PPCISelDAGToDAG.cpp revision 303b555164e82139e0f88c183f1fc176fbb2d16c
1//===-- PPC32ISelDAGToDAG.cpp - PPC32 pattern matching inst selector ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a pattern matching instruction selector for 32 bit PowerPC,
11// converting from a legalized dag to a PPC dag.
12//
13//===----------------------------------------------------------------------===//
14
15#include "PowerPC.h"
16#include "PPC32TargetMachine.h"
17#include "PPC32ISelLowering.h"
18#include "llvm/CodeGen/MachineInstrBuilder.h"
19#include "llvm/CodeGen/MachineFunction.h"
20#include "llvm/CodeGen/SSARegMap.h"
21#include "llvm/CodeGen/SelectionDAG.h"
22#include "llvm/CodeGen/SelectionDAGISel.h"
23#include "llvm/Target/TargetOptions.h"
24#include "llvm/ADT/Statistic.h"
25#include "llvm/Constants.h"
26#include "llvm/GlobalValue.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Support/MathExtras.h"
29using namespace llvm;
30
31namespace {
32  Statistic<> FusedFP ("ppc-codegen", "Number of fused fp operations");
33  Statistic<> FrameOff("ppc-codegen", "Number of frame idx offsets collapsed");
34
35  //===--------------------------------------------------------------------===//
36  /// PPC32DAGToDAGISel - PPC32 specific code to select PPC32 machine
37  /// instructions for SelectionDAG operations.
38  ///
39  class PPC32DAGToDAGISel : public SelectionDAGISel {
40    PPC32TargetLowering PPC32Lowering;
41    unsigned GlobalBaseReg;
42  public:
43    PPC32DAGToDAGISel(TargetMachine &TM)
44      : SelectionDAGISel(PPC32Lowering), PPC32Lowering(TM) {}
45
46    virtual bool runOnFunction(Function &Fn) {
47      // Make sure we re-emit a set of the global base reg if necessary
48      GlobalBaseReg = 0;
49      return SelectionDAGISel::runOnFunction(Fn);
50    }
51
52    /// getI32Imm - Return a target constant with the specified value, of type
53    /// i32.
54    inline SDOperand getI32Imm(unsigned Imm) {
55      return CurDAG->getTargetConstant(Imm, MVT::i32);
56    }
57
58    /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
59    /// base register.  Return the virtual register that holds this value.
60    SDOperand getGlobalBaseReg();
61
62    // Select - Convert the specified operand from a target-independent to a
63    // target-specific node if it hasn't already been changed.
64    SDOperand Select(SDOperand Op);
65
66    SDNode *SelectIntImmediateExpr(SDOperand LHS, SDOperand RHS,
67                                   unsigned OCHi, unsigned OCLo,
68                                   bool IsArithmetic = false,
69                                   bool Negate = false);
70    SDNode *SelectBitfieldInsert(SDNode *N);
71
72    /// SelectCC - Select a comparison of the specified values with the
73    /// specified condition code, returning the CR# of the expression.
74    SDOperand SelectCC(SDOperand LHS, SDOperand RHS, ISD::CondCode CC);
75
76    /// SelectAddr - Given the specified address, return the two operands for a
77    /// load/store instruction, and return true if it should be an indexed [r+r]
78    /// operation.
79    bool SelectAddr(SDOperand Addr, SDOperand &Op1, SDOperand &Op2);
80
81    SDOperand BuildSDIVSequence(SDNode *N);
82    SDOperand BuildUDIVSequence(SDNode *N);
83
84    /// InstructionSelectBasicBlock - This callback is invoked by
85    /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
86    virtual void InstructionSelectBasicBlock(SelectionDAG &DAG) {
87      DEBUG(BB->dump());
88      // Select target instructions for the DAG.
89      DAG.setRoot(Select(DAG.getRoot()));
90      DAG.RemoveDeadNodes();
91
92      // Emit machine code to BB.
93      ScheduleAndEmitDAG(DAG);
94    }
95
96    virtual const char *getPassName() const {
97      return "PowerPC DAG->DAG Pattern Instruction Selection";
98    }
99
100// Include the pieces autogenerated from the target description.
101#include "PPC32GenDAGISel.inc"
102  };
103}
104
105
106/// getGlobalBaseReg - Output the instructions required to put the
107/// base address to use for accessing globals into a register.
108///
109SDOperand PPC32DAGToDAGISel::getGlobalBaseReg() {
110  if (!GlobalBaseReg) {
111    // Insert the set of GlobalBaseReg into the first MBB of the function
112    MachineBasicBlock &FirstMBB = BB->getParent()->front();
113    MachineBasicBlock::iterator MBBI = FirstMBB.begin();
114    SSARegMap *RegMap = BB->getParent()->getSSARegMap();
115    GlobalBaseReg = RegMap->createVirtualRegister(PPC32::GPRCRegisterClass);
116    BuildMI(FirstMBB, MBBI, PPC::MovePCtoLR, 0, PPC::LR);
117    BuildMI(FirstMBB, MBBI, PPC::MFLR, 1, GlobalBaseReg);
118  }
119  return CurDAG->getRegister(GlobalBaseReg, MVT::i32);
120}
121
122
123// isIntImmediate - This method tests to see if a constant operand.
124// If so Imm will receive the 32 bit value.
125static bool isIntImmediate(SDNode *N, unsigned& Imm) {
126  if (N->getOpcode() == ISD::Constant) {
127    Imm = cast<ConstantSDNode>(N)->getValue();
128    return true;
129  }
130  return false;
131}
132
133// isOprShiftImm - Returns true if the specified operand is a shift opcode with
134// a immediate shift count less than 32.
135static bool isOprShiftImm(SDNode *N, unsigned& Opc, unsigned& SH) {
136  Opc = N->getOpcode();
137  return (Opc == ISD::SHL || Opc == ISD::SRL || Opc == ISD::SRA) &&
138    isIntImmediate(N->getOperand(1).Val, SH) && SH < 32;
139}
140
141// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
142// any number of 0s on either side.  The 1s are allowed to wrap from LSB to
143// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.  0x0F0F0000 is
144// not, since all 1s are not contiguous.
145static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) {
146  if (isShiftedMask_32(Val)) {
147    // look for the first non-zero bit
148    MB = CountLeadingZeros_32(Val);
149    // look for the first zero bit after the run of ones
150    ME = CountLeadingZeros_32((Val - 1) ^ Val);
151    return true;
152  } else {
153    Val = ~Val; // invert mask
154    if (isShiftedMask_32(Val)) {
155      // effectively look for the first zero bit
156      ME = CountLeadingZeros_32(Val) - 1;
157      // effectively look for the first one bit after the run of zeros
158      MB = CountLeadingZeros_32((Val - 1) ^ Val) + 1;
159      return true;
160    }
161  }
162  // no run present
163  return false;
164}
165
166// isRotateAndMask - Returns true if Mask and Shift can be folded in to a rotate
167// and mask opcode and mask operation.
168static bool isRotateAndMask(SDNode *N, unsigned Mask, bool IsShiftMask,
169                            unsigned &SH, unsigned &MB, unsigned &ME) {
170  unsigned Shift  = 32;
171  unsigned Indeterminant = ~0;  // bit mask marking indeterminant results
172  unsigned Opcode = N->getOpcode();
173  if (N->getNumOperands() != 2 ||
174      !isIntImmediate(N->getOperand(1).Val, Shift) || (Shift > 31))
175    return false;
176
177  if (Opcode == ISD::SHL) {
178    // apply shift left to mask if it comes first
179    if (IsShiftMask) Mask = Mask << Shift;
180    // determine which bits are made indeterminant by shift
181    Indeterminant = ~(0xFFFFFFFFu << Shift);
182  } else if (Opcode == ISD::SRA || Opcode == ISD::SRL) {
183    // apply shift right to mask if it comes first
184    if (IsShiftMask) Mask = Mask >> Shift;
185    // determine which bits are made indeterminant by shift
186    Indeterminant = ~(0xFFFFFFFFu >> Shift);
187    // adjust for the left rotate
188    Shift = 32 - Shift;
189  } else {
190    return false;
191  }
192
193  // if the mask doesn't intersect any Indeterminant bits
194  if (Mask && !(Mask & Indeterminant)) {
195    SH = Shift;
196    // make sure the mask is still a mask (wrap arounds may not be)
197    return isRunOfOnes(Mask, MB, ME);
198  }
199  return false;
200}
201
202// isOpcWithIntImmediate - This method tests to see if the node is a specific
203// opcode and that it has a immediate integer right operand.
204// If so Imm will receive the 32 bit value.
205static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
206  return N->getOpcode() == Opc && isIntImmediate(N->getOperand(1).Val, Imm);
207}
208
209// isOprNot - Returns true if the specified operand is an xor with immediate -1.
210static bool isOprNot(SDNode *N) {
211  unsigned Imm;
212  return isOpcWithIntImmediate(N, ISD::XOR, Imm) && (signed)Imm == -1;
213}
214
215// Immediate constant composers.
216// Lo16 - grabs the lo 16 bits from a 32 bit constant.
217// Hi16 - grabs the hi 16 bits from a 32 bit constant.
218// HA16 - computes the hi bits required if the lo bits are add/subtracted in
219// arithmethically.
220static unsigned Lo16(unsigned x)  { return x & 0x0000FFFF; }
221static unsigned Hi16(unsigned x)  { return Lo16(x >> 16); }
222static unsigned HA16(unsigned x)  { return Hi16((signed)x - (signed short)x); }
223
224// isIntImmediate - This method tests to see if a constant operand.
