PPCISelDAGToDAG.cpp revision 4667f2cbad246beccfca5411a26add24d1007035
1//===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a pattern matching instruction selector for PowerPC,
11// converting from a legalized dag to a PPC dag.
12//
13//===----------------------------------------------------------------------===//
14
15#include "PPC.h"
16#include "PPCTargetMachine.h"
17#include "PPCISelLowering.h"
18#include "PPCHazardRecognizers.h"
19#include "llvm/CodeGen/MachineInstrBuilder.h"
20#include "llvm/CodeGen/MachineFunction.h"
21#include "llvm/CodeGen/SSARegMap.h"
22#include "llvm/CodeGen/SelectionDAG.h"
23#include "llvm/CodeGen/SelectionDAGISel.h"
24#include "llvm/Target/TargetOptions.h"
25#include "llvm/ADT/Statistic.h"
26#include "llvm/Constants.h"
27#include "llvm/GlobalValue.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/MathExtras.h"
31#include <iostream>
32#include <set>
33using namespace llvm;
34
35namespace {
36  Statistic<> FrameOff("ppc-codegen", "Number of frame idx offsets collapsed");
37
38  //===--------------------------------------------------------------------===//
39  /// PPCDAGToDAGISel - PPC specific code to select PPC machine
40  /// instructions for SelectionDAG operations.
41  ///
42  class PPCDAGToDAGISel : public SelectionDAGISel {
43    PPCTargetMachine &TM;
44    PPCTargetLowering PPCLowering;
45    unsigned GlobalBaseReg;
46  public:
47    PPCDAGToDAGISel(PPCTargetMachine &tm)
48      : SelectionDAGISel(PPCLowering), TM(tm),
49        PPCLowering(*TM.getTargetLowering()) {}
50
51    virtual bool runOnFunction(Function &Fn) {
52      // Make sure we re-emit a set of the global base reg if necessary
53      GlobalBaseReg = 0;
54      SelectionDAGISel::runOnFunction(Fn);
55
56      InsertVRSaveCode(Fn);
57      return true;
58    }
59
60    /// getI32Imm - Return a target constant with the specified value, of type
61    /// i32.
62    inline SDOperand getI32Imm(unsigned Imm) {
63      return CurDAG->getTargetConstant(Imm, MVT::i32);
64    }
65
66    /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
67    /// base register.  Return the virtual register that holds this value.
68    SDOperand getGlobalBaseReg();
69
70    // Select - Convert the specified operand from a target-independent to a
71    // target-specific node if it hasn't already been changed.
72    void Select(SDOperand &Result, SDOperand Op);
73
74    SDNode *SelectBitfieldInsert(SDNode *N);
75
76    /// SelectCC - Select a comparison of the specified values with the
77    /// specified condition code, returning the CR# of the expression.
78    SDOperand SelectCC(SDOperand LHS, SDOperand RHS, ISD::CondCode CC);
79
80    /// SelectAddrImm - Returns true if the address N can be represented by
81    /// a base register plus a signed 16-bit displacement [r+imm].
82    bool SelectAddrImm(SDOperand N, SDOperand &Disp, SDOperand &Base);
83
84    /// SelectAddrIdx - Given the specified addressed, check to see if it can be
85    /// represented as an indexed [r+r] operation.  Returns false if it can
86    /// be represented by [r+imm], which are preferred.
87    bool SelectAddrIdx(SDOperand N, SDOperand &Base, SDOperand &Index);
88
89    /// SelectAddrIdxOnly - Given the specified addressed, force it to be
90    /// represented as an indexed [r+r] operation.
91    bool SelectAddrIdxOnly(SDOperand N, SDOperand &Base, SDOperand &Index);
92
93    /// SelectAddrImmShift - Returns true if the address N can be represented by
94    /// a base register plus a signed 14-bit displacement [r+imm*4].  Suitable
95    /// for use by STD and friends.
96    bool SelectAddrImmShift(SDOperand N, SDOperand &Disp, SDOperand &Base);
97
98    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
99    /// inline asm expressions.
100    virtual bool SelectInlineAsmMemoryOperand(const SDOperand &Op,
101                                              char ConstraintCode,
102                                              std::vector<SDOperand> &OutOps,
103                                              SelectionDAG &DAG) {
104      SDOperand Op0, Op1;
105      switch (ConstraintCode) {
106      default: return true;
107      case 'm':   // memory
108        if (!SelectAddrIdx(Op, Op0, Op1))
109          SelectAddrImm(Op, Op0, Op1);
110        break;
111      case 'o':   // offsetable
112        if (!SelectAddrImm(Op, Op0, Op1)) {
113          Select(Op0, Op);     // r+0.
114          Op1 = getI32Imm(0);
115        }
116        break;
117      case 'v':   // not offsetable
118        SelectAddrIdxOnly(Op, Op0, Op1);
119        break;
120      }
121
122      OutOps.push_back(Op0);
123      OutOps.push_back(Op1);
124      return false;
125    }
126
127    SDOperand BuildSDIVSequence(SDNode *N);
128    SDOperand BuildUDIVSequence(SDNode *N);
129
130    /// InstructionSelectBasicBlock - This callback is invoked by
131    /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
132    virtual void InstructionSelectBasicBlock(SelectionDAG &DAG);
133
134    void InsertVRSaveCode(Function &Fn);
135
136    virtual const char *getPassName() const {
137      return "PowerPC DAG->DAG Pattern Instruction Selection";
138    }
139
140    /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for this
141    /// target when scheduling the DAG.
142    virtual HazardRecognizer *CreateTargetHazardRecognizer() {
143      // Should use subtarget info to pick the right hazard recognizer.  For
144      // now, always return a PPC970 recognizer.
145      const TargetInstrInfo *II = PPCLowering.getTargetMachine().getInstrInfo();
146      assert(II && "No InstrInfo?");
147      return new PPCHazardRecognizer970(*II);
148    }
149
150// Include the pieces autogenerated from the target description.
151#include "PPCGenDAGISel.inc"
152
153private:
154    SDOperand SelectSETCC(SDOperand Op);
155    SDOperand SelectCALL(SDOperand Op);
156  };
157}
158
159/// InstructionSelectBasicBlock - This callback is invoked by
160/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
161void PPCDAGToDAGISel::InstructionSelectBasicBlock(SelectionDAG &DAG) {
162  DEBUG(BB->dump());
163
164  // The selection process is inherently a bottom-up recursive process (users
165  // select their uses before themselves).  Given infinite stack space, we
166  // could just start selecting on the root and traverse the whole graph.  In
167  // practice however, this causes us to run out of stack space on large basic
168  // blocks.  To avoid this problem, select the entry node, then all its uses,
169  // iteratively instead of recursively.
