SELECT_QFRC:
3573      case PPC::SELECT_QSRC:
3574      case PPC::SELECT_QBRC:
3575      case PPC::SELECT_VRRC:
3576      case PPC::SELECT_VSFRC:
3577      case PPC::SELECT_VSSRC:
3578      case PPC::SELECT_VSRC: {
3579        SDValue Op = MachineNode->getOperand(0);
3580        if (Op.isMachineOpcode()) {
3581          if (Op.getMachineOpcode() == PPC::CRSET)
3582            Op1Set = true;
3583          else if (Op.getMachineOpcode() == PPC::CRUNSET)
3584            Op1Unset = true;
3585          else if (Op.getMachineOpcode() == PPC::CRNOR &&
3586                   Op.getOperand(0) == Op.getOperand(1))
3587            Op1Not = true;
3588        }
3589        }
3590        break;
3591      }
3592
3593      bool SelectSwap = false;
3594      switch (Opcode) {
3595      default: break;
3596      case PPC::CRAND:
3597        if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3598          // x & x = x
3599          ResNode = MachineNode->getOperand(0).getNode();
3600        else if (Op1Set)
3601          // 1 & y = y
3602          ResNode = MachineNode->getOperand(1).getNode();
3603        else if (Op2Set)
3604          // x & 1 = x
3605          ResNode = MachineNode->getOperand(0).getNode();
3606        else if (Op1Unset || Op2Unset)
3607          // x & 0 = 0 & y = 0
3608          ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
3609                                           MVT::i1);
3610        else if (Op1Not)
3611          // ~x & y = andc(y, x)
3612          ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
3613                                           MVT::i1, MachineNode->getOperand(1),
3614                                           MachineNode->getOperand(0).
3615                                             getOperand(0));
3616        else if (Op2Not)
3617          // x & ~y = andc(x, y)
3618          ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
3619                                           MVT::i1, MachineNode->getOperand(0),
3620                                           MachineNode->getOperand(1).
3621                                             getOperand(0));
3622        else if (AllUsersSelectZero(MachineNode)) {
3623          ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
3624                                           MVT::i1, MachineNode->getOperand(0),
3625                                           MachineNode->getOperand(1));
3626          SelectSwap = true;
3627        }
3628        break;
3629      case PPC::CRNAND:
3630        if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3631          // nand(x, x) -> nor(x, x)
3632          ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3633                                           MVT::i1, MachineNode->getOperand(0),
3634                                           MachineNode->getOperand(0));
3635        else if (Op1Set)
3636          // nand(1, y) -> nor(y, y)
3637          ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3638                                           MVT::i1, MachineNode->getOperand(1),
3639                                           MachineNode->getOperand(1));
3640        else if (Op2Set)
3641          // nand(x, 1) -> nor(x, x)
3642          ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3643                                           MVT::i1, MachineNode->getOperand(0),
3644                                           MachineNode->getOperand(0));
3645        else if (Op1Unset || Op2Unset)
3646          // nand(x, 0) = nand(0, y) = 1
3647          ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
3648                                           MVT::i1);
3649        else if (Op1Not)
3650          // nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y)
3651          ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
3652                                           MVT::i1, MachineNode->getOperand(0).
3653                                                      getOperand(0),
3654                                           MachineNode->getOperand(1));
3655        else if (Op2Not)
3656          // nand(x, ~y) = ~x | y = orc(y, x)
3657          ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
3658                                           MVT::i1, MachineNode->getOperand(1).
3659                                                      getOperand(0),
3660                                           MachineNode->getOperand(0));
3661        else if (AllUsersSelectZero(MachineNode)) {
3662          ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
3663                                           MVT::i1, MachineNode->getOperand(0),
3664                                           MachineNode->getOperand(1));
3665          SelectSwap = true;
3666        }
3667        break;
3668      case PPC::CROR:
3669        if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3670          // x | x = x
3671          ResNode = MachineNode->getOperand(0).getNode();
3672        else if (Op1Set || Op2Set)
3673          // x | 1 = 1 | y = 1
3674          ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
3675                                           MVT::i1);
3676        else if (Op1Unset)
3677          // 0 | y = y
3678          ResNode = MachineNode->getOperand(1).getNode();
3679        else if (Op2Unset)
3680          // x | 0 = x
3681          ResNode = MachineNode->getOperand(0).getNode();
3682        else if (Op1Not)
3683          // ~x | y = orc(y, x)