225// If so Imm will receive the 32 bit value.
226static bool isIntImmediate(SDOperand N, unsigned& Imm) {
227  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
228    Imm = (unsigned)CN->getSignExtended();
229    return true;
230  }
231  return false;
232}
233
234/// SelectBitfieldInsert - turn an or of two masked values into
235/// the rotate left word immediate then mask insert (rlwimi) instruction.
236/// Returns true on success, false if the caller still needs to select OR.
237///
238/// Patterns matched:
239/// 1. or shl, and   5. or and, and
240/// 2. or and, shl   6. or shl, shr
241/// 3. or shr, and   7. or shr, shl
242/// 4. or and, shr
243SDNode *PPC32DAGToDAGISel::SelectBitfieldInsert(SDNode *N) {
244  bool IsRotate = false;
245  unsigned TgtMask = 0xFFFFFFFF, InsMask = 0xFFFFFFFF, SH = 0;
246  unsigned Value;
247
248  SDOperand Op0 = N->getOperand(0);
249  SDOperand Op1 = N->getOperand(1);
250
251  unsigned Op0Opc = Op0.getOpcode();
252  unsigned Op1Opc = Op1.getOpcode();
253
254  // Verify that we have the correct opcodes
255  if (ISD::SHL != Op0Opc && ISD::SRL != Op0Opc && ISD::AND != Op0Opc)
256    return false;
257  if (ISD::SHL != Op1Opc && ISD::SRL != Op1Opc && ISD::AND != Op1Opc)
258    return false;
259
260  // Generate Mask value for Target
261  if (isIntImmediate(Op0.getOperand(1), Value)) {
262    switch(Op0Opc) {
263    case ISD::SHL: TgtMask <<= Value; break;
264    case ISD::SRL: TgtMask >>= Value; break;
265    case ISD::AND: TgtMask &= Value; break;
266    }
267  } else {
268    return 0;
269  }
270
271  // Generate Mask value for Insert
272  if (!isIntImmediate(Op1.getOperand(1), Value))
273    return 0;
274
275  switch(Op1Opc) {
276  case ISD::SHL:
277    SH = Value;
278    InsMask <<= SH;
279    if (Op0Opc == ISD::SRL) IsRotate = true;
280    break;
281  case ISD::SRL:
282    SH = Value;
283    InsMask >>= SH;
284    SH = 32-SH;
285    if (Op0Opc == ISD::SHL) IsRotate = true;
286    break;
287  case ISD::AND:
288    InsMask &= Value;
289    break;
290  }
291
292  // If both of the inputs are ANDs and one of them has a logical shift by
293  // constant as its input, make that AND the inserted value so that we can
294  // combine the shift into the rotate part of the rlwimi instruction
295  bool IsAndWithShiftOp = false;
296  if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
297    if (Op1.getOperand(0).getOpcode() == ISD::SHL ||
298        Op1.getOperand(0).getOpcode() == ISD::SRL) {
299      if (isIntImmediate(Op1.getOperand(0).getOperand(1), Value)) {
300        SH = Op1.getOperand(0).getOpcode() == ISD::SHL ? Value : 32 - Value;
301        IsAndWithShiftOp = true;
302      }
303    } else if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
304               Op0.getOperand(0).getOpcode() == ISD::SRL) {
305      if (isIntImmediate(Op0.getOperand(0).getOperand(1), Value)) {
306        std::swap(Op0, Op1);
307        std::swap(TgtMask, InsMask);
308        SH = Op1.getOperand(0).getOpcode() == ISD::SHL ? Value : 32 - Value;
309        IsAndWithShiftOp = true;
310      }
311    }
312  }
313
314  // Verify that the Target mask and Insert mask together form a full word mask
315  // and that the Insert mask is a run of set bits (which implies both are runs
316  // of set bits).  Given that, Select the arguments and generate the rlwimi
317  // instruction.
318  unsigned MB, ME;
319  if (((TgtMask & InsMask) == 0) && isRunOfOnes(InsMask, MB, ME)) {
320    bool fullMask = (TgtMask ^ InsMask) == 0xFFFFFFFF;
321    bool Op0IsAND = Op0Opc == ISD::AND;
322    // Check for rotlwi / rotrwi here, a special case of bitfield insert
323    // where both bitfield halves are sourced from the same value.
324    if (IsRotate && fullMask &&
325        N->getOperand(0).getOperand(0) == N->getOperand(1).getOperand(0)) {
326      Op0 = CurDAG->getTargetNode(PPC::RLWINM, MVT::i32,
327                                  Select(N->getOperand(0).getOperand(0)),
328                                  getI32Imm(SH), getI32Imm(0), getI32Imm(31));
329      return Op0.Val;
330    }
331    SDOperand Tmp1 = (Op0IsAND && fullMask) ? Select(Op0.getOperand(0))
332                                            : Select(Op0);
333    SDOperand Tmp2 = IsAndWithShiftOp ? Select(Op1.getOperand(0).getOperand(0))
334                                      : Select(Op1.getOperand(0));
335    Op0 = CurDAG->getTargetNode(PPC::RLWIMI, MVT::i32, Tmp1, Tmp2,
336                                getI32Imm(SH), getI32Imm(MB), getI32Imm(ME));
337    return Op0.Val;
338  }
339  return 0;
340}
341
342// SelectIntImmediateExpr - Choose code for integer operations with an immediate
343// operand.
344SDNode *PPC32DAGToDAGISel::SelectIntImmediateExpr(SDOperand LHS, SDOperand RHS,
345                                                  unsigned OCHi, unsigned OCLo,
346                                                  bool IsArithmetic,
347                                                  bool Negate) {
348  // Check to make sure this is a constant.
349  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(RHS);
350  // Exit if not a constant.
351  if (!CN) return 0;
352  // Extract immediate.
353  unsigned C = (unsigned)CN->getValue();
354  // Negate if required (ISD::SUB).
355  if (Negate) C = -C;
356  // Get the hi and lo portions of constant.
357  unsigned Hi = IsArithmetic ? HA16(C) : Hi16(C);
358  unsigned Lo = Lo16(C);
359
360  // If two instructions are needed and usage indicates it would be better to
361  // load immediate into a register, bail out.
362  if (Hi && Lo && CN->use_size() > 2) return false;
363
364  // Select the first operand.
365  SDOperand Opr0 = Select(LHS);
366
367  if (Lo)  // Add in the lo-part.
368    Opr0 = CurDAG->getTargetNode(OCLo, MVT::i32, Opr0, getI32Imm(Lo));
369  if (Hi)  // Add in the hi-part.
370    Opr0 = CurDAG->getTargetNode(OCHi, MVT::i32, Opr0, getI32Imm(Hi));
371  return Opr0.Val;
372}
373
374/// SelectAddr - Given the specified address, return the two operands for a
375/// load/store instruction, and return true if it should be an indexed [r+r]
376/// operation.
377bool PPC32DAGToDAGISel::SelectAddr(SDOperand Addr, SDOperand &Op1,
378                                   SDOperand &Op2) {
379  unsigned imm = 0;
380  if (Addr.getOpcode() == ISD::ADD) {
381    if (isIntImmediate(Addr.getOperand(1), imm) && isInt16(imm)) {
382      Op1 = getI32Imm(Lo16(imm));
383      if (FrameIndexSDNode *FI =
384            dyn_cast<FrameIndexSDNode>(Addr.getOperand(0))) {
385        ++FrameOff;
386        Op2 = CurDAG->getTargetFrameIndex(FI->getIndex(), MVT::i32);
387      } else {
388        Op2 = Select(Addr.getOperand(0));
389      }
390      return false;
391    } else {
392      Op1 = Select(Addr.getOperand(0));
393      Op2 = Select(Addr.getOperand(1));
394      return true;   // [r+r]
395    }
396  }
397
398  // Now check if we're dealing with a global, and whether or not we should emit
399  // an optimized load or store for statics.
400  if (GlobalAddressSDNode *GN = dyn_cast<GlobalAddressSDNode>(Addr)) {
401    GlobalValue *GV = GN->getGlobal();
402    if (!GV->hasWeakLinkage() && !GV->isExternal()) {
403      Op1 = CurDAG->getTargetGlobalAddress(GV, MVT::i32);
404      if (PICEnabled)
405        Op2 = CurDAG->getTargetNode(PPC::ADDIS, MVT::i32, getGlobalBaseReg(),
406                                    Op1);
407      else
408        Op2 = CurDAG->getTargetNode(PPC::LIS, MVT::i32, Op1);
409      return false;
410    }
411  } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Addr)) {
412    Op1 = getI32Imm(0);
413    Op2 = CurDAG->getTargetFrameIndex(FI->getIndex(), MVT::i32);
414    return false;
415  } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Addr)) {
416    Op1 = Addr;
417    if (PICEnabled)
418      Op2 = CurDAG->getTargetNode(PPC::ADDIS, MVT::i32, getGlobalBaseReg(),Op1);
419    else
420      Op2 = CurDAG->getTargetNode(PPC::LIS, MVT::i32, Op1);
421    return false;
422  }
423  Op1 = getI32Imm(0);
424  Op2 = Select(Addr);
425  return false;
426}
427
428/// SelectCC - Select a comparison of the specified values with the specified
429/// condition code, returning the CR# of the expression.
430SDOperand PPC32DAGToDAGISel::SelectCC(SDOperand LHS, SDOperand RHS,
431                                      ISD::CondCode CC) {
432  // Always select the LHS.
433  LHS = Select(LHS);
434
435  // Use U to determine whether the SETCC immediate range is signed or not.