170  std::vector<SDOperand> Worklist;
171  Worklist.push_back(DAG.getEntryNode());
172
173  // Note that we can do this in the PPC target (scanning forward across token
174  // chain edges) because no nodes ever get folded across these edges.  On a
175  // target like X86 which supports load/modify/store operations, this would
176  // have to be more careful.
177  while (!Worklist.empty()) {
178    SDOperand Node = Worklist.back();
179    Worklist.pop_back();
180
181    // Chose from the least deep of the top two nodes.
182    if (!Worklist.empty() &&
183        Worklist.back().Val->getNodeDepth() < Node.Val->getNodeDepth())
184      std::swap(Worklist.back(), Node);
185
186    if ((Node.Val->getOpcode() >= ISD::BUILTIN_OP_END &&
187         Node.Val->getOpcode() < PPCISD::FIRST_NUMBER) ||
188        CodeGenMap.count(Node)) continue;
189
190    for (SDNode::use_iterator UI = Node.Val->use_begin(),
191         E = Node.Val->use_end(); UI != E; ++UI) {
192      // Scan the values.  If this use has a value that is a token chain, add it
193      // to the worklist.
194      SDNode *User = *UI;
195      for (unsigned i = 0, e = User->getNumValues(); i != e; ++i)
196        if (User->getValueType(i) == MVT::Other) {
197          Worklist.push_back(SDOperand(User, i));
198          break;
199        }
200    }
201
202    // Finally, legalize this node.
203    SDOperand Dummy;
204    Select(Dummy, Node);
205  }
206
207  // Select target instructions for the DAG.
208  DAG.setRoot(SelectRoot(DAG.getRoot()));
209  CodeGenMap.clear();
210  DAG.RemoveDeadNodes();
211
212  // Emit machine code to BB.
213  ScheduleAndEmitDAG(DAG);
214}
215
216/// InsertVRSaveCode - Once the entire function has been instruction selected,
217/// all virtual registers are created and all machine instructions are built,
218/// check to see if we need to save/restore VRSAVE.  If so, do it.
219void PPCDAGToDAGISel::InsertVRSaveCode(Function &F) {
220  // Check to see if this function uses vector registers, which means we have to
221  // save and restore the VRSAVE register and update it with the regs we use.
222  //
223  // In this case, there will be virtual registers of vector type type created
224  // by the scheduler.  Detect them now.
225  MachineFunction &Fn = MachineFunction::get(&F);
226  SSARegMap *RegMap = Fn.getSSARegMap();
227  bool HasVectorVReg = false;
228  for (unsigned i = MRegisterInfo::FirstVirtualRegister,
229       e = RegMap->getLastVirtReg()+1; i != e; ++i)
230    if (RegMap->getRegClass(i) == &PPC::VRRCRegClass) {
231      HasVectorVReg = true;
232      break;
233    }
234  if (!HasVectorVReg) return;  // nothing to do.
235
236  // If we have a vector register, we want to emit code into the entry and exit
237  // blocks to save and restore the VRSAVE register.  We do this here (instead
238  // of marking all vector instructions as clobbering VRSAVE) for two reasons:
239  //
240  // 1. This (trivially) reduces the load on the register allocator, by not
241  //    having to represent the live range of the VRSAVE register.
242  // 2. This (more significantly) allows us to create a temporary virtual
243  //    register to hold the saved VRSAVE value, allowing this temporary to be
244  //    register allocated, instead of forcing it to be spilled to the stack.
245
246  // Create two vregs - one to hold the VRSAVE register that is live-in to the
247  // function and one for the value after having bits or'd into it.
248  unsigned InVRSAVE = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
249  unsigned UpdatedVRSAVE = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
250
251  MachineBasicBlock &EntryBB = *Fn.begin();
252  // Emit the following code into the entry block:
253  // InVRSAVE = MFVRSAVE
254  // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE
255  // MTVRSAVE UpdatedVRSAVE
256  MachineBasicBlock::iterator IP = EntryBB.begin();  // Insert Point
257  BuildMI(EntryBB, IP, PPC::MFVRSAVE, 0, InVRSAVE);
258  BuildMI(EntryBB, IP, PPC::UPDATE_VRSAVE, 1, UpdatedVRSAVE).addReg(InVRSAVE);
259  BuildMI(EntryBB, IP, PPC::MTVRSAVE, 1).addReg(UpdatedVRSAVE);
260
261  // Find all return blocks, outputting a restore in each epilog.
262  const TargetInstrInfo &TII = *TM.getInstrInfo();
263  for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
264    if (!BB->empty() && TII.isReturn(BB->back().getOpcode())) {
265      IP = BB->end(); --IP;
266
267      // Skip over all terminator instructions, which are part of the return
268      // sequence.
269      MachineBasicBlock::iterator I2 = IP;
270      while (I2 != BB->begin() && TII.isTerminatorInstr((--I2)->getOpcode()))
271        IP = I2;
272
273      // Emit: MTVRSAVE InVRSave
274      BuildMI(*BB, IP, PPC::MTVRSAVE, 1).addReg(InVRSAVE);
275    }
276  }
277}
278
279
280/// getGlobalBaseReg - Output the instructions required to put the
281/// base address to use for accessing globals into a register.
282///
283SDOperand PPCDAGToDAGISel::getGlobalBaseReg() {
284  if (!GlobalBaseReg) {
285    // Insert the set of GlobalBaseReg into the first MBB of the function
286    MachineBasicBlock &FirstMBB = BB->getParent()->front();
287    MachineBasicBlock::iterator MBBI = FirstMBB.begin();
288    SSARegMap *RegMap = BB->getParent()->getSSARegMap();
289    // FIXME: when we get to LP64, we will need to create the appropriate
290    // type of register here.
291    GlobalBaseReg = RegMap->createVirtualRegister(PPC::GPRCRegisterClass);
292    BuildMI(FirstMBB, MBBI, PPC::MovePCtoLR, 0, PPC::LR);
293    BuildMI(FirstMBB, MBBI, PPC::MFLR, 1, GlobalBaseReg);
294  }
295  return CurDAG->getRegister(GlobalBaseReg, MVT::i32);
296}
297
298
299// isIntImmediate - This method tests to see if a constant operand.
300// If so Imm will receive the 32 bit value.
301static bool isIntImmediate(SDNode *N, unsigned& Imm) {
302  if (N->getOpcode() == ISD::Constant) {
303    Imm = cast<ConstantSDNode>(N)->getValue();
304    return true;
305  }
306  return false;
307}
308
309// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
310// any number of 0s on either side.  The 1s are allowed to wrap from LSB to
311// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.  0x0F0F0000 is
312// not, since all 1s are not contiguous.
