PPCISelDAGToDAG.cpp revision 0949ed5412c0902113aaefe106fed5b383fcc696
1//===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a pattern matching instruction selector for PowerPC,
11// converting from a legalized dag to a PPC dag.
12//
13//===----------------------------------------------------------------------===//
14
15#include "PPC.h"
16#include "PPCTargetMachine.h"
17#include "PPCISelLowering.h"
18#include "PPCHazardRecognizers.h"
19#include "llvm/CodeGen/MachineInstrBuilder.h"
20#include "llvm/CodeGen/MachineFunction.h"
21#include "llvm/CodeGen/SSARegMap.h"
22#include "llvm/CodeGen/SelectionDAG.h"
23#include "llvm/CodeGen/SelectionDAGISel.h"
24#include "llvm/Target/TargetOptions.h"
25#include "llvm/ADT/Statistic.h"
26#include "llvm/Constants.h"
27#include "llvm/GlobalValue.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/MathExtras.h"
31#include <iostream>
32#include <set>
33using namespace llvm;
34
35namespace {
36  Statistic<> FrameOff("ppc-codegen", "Number of frame idx offsets collapsed");
37
38  //===--------------------------------------------------------------------===//
39  /// PPCDAGToDAGISel - PPC specific code to select PPC machine
40  /// instructions for SelectionDAG operations.
41  ///
42  class PPCDAGToDAGISel : public SelectionDAGISel {
43    PPCTargetMachine &TM;
44    PPCTargetLowering PPCLowering;
45    unsigned GlobalBaseReg;
46  public:
47    PPCDAGToDAGISel(PPCTargetMachine &tm)
48      : SelectionDAGISel(PPCLowering), TM(tm),
49        PPCLowering(*TM.getTargetLowering()) {}
50
51    virtual bool runOnFunction(Function &Fn) {
52      // Make sure we re-emit a set of the global base reg if necessary
53      GlobalBaseReg = 0;
54      SelectionDAGISel::runOnFunction(Fn);
55
56      InsertVRSaveCode(Fn);
57      return true;
58    }
59
60    /// getI32Imm - Return a target constant with the specified value, of type
61    /// i32.
62    inline SDOperand getI32Imm(unsigned Imm) {
63      return CurDAG->getTargetConstant(Imm, MVT::i32);
64    }
65
66    /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
67    /// base register.  Return the virtual register that holds this value.
68    SDOperand getGlobalBaseReg();
69
70    // Select - Convert the specified operand from a target-independent to a
71    // target-specific node if it hasn't already been changed.
72    void Select(SDOperand &Result, SDOperand Op);
73
74    SDNode *SelectBitfieldInsert(SDNode *N);
75
76    /// SelectCC - Select a comparison of the specified values with the
77    /// specified condition code, returning the CR# of the expression.
78    SDOperand SelectCC(SDOperand LHS, SDOperand RHS, ISD::CondCode CC);
79
80    /// SelectAddrImm - Returns true if the address N can be represented by
81    /// a base register plus a signed 16-bit displacement [r+imm].
82    bool SelectAddrImm(SDOperand N, SDOperand &Disp, SDOperand &Base);
83
84    /// SelectAddrIdx - Given the specified addressed, check to see if it can be
85    /// represented as an indexed [r+r] operation.  Returns false if it can
86    /// be represented by [r+imm], which are preferred.
87    bool SelectAddrIdx(SDOperand N, SDOperand &Base, SDOperand &Index);
88
89    /// SelectAddrIdxOnly - Given the specified addressed, force it to be
90    /// represented as an indexed [r+r] operation.
91    bool SelectAddrIdxOnly(SDOperand N, SDOperand &Base, SDOperand &Index);
92
93    /// SelectAddrImmShift - Returns true if the address N can be represented by
94    /// a base register plus a signed 14-bit displacement [r+imm*4].  Suitable
95    /// for use by STD and friends.
96    bool SelectAddrImmShift(SDOperand N, SDOperand &Disp, SDOperand &Base);
97
98    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
99    /// inline asm expressions.
100    virtual bool SelectInlineAsmMemoryOperand(const SDOperand &Op,
101                                              char ConstraintCode,
102                                              std::vector<SDOperand> &OutOps,
103                                              SelectionDAG &DAG) {
104      SDOperand Op0, Op1;
105      switch (ConstraintCode) {
106      default: return true;
107      case 'm':   // memory
108        if (!SelectAddrIdx(Op, Op0, Op1))
109          SelectAddrImm(Op, Op0, Op1);
110        break;
111      case 'o':   // offsetable
112        if (!SelectAddrImm(Op, Op0, Op1)) {
113          Select(Op0, Op);     // r+0.
114          Op1 = getI32Imm(0);
115        }
116        break;
117      case 'v':   // not offsetable
118        SelectAddrIdxOnly(Op, Op0, Op1);
119        break;
120      }
121
122      OutOps.push_back(Op0);
123      OutOps.push_back(Op1);
124      return false;
125    }
126
127    SDOperand BuildSDIVSequence(SDNode *N);
128    SDOperand BuildUDIVSequence(SDNode *N);
129
130    /// InstructionSelectBasicBlock - This callback is invoked by
131    /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
132    virtual void InstructionSelectBasicBlock(SelectionDAG &DAG);
133
134    void InsertVRSaveCode(Function &Fn);
135
136    virtual const char *getPassName() const {
137      return "PowerPC DAG->DAG Pattern Instruction Selection";
138    }
139
140    /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for this
141    /// target when scheduling the DAG.
142    virtual HazardRecognizer *CreateTargetHazardRecognizer() {
143      // Should use subtarget info to pick the right hazard recognizer.  For
144      // now, always return a PPC970 recognizer.
145      const TargetInstrInfo *II = PPCLowering.getTargetMachine().getInstrInfo();
146      assert(II && "No InstrInfo?");
147      return new PPCHazardRecognizer970(*II);
148    }
149
150// Include the pieces autogenerated from the target description.
151#include "PPCGenDAGISel.inc"
152
153private:
154    SDOperand SelectSETCC(SDOperand Op);
155    SDOperand SelectCALL(SDOperand Op);
156  };
157}
158
159/// InstructionSelectBasicBlock - This callback is invoked by
160/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
161void PPCDAGToDAGISel::InstructionSelectBasicBlock(SelectionDAG &DAG) {
162  DEBUG(BB->dump());
163
164  // The selection process is inherently a bottom-up recursive process (users
165  // select their uses before themselves).  Given infinite stack space, we
166  // could just start selecting on the root and traverse the whole graph.  In
167  // practice however, this causes us to run out of stack space on large basic
168  // blocks.  To avoid this problem, select the entry node, then all its uses,
169  // iteratively instead of recursively.