3684          ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
3685                                           MVT::i1, MachineNode->getOperand(1),
3686                                           MachineNode->getOperand(0).
3687                                             getOperand(0));
3688        else if (Op2Not)
3689          // x | ~y = orc(x, y)
3690          ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
3691                                           MVT::i1, MachineNode->getOperand(0),
3692                                           MachineNode->getOperand(1).
3693                                             getOperand(0));
3694        else if (AllUsersSelectZero(MachineNode)) {
3695          ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3696                                           MVT::i1, MachineNode->getOperand(0),
3697                                           MachineNode->getOperand(1));
3698          SelectSwap = true;
3699        }
3700        break;
3701      case PPC::CRXOR:
3702        if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3703          // xor(x, x) = 0
3704          ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
3705                                           MVT::i1);
3706        else if (Op1Set)
3707          // xor(1, y) -> nor(y, y)
3708          ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3709                                           MVT::i1, MachineNode->getOperand(1),
3710                                           MachineNode->getOperand(1));
3711        else if (Op2Set)
3712          // xor(x, 1) -> nor(x, x)
3713          ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3714                                           MVT::i1, MachineNode->getOperand(0),
3715                                           MachineNode->getOperand(0));
3716        else if (Op1Unset)
3717          // xor(0, y) = y
3718          ResNode = MachineNode->getOperand(1).getNode();
3719        else if (Op2Unset)
3720          // xor(x, 0) = x
3721          ResNode = MachineNode->getOperand(0).getNode();
3722        else if (Op1Not)
3723          // xor(~x, y) = eqv(x, y)
3724          ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
3725                                           MVT::i1, MachineNode->getOperand(0).
3726                                                      getOperand(0),
3727                                           MachineNode->getOperand(1));
3728        else if (Op2Not)
3729          // xor(x, ~y) = eqv(x, y)
3730          ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
3731                                           MVT::i1, MachineNode->getOperand(0),
3732                                           MachineNode->getOperand(1).
3733                                             getOperand(0));
3734        else if (AllUsersSelectZero(MachineNode)) {
3735          ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
3736                                           MVT::i1, MachineNode->getOperand(0),
3737                                           MachineNode->getOperand(1));
3738          SelectSwap = true;
3739        }
3740        break;
3741      case PPC::CRNOR:
3742        if (Op1Set || Op2Set)
3743          // nor(1, y) -> 0
3744          ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
3745                                           MVT::i1);
3746        else if (Op1Unset)
3747          // nor(0, y) = ~y -> nor(y, y)
3748          ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3749                                           MVT::i1, MachineNode->getOperand(1),
3750                                           MachineNode->getOperand(1));
3751        else if (Op2Unset)
3752          // nor(x, 0) = ~x
3753          ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3754                                           MVT::i1, MachineNode->getOperand(0),
3755                                           MachineNode->getOperand(0));
3756        else if (Op1Not)
3757          // nor(~x, y) = andc(x, y)
3758          ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
3759                                           MVT::i1, MachineNode->getOperand(0).
3760                                                      getOperand(0),
3761                                           MachineNode->getOperand(1));
3762        else if (Op2Not)
3763          // nor(x, ~y) = andc(y, x)
3764          ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
3765                                           MVT::i1, MachineNode->getOperand(1).
3766                                                      getOperand(0),
3767                                           MachineNode->getOperand(0));
3768        else if (AllUsersSelectZero(MachineNode)) {
3769          ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
3770                                           MVT::i1, MachineNode->getOperand(0),
3771                                           MachineNode->getOperand(1));
3772          SelectSwap = true;
3773        }
3774        break;
3775      case PPC::CREQV:
3776        if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3777          // eqv(x, x) = 1
3778          ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
3779                                           MVT::i1);
3780        else if (Op1Set)
3781          // eqv(1, y) = y
3782          ResNode = MachineNode->getOperand(1).getNode();
3783        else if (Op2Set)
3784          // eqv(x, 1) = x
3785          ResNode = MachineNode->getOperand(0).getNode();
3786        else if (Op1Unset)
3787          // eqv(0, y) = ~y -> nor(y, y)
3788          ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3789                                           MVT::i1, MachineNode->getOperand(1),
3790                                           MachineNode->getOperand(1));
3791        else if (Op2Unset)
3792          // eqv(x, 0) = ~x
3793          ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3794                                           MVT::i1, MachineNode->getOperand(0),
3795                                           MachineNode->getOperand(0));
3796        else if (Op1Not)
3797          // eqv(~x, y) = xor(x, y)