313static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) {
314  if (isShiftedMask_32(Val)) {
315    // look for the first non-zero bit
316    MB = CountLeadingZeros_32(Val);
317    // look for the first zero bit after the run of ones
318    ME = CountLeadingZeros_32((Val - 1) ^ Val);
319    return true;
320  } else {
321    Val = ~Val; // invert mask
322    if (isShiftedMask_32(Val)) {
323      // effectively look for the first zero bit
324      ME = CountLeadingZeros_32(Val) - 1;
325      // effectively look for the first one bit after the run of zeros
326      MB = CountLeadingZeros_32((Val - 1) ^ Val) + 1;
327      return true;
328    }
329  }
330  // no run present
331  return false;
332}
333
334// isRotateAndMask - Returns true if Mask and Shift can be folded into a rotate
335// and mask opcode and mask operation.
336static bool isRotateAndMask(SDNode *N, unsigned Mask, bool IsShiftMask,
337                            unsigned &SH, unsigned &MB, unsigned &ME) {
338  // Don't even go down this path for i64, since different logic will be
339  // necessary for rldicl/rldicr/rldimi.
340  if (N->getValueType(0) != MVT::i32)
341    return false;
342
343  unsigned Shift  = 32;
344  unsigned Indeterminant = ~0;  // bit mask marking indeterminant results
345  unsigned Opcode = N->getOpcode();
346  if (N->getNumOperands() != 2 ||
347      !isIntImmediate(N->getOperand(1).Val, Shift) || (Shift > 31))
348    return false;
349
350  if (Opcode == ISD::SHL) {
351    // apply shift left to mask if it comes first
352    if (IsShiftMask) Mask = Mask << Shift;
353    // determine which bits are made indeterminant by shift
354    Indeterminant = ~(0xFFFFFFFFu << Shift);
355  } else if (Opcode == ISD::SRL) {
356    // apply shift right to mask if it comes first
357    if (IsShiftMask) Mask = Mask >> Shift;
358    // determine which bits are made indeterminant by shift
359    Indeterminant = ~(0xFFFFFFFFu >> Shift);
360    // adjust for the left rotate
361    Shift = 32 - Shift;
362  } else {
363    return false;
364  }
365
366  // if the mask doesn't intersect any Indeterminant bits
367  if (Mask && !(Mask & Indeterminant)) {
368    SH = Shift;
369    // make sure the mask is still a mask (wrap arounds may not be)
370    return isRunOfOnes(Mask, MB, ME);
371  }
372  return false;
373}
374
375// isOpcWithIntImmediate - This method tests to see if the node is a specific
376// opcode and that it has a immediate integer right operand.
377// If so Imm will receive the 32 bit value.
378static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
379  return N->getOpcode() == Opc && isIntImmediate(N->getOperand(1).Val, Imm);
380}
381
382// isIntImmediate - This method tests to see if a constant operand.
383// If so Imm will receive the 32 bit value.
384static bool isIntImmediate(SDOperand N, unsigned& Imm) {
385  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
386    Imm = (unsigned)CN->getSignExtended();
387    return true;
388  }
389  return false;
390}
391
392/// SelectBitfieldInsert - turn an or of two masked values into
393/// the rotate left word immediate then mask insert (rlwimi) instruction.
394SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) {
395  SDOperand Op0 = N->getOperand(0);
396  SDOperand Op1 = N->getOperand(1);
397
398  uint64_t LKZ, LKO, RKZ, RKO;
399  TLI.ComputeMaskedBits(Op0, 0xFFFFFFFFULL, LKZ, LKO);
400  TLI.ComputeMaskedBits(Op1, 0xFFFFFFFFULL, RKZ, RKO);
401
402  unsigned TargetMask = LKZ;
403  unsigned InsertMask = RKZ;
404
405  if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
406    unsigned Op0Opc = Op0.getOpcode();
407    unsigned Op1Opc = Op1.getOpcode();
408    unsigned Value, SH = 0;
409    TargetMask = ~TargetMask;
410    InsertMask = ~InsertMask;
411
412    // If the LHS has a foldable shift and the RHS does not, then swap it to the
413    // RHS so that we can fold the shift into the insert.
414    if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
415      if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
416          Op0.getOperand(0).getOpcode() == ISD::SRL) {
417        if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
418            Op1.getOperand(0).getOpcode() != ISD::SRL) {
419          std::swap(Op0, Op1);
420          std::swap(Op0Opc, Op1Opc);
421          std::swap(TargetMask, InsertMask);
422        }
423      }
424    } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
425      if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
426          Op1.getOperand(0).getOpcode() != ISD::SRL) {
427        std::swap(Op0, Op1);
428        std::swap(Op0Opc, Op1Opc);
429        std::swap(TargetMask, InsertMask);
430      }
431    }
432
433    unsigned MB, ME;
434    if (isRunOfOnes(InsertMask, MB, ME)) {
435      SDOperand Tmp1, Tmp2, Tmp3;
436      bool DisjointMask = (TargetMask ^ InsertMask) == 0xFFFFFFFF;
437
438      if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
439          isIntImmediate(Op1.getOperand(1), Value)) {
440        Op1 = Op1.getOperand(0);
441        SH  = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
442      }
443      if (Op1Opc == ISD::AND) {
444        unsigned SHOpc = Op1.getOperand(0).getOpcode();
445        if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) &&
446            isIntImmediate(Op1.getOperand(0).getOperand(1), Value)) {
447          Op1 = Op1.getOperand(0).getOperand(0);
448          SH  = (SHOpc == ISD::SHL) ? Value : 32 - Value;
449        } else {
450          Op1 = Op1.getOperand(0);
451        }
452      }
453
454      Tmp3 = (Op0Opc == ISD::AND && DisjointMask) ? Op0.getOperand(0) : Op0;
455      Select(Tmp1, Tmp3);
456      Select(Tmp2, Op1);
457      return CurDAG->getTargetNode(PPC::RLWIMI, MVT::i32, Tmp1, Tmp2,
458                                   getI32Imm(SH), getI32Imm(MB), getI32Imm(ME));
459    }
460  }
461  return 0;
462}
463
464/// SelectAddrImm - Returns true if the address N can be represented by
465/// a base register plus a signed 16-bit displacement [r+imm].
466bool PPCDAGToDAGISel::SelectAddrImm(SDOperand N, SDOperand &Disp,
467                                    SDOperand &Base) {
468  // If this can be more profitably realized as r+r, fail.
