PPCISelDAGToDAG.cpp revision 53b0b0e75480121e4e01a7a76e17909e92b1762a
1//===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a pattern matching instruction selector for PowerPC,
11// converting from a legalized dag to a PPC dag.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "ppc-codegen"
16#include "PPC.h"
17#include "MCTargetDesc/PPCPredicates.h"
18#include "PPCTargetMachine.h"
19#include "llvm/CodeGen/MachineFunction.h"
20#include "llvm/CodeGen/MachineInstrBuilder.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/CodeGen/SelectionDAG.h"
23#include "llvm/CodeGen/SelectionDAGISel.h"
24#include "llvm/IR/Constants.h"
25#include "llvm/IR/Function.h"
26#include "llvm/IR/GlobalAlias.h"
27#include "llvm/IR/GlobalValue.h"
28#include "llvm/IR/GlobalVariable.h"
29#include "llvm/IR/Intrinsics.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/Target/TargetOptions.h"
35using namespace llvm;
36
37namespace llvm {
38  void initializePPCDAGToDAGISelPass(PassRegistry&);
39}
40
41namespace {
42  //===--------------------------------------------------------------------===//
43  /// PPCDAGToDAGISel - PPC specific code to select PPC machine
44  /// instructions for SelectionDAG operations.
45  ///
46  class PPCDAGToDAGISel : public SelectionDAGISel {
47    const PPCTargetMachine &TM;
48    const PPCTargetLowering &PPCLowering;
49    const PPCSubtarget &PPCSubTarget;
50    unsigned GlobalBaseReg;
51  public:
52    explicit PPCDAGToDAGISel(PPCTargetMachine &tm)
53      : SelectionDAGISel(tm), TM(tm),
54        PPCLowering(*TM.getTargetLowering()),
55        PPCSubTarget(*TM.getSubtargetImpl()) {
56      initializePPCDAGToDAGISelPass(*PassRegistry::getPassRegistry());
57    }
58
59    virtual bool runOnMachineFunction(MachineFunction &MF) {
60      // Make sure we re-emit a set of the global base reg if necessary
61      GlobalBaseReg = 0;
62      SelectionDAGISel::runOnMachineFunction(MF);
63
64      if (!PPCSubTarget.isSVR4ABI())
65        InsertVRSaveCode(MF);
66
67      return true;
68    }
69
70    virtual void PostprocessISelDAG();
71
72    /// getI32Imm - Return a target constant with the specified value, of type
73    /// i32.
74    inline SDValue getI32Imm(unsigned Imm) {
75      return CurDAG->getTargetConstant(Imm, MVT::i32);
76    }
77
78    /// getI64Imm - Return a target constant with the specified value, of type
79    /// i64.
80    inline SDValue getI64Imm(uint64_t Imm) {
81      return CurDAG->getTargetConstant(Imm, MVT::i64);
82    }
83
84    /// getSmallIPtrImm - Return a target constant of pointer type.
85    inline SDValue getSmallIPtrImm(unsigned Imm) {
86      return CurDAG->getTargetConstant(Imm, PPCLowering.getPointerTy());
87    }
88
89    /// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s
90    /// with any number of 0s on either side.  The 1s are allowed to wrap from
91    /// LSB to MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.
92    /// 0x0F0F0000 is not, since all 1s are not contiguous.
93    static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME);
94
95
96    /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
97    /// rotate and mask opcode and mask operation.
98    static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask,
99                                unsigned &SH, unsigned &MB, unsigned &ME);
100
101    /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
102    /// base register.  Return the virtual register that holds this value.
103    SDNode *getGlobalBaseReg();
104
105    // Select - Convert the specified operand from a target-independent to a
106    // target-specific node if it hasn't already been changed.
107    SDNode *Select(SDNode *N);
108
109    SDNode *SelectBitfieldInsert(SDNode *N);
110
111    /// SelectCC - Select a comparison of the specified values with the
112    /// specified condition code, returning the CR# of the expression.
113    SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, DebugLoc dl);
114
115    /// SelectAddrImm - Returns true if the address N can be represented by
116    /// a base register plus a signed 16-bit displacement [r+imm].
117    bool SelectAddrImm(SDValue N, SDValue &Disp,
118                       SDValue &Base) {
119      return PPCLowering.SelectAddressRegImm(N, Disp, Base, *CurDAG);
120    }
121
122    /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
123    /// immediate field.  Because preinc imms have already been validated, just
124    /// accept it.
125    bool SelectAddrImmOffs(SDValue N, SDValue &Out) const {
126      if (isa<ConstantSDNode>(N) || N.getOpcode() == PPCISD::Lo ||
127          N.getOpcode() == ISD::TargetGlobalAddress) {
128        Out = N;
129        return true;
130      }
131
132      return false;
133    }
134
135    /// SelectAddrIdxOffs - Return true if the operand is valid for a preinc
136    /// index field.  Because preinc imms have already been validated, just
137    /// accept it.
138    bool SelectAddrIdxOffs(SDValue N, SDValue &Out) const {
139      if (isa<ConstantSDNode>(N) || N.getOpcode() == PPCISD::Lo ||
140          N.getOpcode() == ISD::TargetGlobalAddress)
141        return false;
142
143      Out = N;
144      return true;
145    }
146
147    /// SelectAddrIdx - Given the specified addressed, check to see if it can be
148    /// represented as an indexed [r+r] operation.  Returns false if it can
149    /// be represented by [r+imm], which are preferred.
150    bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) {
151      return PPCLowering.SelectAddressRegReg(N, Base, Index, *CurDAG);
152    }
153
154    /// SelectAddrIdxOnly - Given the specified addressed, force it to be
155    /// represented as an indexed [r+r] operation.
156    bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) {
157      return PPCLowering.SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
158    }
159
160    /// SelectAddrImmShift - Returns true if the address N can be represented by
161    /// a base register plus a signed 14-bit displacement [r+imm*4].  Suitable
162    /// for use by STD and friends.
163    bool SelectAddrImmShift(SDValue N, SDValue &Disp, SDValue &Base) {
164      return PPCLowering.SelectAddressRegImmShift(N, Disp, Base, *CurDAG);
165    }
166
167    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
168    /// inline asm expressions.  It is always correct to compute the value into
169    /// a register.  The case of adding a (possibly relocatable) constant to a
170    /// register can be improved, but it is wrong to substitute Reg+Reg for
171    /// Reg in an asm, because the load or store opcode would have to change.