170  std::vector<SDOperand> Worklist;
171  Worklist.push_back(DAG.getEntryNode());
172
173  // Note that we can do this in the PPC target (scanning forward across token
174  // chain edges) because no nodes ever get folded across these edges.  On a
175  // target like X86 which supports load/modify/store operations, this would
176  // have to be more careful.
177  while (!Worklist.empty()) {
178    SDOperand Node = Worklist.back();
179    Worklist.pop_back();
180
181    // Chose from the least deep of the top two nodes.
182    if (!Worklist.empty() &&
183        Worklist.back().Val->getNodeDepth() < Node.Val->getNodeDepth())
184      std::swap(Worklist.back(), Node);
185
186    if ((Node.Val->getOpcode() >= ISD::BUILTIN_OP_END &&
187         Node.Val->getOpcode() < PPCISD::FIRST_NUMBER) ||
188        CodeGenMap.count(Node)) continue;
189
190    for (SDNode::use_iterator UI = Node.Val->use_begin(),
191         E = Node.Val->use_end(); UI != E; ++UI) {
192      // Scan the values.  If this use has a value that is a token chain, add it
193      // to the worklist.
194      SDNode *User = *UI;
195      for (unsigned i = 0, e = User->getNumValues(); i != e; ++i)
196        if (User->getValueType(i) == MVT::Other) {
197          Worklist.push_back(SDOperand(User, i));
198          break;
199        }
200    }
201
202    // Finally, legalize this node.
203    SDOperand Dummy;
204    Select(Dummy, Node);
205  }
206
207  // Select target instructions for the DAG.
208  DAG.setRoot(SelectRoot(DAG.getRoot()));
209  CodeGenMap.clear();
210  DAG.RemoveDeadNodes();
211
212  // Emit machine code to BB.
213  ScheduleAndEmitDAG(DAG);
214}
215
216/// InsertVRSaveCode - Once the entire function has been instruction selected,
217/// all virtual registers are created and all machine instructions are built,
218/// check to see if we need to save/restore VRSAVE.  If so, do it.
219void PPCDAGToDAGISel::InsertVRSaveCode(Function &F) {
220  // Check to see if this function uses vector registers, which means we have to
221  // save and restore the VRSAVE register and update it with the regs we use.
222  //
223  // In this case, there will be virtual registers of vector type type created
224  // by the scheduler.  Detect them now.
225  MachineFunction &Fn = MachineFunction::get(&F);
226  SSARegMap *RegMap = Fn.getSSARegMap();
227  bool HasVectorVReg = false;
228  for (unsigned i = MRegisterInfo::FirstVirtualRegister,
229       e = RegMap->getLastVirtReg()+1; i != e; ++i)
230    if (RegMap->getRegClass(i) == &PPC::VRRCRegClass) {
231      HasVectorVReg = true;
232      break;
233    }
234  if (!HasVectorVReg) return;  // nothing to do.
235
236  // If we have a vector register, we want to emit code into the entry and exit
237  // blocks to save and restore the VRSAVE register.  We do this here (instead
238  // of marking all vector instructions as clobbering VRSAVE) for two reasons:
239  //
240  // 1. This (trivially) reduces the load on the register allocator, by not
241  //    having to represent the live range of the VRSAVE register.
242  // 2. This (more significantly) allows us to create a temporary virtual
243  //    register to hold the saved VRSAVE value, allowing this temporary to be
244  //    register allocated, instead of forcing it to be spilled to the stack.
245
246  // Create two vregs - one to hold the VRSAVE register that is live-in to the
247  // function and one for the value after having bits or'd into it.
248  unsigned InVRSAVE = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
249  unsigned UpdatedVRSAVE = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
250
251  MachineBasicBlock &EntryBB = *Fn.begin();
252  // Emit the following code into the entry block:
253  // InVRSAVE = MFVRSAVE
254  // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE
255  // MTVRSAVE UpdatedVRSAVE
256  MachineBasicBlock::iterator IP = EntryBB.begin();  // Insert Point
257  BuildMI(EntryBB, IP, PPC::MFVRSAVE, 0, InVRSAVE);
258  BuildMI(EntryBB, IP, PPC::UPDATE_VRSAVE, 1, UpdatedVRSAVE).addReg(InVRSAVE);
259  BuildMI(EntryBB, IP, PPC::MTVRSAVE, 1).addReg(UpdatedVRSAVE);
260
261  // Find all return blocks, outputting a restore in each epilog.
262  const TargetInstrInfo &TII = *TM.getInstrInfo();
263  for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
264    if (!BB->empty() && TII.isReturn(BB->back().getOpcode())) {
265      IP = BB->end(); --IP;
266
267      // Skip over all terminator instructions, which are part of the return
268      // sequence.
269      MachineBasicBlock::iterator I2 = IP;
270      while (I2 != BB->begin() && TII.isTerminatorInstr((--I2)->getOpcode()))
271        IP = I2;
272
273      // Emit: MTVRSAVE InVRSave
274      BuildMI(*BB, IP, PPC::MTVRSAVE, 1).addReg(InVRSAVE);
275    }
276  }
277}
278
279
280/// getGlobalBaseReg - Output the instructions required to put the
281/// base address to use for accessing globals into a register.
282///
283SDOperand PPCDAGToDAGISel::getGlobalBaseReg() {
284  if (!GlobalBaseReg) {
285    // Insert the set of GlobalBaseReg into the first MBB of the function
286    MachineBasicBlock &FirstMBB = BB->getParent()->front();
287    MachineBasicBlock::iterator MBBI = FirstMBB.begin();
288    SSARegMap *RegMap = BB->getParent()->getSSARegMap();
289    // FIXME: when we get to LP64, we will need to create the appropriate
290    // type of register here.
291    GlobalBaseReg = RegMap->createVirtualRegister(PPC::GPRCRegisterClass);
292    BuildMI(FirstMBB, MBBI, PPC::MovePCtoLR, 0, PPC::LR);
293    BuildMI(FirstMBB, MBBI, PPC::MFLR, 1, GlobalBaseReg);
294  }
295  return CurDAG->getRegister(GlobalBaseReg, MVT::i32);
296}
297
298
299// isIntImmediate - This method tests to see if a constant operand.
300// If so Imm will receive the 32 bit value.
301static bool isIntImmediate(SDNode *N, unsigned& Imm) {
302  if (N->getOpcode() == ISD::Constant) {
303    Imm = cast<ConstantSDNode>(N)->getValue();
304    return true;
305  }
306  return false;
307}
308
309// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
310// any number of 0s on either side.  The 1s are allowed to wrap from LSB to
311// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.  0x0F0F0000 is
312// not, since all 1s are not contiguous.