469  if (SelectAddrIdx(N, Disp, Base))
470    return false;
471
472  if (N.getOpcode() == ISD::ADD) {
473    unsigned imm = 0;
474    if (isIntImmediate(N.getOperand(1), imm) && isInt16(imm)) {
475      Disp = getI32Imm(imm & 0xFFFF);
476      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
477        Base = CurDAG->getTargetFrameIndex(FI->getIndex(), MVT::i32);
478      } else {
479        Base = N.getOperand(0);
480      }
481      return true; // [r+i]
482    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
483      // Match LOAD (ADD (X, Lo(G))).
484      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
485             && "Cannot handle constant offsets yet!");
486      Disp = N.getOperand(1).getOperand(0);  // The global address.
487      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
488             Disp.getOpcode() == ISD::TargetConstantPool ||
489             Disp.getOpcode() == ISD::TargetJumpTable);
490      Base = N.getOperand(0);
491      return true;  // [&g+r]
492    }
493  } else if (N.getOpcode() == ISD::OR) {
494    unsigned imm = 0;
495    if (isIntImmediate(N.getOperand(1), imm) && isInt16(imm)) {
496      // If this is an or of disjoint bitfields, we can codegen this as an add
497      // (for better address arithmetic) if the LHS and RHS of the OR are
498      // provably disjoint.
499      uint64_t LHSKnownZero, LHSKnownOne;
500      PPCLowering.ComputeMaskedBits(N.getOperand(0), ~0U,
501                                    LHSKnownZero, LHSKnownOne);
502      if ((LHSKnownZero|~imm) == ~0U) {
503        // If all of the bits are known zero on the LHS or RHS, the add won't
504        // carry.
505        Base = N.getOperand(0);
506        Disp = getI32Imm(imm & 0xFFFF);
507        return true;
508      }
509    }
510  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
511    // Loading from a constant address.
512    int Addr = (int)CN->getValue();
513
514    // If this address fits entirely in a 16-bit sext immediate field, codegen
515    // this as "d, 0"
516    if (Addr == (short)Addr) {
517      Disp = getI32Imm(Addr);
518      Base = CurDAG->getRegister(PPC::R0, MVT::i32);
519      return true;
520    }
521
522    // Otherwise, break this down into an LIS + disp.
523    Disp = getI32Imm((short)Addr);
524    Base = CurDAG->getConstant(Addr - (signed short)Addr, MVT::i32);
525    return true;
526  }
527
528  Disp = getI32Imm(0);
529  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
530    Base = CurDAG->getTargetFrameIndex(FI->getIndex(), MVT::i32);
531  else
532    Base = N;
533  return true;      // [r+0]
534}
535
536/// SelectAddrIdx - Given the specified addressed, check to see if it can be
537/// represented as an indexed [r+r] operation.  Returns false if it can
538/// be represented by [r+imm], which are preferred.
539bool PPCDAGToDAGISel::SelectAddrIdx(SDOperand N, SDOperand &Base,
540                                    SDOperand &Index) {
541  unsigned imm = 0;
542  if (N.getOpcode() == ISD::ADD) {
543    if (isIntImmediate(N.getOperand(1), imm) && isInt16(imm))
544      return false;    // r+i
545    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
546      return false;    // r+i
547
548    Base = N.getOperand(0);
549    Index = N.getOperand(1);
550    return true;
551  } else if (N.getOpcode() == ISD::OR) {
552    if (isIntImmediate(N.getOperand(1), imm) && isInt16(imm))
553      return false;    // r+i can fold it if we can.
554
555    // If this is an or of disjoint bitfields, we can codegen this as an add
556    // (for better address arithmetic) if the LHS and RHS of the OR are provably
557    // disjoint.
558    uint64_t LHSKnownZero, LHSKnownOne;
559    uint64_t RHSKnownZero, RHSKnownOne;
560    PPCLowering.ComputeMaskedBits(N.getOperand(0), ~0U,
561                                  LHSKnownZero, LHSKnownOne);
562
563    if (LHSKnownZero) {
564      PPCLowering.ComputeMaskedBits(N.getOperand(1), ~0U,
565                                    RHSKnownZero, RHSKnownOne);
566      // If all of the bits are known zero on the LHS or RHS, the add won't
567      // carry.
568      if ((LHSKnownZero | RHSKnownZero) == ~0U) {
569        Base = N.getOperand(0);
570        Index = N.getOperand(1);
571        return true;
572      }
573    }
574  }
575
576  return false;
577}
578
579/// SelectAddrIdxOnly - Given the specified addressed, force it to be
580/// represented as an indexed [r+r] operation.
581bool PPCDAGToDAGISel::SelectAddrIdxOnly(SDOperand N, SDOperand &Base,
582                                        SDOperand &Index) {
583  // Check to see if we can easily represent this as an [r+r] address.  This
584  // will fail if it thinks that the address is more profitably represented as
585  // reg+imm, e.g. where imm = 0.
586  if (SelectAddrIdx(N, Base, Index))
587    return true;
588
589  // If the operand is an addition, always emit this as [r+r], since this is
590  // better (for code size, and execution, as the memop does the add for free)
591  // than emitting an explicit add.
592  if (N.getOpcode() == ISD::ADD) {
593    Base = N.getOperand(0);
594    Index = N.getOperand(1);
595    return true;
596  }
597
598  // Otherwise, do it the hard way, using R0 as the base register.
599  Base = CurDAG->getRegister(PPC::R0, MVT::i32);
600  Index = N;
601  return true;
602}
603
604/// SelectAddrImmShift - Returns true if the address N can be represented by
605/// a base register plus a signed 14-bit displacement [r+imm*4].  Suitable
606/// for use by STD and friends.
607bool PPCDAGToDAGISel::SelectAddrImmShift(SDOperand N, SDOperand &Disp,
608                                         SDOperand &Base) {
609  // If this can be more profitably realized as r+r, fail.
610  if (SelectAddrIdx(N, Disp, Base))
611    return false;
612
613  if (N.getOpcode() == ISD::ADD) {
614    unsigned imm = 0;
615    if (isIntImmediate(N.getOperand(1), imm) && isInt16(imm) &&
616        (imm & 3) == 0) {
617      Disp = getI32Imm((imm & 0xFFFF) >> 2);
618      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
619        Base = CurDAG->getTargetFrameIndex(FI->getIndex(), MVT::i32);
620      } else {
621        Base = N.getOperand(0);
622      }
623      return true; // [r+i]
624    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
625      // Match LOAD (ADD (X, Lo(G))).