172   virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
173                                              char ConstraintCode,
174                                              std::vector<SDValue> &OutOps) {
175      OutOps.push_back(Op);
176      return false;
177    }
178
179    void InsertVRSaveCode(MachineFunction &MF);
180
181    virtual const char *getPassName() const {
182      return "PowerPC DAG->DAG Pattern Instruction Selection";
183    }
184
185// Include the pieces autogenerated from the target description.
186#include "PPCGenDAGISel.inc"
187
188private:
189    SDNode *SelectSETCC(SDNode *N);
190  };
191}
192
193/// InsertVRSaveCode - Once the entire function has been instruction selected,
194/// all virtual registers are created and all machine instructions are built,
195/// check to see if we need to save/restore VRSAVE.  If so, do it.
196void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) {
197  // Check to see if this function uses vector registers, which means we have to
198  // save and restore the VRSAVE register and update it with the regs we use.
199  //
200  // In this case, there will be virtual registers of vector type created
201  // by the scheduler.  Detect them now.
202  bool HasVectorVReg = false;
203  for (unsigned i = 0, e = RegInfo->getNumVirtRegs(); i != e; ++i) {
204    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
205    if (RegInfo->getRegClass(Reg) == &PPC::VRRCRegClass) {
206      HasVectorVReg = true;
207      break;
208    }
209  }
210  if (!HasVectorVReg) return;  // nothing to do.
211
212  // If we have a vector register, we want to emit code into the entry and exit
213  // blocks to save and restore the VRSAVE register.  We do this here (instead
214  // of marking all vector instructions as clobbering VRSAVE) for two reasons:
215  //
216  // 1. This (trivially) reduces the load on the register allocator, by not
217  //    having to represent the live range of the VRSAVE register.
218  // 2. This (more significantly) allows us to create a temporary virtual
219  //    register to hold the saved VRSAVE value, allowing this temporary to be
220  //    register allocated, instead of forcing it to be spilled to the stack.
221
222  // Create two vregs - one to hold the VRSAVE register that is live-in to the
223  // function and one for the value after having bits or'd into it.
224  unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
225  unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
226
227  const TargetInstrInfo &TII = *TM.getInstrInfo();
228  MachineBasicBlock &EntryBB = *Fn.begin();
229  DebugLoc dl;
230  // Emit the following code into the entry block:
231  // InVRSAVE = MFVRSAVE
232  // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE
233  // MTVRSAVE UpdatedVRSAVE
234  MachineBasicBlock::iterator IP = EntryBB.begin();  // Insert Point
235  BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE);
236  BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE),
237          UpdatedVRSAVE).addReg(InVRSAVE);
238  BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE);
239
240  // Find all return blocks, outputting a restore in each epilog.
241  for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
242    if (!BB->empty() && BB->back().isReturn()) {
243      IP = BB->end(); --IP;
244
245      // Skip over all terminator instructions, which are part of the return
246      // sequence.
247      MachineBasicBlock::iterator I2 = IP;
248      while (I2 != BB->begin() && (--I2)->isTerminator())
249        IP = I2;
250
251      // Emit: MTVRSAVE InVRSave
252      BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE);
253    }
254  }
255}
256
257
258/// getGlobalBaseReg - Output the instructions required to put the
259/// base address to use for accessing globals into a register.
260///
261SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
262  if (!GlobalBaseReg) {
263    const TargetInstrInfo &TII = *TM.getInstrInfo();
264    // Insert the set of GlobalBaseReg into the first MBB of the function
265    MachineBasicBlock &FirstMBB = MF->front();
266    MachineBasicBlock::iterator MBBI = FirstMBB.begin();
267    DebugLoc dl;
268
269    if (PPCLowering.getPointerTy() == MVT::i32) {
270      GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
271      BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
272      BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
273    } else {
274      GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RCRegClass);
275      BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8));
276      BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg);
277    }
278  }
279  return CurDAG->getRegister(GlobalBaseReg,
280                             PPCLowering.getPointerTy()).getNode();
281}
282
283/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
284/// or 64-bit immediate, and if the value can be accurately represented as a
285/// sign extension from a 16-bit value.  If so, this returns true and the
286/// immediate.
287static bool isIntS16Immediate(SDNode *N, short &Imm) {
288  if (N->getOpcode() != ISD::Constant)
289    return false;
290
291  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
292  if (N->getValueType(0) == MVT::i32)
293    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
294  else
295    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
296}
297
298static bool isIntS16Immediate(SDValue Op, short &Imm) {
299  return isIntS16Immediate(Op.getNode(), Imm);
300}
301
302
303/// isInt32Immediate - This method tests to see if the node is a 32-bit constant
304/// operand. If so Imm will receive the 32-bit value.
305static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
306  if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
307    Imm = cast<ConstantSDNode>(N)->getZExtValue();
308    return true;
309  }
310  return false;
311}
312
313/// isInt64Immediate - This method tests to see if the node is a 64-bit constant
314/// operand.  If so Imm will receive the 64-bit value.
315static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
316  if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
317    Imm = cast<ConstantSDNode>(N)->getZExtValue();
318    return true;
319  }
320  return false;
321}
322
323// isInt32Immediate - This method tests to see if a constant operand.
324// If so Imm will receive the 32 bit value.
325static bool isInt32Immediate(SDValue N, unsigned &Imm) {
326  return isInt32Immediate(N.getNode(), Imm);
327}
328
329
330// isOpcWithIntImmediate - This method tests to see if the node is a specific
331// opcode and that it has a immediate integer right operand.
332// If so Imm will receive the 32 bit value.
333static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
334  return N->getOpcode() == Opc
335         && isInt32Immediate(N->getOperand(1).getNode(), Imm);
336}
337
338bool PPCDAGToDAGISel::isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) {
339  if (isShiftedMask_32(Val)) {
340    // look for the first non-zero bit
341    MB = CountLeadingZeros_32(Val);
342    // look for the first zero bit after the run of ones
343    ME = CountLeadingZeros_32((Val - 1) ^ Val);
344    return true;
345  } else {
346    Val = ~Val; // invert mask
347    if (isShiftedMask_32(Val)) {
348      // effectively look for the first zero bit
349      ME = CountLeadingZeros_32(Val) - 1;
350      // effectively look for the first one bit after the run of zeros
351      MB = CountLeadingZeros_32((Val - 1) ^ Val) + 1;
352      return true;
353    }
354  }
355  // no run present
356  return false;
357}
358
359bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
360                                      bool isShiftMask, unsigned &SH,
361                                      unsigned &MB, unsigned &ME) {
362  // Don't even go down this path for i64, since different logic will be
363  // necessary for rldicl/rldicr/rldimi.