3798          ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
3799                                           MVT::i1, MachineNode->getOperand(0).
3800                                                      getOperand(0),
3801                                           MachineNode->getOperand(1));
3802        else if (Op2Not)
3803          // eqv(x, ~y) = xor(x, y)
3804          ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
3805                                           MVT::i1, MachineNode->getOperand(0),
3806                                           MachineNode->getOperand(1).
3807                                             getOperand(0));
3808        else if (AllUsersSelectZero(MachineNode)) {
3809          ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
3810                                           MVT::i1, MachineNode->getOperand(0),
3811                                           MachineNode->getOperand(1));
3812          SelectSwap = true;
3813        }
3814        break;
3815      case PPC::CRANDC:
3816        if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3817          // andc(x, x) = 0
3818          ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
3819                                           MVT::i1);
3820        else if (Op1Set)
3821          // andc(1, y) = ~y
3822          ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3823                                           MVT::i1, MachineNode->getOperand(1),
3824                                           MachineNode->getOperand(1));
3825        else if (Op1Unset || Op2Set)
3826          // andc(0, y) = andc(x, 1) = 0
3827          ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
3828                                           MVT::i1);
3829        else if (Op2Unset)
3830          // andc(x, 0) = x
3831          ResNode = MachineNode->getOperand(0).getNode();
3832        else if (Op1Not)
3833          // andc(~x, y) = ~(x | y) = nor(x, y)
3834          ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3835                                           MVT::i1, MachineNode->getOperand(0).
3836                                                      getOperand(0),
3837                                           MachineNode->getOperand(1));
3838        else if (Op2Not)
3839          // andc(x, ~y) = x & y
3840          ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
3841                                           MVT::i1, MachineNode->getOperand(0),
3842                                           MachineNode->getOperand(1).
3843                                             getOperand(0));
3844        else if (AllUsersSelectZero(MachineNode)) {
3845          ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
3846                                           MVT::i1, MachineNode->getOperand(1),
3847                                           MachineNode->getOperand(0));
3848          SelectSwap = true;
3849        }
3850        break;
3851      case PPC::CRORC:
3852        if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3853          // orc(x, x) = 1
3854          ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
3855                                           MVT::i1);
3856        else if (Op1Set || Op2Unset)
3857          // orc(1, y) = orc(x, 0) = 1
3858          ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
3859                                           MVT::i1);
3860        else if (Op2Set)
3861          // orc(x, 1) = x
3862          ResNode = MachineNode->getOperand(0).getNode();
3863        else if (Op1Unset)
3864          // orc(0, y) = ~y
3865          ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3866                                           MVT::i1, MachineNode->getOperand(1),
3867                                           MachineNode->getOperand(1));
3868        else if (Op1Not)
3869          // orc(~x, y) = ~(x & y) = nand(x, y)
3870          ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
3871                                           MVT::i1, MachineNode->getOperand(0).
3872                                                      getOperand(0),
3873                                           MachineNode->getOperand(1));
3874        else if (Op2Not)
3875          // orc(x, ~y) = x | y
3876          ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
3877                                           MVT::i1, MachineNode->getOperand(0),
3878                                           MachineNode->getOperand(1).
3879                                             getOperand(0));
3880        else if (AllUsersSelectZero(MachineNode)) {
3881          ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
3882                                           MVT::i1, MachineNode->getOperand(1),
3883                                           MachineNode->getOperand(0));
3884          SelectSwap = true;
3885        }
3886        break;
3887      case PPC::SELECT_I4:
3888      case PPC::SELECT_I8:
3889      case PPC::SELECT_F4:
3890      case PPC::SELECT_F8:
3891      case PPC::SELECT_QFRC:
3892      case PPC::SELECT_QSRC:
3893      case PPC::SELECT_QBRC:
3894      case PPC::SELECT_VRRC:
3895      case PPC::SELECT_VSFRC:
3896      case PPC::SELECT_VSSRC:
3897      case PPC::SELECT_VSRC:
3898        if (Op1Set)
3899          ResNode = MachineNode->getOperand(1).getNode();
3900        else if (Op1Unset)
3901          ResNode = MachineNode->getOperand(2).getNode();
3902        else if (Op1Not)