313static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) {
314  if (isShiftedMask_32(Val)) {
315    // look for the first non-zero bit
316    MB = CountLeadingZeros_32(Val);
317    // look for the first zero bit after the run of ones
318    ME = CountLeadingZeros_32((Val - 1) ^ Val);
319    return true;
320  } else {
321    Val = ~Val; // invert mask
322    if (isShiftedMask_32(Val)) {
323      // effectively look for the first zero bit
324      ME = CountLeadingZeros_32(Val) - 1;
325      // effectively look for the first one bit after the run of zeros
326      MB = CountLeadingZeros_32((Val - 1) ^ Val) + 1;
327      return true;
328    }
329  }
330  // no run present
331  return false;
332}
333
334// isRotateAndMask - Returns true if Mask and Shift can be folded into a rotate
335// and mask opcode and mask operation.
336static bool isRotateAndMask(SDNode *N, unsigned Mask, bool IsShiftMask,
337                            unsigned &SH, unsigned &MB, unsigned &ME) {
338  // Don't even go down this path for i64, since different logic will be
339  // necessary for rldicl/rldicr/rldimi.
340  if (N->getValueType(0) != MVT::i32)
341    return false;
342
343  unsigned Shift  = 32;
344  unsigned Indeterminant = ~0;  // bit mask marking indeterminant results
345  unsigned Opcode = N->getOpcode();
346  if (N->getNumOperands() != 2 ||
347      !isIntImmediate(N->getOperand(1).Val, Shift) || (Shift > 31))
348    return false;
349
350  if (Opcode == ISD::SHL) {
351    // apply shift left to mask if it comes first
352    if (IsShiftMask) Mask = Mask << Shift;
353    // determine which bits are made indeterminant by shift
354    Indeterminant = ~(0xFFFFFFFFu << Shift);
355  } else if (Opcode == ISD::SRL) {
356    // apply shift right to mask if it comes first
357    if (IsShiftMask) Mask = Mask >> Shift;
358    // determine which bits are made indeterminant by shift
359    Indeterminant = ~(0xFFFFFFFFu >> Shift);
360    // adjust for the left rotate
361    Shift = 32 - Shift;
362  } else {
363    return false;
364  }
365
366  // if the mask doesn't intersect any Indeterminant bits
367  if (Mask && !(Mask & Indeterminant)) {
368    SH = Shift & 31;
369    // make sure the mask is still a mask (wrap arounds may not be)
370    return isRunOfOnes(Mask, MB, ME);
371  }
372  return false;
373}
374
375// isOpcWithIntImmediate - This method tests to see if the node is a specific
376// opcode and that it has a immediate integer right operand.
377// If so Imm will receive the 32 bit value.
378static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
379  return N->getOpcode() == Opc && isIntImmediate(N->getOperand(1).Val, Imm);
380}
381
382// isIntImmediate - This method tests to see if a constant operand.
383// If so Imm will receive the 32 bit value.
384static bool isIntImmediate(SDOperand N, unsigned& Imm) {
385  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
386    Imm = (unsigned)CN->getSignExtended();
387    return true;
388  }
389  return false;
390}
391
392/// SelectBitfieldInsert - turn an or of two masked values into
393/// the rotate left word immediate then mask insert (rlwimi) instruction.
394SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) {
395  SDOperand Op0 = N->getOperand(0);
396  SDOperand Op1 = N->getOperand(1);
397
398  uint64_t LKZ, LKO, RKZ, RKO;
399  TLI.ComputeMaskedBits(Op0, 0xFFFFFFFFULL, LKZ, LKO);
400  TLI.ComputeMaskedBits(Op1, 0xFFFFFFFFULL, RKZ, RKO);
401
402  unsigned TargetMask = LKZ;
403  unsigned InsertMask = RKZ;
404
405  if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
406    unsigned Op0Opc = Op0.getOpcode();
407    unsigned Op1Opc = Op1.getOpcode();
408    unsigned Value, SH = 0;
409    TargetMask = ~TargetMask;
410    InsertMask = ~InsertMask;
411
412    // If the LHS has a foldable shift and the RHS does not, then swap it to the
413    // RHS so that we can fold the shift into the insert.
414    if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
415      if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
416          Op0.getOperand(0).getOpcode() == ISD::SRL) {
417        if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
418            Op1.getOperand(0).getOpcode() != ISD::SRL) {
419          std::swap(Op0, Op1);
420          std::swap(Op0Opc, Op1Opc);
421          std::swap(TargetMask, InsertMask);
422        }
423      }
424    } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
425      if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
426          Op1.getOperand(0).getOpcode() != ISD::SRL) {
427        std::swap(Op0, Op1);
428        std::swap(Op0Opc, Op1Opc);
429        std::swap(TargetMask, InsertMask);
430      }
431    }
432
433    unsigned MB, ME;
434    if (InsertMask && isRunOfOnes(InsertMask, MB, ME)) {
435      SDOperand Tmp1, Tmp2, Tmp3;
436      bool DisjointMask = (TargetMask ^ InsertMask) == 0xFFFFFFFF;
437
438      if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
439          isIntImmediate(Op1.getOperand(1), Value)) {
440        Op1 = Op1.getOperand(0);
441        SH  = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
442      }
443      if (Op1Opc == ISD::AND) {
444        unsigned SHOpc = Op1.getOperand(0).getOpcode();
445        if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) &&
446            isIntImmediate(Op1.getOperand(0).getOperand(1), Value)) {
447          Op1 = Op1.getOperand(0).getOperand(0);
448          SH  = (SHOpc == ISD::SHL) ? Value : 32 - Value;
449        } else {
450          Op1 = Op1.getOperand(0);
451        }
452      }
453
454      Tmp3 = (Op0Opc == ISD::AND && DisjointMask) ? Op0.getOperand(0) : Op0;
455      Select(Tmp1, Tmp3);
456      Select(Tmp2, Op1);
457      SH &= 31;
458      return CurDAG->getTargetNode(PPC::RLWIMI, MVT::i32, Tmp1, Tmp2,
459                                   getI32Imm(SH), getI32Imm(MB), getI32Imm(ME));
460    }
461  }
462  return 0;
463}
464
465/// SelectAddrImm - Returns true if the address N can be represented by
466/// a base register plus a signed 16-bit displacement [r+imm].
467bool PPCDAGToDAGISel::SelectAddrImm(SDOperand N, SDOperand &Disp,
468                                    SDOperand &Base) {
469  // If this can be more profitably realized as r+r, fail.