436  if (MVT::isInteger(LHS.getValueType())) {
437    bool U = ISD::isUnsignedIntSetCC(CC);
438    unsigned Imm;
439    if (isIntImmediate(RHS, Imm) &&
440        ((U && isUInt16(Imm)) || (!U && isInt16(Imm))))
441      return CurDAG->getTargetNode(U ? PPC::CMPLWI : PPC::CMPWI, MVT::i32,
442                                   LHS, getI32Imm(Lo16(Imm)));
443    return CurDAG->getTargetNode(U ? PPC::CMPLW : PPC::CMPW, MVT::i32,
444                                 LHS, Select(RHS));
445  } else {
446    return CurDAG->getTargetNode(PPC::FCMPU, MVT::i32, LHS, Select(RHS));
447  }
448}
449
450/// getBCCForSetCC - Returns the PowerPC condition branch mnemonic corresponding
451/// to Condition.
452static unsigned getBCCForSetCC(ISD::CondCode CC) {
453  switch (CC) {
454  default: assert(0 && "Unknown condition!"); abort();
455  case ISD::SETEQ:  return PPC::BEQ;
456  case ISD::SETNE:  return PPC::BNE;
457  case ISD::SETULT:
458  case ISD::SETLT:  return PPC::BLT;
459  case ISD::SETULE:
460  case ISD::SETLE:  return PPC::BLE;
461  case ISD::SETUGT:
462  case ISD::SETGT:  return PPC::BGT;
463  case ISD::SETUGE:
464  case ISD::SETGE:  return PPC::BGE;
465  }
466  return 0;
467}
468
469/// getCRIdxForSetCC - Return the index of the condition register field
470/// associated with the SetCC condition, and whether or not the field is
471/// treated as inverted.  That is, lt = 0; ge = 0 inverted.
472static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool& Inv) {
473  switch (CC) {
474  default: assert(0 && "Unknown condition!"); abort();
475  case ISD::SETULT:
476  case ISD::SETLT:  Inv = false;  return 0;
477  case ISD::SETUGE:
478  case ISD::SETGE:  Inv = true;   return 0;
479  case ISD::SETUGT:
480  case ISD::SETGT:  Inv = false;  return 1;
481  case ISD::SETULE:
482  case ISD::SETLE:  Inv = true;   return 1;
483  case ISD::SETEQ:  Inv = false;  return 2;
484  case ISD::SETNE:  Inv = true;   return 2;
485  }
486  return 0;
487}
488
489// Structure used to return the necessary information to codegen an SDIV as
490// a multiply.
491struct ms {
492  int m; // magic number
493  int s; // shift amount
494};
495
496struct mu {
497  unsigned int m; // magic number
498  int a;          // add indicator
499  int s;          // shift amount
500};
501
502/// magic - calculate the magic numbers required to codegen an integer sdiv as
503/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
504/// or -1.
505static struct ms magic(int d) {
506  int p;
507  unsigned int ad, anc, delta, q1, r1, q2, r2, t;
508  const unsigned int two31 = 0x80000000U;
509  struct ms mag;
510
511  ad = abs(d);
512  t = two31 + ((unsigned int)d >> 31);
513  anc = t - 1 - t%ad;   // absolute value of nc
514  p = 31;               // initialize p
515  q1 = two31/anc;       // initialize q1 = 2p/abs(nc)
516  r1 = two31 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
517  q2 = two31/ad;        // initialize q2 = 2p/abs(d)
518  r2 = two31 - q2*ad;   // initialize r2 = rem(2p,abs(d))
519  do {
520    p = p + 1;
521    q1 = 2*q1;        // update q1 = 2p/abs(nc)
522    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
523    if (r1 >= anc) {  // must be unsigned comparison
524      q1 = q1 + 1;
525      r1 = r1 - anc;
526    }
527    q2 = 2*q2;        // update q2 = 2p/abs(d)
528    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
529    if (r2 >= ad) {   // must be unsigned comparison
530      q2 = q2 + 1;
531      r2 = r2 - ad;
532    }
533    delta = ad - r2;
534  } while (q1 < delta || (q1 == delta && r1 == 0));
535
536  mag.m = q2 + 1;
537  if (d < 0) mag.m = -mag.m; // resulting magic number
538  mag.s = p - 32;            // resulting shift
539  return mag;
540}
541
542/// magicu - calculate the magic numbers required to codegen an integer udiv as
543/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
544static struct mu magicu(unsigned d)
545{
546  int p;
547  unsigned int nc, delta, q1, r1, q2, r2;
548  struct mu magu;
549  magu.a = 0;               // initialize "add" indicator
550  nc = - 1 - (-d)%d;
551  p = 31;                   // initialize p
552  q1 = 0x80000000/nc;       // initialize q1 = 2p/nc
553  r1 = 0x80000000 - q1*nc;  // initialize r1 = rem(2p,nc)
554  q2 = 0x7FFFFFFF/d;        // initialize q2 = (2p-1)/d
555  r2 = 0x7FFFFFFF - q2*d;   // initialize r2 = rem((2p-1),d)
556  do {
557    p = p + 1;
558    if (r1 >= nc - r1 ) {
559      q1 = 2*q1 + 1;  // update q1
560      r1 = 2*r1 - nc; // update r1
561    }
562    else {
563      q1 = 2*q1; // update q1
564      r1 = 2*r1; // update r1
565    }
566    if (r2 + 1 >= d - r2) {
567      if (q2 >= 0x7FFFFFFF) magu.a = 1;
568      q2 = 2*q2 + 1;     // update q2
569      r2 = 2*r2 + 1 - d; // update r2
570    }
571    else {
572      if (q2 >= 0x80000000) magu.a = 1;
573      q2 = 2*q2;     // update q2
574      r2 = 2*r2 + 1; // update r2
575    }
576    delta = d - 1 - r2;
577  } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
578  magu.m = q2 + 1; // resulting magic number
579  magu.s = p - 32;  // resulting shift
580  return magu;
581}
582
583/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
584/// return a DAG expression to select that will generate the same value by
585/// multiplying by a magic number.  See:
586/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
587SDOperand PPC32DAGToDAGISel::BuildSDIVSequence(SDNode *N) {
588  int d = (int)cast<ConstantSDNode>(N->getOperand(1))->getValue();
589  ms magics = magic(d);
590  // Multiply the numerator (operand 0) by the magic value
591  SDOperand Q = CurDAG->getNode(ISD::MULHS, MVT::i32, N->getOperand(0),
592                                CurDAG->getConstant(magics.m, MVT::i32));
593  // If d > 0 and m < 0, add the numerator
594  if (d > 0 && magics.m < 0)
595    Q = CurDAG->getNode(ISD::ADD, MVT::i32, Q, N->getOperand(0));
596  // If d < 0 and m > 0, subtract the numerator.
597  if (d < 0 && magics.m > 0)
598    Q = CurDAG->getNode(ISD::SUB, MVT::i32, Q, N->getOperand(0));
599  // Shift right algebraic if shift value is nonzero
600  if (magics.s > 0)
601    Q = CurDAG->getNode(ISD::SRA, MVT::i32, Q,
602                        CurDAG->getConstant(magics.s, MVT::i32));
603  // Extract the sign bit and add it to the quotient
604  SDOperand T =
605    CurDAG->getNode(ISD::SRL, MVT::i32, Q, CurDAG->getConstant(31, MVT::i32));
606  return CurDAG->getNode(ISD::ADD, MVT::i32, Q, T);
607}
608
609/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
610/// return a DAG expression to select that will generate the same value by
611/// multiplying by a magic number.  See:
612/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
613SDOperand PPC32DAGToDAGISel::BuildUDIVSequence(SDNode *N) {
614  unsigned d = (unsigned)cast<ConstantSDNode>(N->getOperand(1))->getValue();
615  mu magics = magicu(d);
616  // Multiply the numerator (operand 0) by the magic value
617  SDOperand Q = CurDAG->getNode(ISD::MULHU, MVT::i32, N->getOperand(0),
618                                CurDAG->getConstant(magics.m, MVT::i32));
619  if (magics.a == 0) {
620    return CurDAG->getNode(ISD::SRL, MVT::i32, Q,
621                           CurDAG->getConstant(magics.s, MVT::i32));
622  } else {
623    SDOperand NPQ = CurDAG->getNode(ISD::SUB, MVT::i32, N->getOperand(0), Q);
624    NPQ = CurDAG->getNode(ISD::SRL, MVT::i32, NPQ,
625                           CurDAG->getConstant(1, MVT::i32));
626    NPQ = CurDAG->getNode(ISD::ADD, MVT::i32, NPQ, Q);
627    return CurDAG->getNode(ISD::SRL, MVT::i32, NPQ,
628                           CurDAG->getConstant(magics.s-1, MVT::i32));
629  }
630}
631
632// Select - Convert the specified operand from a target-independent to a
633// target-specific node if it hasn't already been changed.
634SDOperand PPC32DAGToDAGISel::Select(SDOperand Op) {
635  SDNode *N = Op.Val;
636  if (N->getOpcode() >= ISD::BUILTIN_OP_END &&
637      N->getOpcode() < PPCISD::FIRST_NUMBER)
638    return Op;   // Already selected.