3903          ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(),
3904                                           SDLoc(MachineNode),
3905                                           MachineNode->getValueType(0),
3906                                           MachineNode->getOperand(0).
3907                                             getOperand(0),
3908                                           MachineNode->getOperand(2),
3909                                           MachineNode->getOperand(1));
3910        break;
3911      case PPC::BC:
3912      case PPC::BCn:
3913        if (Op1Not)
3914          ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn :
3915                                                               PPC::BC,
3916                                           SDLoc(MachineNode),
3917                                           MVT::Other,
3918                                           MachineNode->getOperand(0).
3919                                             getOperand(0),
3920                                           MachineNode->getOperand(1),
3921                                           MachineNode->getOperand(2));
3922        // FIXME: Handle Op1Set, Op1Unset here too.
3923        break;
3924      }
3925
3926      // If we're inverting this node because it is used only by selects that
3927      // we'd like to swap, then swap the selects before the node replacement.
3928      if (SelectSwap)
3929        SwapAllSelectUsers(MachineNode);
3930
3931      if (ResNode != MachineNode) {
3932        DEBUG(dbgs() << "CR Peephole replacing:\nOld:    ");
3933        DEBUG(MachineNode->dump(CurDAG));
3934        DEBUG(dbgs() << "\nNew: ");
3935        DEBUG(ResNode->dump(CurDAG));
3936        DEBUG(dbgs() << "\n");
3937
3938        ReplaceUses(MachineNode, ResNode);
3939        IsModified = true;
3940      }
3941    }
3942    if (IsModified)
3943      CurDAG->RemoveDeadNodes();
3944  } while (IsModified);
3945}
3946
3947// Gather the set of 32-bit operations that are known to have their
3948// higher-order 32 bits zero, where ToPromote contains all such operations.
3949static bool PeepholePPC64ZExtGather(SDValue Op32,
3950                                    SmallPtrSetImpl<SDNode *> &ToPromote) {
3951  if (!Op32.isMachineOpcode())
3952    return false;
3953
3954  // First, check for the "frontier" instructions (those that will clear the
3955  // higher-order 32 bits.
3956
3957  // For RLWINM and RLWNM, we need to make sure that the mask does not wrap
3958  // around. If it does not, then these instructions will clear the
3959  // higher-order bits.
3960  if ((Op32.getMachineOpcode() == PPC::RLWINM ||
3961       Op32.getMachineOpcode() == PPC::RLWNM) &&
3962      Op32.getConstantOperandVal(2) <= Op32.getConstantOperandVal(3)) {
3963    ToPromote.insert(Op32.getNode());
3964    return true;
3965  }
3966
3967  // SLW and SRW always clear the higher-order bits.
3968  if (Op32.getMachineOpcode() == PPC::SLW ||
3969      Op32.getMachineOpcode() == PPC::SRW) {
3970    ToPromote.insert(Op32.getNode());
3971    return true;
3972  }
3973
3974  // For LI and LIS, we need the immediate to be positive (so that it is not
3975  // sign extended).
3976  if (Op32.getMachineOpcode() == PPC::LI ||
3977      Op32.getMachineOpcode() == PPC::LIS) {
3978    if (!isUInt<15>(Op32.getConstantOperandVal(0)))
3979      return false;
3980
3981    ToPromote.insert(Op32.getNode());
3982    return true;
3983  }
3984
3985  // LHBRX and LWBRX always clear the higher-order bits.
3986  if (Op32.getMachineOpcode() == PPC::LHBRX ||
3987      Op32.getMachineOpcode() == PPC::LWBRX) {
3988    ToPromote.insert(Op32.getNode());
3989    return true;
3990  }
3991
3992  // CNTLZW always produces a 64-bit value in [0,32], and so is zero extended.
3993  if (Op32.getMachineOpcode() == PPC::CNTLZW) {
3994    ToPromote.insert(Op32.getNode());
3995    return true;
3996  }
3997
3998  // Next, check for those instructions we can look through.
3999
4000  // Assuming the mask does not wrap around, then the higher-order bits are
4001  // taken directly from the first operand.
4002  if (Op32.getMachineOpcode() == PPC::RLWIMI &&
4003      Op32.getConstantOperandVal(3) <= Op32.getConstantOperandVal(4)) {
4004    SmallPtrSet<SDNode *, 16> ToPromote1;
4005    if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
4006      return false;
4007
4008    ToPromote.insert(Op32.getNode());
4009    ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
4010    return true;
4011  }
4012
4013  // For OR, the higher-order bits are zero if that is true for both operands.