470  if (SelectAddrIdx(N, Disp, Base))
471    return false;
472
473  if (N.getOpcode() == ISD::ADD) {
474    unsigned imm = 0;
475    if (isIntImmediate(N.getOperand(1), imm) && isInt16(imm)) {
476      Disp = getI32Imm(imm & 0xFFFF);
477      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
478        Base = CurDAG->getTargetFrameIndex(FI->getIndex(), MVT::i32);
479      } else {
480        Base = N.getOperand(0);
481      }
482      return true; // [r+i]
483    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
484      // Match LOAD (ADD (X, Lo(G))).
485      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
486             && "Cannot handle constant offsets yet!");
487      Disp = N.getOperand(1).getOperand(0);  // The global address.
488      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
489             Disp.getOpcode() == ISD::TargetConstantPool ||
490             Disp.getOpcode() == ISD::TargetJumpTable);
491      Base = N.getOperand(0);
492      return true;  // [&g+r]
493    }
494  } else if (N.getOpcode() == ISD::OR) {
495    unsigned imm = 0;
496    if (isIntImmediate(N.getOperand(1), imm) && isInt16(imm)) {
497      // If this is an or of disjoint bitfields, we can codegen this as an add
498      // (for better address arithmetic) if the LHS and RHS of the OR are
499      // provably disjoint.
500      uint64_t LHSKnownZero, LHSKnownOne;
501      PPCLowering.ComputeMaskedBits(N.getOperand(0), ~0U,
502                                    LHSKnownZero, LHSKnownOne);
503      if ((LHSKnownZero|~imm) == ~0U) {
504        // If all of the bits are known zero on the LHS or RHS, the add won't
505        // carry.
506        Base = N.getOperand(0);
507        Disp = getI32Imm(imm & 0xFFFF);
508        return true;
509      }
510    }
511  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
512    // Loading from a constant address.
513    int Addr = (int)CN->getValue();
514
515    // If this address fits entirely in a 16-bit sext immediate field, codegen
516    // this as "d, 0"
517    if (Addr == (short)Addr) {
518      Disp = getI32Imm(Addr);
519      Base = CurDAG->getRegister(PPC::R0, MVT::i32);
520      return true;
521    }
522
523    // Otherwise, break this down into an LIS + disp.
524    Disp = getI32Imm((short)Addr);
525    Base = CurDAG->getConstant(Addr - (signed short)Addr, MVT::i32);
526    return true;
527  }
528
529  Disp = getI32Imm(0);
530  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
531    Base = CurDAG->getTargetFrameIndex(FI->getIndex(), MVT::i32);
532  else
533    Base = N;
534  return true;      // [r+0]
535}
536
537/// SelectAddrIdx - Given the specified addressed, check to see if it can be
538/// represented as an indexed [r+r] operation.  Returns false if it can
539/// be represented by [r+imm], which are preferred.
540bool PPCDAGToDAGISel::SelectAddrIdx(SDOperand N, SDOperand &Base,
541                                    SDOperand &Index) {
542  unsigned imm = 0;
543  if (N.getOpcode() == ISD::ADD) {
544    if (isIntImmediate(N.getOperand(1), imm) && isInt16(imm))
545      return false;    // r+i
546    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
547      return false;    // r+i
548
549    Base = N.getOperand(0);
550    Index = N.getOperand(1);
551    return true;
552  } else if (N.getOpcode() == ISD::OR) {
553    if (isIntImmediate(N.getOperand(1), imm) && isInt16(imm))
554      return false;    // r+i can fold it if we can.
555
556    // If this is an or of disjoint bitfields, we can codegen this as an add
557    // (for better address arithmetic) if the LHS and RHS of the OR are provably
558    // disjoint.
559    uint64_t LHSKnownZero, LHSKnownOne;
560    uint64_t RHSKnownZero, RHSKnownOne;
561    PPCLowering.ComputeMaskedBits(N.getOperand(0), ~0U,
562                                  LHSKnownZero, LHSKnownOne);
563
564    if (LHSKnownZero) {
565      PPCLowering.ComputeMaskedBits(N.getOperand(1), ~0U,
566                                    RHSKnownZero, RHSKnownOne);
567      // If all of the bits are known zero on the LHS or RHS, the add won't
568      // carry.
569      if ((LHSKnownZero | RHSKnownZero) == ~0U) {
570        Base = N.getOperand(0);
571        Index = N.getOperand(1);
572        return true;
573      }
574    }
575  }
576
577  return false;
578}
579
580/// SelectAddrIdxOnly - Given the specified addressed, force it to be
581/// represented as an indexed [r+r] operation.
582bool PPCDAGToDAGISel::SelectAddrIdxOnly(SDOperand N, SDOperand &Base,
583                                        SDOperand &Index) {
584  // Check to see if we can easily represent this as an [r+r] address.  This
585  // will fail if it thinks that the address is more profitably represented as
586  // reg+imm, e.g. where imm = 0.
587  if (SelectAddrIdx(N, Base, Index))
588    return true;
589
590  // If the operand is an addition, always emit this as [r+r], since this is
591  // better (for code size, and execution, as the memop does the add for free)
592  // than emitting an explicit add.
593  if (N.getOpcode() == ISD::ADD) {
594    Base = N.getOperand(0);
595    Index = N.getOperand(1);
596    return true;
597  }
598
599  // Otherwise, do it the hard way, using R0 as the base register.
600  Base = CurDAG->getRegister(PPC::R0, MVT::i32);
601  Index = N;
602  return true;
603}
604
605/// SelectAddrImmShift - Returns true if the address N can be represented by
606/// a base register plus a signed 14-bit displacement [r+imm*4].  Suitable
607/// for use by STD and friends.
608bool PPCDAGToDAGISel::SelectAddrImmShift(SDOperand N, SDOperand &Disp,
609                                         SDOperand &Base) {
610  // If this can be more profitably realized as r+r, fail.
611  if (SelectAddrIdx(N, Disp, Base))
612    return false;
613
614  if (N.getOpcode() == ISD::ADD) {
615    unsigned imm = 0;
616    if (isIntImmediate(N.getOperand(1), imm) && isInt16(imm) &&
617        (imm & 3) == 0) {
618      Disp = getI32Imm((imm & 0xFFFF) >> 2);
619      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
620        Base = CurDAG->getTargetFrameIndex(FI->getIndex(), MVT::i32);
621      } else {
622        Base = N.getOperand(0);
623      }
624      return true; // [r+i]
625    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
626      // Match LOAD (ADD (X, Lo(G))).