639
640  switch (N->getOpcode()) {
641  default: break;
642  case ISD::TokenFactor: {
643    SDOperand New;
644    if (N->getNumOperands() == 2) {
645      SDOperand Op0 = Select(N->getOperand(0));
646      SDOperand Op1 = Select(N->getOperand(1));
647      New = CurDAG->getNode(ISD::TokenFactor, MVT::Other, Op0, Op1);
648    } else {
649      std::vector<SDOperand> Ops;
650      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
651        Ops.push_back(Select(N->getOperand(i)));
652      New = CurDAG->getNode(ISD::TokenFactor, MVT::Other, Ops);
653    }
654
655    if (New.Val != N) {
656      CurDAG->ReplaceAllUsesWith(Op, New);
657      N = New.Val;
658    }
659    return SDOperand(N, 0);
660  }
661  case ISD::CopyFromReg: {
662    SDOperand Chain = Select(N->getOperand(0));
663    if (Chain == N->getOperand(0)) return Op; // No change
664    SDOperand New = CurDAG->getCopyFromReg(Chain,
665         cast<RegisterSDNode>(N->getOperand(1))->getReg(), N->getValueType(0));
666    return New.getValue(Op.ResNo);
667  }
668  case ISD::CopyToReg: {
669    SDOperand Chain = Select(N->getOperand(0));
670    SDOperand Reg = N->getOperand(1);
671    SDOperand Val = Select(N->getOperand(2));
672    if (Chain != N->getOperand(0) || Val != N->getOperand(2)) {
673      SDOperand New = CurDAG->getNode(ISD::CopyToReg, MVT::Other,
674                                      Chain, Reg, Val);
675      CurDAG->ReplaceAllUsesWith(Op, New);
676      N = New.Val;
677    }
678    return SDOperand(N, 0);
679  }
680  case ISD::Constant: {
681    assert(N->getValueType(0) == MVT::i32);
682    unsigned v = (unsigned)cast<ConstantSDNode>(N)->getValue();
683
684    // NOTE: This doesn't use SelectNodeTo, because doing that will prevent
685    // folding shared immediates into other the second instruction that
686    // uses it.
687    if (isInt16(v))
688      return CurDAG->getTargetNode(PPC::LI, MVT::i32, getI32Imm(v));
689
690    unsigned Hi = Hi16(v);
691    unsigned Lo = Lo16(v);
692
693    if (!Lo)
694      return CurDAG->getTargetNode(PPC::LIS, MVT::i32, getI32Imm(Hi));
695
696    SDOperand Top = CurDAG->getTargetNode(PPC::LIS, MVT::i32, getI32Imm(Hi));
697    return CurDAG->getTargetNode(PPC::ORI, MVT::i32, Top, getI32Imm(Lo));
698  }
699  case ISD::UNDEF:
700    if (N->getValueType(0) == MVT::i32)
701      CurDAG->SelectNodeTo(N, PPC::IMPLICIT_DEF_GPR, MVT::i32);
702    else
703      CurDAG->SelectNodeTo(N, PPC::IMPLICIT_DEF_FP, N->getValueType(0));
704    return SDOperand(N, 0);
705  case ISD::FrameIndex: {
706    int FI = cast<FrameIndexSDNode>(N)->getIndex();
707    CurDAG->SelectNodeTo(N, PPC::ADDI, MVT::i32,
708                         CurDAG->getTargetFrameIndex(FI, MVT::i32),
709                         getI32Imm(0));
710    return SDOperand(N, 0);
711  }
712  case ISD::ConstantPool: {
713    Constant *C = cast<ConstantPoolSDNode>(N)->get();
714    SDOperand Tmp, CPI = CurDAG->getTargetConstantPool(C, MVT::i32);
715    if (PICEnabled)
716      Tmp = CurDAG->getTargetNode(PPC::ADDIS, MVT::i32, getGlobalBaseReg(),CPI);
717    else
718      Tmp = CurDAG->getTargetNode(PPC::LIS, MVT::i32, CPI);
719    CurDAG->SelectNodeTo(N, PPC::LA, MVT::i32, Tmp, CPI);
720    return SDOperand(N, 0);
721  }
722  case ISD::GlobalAddress: {
723    GlobalValue *GV = cast<GlobalAddressSDNode>(N)->getGlobal();
724    SDOperand Tmp;
725    SDOperand GA = CurDAG->getTargetGlobalAddress(GV, MVT::i32);
726    if (PICEnabled)
727      Tmp = CurDAG->getTargetNode(PPC::ADDIS, MVT::i32, getGlobalBaseReg(), GA);
728    else
729      Tmp = CurDAG->getTargetNode(PPC::LIS, MVT::i32, GA);
730
731    if (GV->hasWeakLinkage() || GV->isExternal())
732      CurDAG->SelectNodeTo(N, PPC::LWZ, MVT::i32, GA, Tmp);
733    else
734      CurDAG->SelectNodeTo(N, PPC::LA, MVT::i32, Tmp, GA);
735    return SDOperand(N, 0);
736  }
737  case ISD::DYNAMIC_STACKALLOC: {
738    // FIXME: We are currently ignoring the requested alignment for handling
739    // greater than the stack alignment.  This will need to be revisited at some
740    // point.  Align = N.getOperand(2);
741    if (!isa<ConstantSDNode>(N->getOperand(2)) ||
742        cast<ConstantSDNode>(N->getOperand(2))->getValue() != 0) {
743      std::cerr << "Cannot allocate stack object with greater alignment than"
744                << " the stack alignment yet!";
745      abort();
746    }
747    SDOperand Chain = Select(N->getOperand(0));
748    SDOperand Amt   = Select(N->getOperand(1));
749
750    SDOperand R1Reg = CurDAG->getRegister(PPC::R1, MVT::i32);
751
752    SDOperand R1Val = CurDAG->getCopyFromReg(Chain, PPC::R1, MVT::i32);
753    Chain = R1Val.getValue(1);
754
755    // Subtract the amount (guaranteed to be a multiple of the stack alignment)
756    // from the stack pointer, giving us the result pointer.
757    SDOperand Result = CurDAG->getTargetNode(PPC::SUBF, MVT::i32, Amt, R1Val);
758
759    // Copy this result back into R1.
760    Chain = CurDAG->getNode(ISD::CopyToReg, MVT::Other, Chain, R1Reg, Result);
761
762    // Copy this result back out of R1 to make sure we're not using the stack
763    // space without decrementing the stack pointer.
764    Result = CurDAG->getCopyFromReg(Chain, PPC::R1, MVT::i32);
765
766    // Finally, replace the DYNAMIC_STACKALLOC with the copyfromreg.
767    CurDAG->ReplaceAllUsesWith(N, Result.Val);
768    return SDOperand(Result.Val, Op.ResNo);
769  }
770  case ISD::SIGN_EXTEND_INREG:
771    switch(cast<VTSDNode>(N->getOperand(1))->getVT()) {
772    default: assert(0 && "Illegal type in SIGN_EXTEND_INREG"); break;
773    case MVT::i16:
774      CurDAG->SelectNodeTo(N, PPC::EXTSH, MVT::i32, Select(N->getOperand(0)));
775      break;
776    case MVT::i8:
777      CurDAG->SelectNodeTo(N, PPC::EXTSB, MVT::i32, Select(N->getOperand(0)));
778      break;
779    }
780    return SDOperand(N, 0);
781  case ISD::CTLZ:
782    assert(N->getValueType(0) == MVT::i32);
783    CurDAG->SelectNodeTo(N, PPC::CNTLZW, MVT::i32, Select(N->getOperand(0)));
784    return SDOperand(N, 0);
785  case PPCISD::FSEL:
786    CurDAG->SelectNodeTo(N, PPC::FSEL, N->getValueType(0),
787                         Select(N->getOperand(0)),
788                         Select(N->getOperand(1)),
789                         Select(N->getOperand(2)));
790    return SDOperand(N, 0);
791  case PPCISD::FCFID:
792    CurDAG->SelectNodeTo(N, PPC::FCFID, N->getValueType(0),
793                         Select(N->getOperand(0)));
794    return SDOperand(N, 0);
795  case PPCISD::FCTIDZ:
796    CurDAG->SelectNodeTo(N, PPC::FCTIDZ, N->getValueType(0),
797                         Select(N->getOperand(0)));
798    return SDOperand(N, 0);
799  case PPCISD::FCTIWZ:
800    CurDAG->SelectNodeTo(N, PPC::FCTIWZ, N->getValueType(0),
801                         Select(N->getOperand(0)));
802    return SDOperand(N, 0);
803  case ISD::ADD: {
804    MVT::ValueType Ty = N->getValueType(0);
805    if (Ty == MVT::i32) {
806      if (SDNode *I = SelectIntImmediateExpr(N->getOperand(0), N->getOperand(1),
807                                             PPC::ADDIS, PPC::ADDI, true)) {
808        CurDAG->ReplaceAllUsesWith(Op, SDOperand(I, 0));
809        N = I;
810      } else {
811        CurDAG->SelectNodeTo(N, PPC::ADD, MVT::i32, Select(N->getOperand(0)),
812                             Select(N->getOperand(1)));
813      }
814      return SDOperand(N, 0);
815    }
816
817    if (!NoExcessFPPrecision) {  // Match FMA ops
818      if (N->getOperand(0).getOpcode() == ISD::MUL &&
819          N->getOperand(0).Val->hasOneUse()) {
820        ++FusedFP; // Statistic
821        CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FMADD : PPC::FMADDS, Ty,
822                             Select(N->getOperand(0).getOperand(0)),
823                             Select(N->getOperand(0).getOperand(1)),
824                             Select(N->getOperand(1)));
825        return SDOperand(N, 0);
826      } else if (N->getOperand(1).getOpcode() == ISD::MUL &&
827                 N->getOperand(1).hasOneUse()) {
828        ++FusedFP; // Statistic
829        CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FMADD : PPC::FMADDS, Ty,
830                             Select(N->getOperand(1).getOperand(0)),
831                             Select(N->getOperand(1).getOperand(1)),