4014  // For SELECT_I4, the same is true (but the relevant operand numbers are
4015  // shifted by 1).
4016  if (Op32.getMachineOpcode() == PPC::OR ||
4017      Op32.getMachineOpcode() == PPC::SELECT_I4) {
4018    unsigned B = Op32.getMachineOpcode() == PPC::SELECT_I4 ? 1 : 0;
4019    SmallPtrSet<SDNode *, 16> ToPromote1;
4020    if (!PeepholePPC64ZExtGather(Op32.getOperand(B+0), ToPromote1))
4021      return false;
4022    if (!PeepholePPC64ZExtGather(Op32.getOperand(B+1), ToPromote1))
4023      return false;
4024
4025    ToPromote.insert(Op32.getNode());
4026    ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
4027    return true;
4028  }
4029
4030  // For ORI and ORIS, we need the higher-order bits of the first operand to be
4031  // zero, and also for the constant to be positive (so that it is not sign
4032  // extended).
4033  if (Op32.getMachineOpcode() == PPC::ORI ||
4034      Op32.getMachineOpcode() == PPC::ORIS) {
4035    SmallPtrSet<SDNode *, 16> ToPromote1;
4036    if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
4037      return false;
4038    if (!isUInt<15>(Op32.getConstantOperandVal(1)))
4039      return false;
4040
4041    ToPromote.insert(Op32.getNode());
4042    ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
4043    return true;
4044  }
4045
4046  // The higher-order bits of AND are zero if that is true for at least one of
4047  // the operands.
4048  if (Op32.getMachineOpcode() == PPC::AND) {
4049    SmallPtrSet<SDNode *, 16> ToPromote1, ToPromote2;
4050    bool Op0OK =
4051      PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
4052    bool Op1OK =
4053      PeepholePPC64ZExtGather(Op32.getOperand(1), ToPromote2);
4054    if (!Op0OK && !Op1OK)
4055      return false;
4056
4057    ToPromote.insert(Op32.getNode());
4058
4059    if (Op0OK)
4060      ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
4061
4062    if (Op1OK)
4063      ToPromote.insert(ToPromote2.begin(), ToPromote2.end());
4064
4065    return true;
4066  }
4067
4068  // For ANDI and ANDIS, the higher-order bits are zero if either that is true
4069  // of the first operand, or if the second operand is positive (so that it is
4070  // not sign extended).
4071  if (Op32.getMachineOpcode() == PPC::ANDIo ||
4072      Op32.getMachineOpcode() == PPC::ANDISo) {
4073    SmallPtrSet<SDNode *, 16> ToPromote1;
4074    bool Op0OK =
4075      PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
4076    bool Op1OK = isUInt<15>(Op32.getConstantOperandVal(1));
4077    if (!Op0OK && !Op1OK)
4078      return false;
4079
4080    ToPromote.insert(Op32.getNode());
4081
4082    if (Op0OK)
4083      ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
4084
4085    return true;
4086  }
4087
4088  return false;
4089}
4090
4091void PPCDAGToDAGISel::PeepholePPC64ZExt() {
4092  if (!PPCSubTarget->isPPC64())
4093    return;
4094
4095  // When we zero-extend from i32 to i64, we use a pattern like this:
4096  // def : Pat<(i64 (zext i32:$in)),
4097  //           (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32),
4098  //                   0, 32)>;
4099  // There are several 32-bit shift/rotate instructions, however, that will
4100  // clear the higher-order bits of their output, rendering the RLDICL
4101  // unnecessary. When that happens, we remove it here, and redefine the
4102  // relevant 32-bit operation to be a 64-bit operation.
4103
4104  SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
4105  ++Position;
4106
4107  bool MadeChange = false;
4108  while (Position != CurDAG->allnodes_begin()) {
4109    SDNode *N = &*--Position;
4110    // Skip dead nodes and any non-machine opcodes.