627      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
628             && "Cannot handle constant offsets yet!");
629      Disp = N.getOperand(1).getOperand(0);  // The global address.
630      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
631             Disp.getOpcode() == ISD::TargetConstantPool ||
632             Disp.getOpcode() == ISD::TargetJumpTable);
633      Base = N.getOperand(0);
634      return true;  // [&g+r]
635    }
636  } else if (N.getOpcode() == ISD::OR) {
637    unsigned imm = 0;
638    if (isIntImmediate(N.getOperand(1), imm) && isInt16(imm) &&
639        (imm & 3) == 0) {
640      // If this is an or of disjoint bitfields, we can codegen this as an add
641      // (for better address arithmetic) if the LHS and RHS of the OR are
642      // provably disjoint.
643      uint64_t LHSKnownZero, LHSKnownOne;
644      PPCLowering.ComputeMaskedBits(N.getOperand(0), ~0U,
645                                    LHSKnownZero, LHSKnownOne);
646      if ((LHSKnownZero|~imm) == ~0U) {
647        // If all of the bits are known zero on the LHS or RHS, the add won't
648        // carry.
649        Base = N.getOperand(0);
650        Disp = getI32Imm((imm & 0xFFFF) >> 2);
651        return true;
652      }
653    }
654  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
655    // Loading from a constant address.
656    int Addr = (int)CN->getValue();
657    if ((Addr & 3) == 0) {
658      // If this address fits entirely in a 16-bit sext immediate field, codegen
659      // this as "d, 0"
660      if (Addr == (short)Addr) {
661        Disp = getI32Imm(Addr >> 2);
662        Base = CurDAG->getRegister(PPC::R0, MVT::i32);
663        return true;
664      }
665
666      // Otherwise, break this down into an LIS + disp.
667      Disp = getI32Imm((short)Addr >> 2);
668      Base = CurDAG->getConstant(Addr - (signed short)Addr, MVT::i32);
669      return true;
670    }
671  }
672
673  Disp = getI32Imm(0);
674  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
675    Base = CurDAG->getTargetFrameIndex(FI->getIndex(), MVT::i32);
676  else
677    Base = N;
678  return true;      // [r+0]
679}
680
681
682/// SelectCC - Select a comparison of the specified values with the specified
683/// condition code, returning the CR# of the expression.
684SDOperand PPCDAGToDAGISel::SelectCC(SDOperand LHS, SDOperand RHS,
685                                    ISD::CondCode CC) {
686  // Always select the LHS.
687  Select(LHS, LHS);
688
689  // Use U to determine whether the SETCC immediate range is signed or not.
690  if (MVT::isInteger(LHS.getValueType())) {
691    bool U = ISD::isUnsignedIntSetCC(CC);
692    unsigned Imm;
693    if (isIntImmediate(RHS, Imm) &&
694        ((U && isUInt16(Imm)) || (!U && isInt16(Imm))))
695      return SDOperand(CurDAG->getTargetNode(U ? PPC::CMPLWI : PPC::CMPWI,
696                                    MVT::i32, LHS, getI32Imm(Imm & 0xFFFF)), 0);
697    Select(RHS, RHS);
698    return SDOperand(CurDAG->getTargetNode(U ? PPC::CMPLW : PPC::CMPW, MVT::i32,
699                                           LHS, RHS), 0);
700  } else if (LHS.getValueType() == MVT::f32) {
701    Select(RHS, RHS);
702    return SDOperand(CurDAG->getTargetNode(PPC::FCMPUS, MVT::i32, LHS, RHS), 0);
703  } else {
704    Select(RHS, RHS);
705    return SDOperand(CurDAG->getTargetNode(PPC::FCMPUD, MVT::i32, LHS, RHS), 0);
706  }
707}
708
709/// getBCCForSetCC - Returns the PowerPC condition branch mnemonic corresponding
710/// to Condition.
711static unsigned getBCCForSetCC(ISD::CondCode CC) {
712  switch (CC) {
713  default: assert(0 && "Unknown condition!"); abort();
714  case ISD::SETOEQ:    // FIXME: This is incorrect see PR642.
715  case ISD::SETEQ:  return PPC::BEQ;
716  case ISD::SETONE:    // FIXME: This is incorrect see PR642.
717  case ISD::SETNE:  return PPC::BNE;
718  case ISD::SETOLT:    // FIXME: This is incorrect see PR642.
719  case ISD::SETULT:
720  case ISD::SETLT:  return PPC::BLT;
721  case ISD::SETOLE:    // FIXME: This is incorrect see PR642.
722  case ISD::SETULE:
723  case ISD::SETLE:  return PPC::BLE;
724  case ISD::SETOGT:    // FIXME: This is incorrect see PR642.
725  case ISD::SETUGT:
726  case ISD::SETGT:  return PPC::BGT;
727  case ISD::SETOGE:    // FIXME: This is incorrect see PR642.
728  case ISD::SETUGE:
729  case ISD::SETGE:  return PPC::BGE;
730
731  case ISD::SETO:   return PPC::BUN;
732  case ISD::SETUO:  return PPC::BNU;
733  }
734  return 0;
735}
736
737/// getCRIdxForSetCC - Return the index of the condition register field
738/// associated with the SetCC condition, and whether or not the field is
739/// treated as inverted.  That is, lt = 0; ge = 0 inverted.
740static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool& Inv) {
741  switch (CC) {
742  default: assert(0 && "Unknown condition!"); abort();
743  case ISD::SETOLT:  // FIXME: This is incorrect see PR642.
744  case ISD::SETULT:
745  case ISD::SETLT:  Inv = false;  return 0;
746  case ISD::SETOGE:  // FIXME: This is incorrect see PR642.
747  case ISD::SETUGE:
748  case ISD::SETGE:  Inv = true;   return 0;
749  case ISD::SETOGT:  // FIXME: This is incorrect see PR642.
750  case ISD::SETUGT:
751  case ISD::SETGT:  Inv = false;  return 1;
752  case ISD::SETOLE:  // FIXME: This is incorrect see PR642.
753  case ISD::SETULE:
754  case ISD::SETLE:  Inv = true;   return 1;
755  case ISD::SETOEQ:  // FIXME: This is incorrect see PR642.
756  case ISD::SETEQ:  Inv = false;  return 2;
757  case ISD::SETONE:  // FIXME: This is incorrect see PR642.
758  case ISD::SETNE:  Inv = true;   return 2;
759  case ISD::SETO:   Inv = true;   return 3;
760  case ISD::SETUO:  Inv = false;  return 3;
761  }
762  return 0;
763}
764
765SDOperand PPCDAGToDAGISel::SelectSETCC(SDOperand Op) {
766  SDNode *N = Op.Val;
767  unsigned Imm;
768  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
769  if (isIntImmediate(N->getOperand(1), Imm)) {
770    // We can codegen setcc op, imm very efficiently compared to a brcond.