364  if (N->getValueType(0) != MVT::i32)
365    return false;
366
367  unsigned Shift  = 32;
368  unsigned Indeterminant = ~0;  // bit mask marking indeterminant results
369  unsigned Opcode = N->getOpcode();
370  if (N->getNumOperands() != 2 ||
371      !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31))
372    return false;
373
374  if (Opcode == ISD::SHL) {
375    // apply shift left to mask if it comes first
376    if (isShiftMask) Mask = Mask << Shift;
377    // determine which bits are made indeterminant by shift
378    Indeterminant = ~(0xFFFFFFFFu << Shift);
379  } else if (Opcode == ISD::SRL) {
380    // apply shift right to mask if it comes first
381    if (isShiftMask) Mask = Mask >> Shift;
382    // determine which bits are made indeterminant by shift
383    Indeterminant = ~(0xFFFFFFFFu >> Shift);
384    // adjust for the left rotate
385    Shift = 32 - Shift;
386  } else if (Opcode == ISD::ROTL) {
387    Indeterminant = 0;
388  } else {
389    return false;
390  }
391
392  // if the mask doesn't intersect any Indeterminant bits
393  if (Mask && !(Mask & Indeterminant)) {
394    SH = Shift & 31;
395    // make sure the mask is still a mask (wrap arounds may not be)
396    return isRunOfOnes(Mask, MB, ME);
397  }
398  return false;
399}
400
401/// SelectBitfieldInsert - turn an or of two masked values into
402/// the rotate left word immediate then mask insert (rlwimi) instruction.
403SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) {
404  SDValue Op0 = N->getOperand(0);
405  SDValue Op1 = N->getOperand(1);
406  DebugLoc dl = N->getDebugLoc();
407
408  APInt LKZ, LKO, RKZ, RKO;
409  CurDAG->ComputeMaskedBits(Op0, LKZ, LKO);
410  CurDAG->ComputeMaskedBits(Op1, RKZ, RKO);
411
412  unsigned TargetMask = LKZ.getZExtValue();
413  unsigned InsertMask = RKZ.getZExtValue();
414
415  if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
416    unsigned Op0Opc = Op0.getOpcode();
417    unsigned Op1Opc = Op1.getOpcode();
418    unsigned Value, SH = 0;
419    TargetMask = ~TargetMask;
420    InsertMask = ~InsertMask;
421
422    // If the LHS has a foldable shift and the RHS does not, then swap it to the
423    // RHS so that we can fold the shift into the insert.
424    if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
425      if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
426          Op0.getOperand(0).getOpcode() == ISD::SRL) {
427        if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
428            Op1.getOperand(0).getOpcode() != ISD::SRL) {
429          std::swap(Op0, Op1);
430          std::swap(Op0Opc, Op1Opc);
431          std::swap(TargetMask, InsertMask);
432        }
433      }
434    } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
435      if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
436          Op1.getOperand(0).getOpcode() != ISD::SRL) {
437        std::swap(Op0, Op1);
438        std::swap(Op0Opc, Op1Opc);
439        std::swap(TargetMask, InsertMask);
440      }
441    }
442
443    unsigned MB, ME;
444    if (InsertMask && isRunOfOnes(InsertMask, MB, ME)) {
445      SDValue Tmp1, Tmp2;
446
447      if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
448          isInt32Immediate(Op1.getOperand(1), Value)) {
449        Op1 = Op1.getOperand(0);
450        SH  = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
451      }
452      if (Op1Opc == ISD::AND) {
453        unsigned SHOpc = Op1.getOperand(0).getOpcode();
454        if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) &&
455            isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
456          Op1 = Op1.getOperand(0).getOperand(0);
457          SH  = (SHOpc == ISD::SHL) ? Value : 32 - Value;
458        } else {
459          Op1 = Op1.getOperand(0);
460        }
461      }
462
463      SH &= 31;
464      SDValue Ops[] = { Op0, Op1, getI32Imm(SH), getI32Imm(MB),
465                          getI32Imm(ME) };
466      return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops, 5);
467    }
468  }
469  return 0;
470}
471
472/// SelectCC - Select a comparison of the specified values with the specified
473/// condition code, returning the CR# of the expression.
474SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS,
475                                    ISD::CondCode CC, DebugLoc dl) {
476  // Always select the LHS.
477  unsigned Opc;
478
479  if (LHS.getValueType() == MVT::i32) {
480    unsigned Imm;
481    if (CC == ISD::SETEQ || CC == ISD::SETNE) {
482      if (isInt32Immediate(RHS, Imm)) {
483        // SETEQ/SETNE comparison with 16-bit immediate, fold it.
484        if (isUInt<16>(Imm))
485          return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
486                                                getI32Imm(Imm & 0xFFFF)), 0);
487        // If this is a 16-bit signed immediate, fold it.
488        if (isInt<16>((int)Imm))
489          return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
490                                                getI32Imm(Imm & 0xFFFF)), 0);
491
492        // For non-equality comparisons, the default code would materialize the
493        // constant, then compare against it, like this:
494        //   lis r2, 4660
495        //   ori r2, r2, 22136
496        //   cmpw cr0, r3, r2
497        // Since we are just comparing for equality, we can emit this instead:
498        //   xoris r0,r3,0x1234
499        //   cmplwi cr0,r0,0x5678
500        //   beq cr0,L6
501        SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS,
502                                           getI32Imm(Imm >> 16)), 0);
503        return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor,
504                                              getI32Imm(Imm & 0xFFFF)), 0);
505      }
506      Opc = PPC::CMPLW;
507    } else if (ISD::isUnsignedIntSetCC(CC)) {
508      if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm))
509        return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
510                                              getI32Imm(Imm & 0xFFFF)), 0);
511      Opc = PPC::CMPLW;
512    } else {
513      short SImm;
514      if (isIntS16Immediate(RHS, SImm))
515        return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
516                                              getI32Imm((int)SImm & 0xFFFF)),
517                         0);
518      Opc = PPC::CMPW;
519    }
520  } else if (LHS.getValueType() == MVT::i64) {
521    uint64_t Imm;
522    if (CC == ISD::SETEQ || CC == ISD::SETNE) {
523      if (isInt64Immediate(RHS.getNode(), Imm)) {
524        // SETEQ/SETNE comparison with 16-bit immediate, fold it.
525        if (isUInt<16>(Imm))
526          return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
527                                                getI32Imm(Imm & 0xFFFF)), 0);
528        // If this is a 16-bit signed immediate, fold it.