4111    if (N->use_empty() || !N->isMachineOpcode())
4112      continue;
4113
4114    if (N->getMachineOpcode() != PPC::RLDICL)
4115      continue;
4116
4117    if (N->getConstantOperandVal(1) != 0 ||
4118        N->getConstantOperandVal(2) != 32)
4119      continue;
4120
4121    SDValue ISR = N->getOperand(0);
4122    if (!ISR.isMachineOpcode() ||
4123        ISR.getMachineOpcode() != TargetOpcode::INSERT_SUBREG)
4124      continue;
4125
4126    if (!ISR.hasOneUse())
4127      continue;
4128
4129    if (ISR.getConstantOperandVal(2) != PPC::sub_32)
4130      continue;
4131
4132    SDValue IDef = ISR.getOperand(0);
4133    if (!IDef.isMachineOpcode() ||
4134        IDef.getMachineOpcode() != TargetOpcode::IMPLICIT_DEF)
4135      continue;
4136
4137    // We now know that we're looking at a canonical i32 -> i64 zext. See if we
4138    // can get rid of it.
4139
4140    SDValue Op32 = ISR->getOperand(1);
4141    if (!Op32.isMachineOpcode())
4142      continue;
4143
4144    // There are some 32-bit instructions that always clear the high-order 32
4145    // bits, there are also some instructions (like AND) that we can look
4146    // through.
4147    SmallPtrSet<SDNode *, 16> ToPromote;
4148    if (!PeepholePPC64ZExtGather(Op32, ToPromote))
4149      continue;
4150
4151    // If the ToPromote set contains nodes that have uses outside of the set
4152    // (except for the original INSERT_SUBREG), then abort the transformation.
4153    bool OutsideUse = false;
4154    for (SDNode *PN : ToPromote) {
4155      for (SDNode *UN : PN->uses()) {
4156        if (!ToPromote.count(UN) && UN != ISR.getNode()) {
4157          OutsideUse = true;
4158          break;
4159        }
4160      }
4161
4162      if (OutsideUse)
4163        break;
4164    }
4165    if (OutsideUse)
4166      continue;
4167
4168    MadeChange = true;
4169
4170    // We now know that this zero extension can be removed by promoting to
4171    // nodes in ToPromote to 64-bit operations, where for operations in the
4172    // frontier of the set, we need to insert INSERT_SUBREGs for their
4173    // operands.
4174    for (SDNode *PN : ToPromote) {
4175      unsigned NewOpcode;
4176      switch (PN->getMachineOpcode()) {
4177      default:
4178        llvm_unreachable("Don't know the 64-bit variant of this instruction");
4179      case PPC::RLWINM:    NewOpcode = PPC::RLWINM8; break;
4180      case PPC::RLWNM:     NewOpcode = PPC::RLWNM8; break;
4181      case PPC::SLW:       NewOpcode = PPC::SLW8; break;
4182      case PPC::SRW:       NewOpcode = PPC::SRW8; break;
4183      case PPC::LI:        NewOpcode = PPC::LI8; break;
4184      case PPC::LIS:       NewOpcode = PPC::LIS8; break;
4185      case PPC::LHBRX:     NewOpcode = PPC::LHBRX8; break;
4186      case PPC::LWBRX:     NewOpcode = PPC::LWBRX8; break;
4187      case PPC::CNTLZW:    NewOpcode = PPC::CNTLZW8; break;
4188      case PPC::RLWIMI:    NewOpcode = PPC::RLWIMI8; break;
4189      case PPC::OR:        NewOpcode = PPC::OR8; break;
4190      case PPC::SELECT_I4: NewOpcode = PPC::SELECT_I8; break;
4191      case PPC::ORI:       NewOpcode = PPC::ORI8; break;
4192      case PPC::ORIS:      NewOpcode = PPC::ORIS8; break;
4193      case PPC::AND:       NewOpcode = PPC::AND8; break;
4194      case PPC::ANDIo:     NewOpcode = PPC::ANDIo8; break;
4195      case PPC::ANDISo:    NewOpcode = PPC::ANDISo8; break;
4196      }
4197
4198      // Note: During the replacement process, the nodes will be in an
4199      // inconsistent state (some instructions will have operands with values
4200      // of the wrong type). Once done, however, everything should be right
4201      // again.