771    // Check for those cases here.
772    // setcc op, 0
773    if (Imm == 0) {
774      SDOperand Op;
775      Select(Op, N->getOperand(0));
776      switch (CC) {
777      default: break;
778      case ISD::SETEQ:
779        Op = SDOperand(CurDAG->getTargetNode(PPC::CNTLZW, MVT::i32, Op), 0);
780        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Op, getI32Imm(27),
781                                    getI32Imm(5), getI32Imm(31));
782      case ISD::SETNE: {
783        SDOperand AD =
784          SDOperand(CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
785                                          Op, getI32Imm(~0U)), 0);
786        return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op,
787                                    AD.getValue(1));
788      }
789      case ISD::SETLT:
790        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Op, getI32Imm(1),
791                                    getI32Imm(31), getI32Imm(31));
792      case ISD::SETGT: {
793        SDOperand T =
794          SDOperand(CurDAG->getTargetNode(PPC::NEG, MVT::i32, Op), 0);
795        T = SDOperand(CurDAG->getTargetNode(PPC::ANDC, MVT::i32, T, Op), 0);
796        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, T, getI32Imm(1),
797                                    getI32Imm(31), getI32Imm(31));
798      }
799      }
800    } else if (Imm == ~0U) {        // setcc op, -1
801      SDOperand Op;
802      Select(Op, N->getOperand(0));
803      switch (CC) {
804      default: break;
805      case ISD::SETEQ:
806        Op = SDOperand(CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
807                                             Op, getI32Imm(1)), 0);
808        return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
809                              SDOperand(CurDAG->getTargetNode(PPC::LI, MVT::i32,
810                                                              getI32Imm(0)), 0),
811                                    Op.getValue(1));
812      case ISD::SETNE: {
813        Op = SDOperand(CurDAG->getTargetNode(PPC::NOR, MVT::i32, Op, Op), 0);
814        SDNode *AD = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
815                                           Op, getI32Imm(~0U));
816        return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDOperand(AD, 0), Op,
817                                    SDOperand(AD, 1));
818      }
819      case ISD::SETLT: {
820        SDOperand AD = SDOperand(CurDAG->getTargetNode(PPC::ADDI, MVT::i32, Op,
821                                                       getI32Imm(1)), 0);
822        SDOperand AN = SDOperand(CurDAG->getTargetNode(PPC::AND, MVT::i32, AD,
823                                                       Op), 0);
824        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, AN, getI32Imm(1),
825                                    getI32Imm(31), getI32Imm(31));
826      }
827      case ISD::SETGT:
828        Op = SDOperand(CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, Op,
829                                             getI32Imm(1), getI32Imm(31),
830                                             getI32Imm(31)), 0);
831        return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1));
832      }
833    }
834  }
835
836  bool Inv;
837  unsigned Idx = getCRIdxForSetCC(CC, Inv);
838  SDOperand CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC);
839  SDOperand IntCR;
840
841  // Force the ccreg into CR7.
842  SDOperand CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
843
844  SDOperand InFlag(0, 0);  // Null incoming flag value.
845  CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), CR7Reg, CCReg,
846                               InFlag).getValue(1);
847
848  if (TLI.getTargetMachine().getSubtarget<PPCSubtarget>().isGigaProcessor())
849    IntCR = SDOperand(CurDAG->getTargetNode(PPC::MFOCRF, MVT::i32, CR7Reg,
850                                            CCReg), 0);
851  else
852    IntCR = SDOperand(CurDAG->getTargetNode(PPC::MFCR, MVT::i32, CCReg), 0);
853
854  if (!Inv) {
855    return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, IntCR,
856                                getI32Imm((32-(3-Idx)) & 31),
857                                getI32Imm(31), getI32Imm(31));
858  } else {
859    SDOperand Tmp =
860      SDOperand(CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, IntCR,
861                                      getI32Imm((32-(3-Idx)) & 31),
862                                      getI32Imm(31),getI32Imm(31)), 0);
863    return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1));
864  }
865}
866
867/// isCallCompatibleAddress - Return true if the specified 32-bit value is
868/// representable in the immediate field of a Bx instruction.
869static bool isCallCompatibleAddress(ConstantSDNode *C) {
870  int Addr = C->getValue();
871  if (Addr & 3) return false;  // Low 2 bits are implicitly zero.
872  return (Addr << 6 >> 6) == Addr;  // Top 6 bits have to be sext of immediate.
873}
874
875SDOperand PPCDAGToDAGISel::SelectCALL(SDOperand Op) {
876  SDNode *N = Op.Val;
877  SDOperand Chain;
878  Select(Chain, N->getOperand(0));
879
880  unsigned CallOpcode;
881  std::vector<SDOperand> CallOperands;
882
883  if (GlobalAddressSDNode *GASD =
884      dyn_cast<GlobalAddressSDNode>(N->getOperand(1))) {
885    CallOpcode = PPC::BL;
886    CallOperands.push_back(N->getOperand(1));
887  } else if (ExternalSymbolSDNode *ESSDN =
888             dyn_cast<ExternalSymbolSDNode>(N->getOperand(1))) {
889    CallOpcode = PPC::BL;
890    CallOperands.push_back(N->getOperand(1));
891  } else if (isa<ConstantSDNode>(N->getOperand(1)) &&
892             isCallCompatibleAddress(cast<ConstantSDNode>(N->getOperand(1)))) {
893    ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(1));
894    CallOpcode = PPC::BLA;
895    CallOperands.push_back(getI32Imm((int)C->getValue() >> 2));
896  } else {
897    // Copy the callee address into the CTR register.
898    SDOperand Callee;
899    Select(Callee, N->getOperand(1));
900    Chain = SDOperand(CurDAG->getTargetNode(PPC::MTCTR, MVT::Other, Callee,
901                                            Chain), 0);
902
903    // Copy the callee address into R12 on darwin.