626      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
627             && "Cannot handle constant offsets yet!");
628      Disp = N.getOperand(1).getOperand(0);  // The global address.
629      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
630             Disp.getOpcode() == ISD::TargetConstantPool ||
631             Disp.getOpcode() == ISD::TargetJumpTable);
632      Base = N.getOperand(0);
633      return true;  // [&g+r]
634    }
635  } else if (N.getOpcode() == ISD::OR) {
636    unsigned imm = 0;
637    if (isIntImmediate(N.getOperand(1), imm) && isInt16(imm) &&
638        (imm & 3) == 0) {
639      // If this is an or of disjoint bitfields, we can codegen this as an add
640      // (for better address arithmetic) if the LHS and RHS of the OR are
641      // provably disjoint.
642      uint64_t LHSKnownZero, LHSKnownOne;
643      PPCLowering.ComputeMaskedBits(N.getOperand(0), ~0U,
644                                    LHSKnownZero, LHSKnownOne);
645      if ((LHSKnownZero|~imm) == ~0U) {
646        // If all of the bits are known zero on the LHS or RHS, the add won't
647        // carry.
648        Base = N.getOperand(0);
649        Disp = getI32Imm((imm & 0xFFFF) >> 2);
650        return true;
651      }
652    }
653  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
654    // Loading from a constant address.
655    int Addr = (int)CN->getValue();
656    if ((Addr & 3) == 0) {
657      // If this address fits entirely in a 16-bit sext immediate field, codegen
658      // this as "d, 0"
659      if (Addr == (short)Addr) {
660        Disp = getI32Imm(Addr >> 2);
661        Base = CurDAG->getRegister(PPC::R0, MVT::i32);
662        return true;
663      }
664
665      // Otherwise, break this down into an LIS + disp.
666      Disp = getI32Imm((short)Addr >> 2);
667      Base = CurDAG->getConstant(Addr - (signed short)Addr, MVT::i32);
668      return true;
669    }
670  }
671
672  Disp = getI32Imm(0);
673  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
674    Base = CurDAG->getTargetFrameIndex(FI->getIndex(), MVT::i32);
675  else
676    Base = N;
677  return true;      // [r+0]
678}
679
680
681/// SelectCC - Select a comparison of the specified values with the specified
682/// condition code, returning the CR# of the expression.
683SDOperand PPCDAGToDAGISel::SelectCC(SDOperand LHS, SDOperand RHS,
684                                    ISD::CondCode CC) {
685  // Always select the LHS.
686  Select(LHS, LHS);
687
688  // Use U to determine whether the SETCC immediate range is signed or not.
689  if (MVT::isInteger(LHS.getValueType())) {
690    bool U = ISD::isUnsignedIntSetCC(CC);
691    unsigned Imm;
692    if (isIntImmediate(RHS, Imm) &&
693        ((U && isUInt16(Imm)) || (!U && isInt16(Imm))))
694      return SDOperand(CurDAG->getTargetNode(U ? PPC::CMPLWI : PPC::CMPWI,
695                                    MVT::i32, LHS, getI32Imm(Imm & 0xFFFF)), 0);
696    Select(RHS, RHS);
697    return SDOperand(CurDAG->getTargetNode(U ? PPC::CMPLW : PPC::CMPW, MVT::i32,
698                                           LHS, RHS), 0);
699  } else if (LHS.getValueType() == MVT::f32) {
700    Select(RHS, RHS);
701    return SDOperand(CurDAG->getTargetNode(PPC::FCMPUS, MVT::i32, LHS, RHS), 0);
702  } else {
703    Select(RHS, RHS);
704    return SDOperand(CurDAG->getTargetNode(PPC::FCMPUD, MVT::i32, LHS, RHS), 0);
705  }
706}
707
708/// getBCCForSetCC - Returns the PowerPC condition branch mnemonic corresponding
709/// to Condition.
710static unsigned getBCCForSetCC(ISD::CondCode CC) {
711  switch (CC) {
712  default: assert(0 && "Unknown condition!"); abort();
713  case ISD::SETOEQ:    // FIXME: This is incorrect see PR642.
714  case ISD::SETEQ:  return PPC::BEQ;
715  case ISD::SETONE:    // FIXME: This is incorrect see PR642.
716  case ISD::SETNE:  return PPC::BNE;
717  case ISD::SETOLT:    // FIXME: This is incorrect see PR642.
718  case ISD::SETULT:
719  case ISD::SETLT:  return PPC::BLT;
720  case ISD::SETOLE:    // FIXME: This is incorrect see PR642.
721  case ISD::SETULE:
722  case ISD::SETLE:  return PPC::BLE;
723  case ISD::SETOGT:    // FIXME: This is incorrect see PR642.
724  case ISD::SETUGT:
725  case ISD::SETGT:  return PPC::BGT;
726  case ISD::SETOGE:    // FIXME: This is incorrect see PR642.
727  case ISD::SETUGE:
728  case ISD::SETGE:  return PPC::BGE;
729
730  case ISD::SETO:   return PPC::BUN;
731  case ISD::SETUO:  return PPC::BNU;
732  }
733  return 0;
734}
735
736/// getCRIdxForSetCC - Return the index of the condition register field
737/// associated with the SetCC condition, and whether or not the field is
738/// treated as inverted.  That is, lt = 0; ge = 0 inverted.
739static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool& Inv) {
740  switch (CC) {
741  default: assert(0 && "Unknown condition!"); abort();
742  case ISD::SETOLT:  // FIXME: This is incorrect see PR642.
743  case ISD::SETULT:
744  case ISD::SETLT:  Inv = false;  return 0;
745  case ISD::SETOGE:  // FIXME: This is incorrect see PR642.
746  case ISD::SETUGE:
747  case ISD::SETGE:  Inv = true;   return 0;
748  case ISD::SETOGT:  // FIXME: This is incorrect see PR642.
749  case ISD::SETUGT:
750  case ISD::SETGT:  Inv = false;  return 1;
751  case ISD::SETOLE:  // FIXME: This is incorrect see PR642.
752  case ISD::SETULE:
753  case ISD::SETLE:  Inv = true;   return 1;
754  case ISD::SETOEQ:  // FIXME: This is incorrect see PR642.
755  case ISD::SETEQ:  Inv = false;  return 2;
756  case ISD::SETONE:  // FIXME: This is incorrect see PR642.
757  case ISD::SETNE:  Inv = true;   return 2;
758  case ISD::SETO:   Inv = true;   return 3;
759  case ISD::SETUO:  Inv = false;  return 3;
760  }
761  return 0;
762}
763
764SDOperand PPCDAGToDAGISel::SelectSETCC(SDOperand Op) {
765  SDNode *N = Op.Val;
766  unsigned Imm;
767  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
768  if (isIntImmediate(N->getOperand(1), Imm)) {
769    // We can codegen setcc op, imm very efficiently compared to a brcond.
770    // Check for those cases here.