529        if (isInt<16>(Imm))
530          return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
531                                                getI32Imm(Imm & 0xFFFF)), 0);
532
533        // For non-equality comparisons, the default code would materialize the
534        // constant, then compare against it, like this:
535        //   lis r2, 4660
536        //   ori r2, r2, 22136
537        //   cmpd cr0, r3, r2
538        // Since we are just comparing for equality, we can emit this instead:
539        //   xoris r0,r3,0x1234
540        //   cmpldi cr0,r0,0x5678
541        //   beq cr0,L6
542        if (isUInt<32>(Imm)) {
543          SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS,
544                                             getI64Imm(Imm >> 16)), 0);
545          return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor,
546                                                getI64Imm(Imm & 0xFFFF)), 0);
547        }
548      }
549      Opc = PPC::CMPLD;
550    } else if (ISD::isUnsignedIntSetCC(CC)) {
551      if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm))
552        return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
553                                              getI64Imm(Imm & 0xFFFF)), 0);
554      Opc = PPC::CMPLD;
555    } else {
556      short SImm;
557      if (isIntS16Immediate(RHS, SImm))
558        return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
559                                              getI64Imm(SImm & 0xFFFF)),
560                         0);
561      Opc = PPC::CMPD;
562    }
563  } else if (LHS.getValueType() == MVT::f32) {
564    Opc = PPC::FCMPUS;
565  } else {
566    assert(LHS.getValueType() == MVT::f64 && "Unknown vt!");
567    Opc = PPC::FCMPUD;
568  }
569  return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0);
570}
571
572static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) {
573  switch (CC) {
574  case ISD::SETUEQ:
575  case ISD::SETONE:
576  case ISD::SETOLE:
577  case ISD::SETOGE:
578    llvm_unreachable("Should be lowered by legalize!");
579  default: llvm_unreachable("Unknown condition!");
580  case ISD::SETOEQ:
581  case ISD::SETEQ:  return PPC::PRED_EQ;
582  case ISD::SETUNE:
583  case ISD::SETNE:  return PPC::PRED_NE;
584  case ISD::SETOLT:
585  case ISD::SETLT:  return PPC::PRED_LT;
586  case ISD::SETULE:
587  case ISD::SETLE:  return PPC::PRED_LE;
588  case ISD::SETOGT:
589  case ISD::SETGT:  return PPC::PRED_GT;
590  case ISD::SETUGE:
591  case ISD::SETGE:  return PPC::PRED_GE;
592  case ISD::SETO:   return PPC::PRED_NU;
593  case ISD::SETUO:  return PPC::PRED_UN;
594    // These two are invalid for floating point.  Assume we have int.
595  case ISD::SETULT: return PPC::PRED_LT;
596  case ISD::SETUGT: return PPC::PRED_GT;
597  }
598}
599
600/// getCRIdxForSetCC - Return the index of the condition register field
601/// associated with the SetCC condition, and whether or not the field is
602/// treated as inverted.  That is, lt = 0; ge = 0 inverted.
603///
604/// If this returns with Other != -1, then the returned comparison is an or of
605/// two simpler comparisons.  In this case, Invert is guaranteed to be false.
606static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert, int &Other) {
607  Invert = false;
608  Other = -1;
609  switch (CC) {
610  default: llvm_unreachable("Unknown condition!");
611  case ISD::SETOLT:
612  case ISD::SETLT:  return 0;                  // Bit #0 = SETOLT
613  case ISD::SETOGT:
614  case ISD::SETGT:  return 1;                  // Bit #1 = SETOGT
615  case ISD::SETOEQ:
616  case ISD::SETEQ:  return 2;                  // Bit #2 = SETOEQ
617  case ISD::SETUO:  return 3;                  // Bit #3 = SETUO
618  case ISD::SETUGE:
619  case ISD::SETGE:  Invert = true; return 0;   // !Bit #0 = SETUGE
620  case ISD::SETULE:
621  case ISD::SETLE:  Invert = true; return 1;   // !Bit #1 = SETULE
622  case ISD::SETUNE:
623  case ISD::SETNE:  Invert = true; return 2;   // !Bit #2 = SETUNE
624  case ISD::SETO:   Invert = true; return 3;   // !Bit #3 = SETO
625  case ISD::SETUEQ:
626  case ISD::SETOGE:
627  case ISD::SETOLE:
628  case ISD::SETONE:
629    llvm_unreachable("Invalid branch code: should be expanded by legalize");
630  // These are invalid for floating point.  Assume integer.
631  case ISD::SETULT: return 0;
632  case ISD::SETUGT: return 1;
633  }
634}
635
636// getVCmpInst: return the vector compare instruction for the specified
637// vector type and condition code. Since this is for altivec specific code,
638// only support the altivec types (v16i8, v8i16, v4i32, and v4f32).
639static unsigned int getVCmpInst(MVT::SimpleValueType VecVT, ISD::CondCode CC) {
640  switch (CC) {
641    case ISD::SETEQ:
642    case ISD::SETUEQ:
643    case ISD::SETNE:
644    case ISD::SETUNE:
645      if (VecVT == MVT::v16i8)
646        return PPC::VCMPEQUB;
647      else if (VecVT == MVT::v8i16)
648        return PPC::VCMPEQUH;
649      else if (VecVT == MVT::v4i32)
650        return PPC::VCMPEQUW;
651      // v4f32 != v4f32 could be translate to unordered not equal
652      else if (VecVT == MVT::v4f32)
653        return PPC::VCMPEQFP;
654      break;
655    case ISD::SETLT:
656    case ISD::SETGT:
657    case ISD::SETLE:
658    case ISD::SETGE:
659      if (VecVT == MVT::v16i8)
660        return PPC::VCMPGTSB;
661      else if (VecVT == MVT::v8i16)
662        return PPC::VCMPGTSH;
663      else if (VecVT == MVT::v4i32)
664        return PPC::VCMPGTSW;
665      else if (VecVT == MVT::v4f32)
666        return PPC::VCMPGTFP;
667      break;
668    case ISD::SETULT:
669    case ISD::SETUGT:
670    case ISD::SETUGE:
671    case ISD::SETULE:
672      if (VecVT == MVT::v16i8)
673        return PPC::VCMPGTUB;
674      else if (VecVT == MVT::v8i16)
675        return PPC::VCMPGTUH;
676      else if (VecVT == MVT::v4i32)
677        return PPC::VCMPGTUW;
678      break;
679    case ISD::SETOEQ:
680      if (VecVT == MVT::v4f32)
681        return PPC::VCMPEQFP;
682      break;
683    case ISD::SETOLT:
684    case ISD::SETOGT:
685    case ISD::SETOLE:
686      if (VecVT == MVT::v4f32)
687        return PPC::VCMPGTFP;
688      break;
689    case ISD::SETOGE:
690      if (VecVT == MVT::v4f32)
691        return PPC::VCMPGEFP;
692      break;
693    default:
694      break;
695  }
696  llvm_unreachable("Invalid integer vector compare condition");
697}
698
699// getVCmpEQInst: return the equal compare instruction for the specified vector
700// type. Since this is for altivec specific code, only support the altivec
701// types (v16i8, v8i16, v4i32, and v4f32).