904    SDOperand R12 = CurDAG->getRegister(PPC::R12, MVT::i32);
905    Chain = CurDAG->getNode(ISD::CopyToReg, MVT::Other, Chain, R12, Callee);
906
907    CallOperands.push_back(R12);
908    CallOpcode = PPC::BCTRL;
909  }
910
911  unsigned GPR_idx = 0, FPR_idx = 0;
912  static const unsigned GPR[] = {
913    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
914    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
915  };
916  static const unsigned FPR[] = {
917    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
918    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
919  };
920
921  SDOperand InFlag;  // Null incoming flag value.
922
923  for (unsigned i = 2, e = N->getNumOperands(); i != e; ++i) {
924    unsigned DestReg = 0;
925    MVT::ValueType RegTy = N->getOperand(i).getValueType();
926    if (RegTy == MVT::i32) {
927      assert(GPR_idx < 8 && "Too many int args");
928      DestReg = GPR[GPR_idx++];
929    } else {
930      assert(MVT::isFloatingPoint(N->getOperand(i).getValueType()) &&
931             "Unpromoted integer arg?");
932      assert(FPR_idx < 13 && "Too many fp args");
933      DestReg = FPR[FPR_idx++];
934    }
935
936    if (N->getOperand(i).getOpcode() != ISD::UNDEF) {
937      SDOperand Val;
938      Select(Val, N->getOperand(i));
939      Chain = CurDAG->getCopyToReg(Chain, DestReg, Val, InFlag);
940      InFlag = Chain.getValue(1);
941      CallOperands.push_back(CurDAG->getRegister(DestReg, RegTy));
942    }
943  }
944
945  // Finally, once everything is in registers to pass to the call, emit the
946  // call itself.
947  if (InFlag.Val)
948    CallOperands.push_back(InFlag);   // Strong dep on register copies.
949  else
950    CallOperands.push_back(Chain);    // Weak dep on whatever occurs before
951  Chain = SDOperand(CurDAG->getTargetNode(CallOpcode, MVT::Other, MVT::Flag,
952                                          CallOperands), 0);
953
954  std::vector<SDOperand> CallResults;
955
956  // If the call has results, copy the values out of the ret val registers.
957  switch (N->getValueType(0)) {
958    default: assert(0 && "Unexpected ret value!");
959    case MVT::Other: break;
960    case MVT::i32:
961      if (N->getValueType(1) == MVT::i32) {
962        Chain = CurDAG->getCopyFromReg(Chain, PPC::R4, MVT::i32,
963                                       Chain.getValue(1)).getValue(1);
964        CallResults.push_back(Chain.getValue(0));
965        Chain = CurDAG->getCopyFromReg(Chain, PPC::R3, MVT::i32,
966                                       Chain.getValue(2)).getValue(1);
967        CallResults.push_back(Chain.getValue(0));
968      } else {
969        Chain = CurDAG->getCopyFromReg(Chain, PPC::R3, MVT::i32,
970                                       Chain.getValue(1)).getValue(1);
971        CallResults.push_back(Chain.getValue(0));
972      }
973      break;
974    case MVT::f32:
975    case MVT::f64:
976      Chain = CurDAG->getCopyFromReg(Chain, PPC::F1, N->getValueType(0),
977                                     Chain.getValue(1)).getValue(1);
978      CallResults.push_back(Chain.getValue(0));
979      break;
980  }
981
982  CallResults.push_back(Chain);
983  for (unsigned i = 0, e = CallResults.size(); i != e; ++i)
984    CodeGenMap[Op.getValue(i)] = CallResults[i];
985  return CallResults[Op.ResNo];
986}
987
988// Select - Convert the specified operand from a target-independent to a
989// target-specific node if it hasn't already been changed.
990void PPCDAGToDAGISel::Select(SDOperand &Result, SDOperand Op) {
991  SDNode *N = Op.Val;
992  if (N->getOpcode() >= ISD::BUILTIN_OP_END &&
993      N->getOpcode() < PPCISD::FIRST_NUMBER) {
994    Result = Op;
995    return;   // Already selected.
996  }
997
998  // If this has already been converted, use it.
999  std::map<SDOperand, SDOperand>::iterator CGMI = CodeGenMap.find(Op);
1000  if (CGMI != CodeGenMap.end()) {
1001    Result = CGMI->second;
1002    return;
1003  }
1004
1005  switch (N->getOpcode()) {
1006  default: break;
1007  case ISD::SETCC:
1008    Result = SelectSETCC(Op);
1009    return;
1010  case PPCISD::CALL:
1011    Result = SelectCALL(Op);
1012    return;
1013  case PPCISD::GlobalBaseReg:
1014    Result = getGlobalBaseReg();
1015    return;
1016
1017  case ISD::FrameIndex: {
1018    int FI = cast<FrameIndexSDNode>(N)->getIndex();
1019    if (N->hasOneUse()) {
1020      Result = CurDAG->SelectNodeTo(N, PPC::ADDI, MVT::i32,
1021                                    CurDAG->getTargetFrameIndex(FI, MVT::i32),
1022                                    getI32Imm(0));
1023      return;
1024    }
1025    Result = CodeGenMap[Op] =
1026      SDOperand(CurDAG->getTargetNode(PPC::ADDI, MVT::i32,
1027                                      CurDAG->getTargetFrameIndex(FI, MVT::i32),
1028                                      getI32Imm(0)), 0);
1029    return;
1030  }
1031
1032  case PPCISD::MFCR: {
1033    SDOperand InFlag;
1034    Select(InFlag, N->getOperand(1));
1035    // Use MFOCRF if supported.
1036    if (TLI.getTargetMachine().getSubtarget<PPCSubtarget>().isGigaProcessor())
1037      Result = SDOperand(CurDAG->getTargetNode(PPC::MFOCRF, MVT::i32,
1038                                               N->getOperand(0), InFlag), 0);
1039    else
1040      Result = SDOperand(CurDAG->getTargetNode(PPC::MFCR, MVT::i32, InFlag), 0);
1041    CodeGenMap[Op] = Result;
1042    return;
1043  }
1044
1045  case ISD::SDIV: {
1046    // FIXME: since this depends on the setting of the carry flag from the srawi
1047    //        we should really be making notes about that for the scheduler.
1048    // FIXME: It sure would be nice if we could cheaply recognize the
1049    //        srl/add/sra pattern the dag combiner will generate for this as
1050    //        sra/addze rather than having to handle sdiv ourselves.  oh well.
1051    unsigned Imm;
1052    if (isIntImmediate(N->getOperand(1), Imm)) {
1053      SDOperand N0;
1054      Select(N0, N->getOperand(0));
1055      if ((signed)Imm > 0 && isPowerOf2_32(Imm)) {
1056        SDNode *Op =
1057          CurDAG->getTargetNode(PPC::SRAWI, MVT::i32, MVT::Flag,
1058                                N0, getI32Imm(Log2_32(Imm)));
1059        Result = CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
1060                                      SDOperand(Op, 0), SDOperand(Op, 1));
1061      } else if ((signed)Imm < 0 && isPowerOf2_32(-Imm)) {
1062        SDNode *Op =
1063          CurDAG->getTargetNode(PPC::SRAWI, MVT::i32, MVT::Flag,
1064                                N0, getI32Imm(Log2_32(-Imm)));
1065        SDOperand PT =
1066          SDOperand(CurDAG->getTargetNode(PPC::ADDZE, MVT::i32,
1067                                          SDOperand(Op, 0), SDOperand(Op, 1)),
1068                    0);
1069        Result = CurDAG->SelectNodeTo(N, PPC::NEG, MVT::i32, PT);
1070      }
1071      return;
1072    }
1073
1074    // Other cases are autogenerated.