771    // setcc op, 0
772    if (Imm == 0) {
773      SDOperand Op;
774      Select(Op, N->getOperand(0));
775      switch (CC) {
776      default: break;
777      case ISD::SETEQ:
778        Op = SDOperand(CurDAG->getTargetNode(PPC::CNTLZW, MVT::i32, Op), 0);
779        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Op, getI32Imm(27),
780                                    getI32Imm(5), getI32Imm(31));
781      case ISD::SETNE: {
782        SDOperand AD =
783          SDOperand(CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
784                                          Op, getI32Imm(~0U)), 0);
785        return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op,
786                                    AD.getValue(1));
787      }
788      case ISD::SETLT:
789        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Op, getI32Imm(1),
790                                    getI32Imm(31), getI32Imm(31));
791      case ISD::SETGT: {
792        SDOperand T =
793          SDOperand(CurDAG->getTargetNode(PPC::NEG, MVT::i32, Op), 0);
794        T = SDOperand(CurDAG->getTargetNode(PPC::ANDC, MVT::i32, T, Op), 0);
795        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, T, getI32Imm(1),
796                                    getI32Imm(31), getI32Imm(31));
797      }
798      }
799    } else if (Imm == ~0U) {        // setcc op, -1
800      SDOperand Op;
801      Select(Op, N->getOperand(0));
802      switch (CC) {
803      default: break;
804      case ISD::SETEQ:
805        Op = SDOperand(CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
806                                             Op, getI32Imm(1)), 0);
807        return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
808                              SDOperand(CurDAG->getTargetNode(PPC::LI, MVT::i32,
809                                                              getI32Imm(0)), 0),
810                                    Op.getValue(1));
811      case ISD::SETNE: {
812        Op = SDOperand(CurDAG->getTargetNode(PPC::NOR, MVT::i32, Op, Op), 0);
813        SDNode *AD = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
814                                           Op, getI32Imm(~0U));
815        return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDOperand(AD, 0), Op,
816                                    SDOperand(AD, 1));
817      }
818      case ISD::SETLT: {
819        SDOperand AD = SDOperand(CurDAG->getTargetNode(PPC::ADDI, MVT::i32, Op,
820                                                       getI32Imm(1)), 0);
821        SDOperand AN = SDOperand(CurDAG->getTargetNode(PPC::AND, MVT::i32, AD,
822                                                       Op), 0);
823        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, AN, getI32Imm(1),
824                                    getI32Imm(31), getI32Imm(31));
825      }
826      case ISD::SETGT:
827        Op = SDOperand(CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, Op,
828                                             getI32Imm(1), getI32Imm(31),
829                                             getI32Imm(31)), 0);
830        return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1));
831      }
832    }
833  }
834
835  bool Inv;
836  unsigned Idx = getCRIdxForSetCC(CC, Inv);
837  SDOperand CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC);
838  SDOperand IntCR;
839
840  // Force the ccreg into CR7.
841  SDOperand CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
842
843  SDOperand InFlag(0, 0);  // Null incoming flag value.
844  CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), CR7Reg, CCReg,
845                               InFlag).getValue(1);
846
847  if (TLI.getTargetMachine().getSubtarget<PPCSubtarget>().isGigaProcessor())
848    IntCR = SDOperand(CurDAG->getTargetNode(PPC::MFOCRF, MVT::i32, CR7Reg,
849                                            CCReg), 0);
850  else
851    IntCR = SDOperand(CurDAG->getTargetNode(PPC::MFCR, MVT::i32, CCReg), 0);
852
853  if (!Inv) {
854    return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, IntCR,
855                                getI32Imm((32-(3-Idx)) & 31),
856                                getI32Imm(31), getI32Imm(31));
857  } else {
858    SDOperand Tmp =
859      SDOperand(CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, IntCR,
860                                      getI32Imm((32-(3-Idx)) & 31),
861                                      getI32Imm(31),getI32Imm(31)), 0);
862    return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1));
863  }
864}
865
866/// isCallCompatibleAddress - Return true if the specified 32-bit value is
867/// representable in the immediate field of a Bx instruction.
868static bool isCallCompatibleAddress(ConstantSDNode *C) {
869  int Addr = C->getValue();
870  if (Addr & 3) return false;  // Low 2 bits are implicitly zero.
871  return (Addr << 6 >> 6) == Addr;  // Top 6 bits have to be sext of immediate.
872}
873
874SDOperand PPCDAGToDAGISel::SelectCALL(SDOperand Op) {
875  SDNode *N = Op.Val;
876  SDOperand Chain;
877  Select(Chain, N->getOperand(0));
878
879  unsigned CallOpcode;
880  std::vector<SDOperand> CallOperands;
881
882  if (GlobalAddressSDNode *GASD =
883      dyn_cast<GlobalAddressSDNode>(N->getOperand(1))) {
884    CallOpcode = PPC::BL;
885    CallOperands.push_back(N->getOperand(1));
886  } else if (ExternalSymbolSDNode *ESSDN =
887             dyn_cast<ExternalSymbolSDNode>(N->getOperand(1))) {
888    CallOpcode = PPC::BL;
889    CallOperands.push_back(N->getOperand(1));
890  } else if (isa<ConstantSDNode>(N->getOperand(1)) &&
891             isCallCompatibleAddress(cast<ConstantSDNode>(N->getOperand(1)))) {
892    ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(1));
893    CallOpcode = PPC::BLA;
894    CallOperands.push_back(getI32Imm((int)C->getValue() >> 2));
895  } else {
896    // Copy the callee address into the CTR register.
897    SDOperand Callee;
898    Select(Callee, N->getOperand(1));
899    Chain = SDOperand(CurDAG->getTargetNode(PPC::MTCTR, MVT::Other, Callee,
900                                            Chain), 0);
901
902    // Copy the callee address into R12 on darwin.
903    SDOperand R12 = CurDAG->getRegister(PPC::R12, MVT::i32);
904    Chain = CurDAG->getNode(ISD::CopyToReg, MVT::Other, Chain, R12, Callee);
905
906    CallOperands.push_back(R12);
907    CallOpcode = PPC::BCTRL;
908  }
909
910  unsigned GPR_idx = 0, FPR_idx = 0;
911  static const unsigned GPR[] = {
912    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
913    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
914  };
915  static const unsigned FPR[] = {
916    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
917    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
918  };
919
920  SDOperand InFlag;  // Null incoming flag value.
921
922  for (unsigned i = 2, e = N->getNumOperands(); i != e; ++i) {
923    unsigned DestReg = 0;
924    MVT::ValueType RegTy = N->getOperand(i).getValueType();
925    if (RegTy == MVT::i32) {
926      assert(GPR_idx < 8 && "Too many int args");
927      DestReg = GPR[GPR_idx++];
928    } else {
929      assert(MVT::isFloatingPoint(N->getOperand(i).getValueType()) &&
930             "Unpromoted integer arg?");
931      assert(FPR_idx < 13 && "Too many fp args");
932      DestReg = FPR[FPR_idx++];
933    }
934
935    if (N->getOperand(i).getOpcode() != ISD::UNDEF) {
936      SDOperand Val;
937      Select(Val, N->getOperand(i));
938      Chain = CurDAG->getCopyToReg(Chain, DestReg, Val, InFlag);
939      InFlag = Chain.getValue(1);
940      CallOperands.push_back(CurDAG->getRegister(DestReg, RegTy));
941    }
942  }
943
944  // Finally, once everything is in registers to pass to the call, emit the
945  // call itself.