702static unsigned int getVCmpEQInst(MVT::SimpleValueType VecVT) {
703  switch (VecVT) {
704    case MVT::v16i8:
705      return PPC::VCMPEQUB;
706    case MVT::v8i16:
707      return PPC::VCMPEQUH;
708    case MVT::v4i32:
709      return PPC::VCMPEQUW;
710    case MVT::v4f32:
711      return PPC::VCMPEQFP;
712    default:
713      llvm_unreachable("Invalid integer vector compare condition");
714  }
715}
716
717
718SDNode *PPCDAGToDAGISel::SelectSETCC(SDNode *N) {
719  DebugLoc dl = N->getDebugLoc();
720  unsigned Imm;
721  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
722  EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy();
723  bool isPPC64 = (PtrVT == MVT::i64);
724
725  if (isInt32Immediate(N->getOperand(1), Imm)) {
726    // We can codegen setcc op, imm very efficiently compared to a brcond.
727    // Check for those cases here.
728    // setcc op, 0
729    if (Imm == 0) {
730      SDValue Op = N->getOperand(0);
731      switch (CC) {
732      default: break;
733      case ISD::SETEQ: {
734        Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0);
735        SDValue Ops[] = { Op, getI32Imm(27), getI32Imm(5), getI32Imm(31) };
736        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
737      }
738      case ISD::SETNE: {
739        if (isPPC64) break;
740        SDValue AD =
741          SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
742                                         Op, getI32Imm(~0U)), 0);
743        return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op,
744                                    AD.getValue(1));
745      }
746      case ISD::SETLT: {
747        SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
748        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
749      }
750      case ISD::SETGT: {
751        SDValue T =
752          SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0);
753        T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0);
754        SDValue Ops[] = { T, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
755        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
756      }
757      }
758    } else if (Imm == ~0U) {        // setcc op, -1
759      SDValue Op = N->getOperand(0);
760      switch (CC) {
761      default: break;
762      case ISD::SETEQ:
763        if (isPPC64) break;
764        Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
765                                            Op, getI32Imm(1)), 0);
766        return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
767                              SDValue(CurDAG->getMachineNode(PPC::LI, dl,
768                                                             MVT::i32,
769                                                             getI32Imm(0)), 0),
770                                      Op.getValue(1));
771      case ISD::SETNE: {
772        if (isPPC64) break;
773        Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0);
774        SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
775                                            Op, getI32Imm(~0U));
776        return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0),
777                                    Op, SDValue(AD, 1));
778      }
779      case ISD::SETLT: {
780        SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op,
781                                                    getI32Imm(1)), 0);
782        SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD,
783                                                    Op), 0);
784        SDValue Ops[] = { AN, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
785        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
786      }
787      case ISD::SETGT: {
788        SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
789        Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops, 4),
790                     0);
791        return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op,
792                                    getI32Imm(1));
793      }
794      }
795    }
796  }
797
798  SDValue LHS = N->getOperand(0);
799  SDValue RHS = N->getOperand(1);
800
801  // Altivec Vector compare instructions do not set any CR register by default and
802  // vector compare operations return the same type as the operands.
803  if (LHS.getValueType().isVector()) {
804    EVT VecVT = LHS.getValueType();
805    MVT::SimpleValueType VT = VecVT.getSimpleVT().SimpleTy;
806    unsigned int VCmpInst = getVCmpInst(VT, CC);
807
808    switch (CC) {
809      case ISD::SETEQ:
810      case ISD::SETOEQ:
811      case ISD::SETUEQ:
812        return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, LHS, RHS);
813      case ISD::SETNE:
814      case ISD::SETONE:
815      case ISD::SETUNE: {
816        SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, VecVT, LHS, RHS), 0);
817        return CurDAG->SelectNodeTo(N, PPC::VNOR, VecVT, VCmp, VCmp);
818      }
819      case ISD::SETLT:
820      case ISD::SETOLT:
821      case ISD::SETULT:
822        return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, RHS, LHS);
823      case ISD::SETGT:
824      case ISD::SETOGT:
825      case ISD::SETUGT:
826        return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, LHS, RHS);
827      case ISD::SETGE:
828      case ISD::SETOGE:
829      case ISD::SETUGE: {
830        // Small optimization: Altivec provides a 'Vector Compare Greater Than
831        // or Equal To' instruction (vcmpgefp), so in this case there is no
832        // need for extra logic for the equal compare.
833        if (VecVT.getSimpleVT().isFloatingPoint()) {
834          return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, LHS, RHS);
835        } else {
836          SDValue VCmpGT(CurDAG->getMachineNode(VCmpInst, dl, VecVT, LHS, RHS), 0);
837          unsigned int VCmpEQInst = getVCmpEQInst(VT);
838          SDValue VCmpEQ(CurDAG->getMachineNode(VCmpEQInst, dl, VecVT, LHS, RHS), 0);
839          return CurDAG->SelectNodeTo(N, PPC::VOR, VecVT, VCmpGT, VCmpEQ);
840        }
841      }
842      case ISD::SETLE:
843      case ISD::SETOLE:
844      case ISD::SETULE: {
845        SDValue VCmpLE(CurDAG->getMachineNode(VCmpInst, dl, VecVT, RHS, LHS), 0);
846        unsigned int VCmpEQInst = getVCmpEQInst(VT);
847        SDValue VCmpEQ(CurDAG->getMachineNode(VCmpEQInst, dl, VecVT, LHS, RHS), 0);
848        return CurDAG->SelectNodeTo(N, PPC::VOR, VecVT, VCmpLE, VCmpEQ);
849      }
850      default:
851        llvm_unreachable("Invalid vector compare type: should be expanded by legalize");
852    }
853  }
854
855  bool Inv;
856  int OtherCondIdx;
857  unsigned Idx = getCRIdxForSetCC(CC, Inv, OtherCondIdx);
858  SDValue CCReg = SelectCC(LHS, RHS, CC, dl);
859  SDValue IntCR;
860
861  // Force the ccreg into CR7.