1075    break;
1076  }
1077  case ISD::AND: {
1078    unsigned Imm, Imm2;
1079    // If this is an and of a value rotated between 0 and 31 bits and then and'd
1080    // with a mask, emit rlwinm
1081    if (isIntImmediate(N->getOperand(1), Imm) && (isShiftedMask_32(Imm) ||
1082                                                  isShiftedMask_32(~Imm))) {
1083      SDOperand Val;
1084      unsigned SH, MB, ME;
1085      if (isRotateAndMask(N->getOperand(0).Val, Imm, false, SH, MB, ME)) {
1086        Select(Val, N->getOperand(0).getOperand(0));
1087      } else if (Imm == 0) {
1088        // AND X, 0 -> 0, not "rlwinm 32".
1089        Select(Result, N->getOperand(1));
1090        return ;
1091      } else {
1092        Select(Val, N->getOperand(0));
1093        isRunOfOnes(Imm, MB, ME);
1094        SH = 0;
1095      }
1096      Result = CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Val,
1097                                    getI32Imm(SH), getI32Imm(MB),
1098                                    getI32Imm(ME));
1099      return;
1100    }
1101    // ISD::OR doesn't get all the bitfield insertion fun.
1102    // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) is a bitfield insert
1103    if (isIntImmediate(N->getOperand(1), Imm) &&
1104        N->getOperand(0).getOpcode() == ISD::OR &&
1105        isIntImmediate(N->getOperand(0).getOperand(1), Imm2)) {
1106      unsigned MB, ME;
1107      Imm = ~(Imm^Imm2);
1108      if (isRunOfOnes(Imm, MB, ME)) {
1109        SDOperand Tmp1, Tmp2;
1110        Select(Tmp1, N->getOperand(0).getOperand(0));
1111        Select(Tmp2, N->getOperand(0).getOperand(1));
1112        Result = SDOperand(CurDAG->getTargetNode(PPC::RLWIMI, MVT::i32,
1113                                                 Tmp1, Tmp2,
1114                                                 getI32Imm(0), getI32Imm(MB),
1115                                                 getI32Imm(ME)), 0);
1116        return;
1117      }
1118    }
1119
1120    // Other cases are autogenerated.
1121    break;
1122  }
1123  case ISD::OR:
1124    if (SDNode *I = SelectBitfieldInsert(N)) {
1125      Result = CodeGenMap[Op] = SDOperand(I, 0);
1126      return;
1127    }
1128
1129    // Other cases are autogenerated.
1130    break;
1131  case ISD::SHL: {
1132    unsigned Imm, SH, MB, ME;
1133    if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) &&
1134        isRotateAndMask(N, Imm, true, SH, MB, ME)) {
1135      SDOperand Val;
1136      Select(Val, N->getOperand(0).getOperand(0));
1137      Result = CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32,
1138                                    Val, getI32Imm(SH), getI32Imm(MB),
1139                                    getI32Imm(ME));
1140      return;
1141    }
1142
1143    // Other cases are autogenerated.
1144    break;
1145  }
1146  case ISD::SRL: {
1147    unsigned Imm, SH, MB, ME;
1148    if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) &&
1149        isRotateAndMask(N, Imm, true, SH, MB, ME)) {
1150      SDOperand Val;
1151      Select(Val, N->getOperand(0).getOperand(0));
1152      Result = CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32,
1153                                    Val, getI32Imm(SH), getI32Imm(MB),
1154                                    getI32Imm(ME));
1155      return;
1156    }
1157
1158    // Other cases are autogenerated.
1159    break;
1160  }
1161  case ISD::SELECT_CC: {
1162    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
1163
1164    // handle the setcc cases here.  select_cc lhs, 0, 1, 0, cc
1165    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
1166      if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
1167        if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
1168          if (N1C->isNullValue() && N3C->isNullValue() &&
1169              N2C->getValue() == 1ULL && CC == ISD::SETNE) {
1170            SDOperand LHS;
1171            Select(LHS, N->getOperand(0));
1172            SDNode *Tmp =
1173              CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
1174                                    LHS, getI32Imm(~0U));
1175            Result = CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32,
1176                                          SDOperand(Tmp, 0), LHS,
1177                                          SDOperand(Tmp, 1));
1178            return;
1179          }
1180
1181    SDOperand CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC);
1182    unsigned BROpc = getBCCForSetCC(CC);
1183
1184    bool isFP = MVT::isFloatingPoint(N->getValueType(0));
1185    unsigned SelectCCOp;
1186    if (MVT::isInteger(N->getValueType(0)))
1187      SelectCCOp = PPC::SELECT_CC_Int;
1188    else if (N->getValueType(0) == MVT::f32)
1189      SelectCCOp = PPC::SELECT_CC_F4;
1190    else if (N->getValueType(0) == MVT::f64)
1191      SelectCCOp = PPC::SELECT_CC_F8;
1192    else
1193      SelectCCOp = PPC::SELECT_CC_VRRC;
1194
1195    SDOperand N2, N3;
1196    Select(N2, N->getOperand(2));
1197    Select(N3, N->getOperand(3));
1198    Result = CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), CCReg,
1199                                  N2, N3, getI32Imm(BROpc));
1200    return;
1201  }
1202  case ISD::BR_CC: {
1203    SDOperand Chain;
1204    Select(Chain, N->getOperand(0));
1205    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
1206    SDOperand CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC);
1207    Result = CurDAG->SelectNodeTo(N, PPC::COND_BRANCH, MVT::Other,
1208                                  CondCode, getI32Imm(getBCCForSetCC(CC)),
1209                                  N->getOperand(4), Chain);
1210    return;
1211  }
1212  case ISD::BRIND: {
1213    SDOperand Chain, Target;
1214    Select(Chain, N->getOperand(0));
1215    Select(Target,N->getOperand(1));
1216    Chain = SDOperand(CurDAG->getTargetNode(PPC::MTCTR, MVT::Other, Target,
1217                                            Chain), 0);
1218    Result = CurDAG->SelectNodeTo(N, PPC::BCTR, MVT::Other, Chain);
1219    return;
1220  }
1221  }
1222
1223  SelectCode(Result, Op);
1224}
1225
1226
1227/// createPPCISelDag - This pass converts a legalized DAG into a
1228/// PowerPC-specific DAG, ready for instruction scheduling.
1229///
1230FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) {
1231  return new PPCDAGToDAGISel(TM);
1232}
1233
1234