946  if (InFlag.Val)
947    CallOperands.push_back(InFlag);   // Strong dep on register copies.
948  else
949    CallOperands.push_back(Chain);    // Weak dep on whatever occurs before
950  Chain = SDOperand(CurDAG->getTargetNode(CallOpcode, MVT::Other, MVT::Flag,
951                                          CallOperands), 0);
952
953  std::vector<SDOperand> CallResults;
954
955  // If the call has results, copy the values out of the ret val registers.
956  switch (N->getValueType(0)) {
957    default: assert(0 && "Unexpected ret value!");
958    case MVT::Other: break;
959    case MVT::i32:
960      if (N->getValueType(1) == MVT::i32) {
961        Chain = CurDAG->getCopyFromReg(Chain, PPC::R4, MVT::i32,
962                                       Chain.getValue(1)).getValue(1);
963        CallResults.push_back(Chain.getValue(0));
964        Chain = CurDAG->getCopyFromReg(Chain, PPC::R3, MVT::i32,
965                                       Chain.getValue(2)).getValue(1);
966        CallResults.push_back(Chain.getValue(0));
967      } else {
968        Chain = CurDAG->getCopyFromReg(Chain, PPC::R3, MVT::i32,
969                                       Chain.getValue(1)).getValue(1);
970        CallResults.push_back(Chain.getValue(0));
971      }
972      break;
973    case MVT::f32:
974    case MVT::f64:
975      Chain = CurDAG->getCopyFromReg(Chain, PPC::F1, N->getValueType(0),
976                                     Chain.getValue(1)).getValue(1);
977      CallResults.push_back(Chain.getValue(0));
978      break;
979  }
980
981  CallResults.push_back(Chain);
982  for (unsigned i = 0, e = CallResults.size(); i != e; ++i)
983    CodeGenMap[Op.getValue(i)] = CallResults[i];
984  return CallResults[Op.ResNo];
985}
986
987// Select - Convert the specified operand from a target-independent to a
988// target-specific node if it hasn't already been changed.
989void PPCDAGToDAGISel::Select(SDOperand &Result, SDOperand Op) {
990  SDNode *N = Op.Val;
991  if (N->getOpcode() >= ISD::BUILTIN_OP_END &&
992      N->getOpcode() < PPCISD::FIRST_NUMBER) {
993    Result = Op;
994    return;   // Already selected.
995  }
996
997  // If this has already been converted, use it.
998  std::map<SDOperand, SDOperand>::iterator CGMI = CodeGenMap.find(Op);
999  if (CGMI != CodeGenMap.end()) {
1000    Result = CGMI->second;
1001    return;
1002  }
1003
1004  switch (N->getOpcode()) {
1005  default: break;
1006  case ISD::SETCC:
1007    Result = SelectSETCC(Op);
1008    return;
1009  case PPCISD::CALL:
1010    Result = SelectCALL(Op);
1011    return;
1012  case PPCISD::GlobalBaseReg:
1013    Result = getGlobalBaseReg();
1014    return;
1015
1016  case ISD::FrameIndex: {
1017    int FI = cast<FrameIndexSDNode>(N)->getIndex();
1018    if (N->hasOneUse()) {
1019      Result = CurDAG->SelectNodeTo(N, PPC::ADDI, MVT::i32,
1020                                    CurDAG->getTargetFrameIndex(FI, MVT::i32),
1021                                    getI32Imm(0));
1022      return;
1023    }
1024    Result = CodeGenMap[Op] =
1025      SDOperand(CurDAG->getTargetNode(PPC::ADDI, MVT::i32,
1026                                      CurDAG->getTargetFrameIndex(FI, MVT::i32),
1027                                      getI32Imm(0)), 0);
1028    return;
1029  }
1030
1031  case PPCISD::MFCR: {
1032    SDOperand InFlag;
1033    Select(InFlag, N->getOperand(1));
1034    // Use MFOCRF if supported.
1035    if (TLI.getTargetMachine().getSubtarget<PPCSubtarget>().isGigaProcessor())
1036      Result = SDOperand(CurDAG->getTargetNode(PPC::MFOCRF, MVT::i32,
1037                                               N->getOperand(0), InFlag), 0);
1038    else
1039      Result = SDOperand(CurDAG->getTargetNode(PPC::MFCR, MVT::i32, InFlag), 0);
1040    CodeGenMap[Op] = Result;
1041    return;
1042  }
1043
1044  case ISD::SDIV: {
1045    // FIXME: since this depends on the setting of the carry flag from the srawi
1046    //        we should really be making notes about that for the scheduler.
1047    // FIXME: It sure would be nice if we could cheaply recognize the
1048    //        srl/add/sra pattern the dag combiner will generate for this as
1049    //        sra/addze rather than having to handle sdiv ourselves.  oh well.
1050    unsigned Imm;
1051    if (isIntImmediate(N->getOperand(1), Imm)) {
1052      SDOperand N0;
1053      Select(N0, N->getOperand(0));
1054      if ((signed)Imm > 0 && isPowerOf2_32(Imm)) {
1055        SDNode *Op =
1056          CurDAG->getTargetNode(PPC::SRAWI, MVT::i32, MVT::Flag,
1057                                N0, getI32Imm(Log2_32(Imm)));
1058        Result = CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
1059                                      SDOperand(Op, 0), SDOperand(Op, 1));
1060      } else if ((signed)Imm < 0 && isPowerOf2_32(-Imm)) {
1061        SDNode *Op =
1062          CurDAG->getTargetNode(PPC::SRAWI, MVT::i32, MVT::Flag,
1063                                N0, getI32Imm(Log2_32(-Imm)));
1064        SDOperand PT =
1065          SDOperand(CurDAG->getTargetNode(PPC::ADDZE, MVT::i32,
1066                                          SDOperand(Op, 0), SDOperand(Op, 1)),
1067                    0);
1068        Result = CurDAG->SelectNodeTo(N, PPC::NEG, MVT::i32, PT);
1069      }
1070      return;
1071    }
1072
1073    // Other cases are autogenerated.