862  SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
863
864  SDValue InFlag(0, 0);  // Null incoming flag value.
865  CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg,
866                               InFlag).getValue(1);
867
868  if (PPCSubTarget.hasMFOCRF() && OtherCondIdx == -1)
869    IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg,
870                                           CCReg), 0);
871  else
872    IntCR = SDValue(CurDAG->getMachineNode(PPC::MFCRpseud, dl, MVT::i32,
873                                           CR7Reg, CCReg), 0);
874
875  SDValue Ops[] = { IntCR, getI32Imm((32-(3-Idx)) & 31),
876                      getI32Imm(31), getI32Imm(31) };
877  if (OtherCondIdx == -1 && !Inv)
878    return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
879
880  // Get the specified bit.
881  SDValue Tmp =
882    SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops, 4), 0);
883  if (Inv) {
884    assert(OtherCondIdx == -1 && "Can't have split plus negation");
885    return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1));
886  }
887
888  // Otherwise, we have to turn an operation like SETONE -> SETOLT | SETOGT.
889  // We already got the bit for the first part of the comparison (e.g. SETULE).
890
891  // Get the other bit of the comparison.
892  Ops[1] = getI32Imm((32-(3-OtherCondIdx)) & 31);
893  SDValue OtherCond =
894    SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops, 4), 0);
895
896  return CurDAG->SelectNodeTo(N, PPC::OR, MVT::i32, Tmp, OtherCond);
897}
898
899
900// Select - Convert the specified operand from a target-independent to a
901// target-specific node if it hasn't already been changed.
902SDNode *PPCDAGToDAGISel::Select(SDNode *N) {
903  DebugLoc dl = N->getDebugLoc();
904  if (N->isMachineOpcode())
905    return NULL;   // Already selected.
906
907  switch (N->getOpcode()) {
908  default: break;
909
910  case ISD::Constant: {
911    if (N->getValueType(0) == MVT::i64) {
912      // Get 64 bit value.
913      int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue();
914      // Assume no remaining bits.
915      unsigned Remainder = 0;
916      // Assume no shift required.
917      unsigned Shift = 0;
918
919      // If it can't be represented as a 32 bit value.
920      if (!isInt<32>(Imm)) {
921        Shift = CountTrailingZeros_64(Imm);
922        int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
923
924        // If the shifted value fits 32 bits.
925        if (isInt<32>(ImmSh)) {
926          // Go with the shifted value.
927          Imm = ImmSh;
928        } else {
929          // Still stuck with a 64 bit value.
930          Remainder = Imm;
931          Shift = 32;
932          Imm >>= 32;
933        }
934      }
935
936      // Intermediate operand.
937      SDNode *Result;
938
939      // Handle first 32 bits.
940      unsigned Lo = Imm & 0xFFFF;
941      unsigned Hi = (Imm >> 16) & 0xFFFF;
942
943      // Simple value.
944      if (isInt<16>(Imm)) {
945       // Just the Lo bits.
946        Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, getI32Imm(Lo));
947      } else if (Lo) {
948        // Handle the Hi bits.
949        unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8;
950        Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi));
951        // And Lo bits.
952        Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
953                                        SDValue(Result, 0), getI32Imm(Lo));
954      } else {
955       // Just the Hi bits.
956        Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi));
957      }
958
959      // If no shift, we're done.
960      if (!Shift) return Result;
961
962      // Shift for next step if the upper 32-bits were not zero.
963      if (Imm) {
964        Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64,
965                                        SDValue(Result, 0),
966                                        getI32Imm(Shift),
967                                        getI32Imm(63 - Shift));
968      }
969
970      // Add in the last bits as required.
971      if ((Hi = (Remainder >> 16) & 0xFFFF)) {
972        Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64,
973                                        SDValue(Result, 0), getI32Imm(Hi));
974      }
975      if ((Lo = Remainder & 0xFFFF)) {
976        Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
977                                        SDValue(Result, 0), getI32Imm(Lo));
978      }
979
980      return Result;
981    }
982    break;
983  }
984
985  case ISD::SETCC:
986    return SelectSETCC(N);
987  case PPCISD::GlobalBaseReg:
988    return getGlobalBaseReg();
989
990  case ISD::FrameIndex: {
991    int FI = cast<FrameIndexSDNode>(N)->getIndex();
992    SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
993    unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
994    if (N->hasOneUse())
995      return CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), TFI,
996                                  getSmallIPtrImm(0));
997    return CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI,
998                                  getSmallIPtrImm(0));
999  }
1000
1001  case PPCISD::MFCR: {
1002    SDValue InFlag = N->getOperand(1);
1003    // Use MFOCRF if supported.
1004    if (PPCSubTarget.hasMFOCRF())
1005      return CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32,
1006                                    N->getOperand(0), InFlag);
1007    else
1008      return CurDAG->getMachineNode(PPC::MFCRpseud, dl, MVT::i32,
1009                                    N->getOperand(0), InFlag);
1010  }
1011
1012  case ISD::SDIV: {
1013    // FIXME: since this depends on the setting of the carry flag from the srawi
1014    //        we should really be making notes about that for the scheduler.
1015    // FIXME: It sure would be nice if we could cheaply recognize the
1016    //        srl/add/sra pattern the dag combiner will generate for this as
1017    //        sra/addze rather than having to handle sdiv ourselves.  oh well.
1018    unsigned Imm;
1019    if (isInt32Immediate(N->getOperand(1), Imm)) {
1020      SDValue N0 = N->getOperand(0);
1021      if ((signed)Imm > 0 && isPowerOf2_32(Imm)) {
1022        SDNode *Op =
1023          CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
1024                                 N0, getI32Imm(Log2_32(Imm)));
1025        return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
1026                                    SDValue(Op, 0), SDValue(Op, 1));
1027      } else if ((signed)Imm < 0 && isPowerOf2_32(-Imm)) {
1028        SDNode *Op =
1029          CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
1030                                 N0, getI32Imm(Log2_32(-Imm)));
1031        SDValue PT =
1032          SDValue(CurDAG->getMachineNode(PPC::ADDZE, dl, MVT::i32,
1033                                         SDValue(Op, 0), SDValue(Op, 1)),
1034                    0);
1035        return CurDAG->SelectNodeTo(N, PPC::NEG, MVT::i32, PT);
1036      }
1037    }
1038
1039    // Other cases are autogenerated.
1040    break;
1041  }
1042
1043  case ISD::LOAD: {
1044    // Handle preincrement loads.