832                             Select(N->getOperand(0)));
833        return SDOperand(N, 0);
834      }
835    }
836
837    CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FADD : PPC::FADDS, Ty,
838                         Select(N->getOperand(0)), Select(N->getOperand(1)));
839    return SDOperand(N, 0);
840  }
841  case ISD::SUB: {
842    MVT::ValueType Ty = N->getValueType(0);
843    if (Ty == MVT::i32) {
844      unsigned Imm;
845      if (isIntImmediate(N->getOperand(0), Imm) && isInt16(Imm)) {
846        if (0 == Imm)
847          CurDAG->SelectNodeTo(N, PPC::NEG, Ty, Select(N->getOperand(1)));
848        else
849          CurDAG->SelectNodeTo(N, PPC::SUBFIC, Ty, Select(N->getOperand(1)),
850                               getI32Imm(Lo16(Imm)));
851        return SDOperand(N, 0);
852      }
853      if (SDNode *I = SelectIntImmediateExpr(N->getOperand(0), N->getOperand(1),
854                                          PPC::ADDIS, PPC::ADDI, true, true)) {
855        CurDAG->ReplaceAllUsesWith(Op, SDOperand(I, 0));
856        N = I;
857      } else {
858        CurDAG->SelectNodeTo(N, PPC::SUBF, Ty, Select(N->getOperand(1)),
859                             Select(N->getOperand(0)));
860      }
861      return SDOperand(N, 0);
862    }
863
864    if (!NoExcessFPPrecision) {  // Match FMA ops
865      if (N->getOperand(0).getOpcode() == ISD::MUL &&
866          N->getOperand(0).Val->hasOneUse()) {
867        ++FusedFP; // Statistic
868        CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FMSUB : PPC::FMSUBS, Ty,
869                             Select(N->getOperand(0).getOperand(0)),
870                             Select(N->getOperand(0).getOperand(1)),
871                             Select(N->getOperand(1)));
872        return SDOperand(N, 0);
873      } else if (N->getOperand(1).getOpcode() == ISD::MUL &&
874                 N->getOperand(1).Val->hasOneUse()) {
875        ++FusedFP; // Statistic
876        CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FNMSUB : PPC::FNMSUBS, Ty,
877                             Select(N->getOperand(1).getOperand(0)),
878                             Select(N->getOperand(1).getOperand(1)),
879                             Select(N->getOperand(0)));
880        return SDOperand(N, 0);
881      }
882    }
883    CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FSUB : PPC::FSUBS, Ty,
884                         Select(N->getOperand(0)),
885                         Select(N->getOperand(1)));
886    return SDOperand(N, 0);
887  }
888  case ISD::MUL: {
889    unsigned Imm, Opc;
890    if (isIntImmediate(N->getOperand(1), Imm) && isInt16(Imm)) {
891      CurDAG->SelectNodeTo(N, PPC::MULLI, MVT::i32,
892                           Select(N->getOperand(0)), getI32Imm(Lo16(Imm)));
893      return SDOperand(N, 0);
894    }
895    switch (N->getValueType(0)) {
896      default: assert(0 && "Unhandled multiply type!");
897      case MVT::i32: Opc = PPC::MULLW; break;
898      case MVT::f32: Opc = PPC::FMULS; break;
899      case MVT::f64: Opc = PPC::FMUL;  break;
900    }
901    CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), Select(N->getOperand(0)),
902                         Select(N->getOperand(1)));
903    return SDOperand(N, 0);
904  }
905  case ISD::SDIV: {
906    unsigned Imm;
907    if (isIntImmediate(N->getOperand(1), Imm)) {
908      if ((signed)Imm > 0 && isPowerOf2_32(Imm)) {
909        SDOperand Op =
910          CurDAG->getTargetNode(PPC::SRAWI, MVT::i32, MVT::Flag,
911                                Select(N->getOperand(0)),
912                                getI32Imm(Log2_32(Imm)));
913        CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
914                             Op.getValue(0), Op.getValue(1));
915        return SDOperand(N, 0);
916      } else if ((signed)Imm < 0 && isPowerOf2_32(-Imm)) {
917        SDOperand Op =
918          CurDAG->getTargetNode(PPC::SRAWI, MVT::i32, MVT::Flag,
919                                Select(N->getOperand(0)),
920                                getI32Imm(Log2_32(-Imm)));
921        SDOperand PT =
922          CurDAG->getTargetNode(PPC::ADDZE, MVT::i32, Op.getValue(0),
923                                Op.getValue(1));
924        CurDAG->SelectNodeTo(N, PPC::NEG, MVT::i32, PT);
925        return SDOperand(N, 0);
926      } else if (Imm) {
927        SDOperand Result = Select(BuildSDIVSequence(N));
928        assert(Result.ResNo == 0);
929        CurDAG->ReplaceAllUsesWith(Op, Result);
930        N = Result.Val;
931        return SDOperand(N, 0);
932      }
933    }
934
935    unsigned Opc;
936    switch (N->getValueType(0)) {
937    default: assert(0 && "Unknown type to ISD::SDIV");
938    case MVT::i32: Opc = PPC::DIVW; break;
939    case MVT::f32: Opc = PPC::FDIVS; break;
940    case MVT::f64: Opc = PPC::FDIV; break;
941    }
942    CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), Select(N->getOperand(0)),
943                         Select(N->getOperand(1)));
944    return SDOperand(N, 0);
945  }
946  case ISD::UDIV: {
947    // If this is a divide by constant, we can emit code using some magic
948    // constants to implement it as a multiply instead.
949    unsigned Imm;
950    if (isIntImmediate(N->getOperand(1), Imm) && Imm) {
951      SDOperand Result = Select(BuildUDIVSequence(N));
952      assert(Result.ResNo == 0);
953      CurDAG->ReplaceAllUsesWith(Op, Result);
954      N = Result.Val;
955      return SDOperand(N, 0);
956    }
957
958    CurDAG->SelectNodeTo(N, PPC::DIVWU, MVT::i32, Select(N->getOperand(0)),
959                         Select(N->getOperand(1)));
960    return SDOperand(N, 0);
961  }
962  case ISD::MULHS:
963    assert(N->getValueType(0) == MVT::i32);
964    CurDAG->SelectNodeTo(N, PPC::MULHW, MVT::i32, Select(N->getOperand(0)),
965                         Select(N->getOperand(1)));
966    return SDOperand(N, 0);
967  case ISD::MULHU:
968    assert(N->getValueType(0) == MVT::i32);
969    CurDAG->SelectNodeTo(N, PPC::MULHWU, MVT::i32, Select(N->getOperand(0)),
970                         Select(N->getOperand(1)));
971    return SDOperand(N, 0);
972  case ISD::AND: {
973    unsigned Imm;
974    // If this is an and of a value rotated between 0 and 31 bits and then and'd
975    // with a mask, emit rlwinm
976    if (isIntImmediate(N->getOperand(1), Imm) && (isShiftedMask_32(Imm) ||
977                                                  isShiftedMask_32(~Imm))) {
978      SDOperand Val;
979      unsigned SH, MB, ME;
980      if (isRotateAndMask(N->getOperand(0).Val, Imm, false, SH, MB, ME)) {
981        Val = Select(N->getOperand(0).getOperand(0));
982      } else {
983        Val = Select(N->getOperand(0));
984        isRunOfOnes(Imm, MB, ME);
985        SH = 0;
986      }
987      CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Val, getI32Imm(SH),
988                           getI32Imm(MB), getI32Imm(ME));
989      return SDOperand(N, 0);
990    }
991    // Finally, check for the case where we are being asked to select
992    // and (not(a), b) or and (a, not(b)) which can be selected as andc.
993    if (isOprNot(N->getOperand(0).Val))
994      CurDAG->SelectNodeTo(N, PPC::ANDC, MVT::i32, Select(N->getOperand(1)),
995                           Select(N->getOperand(0).getOperand(0)));
996    else if (isOprNot(N->getOperand(1).Val))
997      CurDAG->SelectNodeTo(N, PPC::ANDC, MVT::i32, Select(N->getOperand(0)),
998                           Select(N->getOperand(1).getOperand(0)));
999    else
1000      CurDAG->SelectNodeTo(N, PPC::AND, MVT::i32, Select(N->getOperand(0)),
1001                           Select(N->getOperand(1)));
1002    return SDOperand(N, 0);
1003  }
1004  case ISD::OR:
1005    if (SDNode *I = SelectBitfieldInsert(N)) {
1006      CurDAG->ReplaceAllUsesWith(Op, SDOperand(I, 0));
1007      N = I;
1008      return SDOperand(N, 0);
1009    }
1010    if (SDNode *I = SelectIntImmediateExpr(N->getOperand(0),
1011                                           N->getOperand(1),
1012                                           PPC::ORIS, PPC::ORI)) {
1013      CurDAG->ReplaceAllUsesWith(Op, SDOperand(I, 0));
1014      N = I;
1015      return SDOperand(N, 0);
1016    }
1017    // Finally, check for the case where we are being asked to select
1018    // 'or (not(a), b)' or 'or (a, not(b))' which can be selected as orc.