4202
4203      SmallVector<SDValue, 4> Ops;
4204      for (const SDValue &V : PN->ops()) {
4205        if (!ToPromote.count(V.getNode()) && V.getValueType() == MVT::i32 &&
4206            !isa<ConstantSDNode>(V)) {
4207          SDValue ReplOpOps[] = { ISR.getOperand(0), V, ISR.getOperand(2) };
4208          SDNode *ReplOp =
4209            CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, SDLoc(V),
4210                                   ISR.getNode()->getVTList(), ReplOpOps);
4211          Ops.push_back(SDValue(ReplOp, 0));
4212        } else {
4213          Ops.push_back(V);
4214        }
4215      }
4216
4217      // Because all to-be-promoted nodes only have users that are other
4218      // promoted nodes (or the original INSERT_SUBREG), we can safely replace
4219      // the i32 result value type with i64.
4220
4221      SmallVector<EVT, 2> NewVTs;
4222      SDVTList VTs = PN->getVTList();
4223      for (unsigned i = 0, ie = VTs.NumVTs; i != ie; ++i)
4224        if (VTs.VTs[i] == MVT::i32)
4225          NewVTs.push_back(MVT::i64);
4226        else
4227          NewVTs.push_back(VTs.VTs[i]);
4228
4229      DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld:    ");
4230      DEBUG(PN->dump(CurDAG));
4231
4232      CurDAG->SelectNodeTo(PN, NewOpcode, CurDAG->getVTList(NewVTs), Ops);
4233
4234      DEBUG(dbgs() << "\nNew: ");
4235      DEBUG(PN->dump(CurDAG));
4236      DEBUG(dbgs() << "\n");
4237    }
4238
4239    // Now we replace the original zero extend and its associated INSERT_SUBREG
4240    // with the value feeding the INSERT_SUBREG (which has now been promoted to
4241    // return an i64).
4242
4243    DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld:    ");
4244    DEBUG(N->dump(CurDAG));
4245    DEBUG(dbgs() << "\nNew: ");
4246    DEBUG(Op32.getNode()->dump(CurDAG));
4247    DEBUG(dbgs() << "\n");
4248
4249    ReplaceUses(N, Op32.getNode());
4250  }
4251
4252  if (MadeChange)
4253    CurDAG->RemoveDeadNodes();
4254}
4255
4256void PPCDAGToDAGISel::PeepholePPC64() {
4257  // These optimizations are currently supported only for 64-bit SVR4.
4258  if (PPCSubTarget->isDarwin() || !PPCSubTarget->isPPC64())
4259    return;
4260
4261  SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
4262  ++Position;
4263
4264  while (Position != CurDAG->allnodes_begin()) {
4265    SDNode *N = &*--Position;
4266    // Skip dead nodes and any non-machine opcodes.
4267    if (N->use_empty() || !N->isMachineOpcode())
4268      continue;
4269
4270    unsigned FirstOp;
4271    unsigned StorageOpcode = N->getMachineOpcode();
4272
4273    switch (StorageOpcode) {
4274    default: continue;
4275
4276    case PPC::LBZ:
4277    case PPC::LBZ8:
4278    case PPC::LD:
4279    case PPC::LFD:
4280    case PPC::LFS:
4281    case PPC::LHA:
4282    case PPC::LHA8:
4283    case PPC::LHZ:
4284    case PPC::LHZ8:
4285    case PPC::LWA:
4286    case PPC::LWZ:
4287    case PPC::LWZ8:
4288      FirstOp = 0;
4289      break;
4290
4291    case PPC::STB:
4292    case PPC::STB8:
4293    case PPC::STD:
4294    case PPC::STFD:
4295    case PPC::STFS:
4296    case PPC::STH:
4297    case PPC::STH8:
4298    case PPC::STW:
4299    case PPC::STW8:
4300      FirstOp = 1;
4301      break;
4302    }
4303
4304    // If this is a load or store with a zero offset, or within the alignment,
4305    // we may be able to fold an add-immediate into the memory operation.
4306    // The check against alignment is below, as it can't occur until we check
4307    // the arguments to N
4308    if (!isa<ConstantSDNode>(N->getOperand(FirstOp)))
4309      continue;
4310
4311    SDValue Base = N->getOperand(FirstOp + 1);
4312    if (!Base.isMachineOpcode())
4313      continue;
4314
4315    // On targets with fusion, we don't want this to fire and remove a fusion
4316    // opportunity, unless a) it results in another fusion opportunity or
4317    // b) optimizing for size.