1045    LoadSDNode *LD = cast<LoadSDNode>(N);
1046    EVT LoadedVT = LD->getMemoryVT();
1047
1048    // Normal loads are handled by code generated from the .td file.
1049    if (LD->getAddressingMode() != ISD::PRE_INC)
1050      break;
1051
1052    SDValue Offset = LD->getOffset();
1053    if (isa<ConstantSDNode>(Offset) ||
1054        Offset.getOpcode() == ISD::TargetGlobalAddress) {
1055
1056      unsigned Opcode;
1057      bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
1058      if (LD->getValueType(0) != MVT::i64) {
1059        // Handle PPC32 integer and normal FP loads.
1060        assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
1061        switch (LoadedVT.getSimpleVT().SimpleTy) {
1062          default: llvm_unreachable("Invalid PPC load type!");
1063          case MVT::f64: Opcode = PPC::LFDU; break;
1064          case MVT::f32: Opcode = PPC::LFSU; break;
1065          case MVT::i32: Opcode = PPC::LWZU; break;
1066          case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
1067          case MVT::i1:
1068          case MVT::i8:  Opcode = PPC::LBZU; break;
1069        }
1070      } else {
1071        assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
1072        assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
1073        switch (LoadedVT.getSimpleVT().SimpleTy) {
1074          default: llvm_unreachable("Invalid PPC load type!");
1075          case MVT::i64: Opcode = PPC::LDU; break;
1076          case MVT::i32: Opcode = PPC::LWZU8; break;
1077          case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
1078          case MVT::i1:
1079          case MVT::i8:  Opcode = PPC::LBZU8; break;
1080        }
1081      }
1082
1083      SDValue Chain = LD->getChain();
1084      SDValue Base = LD->getBasePtr();
1085      SDValue Ops[] = { Offset, Base, Chain };
1086      return CurDAG->getMachineNode(Opcode, dl, LD->getValueType(0),
1087                                    PPCLowering.getPointerTy(),
1088                                    MVT::Other, Ops, 3);
1089    } else {
1090      unsigned Opcode;
1091      bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
1092      if (LD->getValueType(0) != MVT::i64) {
1093        // Handle PPC32 integer and normal FP loads.
1094        assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
1095        switch (LoadedVT.getSimpleVT().SimpleTy) {
1096          default: llvm_unreachable("Invalid PPC load type!");
1097          case MVT::f64: Opcode = PPC::LFDUX; break;
1098          case MVT::f32: Opcode = PPC::LFSUX; break;
1099          case MVT::i32: Opcode = PPC::LWZUX; break;
1100          case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break;
1101          case MVT::i1:
1102          case MVT::i8:  Opcode = PPC::LBZUX; break;
1103        }
1104      } else {
1105        assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
1106        assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) &&
1107               "Invalid sext update load");
1108        switch (LoadedVT.getSimpleVT().SimpleTy) {
1109          default: llvm_unreachable("Invalid PPC load type!");
1110          case MVT::i64: Opcode = PPC::LDUX; break;
1111          case MVT::i32: Opcode = isSExt ? PPC::LWAUX  : PPC::LWZUX8; break;
1112          case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break;
1113          case MVT::i1:
1114          case MVT::i8:  Opcode = PPC::LBZUX8; break;
1115        }
1116      }
1117
1118      SDValue Chain = LD->getChain();
1119      SDValue Base = LD->getBasePtr();
1120      SDValue Ops[] = { Offset, Base, Chain };
1121      return CurDAG->getMachineNode(Opcode, dl, LD->getValueType(0),
1122                                    PPCLowering.getPointerTy(),
1123                                    MVT::Other, Ops, 3);
1124    }
1125  }
1126
1127  case ISD::AND: {
1128    unsigned Imm, Imm2, SH, MB, ME;
1129    uint64_t Imm64;
1130
1131    // If this is an and of a value rotated between 0 and 31 bits and then and'd
1132    // with a mask, emit rlwinm
1133    if (isInt32Immediate(N->getOperand(1), Imm) &&
1134        isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) {
1135      SDValue Val = N->getOperand(0).getOperand(0);
1136      SDValue Ops[] = { Val, getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
1137      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
1138    }
1139    // If this is just a masked value where the input is not handled above, and
1140    // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
1141    if (isInt32Immediate(N->getOperand(1), Imm) &&
1142        isRunOfOnes(Imm, MB, ME) &&
1143        N->getOperand(0).getOpcode() != ISD::ROTL) {
1144      SDValue Val = N->getOperand(0);
1145      SDValue Ops[] = { Val, getI32Imm(0), getI32Imm(MB), getI32Imm(ME) };
1146      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
1147    }
1148    // If this is a 64-bit zero-extension mask, emit rldicl.
1149    if (isInt64Immediate(N->getOperand(1).getNode(), Imm64) &&
1150        isMask_64(Imm64)) {
1151      SDValue Val = N->getOperand(0);
1152      MB = 64 - CountTrailingOnes_64(Imm64);
1153      SDValue Ops[] = { Val, getI32Imm(0), getI32Imm(MB) };
1154      return CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops, 3);
1155    }
1156    // AND X, 0 -> 0, not "rlwinm 32".
1157    if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) {
1158      ReplaceUses(SDValue(N, 0), N->getOperand(1));
1159      return NULL;
1160    }
1161    // ISD::OR doesn't get all the bitfield insertion fun.
1162    // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) is a bitfield insert
1163    if (isInt32Immediate(N->getOperand(1), Imm) &&
1164        N->getOperand(0).getOpcode() == ISD::OR &&
1165        isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) {
1166      unsigned MB, ME;
1167      Imm = ~(Imm^Imm2);
1168      if (isRunOfOnes(Imm, MB, ME)) {
1169        SDValue Ops[] = { N->getOperand(0).getOperand(0),
1170                            N->getOperand(0).getOperand(1),
1171                            getI32Imm(0), getI32Imm(MB),getI32Imm(ME) };
1172        return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops, 5);
1173      }
1174    }
1175
1176    // Other cases are autogenerated.
1177    break;
1178  }
1179  case ISD::OR:
1180    if (N->getValueType(0) == MVT::i32)
1181      if (SDNode *I = SelectBitfieldInsert(N))
1182        return I;
1183
1184    // Other cases are autogenerated.
1185    break;
1186  case ISD::SHL: {
1187    unsigned Imm, SH, MB, ME;
1188    if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
1189        isRotateAndMask(N, Imm, true, SH, MB, ME)) {
1190      SDValue Ops[] = { N->getOperand(0).getOperand(0),
1191                          getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
1192      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
1193    }
1194
1195    // Other cases are autogenerated.