1019    if (isOprNot(N->getOperand(0).Val))
1020      CurDAG->SelectNodeTo(N, PPC::ORC, MVT::i32, Select(N->getOperand(1)),
1021                           Select(N->getOperand(0).getOperand(0)));
1022    else if (isOprNot(N->getOperand(1).Val))
1023      CurDAG->SelectNodeTo(N, PPC::ORC, MVT::i32, Select(N->getOperand(0)),
1024                           Select(N->getOperand(1).getOperand(0)));
1025    else
1026      CurDAG->SelectNodeTo(N, PPC::OR, MVT::i32, Select(N->getOperand(0)),
1027                           Select(N->getOperand(1)));
1028    return SDOperand(N, 0);
1029  case ISD::XOR:
1030    // Check whether or not this node is a logical 'not'.  This is represented
1031    // by llvm as a xor with the constant value -1 (all bits set).  If this is a
1032    // 'not', then fold 'or' into 'nor', and so forth for the supported ops.
1033    if (isOprNot(N)) {
1034      unsigned Opc;
1035      SDOperand Val = Select(N->getOperand(0));
1036      switch (Val.isTargetOpcode() ? Val.getTargetOpcode() : 0) {
1037      default:        Opc = 0;          break;
1038      case PPC::OR:   Opc = PPC::NOR;   break;
1039      case PPC::AND:  Opc = PPC::NAND;  break;
1040      case PPC::XOR:  Opc = PPC::EQV;   break;
1041      }
1042      if (Opc)
1043        CurDAG->SelectNodeTo(N, Opc, MVT::i32, Val.getOperand(0),
1044                             Val.getOperand(1));
1045      else
1046        CurDAG->SelectNodeTo(N, PPC::NOR, MVT::i32, Val, Val);
1047      return SDOperand(N, 0);
1048    }
1049    // If this is a xor with an immediate other than -1, then codegen it as high
1050    // and low 16 bit immediate xors.
1051    if (SDNode *I = SelectIntImmediateExpr(N->getOperand(0),
1052                                           N->getOperand(1),
1053                                           PPC::XORIS, PPC::XORI)) {
1054      CurDAG->ReplaceAllUsesWith(Op, SDOperand(I, 0));
1055      N = I;
1056      return SDOperand(N, 0);
1057    }
1058    // Finally, check for the case where we are being asked to select
1059    // xor (not(a), b) which is equivalent to not(xor a, b), which is eqv
1060    if (isOprNot(N->getOperand(0).Val))
1061      CurDAG->SelectNodeTo(N, PPC::EQV, MVT::i32,
1062                           Select(N->getOperand(0).getOperand(0)),
1063                           Select(N->getOperand(1)));
1064    else
1065      CurDAG->SelectNodeTo(N, PPC::XOR, MVT::i32, Select(N->getOperand(0)),
1066                           Select(N->getOperand(1)));
1067    return SDOperand(N, 0);
1068  case ISD::SHL: {
1069    unsigned Imm, SH, MB, ME;
1070    if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) &&
1071        isRotateAndMask(N, Imm, true, SH, MB, ME))
1072      CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32,
1073                           Select(N->getOperand(0).getOperand(0)),
1074                           getI32Imm(SH), getI32Imm(MB), getI32Imm(ME));
1075    else if (isIntImmediate(N->getOperand(1), Imm))
1076      CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Select(N->getOperand(0)),
1077                           getI32Imm(Imm), getI32Imm(0), getI32Imm(31-Imm));
1078    else
1079      CurDAG->SelectNodeTo(N, PPC::SLW, MVT::i32, Select(N->getOperand(0)),
1080                           Select(N->getOperand(1)));
1081    return SDOperand(N, 0);
1082  }
1083  case ISD::SRL: {
1084    unsigned Imm, SH, MB, ME;
1085    if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) &&
1086        isRotateAndMask(N, Imm, true, SH, MB, ME))
1087      CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32,
1088                           Select(N->getOperand(0).getOperand(0)),
1089                           getI32Imm(SH & 0x1F), getI32Imm(MB), getI32Imm(ME));
1090    else if (isIntImmediate(N->getOperand(1), Imm))
1091      CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Select(N->getOperand(0)),
1092                           getI32Imm((32-Imm) & 0x1F), getI32Imm(Imm),
1093                           getI32Imm(31));
1094    else
1095      CurDAG->SelectNodeTo(N, PPC::SRW, MVT::i32, Select(N->getOperand(0)),
1096                           Select(N->getOperand(1)));
1097    return SDOperand(N, 0);
1098  }
1099  case ISD::SRA: {
1100    unsigned Imm, SH, MB, ME;
1101    if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) &&
1102        isRotateAndMask(N, Imm, true, SH, MB, ME))
1103      CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32,
1104                           Select(N->getOperand(0).getOperand(0)),
1105                           getI32Imm(SH), getI32Imm(MB), getI32Imm(ME));
1106    else if (isIntImmediate(N->getOperand(1), Imm))
1107      CurDAG->SelectNodeTo(N, PPC::SRAWI, MVT::i32, Select(N->getOperand(0)),
1108                           getI32Imm(Imm));
1109    else
1110      CurDAG->SelectNodeTo(N, PPC::SRAW, MVT::i32, Select(N->getOperand(0)),
1111                           Select(N->getOperand(1)));
1112    return SDOperand(N, 0);
1113  }
1114  case ISD::FABS:
1115    CurDAG->SelectNodeTo(N, PPC::FABS, N->getValueType(0),
1116                         Select(N->getOperand(0)));
1117    return SDOperand(N, 0);
1118  case ISD::FP_EXTEND:
1119    assert(MVT::f64 == N->getValueType(0) &&
1120           MVT::f32 == N->getOperand(0).getValueType() && "Illegal FP_EXTEND");
1121    // We need to emit an FMR to make sure that the result has the right value
1122    // type.
1123    CurDAG->SelectNodeTo(N, PPC::FMR, MVT::f64, Select(N->getOperand(0)));
1124    return SDOperand(N, 0);
1125  case ISD::FP_ROUND:
1126    assert(MVT::f32 == N->getValueType(0) &&
1127           MVT::f64 == N->getOperand(0).getValueType() && "Illegal FP_ROUND");
1128    CurDAG->SelectNodeTo(N, PPC::FRSP, MVT::f32, Select(N->getOperand(0)));
1129    return SDOperand(N, 0);
1130  case ISD::FNEG: {
1131    SDOperand Val = Select(N->getOperand(0));
1132    MVT::ValueType Ty = N->getValueType(0);
1133    if (Val.Val->hasOneUse()) {
1134      unsigned Opc;
1135      switch (Val.isTargetOpcode() ? Val.getTargetOpcode() : 0) {
1136      default:          Opc = 0;            break;
1137      case PPC::FABS:   Opc = PPC::FNABS;   break;
1138      case PPC::FMADD:  Opc = PPC::FNMADD;  break;
1139      case PPC::FMADDS: Opc = PPC::FNMADDS; break;
1140      case PPC::FMSUB:  Opc = PPC::FNMSUB;  break;
1141      case PPC::FMSUBS: Opc = PPC::FNMSUBS; break;
1142      }
1143      // If we inverted the opcode, then emit the new instruction with the
1144      // inverted opcode and the original instruction's operands.  Otherwise,
1145      // fall through and generate a fneg instruction.
1146      if (Opc) {
1147        if (PPC::FNABS == Opc)
1148          CurDAG->SelectNodeTo(N, Opc, Ty, Val.getOperand(0));
1149        else
1150          CurDAG->SelectNodeTo(N, Opc, Ty, Val.getOperand(0),
1151                               Val.getOperand(1), Val.getOperand(2));
1152        return SDOperand(N, 0);
1153      }
1154    }
1155    CurDAG->SelectNodeTo(N, PPC::FNEG, Ty, Val);
1156    return SDOperand(N, 0);
1157  }
1158  case ISD::FSQRT: {
1159    MVT::ValueType Ty = N->getValueType(0);
1160    CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FSQRT : PPC::FSQRTS, Ty,
1161                         Select(N->getOperand(0)));
1162    return SDOperand(N, 0);
1163  }
1164
1165  case ISD::ADD_PARTS: {
1166    SDOperand LHSL = Select(N->getOperand(0));
1167    SDOperand LHSH = Select(N->getOperand(1));
1168
1169    unsigned Imm;
1170    bool ME = false, ZE = false;
1171    if (isIntImmediate(N->getOperand(3), Imm)) {
1172      ME = (signed)Imm == -1;
1173      ZE = Imm == 0;
1174    }
1175
1176    std::vector<SDOperand> Result;
1177    SDOperand CarryFromLo;
1178    if (isIntImmediate(N->getOperand(2), Imm) &&
1179        ((signed)Imm >= -32768 || (signed)Imm < 32768)) {
1180      // Codegen the low 32 bits of the add.  Interestingly, there is no
1181      // shifted form of add immediate carrying.
1182      CarryFromLo = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
1183                                          LHSL, getI32Imm(Imm));
1184    } else {
1185      CarryFromLo = CurDAG->getTargetNode(PPC::ADDC, MVT::i32, MVT::Flag,
1186                                          LHSL, Select(N->getOperand(2)));
1187    }
1188    CarryFromLo = CarryFromLo.getValue(1);
1189
1190    // Codegen the high 32 bits, adding zero, minus one, or the full value
1191    // along with the carry flag produced by addc/addic.