1074    break;
1075  }
1076  case ISD::AND: {
1077    unsigned Imm, Imm2;
1078    // If this is an and of a value rotated between 0 and 31 bits and then and'd
1079    // with a mask, emit rlwinm
1080    if (isIntImmediate(N->getOperand(1), Imm) && (isShiftedMask_32(Imm) ||
1081                                                  isShiftedMask_32(~Imm))) {
1082      SDOperand Val;
1083      unsigned SH, MB, ME;
1084      if (isRotateAndMask(N->getOperand(0).Val, Imm, false, SH, MB, ME)) {
1085        Select(Val, N->getOperand(0).getOperand(0));
1086      } else if (Imm == 0) {
1087        // AND X, 0 -> 0, not "rlwinm 32".
1088        Select(Result, N->getOperand(1));
1089        return ;
1090      } else {
1091        Select(Val, N->getOperand(0));
1092        isRunOfOnes(Imm, MB, ME);
1093        SH = 0;
1094      }
1095      Result = CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Val,
1096                                    getI32Imm(SH), getI32Imm(MB),
1097                                    getI32Imm(ME));
1098      return;
1099    }
1100    // ISD::OR doesn't get all the bitfield insertion fun.
1101    // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) is a bitfield insert
1102    if (isIntImmediate(N->getOperand(1), Imm) &&
1103        N->getOperand(0).getOpcode() == ISD::OR &&
1104        isIntImmediate(N->getOperand(0).getOperand(1), Imm2)) {
1105      unsigned MB, ME;
1106      Imm = ~(Imm^Imm2);
1107      if (isRunOfOnes(Imm, MB, ME)) {
1108        SDOperand Tmp1, Tmp2;
1109        Select(Tmp1, N->getOperand(0).getOperand(0));
1110        Select(Tmp2, N->getOperand(0).getOperand(1));
1111        Result = SDOperand(CurDAG->getTargetNode(PPC::RLWIMI, MVT::i32,
1112                                                 Tmp1, Tmp2,
1113                                                 getI32Imm(0), getI32Imm(MB),
1114                                                 getI32Imm(ME)), 0);
1115        return;
1116      }
1117    }
1118
1119    // Other cases are autogenerated.
1120    break;
1121  }
1122  case ISD::OR:
1123    if (SDNode *I = SelectBitfieldInsert(N)) {
1124      Result = CodeGenMap[Op] = SDOperand(I, 0);
1125      return;
1126    }
1127
1128    // Other cases are autogenerated.
1129    break;
1130  case ISD::SHL: {
1131    unsigned Imm, SH, MB, ME;
1132    if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) &&
1133        isRotateAndMask(N, Imm, true, SH, MB, ME)) {
1134      SDOperand Val;
1135      Select(Val, N->getOperand(0).getOperand(0));
1136      Result = CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32,
1137                                    Val, getI32Imm(SH), getI32Imm(MB),
1138                                    getI32Imm(ME));
1139      return;
1140    }
1141
1142    // Other cases are autogenerated.
1143    break;
1144  }
1145  case ISD::SRL: {
1146    unsigned Imm, SH, MB, ME;
1147    if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) &&
1148        isRotateAndMask(N, Imm, true, SH, MB, ME)) {
1149      SDOperand Val;
1150      Select(Val, N->getOperand(0).getOperand(0));
1151      Result = CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32,
1152                                    Val, getI32Imm(SH & 0x1F), getI32Imm(MB),
1153                                    getI32Imm(ME));
1154      return;
1155    }
1156
1157    // Other cases are autogenerated.
1158    break;
1159  }
1160  case ISD::SELECT_CC: {
1161    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
1162
1163    // handle the setcc cases here.  select_cc lhs, 0, 1, 0, cc
1164    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
1165      if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
1166        if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
1167          if (N1C->isNullValue() && N3C->isNullValue() &&
1168              N2C->getValue() == 1ULL && CC == ISD::SETNE) {
1169            SDOperand LHS;
1170            Select(LHS, N->getOperand(0));
1171            SDNode *Tmp =
1172              CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
1173                                    LHS, getI32Imm(~0U));
1174            Result = CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32,
1175                                          SDOperand(Tmp, 0), LHS,
1176                                          SDOperand(Tmp, 1));
1177            return;
1178          }
1179
1180    SDOperand CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC);
1181    unsigned BROpc = getBCCForSetCC(CC);
1182
1183    bool isFP = MVT::isFloatingPoint(N->getValueType(0));
1184    unsigned SelectCCOp;
1185    if (MVT::isInteger(N->getValueType(0)))
1186      SelectCCOp = PPC::SELECT_CC_Int;
1187    else if (N->getValueType(0) == MVT::f32)
1188      SelectCCOp = PPC::SELECT_CC_F4;
1189    else if (N->getValueType(0) == MVT::f64)
1190      SelectCCOp = PPC::SELECT_CC_F8;
1191    else
1192      SelectCCOp = PPC::SELECT_CC_VRRC;
1193
1194    SDOperand N2, N3;
1195    Select(N2, N->getOperand(2));
1196    Select(N3, N->getOperand(3));
1197    Result = CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), CCReg,
1198                                  N2, N3, getI32Imm(BROpc));
1199    return;
1200  }
1201  case ISD::BR_CC: {
1202    SDOperand Chain;
1203    Select(Chain, N->getOperand(0));
1204    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
1205    SDOperand CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC);
1206    Result = CurDAG->SelectNodeTo(N, PPC::COND_BRANCH, MVT::Other,
1207                                  CondCode, getI32Imm(getBCCForSetCC(CC)),
1208                                  N->getOperand(4), Chain);
1209    return;
1210  }
1211  case ISD::BRIND: {
1212    SDOperand Chain, Target;
1213    Select(Chain, N->getOperand(0));
1214    Select(Target,N->getOperand(1));
1215    Chain = SDOperand(CurDAG->getTargetNode(PPC::MTCTR, MVT::Other, Target,
1216                                            Chain), 0);
1217    Result = CurDAG->SelectNodeTo(N, PPC::BCTR, MVT::Other, Chain);
1218    return;
1219  }
1220  }
1221
1222  SelectCode(Result, Op);
1223}
1224
1225
1226/// createPPCISelDag - This pass converts a legalized DAG into a
1227/// PowerPC-specific DAG, ready for instruction scheduling.
1228///
1229FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) {
1230  return new PPCDAGToDAGISel(TM);
1231}
1232
1233