4318    if (PPCSubTarget->hasFusion() &&
4319        (!MF->getFunction()->optForSize() && !Base.hasOneUse()))
4320      continue;
4321
4322    unsigned Flags = 0;
4323    bool ReplaceFlags = true;
4324
4325    // When the feeding operation is an add-immediate of some sort,
4326    // determine whether we need to add relocation information to the
4327    // target flags on the immediate operand when we fold it into the
4328    // load instruction.
4329    //
4330    // For something like ADDItocL, the relocation information is
4331    // inferred from the opcode; when we process it in the AsmPrinter,
4332    // we add the necessary relocation there.  A load, though, can receive
4333    // relocation from various flavors of ADDIxxx, so we need to carry
4334    // the relocation information in the target flags.
4335    switch (Base.getMachineOpcode()) {
4336    default: continue;
4337
4338    case PPC::ADDI8:
4339    case PPC::ADDI:
4340      // In some cases (such as TLS) the relocation information
4341      // is already in place on the operand, so copying the operand
4342      // is sufficient.
4343      ReplaceFlags = false;
4344      // For these cases, the immediate may not be divisible by 4, in
4345      // which case the fold is illegal for DS-form instructions.  (The
4346      // other cases provide aligned addresses and are always safe.)
4347      if ((StorageOpcode == PPC::LWA ||
4348           StorageOpcode == PPC::LD  ||
4349           StorageOpcode == PPC::STD) &&
4350          (!isa<ConstantSDNode>(Base.getOperand(1)) ||
4351           Base.getConstantOperandVal(1) % 4 != 0))
4352        continue;
4353      break;
4354    case PPC::ADDIdtprelL:
4355      Flags = PPCII::MO_DTPREL_LO;
4356      break;
4357    case PPC::ADDItlsldL:
4358      Flags = PPCII::MO_TLSLD_LO;
4359      break;
4360    case PPC::ADDItocL:
4361      Flags = PPCII::MO_TOC_LO;
4362      break;
4363    }
4364
4365    SDValue ImmOpnd = Base.getOperand(1);
4366    int MaxDisplacement = 0;
4367    if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
4368      const GlobalValue *GV = GA->getGlobal();
4369      MaxDisplacement = GV->getAlignment() - 1;
4370    }
4371
4372    int Offset = N->getConstantOperandVal(FirstOp);
4373    if (Offset < 0 || Offset > MaxDisplacement)
4374      continue;
4375
4376    // We found an opportunity.  Reverse the operands from the add
4377    // immediate and substitute them into the load or store.  If
4378    // needed, update the target flags for the immediate operand to
4379    // reflect the necessary relocation information.
4380    DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase:    ");
4381    DEBUG(Base->dump(CurDAG));
4382    DEBUG(dbgs() << "\nN: ");
4383    DEBUG(N->dump(CurDAG));
4384    DEBUG(dbgs() << "\n");
4385
4386    // If the relocation information isn't already present on the
4387    // immediate operand, add it now.
4388    if (ReplaceFlags) {
4389      if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
4390        SDLoc dl(GA);
4391        const GlobalValue *GV = GA->getGlobal();
4392        // We can't perform this optimization for data whose alignment
4393        // is insufficient for the instruction encoding.
4394        if (GV->getAlignment() < 4 &&
4395            (StorageOpcode == PPC::LD || StorageOpcode == PPC::STD ||
4396             StorageOpcode == PPC::LWA || (Offset % 4) != 0)) {
4397          DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n");
4398          continue;
4399        }
4400        ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, Offset, Flags);
4401      } else if (ConstantPoolSDNode *CP =
4402                 dyn_cast<ConstantPoolSDNode>(ImmOpnd)) {
4403        const Constant *C = CP->getConstVal();
4404        ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64,
4405                                                CP->getAlignment(),
4406                                                Offset, Flags);
4407      }
4408    }
4409
4410    if (FirstOp == 1) // Store
4411      (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd,
4412                                       Base.getOperand(0), N->getOperand(3));
4413    else // Load
4414      (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0),
4415                                       N->getOperand(2));
4416
4417    // The add-immediate may now be dead, in which case remove it.
4418    if (Base.getNode()->use_empty())
4419      CurDAG->RemoveDeadNode(Base.getNode());
4420  }
4421}
4422
4423
4424/// createPPCISelDag - This pass converts a legalized DAG into a
4425/// PowerPC-specific DAG, ready for instruction scheduling.
4426///
4427FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) {
4428  return new PPCDAGToDAGISel(TM);
4429}
4430