1192    SDOperand ResultHi;
1193    if (ZE)
1194      ResultHi = CurDAG->getTargetNode(PPC::ADDZE, MVT::i32, LHSH, CarryFromLo);
1195    else if (ME)
1196      ResultHi = CurDAG->getTargetNode(PPC::ADDME, MVT::i32, LHSH, CarryFromLo);
1197    else
1198      ResultHi = CurDAG->getTargetNode(PPC::ADDE, MVT::i32, LHSH,
1199                                       Select(N->getOperand(3)), CarryFromLo);
1200    Result.push_back(CarryFromLo.getValue(0));
1201    Result.push_back(ResultHi);
1202    CurDAG->ReplaceAllUsesWith(N, Result);
1203    return Result[Op.ResNo];
1204  }
1205  case ISD::SUB_PARTS: {
1206    SDOperand LHSL = Select(N->getOperand(0));
1207    SDOperand LHSH = Select(N->getOperand(1));
1208    SDOperand RHSL = Select(N->getOperand(2));
1209    SDOperand RHSH = Select(N->getOperand(3));
1210
1211    std::vector<SDOperand> Result;
1212    Result.push_back(CurDAG->getTargetNode(PPC::SUBFC, MVT::i32, MVT::Flag,
1213                                           RHSL, LHSL));
1214    Result.push_back(CurDAG->getTargetNode(PPC::SUBFE, MVT::i32, RHSH, LHSH,
1215                                           Result[0].getValue(1)));
1216    CurDAG->ReplaceAllUsesWith(N, Result);
1217    return Result[Op.ResNo];
1218  }
1219
1220  case ISD::LOAD:
1221  case ISD::EXTLOAD:
1222  case ISD::ZEXTLOAD:
1223  case ISD::SEXTLOAD: {
1224    SDOperand Op1, Op2;
1225    bool isIdx = SelectAddr(N->getOperand(1), Op1, Op2);
1226
1227    MVT::ValueType TypeBeingLoaded = (N->getOpcode() == ISD::LOAD) ?
1228      N->getValueType(0) : cast<VTSDNode>(N->getOperand(3))->getVT();
1229    unsigned Opc;
1230    switch (TypeBeingLoaded) {
1231    default: N->dump(); assert(0 && "Cannot load this type!");
1232    case MVT::i1:
1233    case MVT::i8:  Opc = isIdx ? PPC::LBZX : PPC::LBZ; break;
1234    case MVT::i16:
1235      if (N->getOpcode() == ISD::SEXTLOAD) { // SEXT load?
1236        Opc = isIdx ? PPC::LHAX : PPC::LHA;
1237      } else {
1238        Opc = isIdx ? PPC::LHZX : PPC::LHZ;
1239      }
1240      break;
1241    case MVT::i32: Opc = isIdx ? PPC::LWZX : PPC::LWZ; break;
1242    case MVT::f32: Opc = isIdx ? PPC::LFSX : PPC::LFS; break;
1243    case MVT::f64: Opc = isIdx ? PPC::LFDX : PPC::LFD; break;
1244    }
1245
1246    CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), MVT::Other,
1247                         Op1, Op2, Select(N->getOperand(0)));
1248    return SDOperand(N, Op.ResNo);
1249  }
1250
1251  case ISD::TRUNCSTORE:
1252  case ISD::STORE: {
1253    SDOperand AddrOp1, AddrOp2;
1254    bool isIdx = SelectAddr(N->getOperand(2), AddrOp1, AddrOp2);
1255
1256    unsigned Opc;
1257    if (N->getOpcode() == ISD::STORE) {
1258      switch (N->getOperand(1).getValueType()) {
1259      default: assert(0 && "unknown Type in store");
1260      case MVT::i32: Opc = isIdx ? PPC::STWX  : PPC::STW; break;
1261      case MVT::f64: Opc = isIdx ? PPC::STFDX : PPC::STFD; break;
1262      case MVT::f32: Opc = isIdx ? PPC::STFSX : PPC::STFS; break;
1263      }
1264    } else { //ISD::TRUNCSTORE
1265      switch(cast<VTSDNode>(N->getOperand(4))->getVT()) {
1266      default: assert(0 && "unknown Type in store");
1267      case MVT::i8:  Opc = isIdx ? PPC::STBX : PPC::STB; break;
1268      case MVT::i16: Opc = isIdx ? PPC::STHX : PPC::STH; break;
1269      }
1270    }
1271
1272    CurDAG->SelectNodeTo(N, Opc, MVT::Other, Select(N->getOperand(1)),
1273                         AddrOp1, AddrOp2, Select(N->getOperand(0)));
1274    return SDOperand(N, 0);
1275  }
1276
1277  case ISD::SETCC: {
1278    unsigned Imm;
1279    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
1280    if (isIntImmediate(N->getOperand(1), Imm)) {
1281      // We can codegen setcc op, imm very efficiently compared to a brcond.
1282      // Check for those cases here.
1283      // setcc op, 0
1284      if (Imm == 0) {
1285        SDOperand Op = Select(N->getOperand(0));
1286        switch (CC) {
1287        default: assert(0 && "Unhandled SetCC condition"); abort();
1288        case ISD::SETEQ:
1289          Op = CurDAG->getTargetNode(PPC::CNTLZW, MVT::i32, Op);
1290          CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Op, getI32Imm(27),
1291                               getI32Imm(5), getI32Imm(31));
1292          break;
1293        case ISD::SETNE: {
1294          SDOperand AD = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
1295                                               Op, getI32Imm(~0U));
1296          CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1));
1297          break;
1298        }
1299        case ISD::SETLT:
1300          CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Op, getI32Imm(1),
1301                               getI32Imm(31), getI32Imm(31));
1302          break;
1303        case ISD::SETGT: {
1304          SDOperand T = CurDAG->getTargetNode(PPC::NEG, MVT::i32, Op);
1305          T = CurDAG->getTargetNode(PPC::ANDC, MVT::i32, T, Op);;
1306          CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, T, getI32Imm(1),
1307                               getI32Imm(31), getI32Imm(31));
1308          break;
1309        }
1310        }
1311        return SDOperand(N, 0);
1312      } else if (Imm == ~0U) {        // setcc op, -1
1313        SDOperand Op = Select(N->getOperand(0));
1314        switch (CC) {
1315        default: assert(0 && "Unhandled SetCC condition"); abort();
1316        case ISD::SETEQ:
1317          Op = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
1318                                     Op, getI32Imm(1));
1319          CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
1320                               CurDAG->getTargetNode(PPC::LI, MVT::i32,
1321                                                     getI32Imm(0)),
1322                               Op.getValue(1));
1323          break;
1324        case ISD::SETNE: {
1325          Op = CurDAG->getTargetNode(PPC::NOR, MVT::i32, Op, Op);
1326          SDOperand AD = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
1327                                                Op, getI32Imm(~0U));
1328          CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1));
1329          break;
1330        }
1331        case ISD::SETLT: {
1332          SDOperand AD = CurDAG->getTargetNode(PPC::ADDI, MVT::i32, Op,
1333                                               getI32Imm(1));
1334          SDOperand AN = CurDAG->getTargetNode(PPC::AND, MVT::i32, AD, Op);
1335          CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, AN, getI32Imm(1),
1336                               getI32Imm(31), getI32Imm(31));
1337          break;
1338        }
1339        case ISD::SETGT:
1340          Op = CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, Op, getI32Imm(1),
1341                                     getI32Imm(31), getI32Imm(31));
1342          CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1));
1343          break;
1344        }
1345        return SDOperand(N, 0);
1346      }
1347    }
1348
1349    bool Inv;
1350    unsigned Idx = getCRIdxForSetCC(CC, Inv);
1351    SDOperand CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC);
1352    SDOperand IntCR;
1353
1354    // Force the ccreg into CR7.
1355    SDOperand CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
1356
1357    std::vector<MVT::ValueType> VTs;
1358    VTs.push_back(MVT::Other);
1359    VTs.push_back(MVT::Flag);    // NONSTANDARD CopyToReg node: defines a flag
1360    std::vector<SDOperand> Ops;
1361    Ops.push_back(CurDAG->getEntryNode());
1362    Ops.push_back(CR7Reg);
1363    Ops.push_back(CCReg);
1364    CCReg = CurDAG->getNode(ISD::CopyToReg, VTs, Ops).getValue(1);
1365
1366    if (TLI.getTargetMachine().getSubtarget<PPCSubtarget>().isGigaProcessor())
1367      IntCR = CurDAG->getTargetNode(PPC::MFOCRF, MVT::i32, CR7Reg, CCReg);
1368    else
1369      IntCR = CurDAG->getTargetNode(PPC::MFCR, MVT::i32, CCReg);
1370
1371    if (!Inv) {
1372      CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, IntCR,
1373                           getI32Imm(32-(3-Idx)), getI32Imm(31), getI32Imm(31));
1374    } else {
1375      SDOperand Tmp =
1376      CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, IntCR,
1377                            getI32Imm(32-(3-Idx)), getI32Imm(31),getI32Imm(31));
1378      CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1));
1379    }
1380
1381    return SDOperand(N, 0);
1382  }
1383
1384  case ISD::SELECT_CC: {
1385    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
1386
1387    // handle the setcc cases here.  select_cc lhs, 0, 1, 0, cc
1388    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
1389      if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
1390        if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
1391          if (N1C->isNullValue() && N3C->isNullValue() &&
1392              N2C->getValue() == 1ULL && CC == ISD::SETNE) {
1393            SDOperand LHS = Select(N->getOperand(0));
1394            SDOperand Tmp =
1395              CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
1396                                    LHS, getI32Imm(~0U));
1397            CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, Tmp, LHS,
1398                                 Tmp.getValue(1));
1399            return SDOperand(N, 0);
1400          }
1401
1402    SDOperand CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC);
1403    unsigned BROpc = getBCCForSetCC(CC);
1404
1405    bool isFP = MVT::isFloatingPoint(N->getValueType(0));
1406    unsigned SelectCCOp = isFP ? PPC::SELECT_CC_FP : PPC::SELECT_CC_Int;
1407    CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), CCReg,
1408                         Select(N->getOperand(2)), Select(N->getOperand(3)),
1409                         getI32Imm(BROpc));
1410    return SDOperand(N, 0);
1411  }
1412
1413  case ISD::CALLSEQ_START:
1414  case ISD::CALLSEQ_END: {
1415    unsigned Amt = cast<ConstantSDNode>(N->getOperand(1))->getValue();
1416    unsigned Opc = N->getOpcode() == ISD::CALLSEQ_START ?
1417                       PPC::ADJCALLSTACKDOWN : PPC::ADJCALLSTACKUP;
1418    CurDAG->SelectNodeTo(N, Opc, MVT::Other,
1419                         getI32Imm(Amt), Select(N->getOperand(0)));
1420    return SDOperand(N, 0);
1421  }
1422  case ISD::CALL:
1423  case ISD::TAILCALL: {
1424    SDOperand Chain = Select(N->getOperand(0));
1425
1426    unsigned CallOpcode;
1427    std::vector<SDOperand> CallOperands;
1428
1429    if (GlobalAddressSDNode *GASD =
1430        dyn_cast<GlobalAddressSDNode>(N->getOperand(1))) {
1431      CallOpcode = PPC::CALLpcrel;
1432      CallOperands.push_back(CurDAG->getTargetGlobalAddress(GASD->getGlobal(),
1433                                                            MVT::i32));
1434    } else if (ExternalSymbolSDNode *ESSDN =
1435               dyn_cast<ExternalSymbolSDNode>(N->getOperand(1))) {
1436      CallOpcode = PPC::CALLpcrel;
1437      CallOperands.push_back(N->getOperand(1));
1438    } else {
1439      // Copy the callee address into the CTR register.
1440      SDOperand Callee = Select(N->getOperand(1));
1441      Chain = CurDAG->getTargetNode(PPC::MTCTR, MVT::Other, Callee, Chain);
1442
1443      // Copy the callee address into R12 on darwin.
1444      SDOperand R12 = CurDAG->getRegister(PPC::R12, MVT::i32);
1445      Chain = CurDAG->getNode(ISD::CopyToReg, MVT::Other, Chain, R12, Callee);
1446
1447      CallOperands.push_back(getI32Imm(20));  // Information to encode indcall
1448      CallOperands.push_back(getI32Imm(0));   // Information to encode indcall
1449      CallOperands.push_back(R12);
1450      CallOpcode = PPC::CALLindirect;
1451    }
1452
1453    unsigned GPR_idx = 0, FPR_idx = 0;
1454    static const unsigned GPR[] = {
1455      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1456      PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1457    };
1458    static const unsigned FPR[] = {
1459      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1460      PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1461    };
1462
1463    SDOperand InFlag;  // Null incoming flag value.
1464
1465    for (unsigned i = 2, e = N->getNumOperands(); i != e; ++i) {
1466      unsigned DestReg = 0;
1467      MVT::ValueType RegTy = N->getOperand(i).getValueType();
1468      if (RegTy == MVT::i32) {
1469        assert(GPR_idx < 8 && "Too many int args");
1470        DestReg = GPR[GPR_idx++];
1471      } else {
1472        assert(MVT::isFloatingPoint(N->getOperand(i).getValueType()) &&
1473               "Unpromoted integer arg?");
1474        assert(FPR_idx < 13 && "Too many fp args");
1475        DestReg = FPR[FPR_idx++];
1476      }
1477
1478      if (N->getOperand(i).getOpcode() != ISD::UNDEF) {
1479        SDOperand Val = Select(N->getOperand(i));
1480        Chain = CurDAG->getCopyToReg(Chain, DestReg, Val, InFlag);
1481        InFlag = Chain.getValue(1);
1482        CallOperands.push_back(CurDAG->getRegister(DestReg, RegTy));
1483      }
1484    }
1485
1486    // Finally, once everything is in registers to pass to the call, emit the
1487    // call itself.
1488    if (InFlag.Val)
1489      CallOperands.push_back(InFlag);   // Strong dep on register copies.
1490    else
1491      CallOperands.push_back(Chain);    // Weak dep on whatever occurs before
1492    Chain = CurDAG->getTargetNode(CallOpcode, MVT::Other, MVT::Flag,
1493                                  CallOperands);
1494
1495    std::vector<SDOperand> CallResults;
1496
1497    // If the call has results, copy the values out of the ret val registers.
1498    switch (N->getValueType(0)) {
1499    default: assert(0 && "Unexpected ret value!");
1500    case MVT::Other: break;
1501    case MVT::i32:
1502      if (N->getValueType(1) == MVT::i32) {
1503        Chain = CurDAG->getCopyFromReg(Chain, PPC::R4, MVT::i32,
1504                                       Chain.getValue(1)).getValue(1);
1505        CallResults.push_back(Chain.getValue(0));
1506        Chain = CurDAG->getCopyFromReg(Chain, PPC::R3, MVT::i32,
1507                                       Chain.getValue(1)).getValue(1);
1508        CallResults.push_back(Chain.getValue(0));
1509      } else {
1510        Chain = CurDAG->getCopyFromReg(Chain, PPC::R3, MVT::i32,
1511                                       Chain.getValue(1)).getValue(1);
1512        CallResults.push_back(Chain.getValue(0));
1513      }
1514      break;
1515    case MVT::f32:
1516    case MVT::f64:
1517      Chain = CurDAG->getCopyFromReg(Chain, PPC::F1, N->getValueType(0),
1518                                     Chain.getValue(1)).getValue(1);
1519      CallResults.push_back(Chain.getValue(0));
1520      break;
1521    }
1522
1523    CallResults.push_back(Chain);
1524    CurDAG->ReplaceAllUsesWith(N, CallResults);
1525    return CallResults[Op.ResNo];
1526  }
1527  case ISD::RET: {
1528    SDOperand Chain = Select(N->getOperand(0));     // Token chain.
1529
1530    if (N->getNumOperands() == 2) {
1531      SDOperand Val = Select(N->getOperand(1));
1532      if (N->getOperand(1).getValueType() == MVT::i32) {
1533        Chain = CurDAG->getCopyToReg(Chain, PPC::R3, Val);
1534      } else {
1535        assert(MVT::isFloatingPoint(N->getOperand(1).getValueType()));
1536        Chain = CurDAG->getCopyToReg(Chain, PPC::F1, Val);
1537      }
1538    } else if (N->getNumOperands() > 1) {
1539      assert(N->getOperand(1).getValueType() == MVT::i32 &&
1540             N->getOperand(2).getValueType() == MVT::i32 &&
1541             N->getNumOperands() == 3 && "Unknown two-register ret value!");
1542      Chain = CurDAG->getCopyToReg(Chain, PPC::R4, Select(N->getOperand(1)));
1543      Chain = CurDAG->getCopyToReg(Chain, PPC::R3, Select(N->getOperand(2)));
1544    }
1545
1546    // Finally, select this to a blr (return) instruction.
1547    CurDAG->SelectNodeTo(N, PPC::BLR, MVT::Other, Chain);
1548    return SDOperand(N, 0);
1549  }
1550  case ISD::BR:
1551    CurDAG->SelectNodeTo(N, PPC::B, MVT::Other, N->getOperand(1),
1552                         Select(N->getOperand(0)));
1553    return SDOperand(N, 0);
1554  case ISD::BR_CC:
1555  case ISD::BRTWOWAY_CC: {
1556    SDOperand Chain = Select(N->getOperand(0));
1557    MachineBasicBlock *Dest =
1558      cast<BasicBlockSDNode>(N->getOperand(4))->getBasicBlock();
1559    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
1560    SDOperand CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC);
1561    unsigned Opc = getBCCForSetCC(CC);
1562
1563    // If this is a two way branch, then grab the fallthrough basic block
1564    // argument and build a PowerPC branch pseudo-op, suitable for long branch
1565    // conversion if necessary by the branch selection pass.  Otherwise, emit a
1566    // standard conditional branch.
1567    if (N->getOpcode() == ISD::BRTWOWAY_CC) {
1568      MachineBasicBlock *Fallthrough =
1569        cast<BasicBlockSDNode>(N->getOperand(5))->getBasicBlock();
1570      SDOperand CB = CurDAG->getTargetNode(PPC::COND_BRANCH, MVT::Other,
1571                                           CondCode, getI32Imm(Opc),
1572                                           N->getOperand(4), N->getOperand(5),
1573                                           Chain);
1574      CurDAG->SelectNodeTo(N, PPC::B, MVT::Other, N->getOperand(5), CB);
1575    } else {
1576      // Iterate to the next basic block
1577      ilist<MachineBasicBlock>::iterator It = BB;
1578      ++It;
1579
1580      // If the fallthrough path is off the end of the function, which would be
1581      // undefined behavior, set it to be the same as the current block because
1582      // we have nothing better to set it to, and leaving it alone will cause
1583      // the PowerPC Branch Selection pass to crash.
1584      if (It == BB->getParent()->end()) It = Dest;
1585      CurDAG->SelectNodeTo(N, PPC::COND_BRANCH, MVT::Other, CondCode,
1586                           getI32Imm(Opc), N->getOperand(4),
1587                           CurDAG->getBasicBlock(It), Chain);
1588    }
1589    return SDOperand(N, 0);
1590  }
1591  }
1592
1593  return SelectCode(Op);
1594}
1595
1596
1597/// createPPC32ISelDag - This pass converts a legalized DAG into a
1598/// PowerPC-specific DAG, ready for instruction scheduling.
1599///
1600FunctionPass *llvm::createPPC32ISelDag(TargetMachine &TM) {
1601  return new PPC32DAGToDAGISel(TM);
1602}
1603
1604