1196    break;
1197  }
1198  case ISD::SRL: {
1199    unsigned Imm, SH, MB, ME;
1200    if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
1201        isRotateAndMask(N, Imm, true, SH, MB, ME)) {
1202      SDValue Ops[] = { N->getOperand(0).getOperand(0),
1203                          getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
1204      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
1205    }
1206
1207    // Other cases are autogenerated.
1208    break;
1209  }
1210  case ISD::SELECT_CC: {
1211    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
1212    EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy();
1213    bool isPPC64 = (PtrVT == MVT::i64);
1214
1215    // Handle the setcc cases here.  select_cc lhs, 0, 1, 0, cc
1216    if (!isPPC64)
1217      if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
1218        if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
1219          if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
1220            if (N1C->isNullValue() && N3C->isNullValue() &&
1221                N2C->getZExtValue() == 1ULL && CC == ISD::SETNE &&
1222                // FIXME: Implement this optzn for PPC64.
1223                N->getValueType(0) == MVT::i32) {
1224              SDNode *Tmp =
1225                CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
1226                                       N->getOperand(0), getI32Imm(~0U));
1227              return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32,
1228                                          SDValue(Tmp, 0), N->getOperand(0),
1229                                          SDValue(Tmp, 1));
1230            }
1231
1232    SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
1233    unsigned BROpc = getPredicateForSetCC(CC);
1234
1235    unsigned SelectCCOp;
1236    if (N->getValueType(0) == MVT::i32)
1237      SelectCCOp = PPC::SELECT_CC_I4;
1238    else if (N->getValueType(0) == MVT::i64)
1239      SelectCCOp = PPC::SELECT_CC_I8;
1240    else if (N->getValueType(0) == MVT::f32)
1241      SelectCCOp = PPC::SELECT_CC_F4;
1242    else if (N->getValueType(0) == MVT::f64)
1243      SelectCCOp = PPC::SELECT_CC_F8;
1244    else
1245      SelectCCOp = PPC::SELECT_CC_VRRC;
1246
1247    SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
1248                        getI32Imm(BROpc) };
1249    return CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops, 4);
1250  }
1251  case PPCISD::COND_BRANCH: {
1252    // Op #0 is the Chain.
1253    // Op #1 is the PPC::PRED_* number.
1254    // Op #2 is the CR#
1255    // Op #3 is the Dest MBB
1256    // Op #4 is the Flag.
1257    // Prevent PPC::PRED_* from being selected into LI.
1258    SDValue Pred =
1259      getI32Imm(cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
1260    SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
1261      N->getOperand(0), N->getOperand(4) };
1262    return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 5);
1263  }
1264  case ISD::BR_CC: {
1265    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
1266    SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl);
1267    SDValue Ops[] = { getI32Imm(getPredicateForSetCC(CC)), CondCode,
1268                        N->getOperand(4), N->getOperand(0) };
1269    return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 4);
1270  }
1271  case ISD::BRIND: {
1272    // FIXME: Should custom lower this.
1273    SDValue Chain = N->getOperand(0);
1274    SDValue Target = N->getOperand(1);
1275    unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
1276    unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8;
1277    Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target,
1278                                           Chain), 0);
1279    return CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain);
1280  }
1281  case PPCISD::TOC_ENTRY: {
1282    assert (PPCSubTarget.isPPC64() && "Only supported for 64-bit ABI");
1283
1284    // For medium and large code model, we generate two instructions as
1285    // described below.  Otherwise we allow SelectCodeCommon to handle this,
1286    // selecting one of LDtoc, LDtocJTI, and LDtocCPT.
1287    CodeModel::Model CModel = TM.getCodeModel();
1288    if (CModel != CodeModel::Medium && CModel != CodeModel::Large)
1289      break;
1290
1291    // The first source operand is a TargetGlobalAddress or a
1292    // TargetJumpTable.  If it is an externally defined symbol, a symbol
1293    // with common linkage, a function address, or a jump table address,
1294    // or if we are generating code for large code model, we generate:
1295    //   LDtocL(<ga:@sym>, ADDIStocHA(%X2, <ga:@sym>))
1296    // Otherwise we generate:
1297    //   ADDItocL(ADDIStocHA(%X2, <ga:@sym>), <ga:@sym>)
1298    SDValue GA = N->getOperand(0);
1299    SDValue TOCbase = N->getOperand(1);
1300    SDNode *Tmp = CurDAG->getMachineNode(PPC::ADDIStocHA, dl, MVT::i64,
1301                                        TOCbase, GA);
1302
1303    if (isa<JumpTableSDNode>(GA) || CModel == CodeModel::Large)
1304      return CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA,
1305                                    SDValue(Tmp, 0));
1306
1307    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) {
1308      const GlobalValue *GValue = G->getGlobal();
1309      const GlobalAlias *GAlias = dyn_cast<GlobalAlias>(GValue);
1310      const GlobalValue *RealGValue = GAlias ?
1311        GAlias->resolveAliasedGlobal(false) : GValue;
1312      const GlobalVariable *GVar = dyn_cast<GlobalVariable>(RealGValue);
1313      assert((GVar || isa<Function>(RealGValue)) &&
1314             "Unexpected global value subclass!");
1315
1316      // An external variable is one without an initializer.  For these,
1317      // for variables with common linkage, and for Functions, generate
1318      // the LDtocL form.
1319      if (!GVar || !GVar->hasInitializer() || RealGValue->hasCommonLinkage() ||
1320          RealGValue->hasAvailableExternallyLinkage())
1321        return CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA,
1322                                      SDValue(Tmp, 0));
1323    }
1324
1325    return CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64,
1326                                  SDValue(Tmp, 0), GA);
1327  }
1328  case PPCISD::VADD_SPLAT: {
1329    // This expands into one of three sequences, depending on whether
1330    // the first operand is odd or even, positive or negative.
1331    assert(isa<ConstantSDNode>(N->getOperand(0)) &&
1332           isa<ConstantSDNode>(N->getOperand(1)) &&
1333           "Invalid operand on VADD_SPLAT!");
1334
1335    int Elt     = N->getConstantOperandVal(0);
1336    int EltSize = N->getConstantOperandVal(1);
1337    unsigned Opc1, Opc2, Opc3;
1338    EVT VT;
1339
1340    if (EltSize == 1) {
1341      Opc1 = PPC::VSPLTISB;
1342      Opc2 = PPC::VADDUBM;
1343      Opc3 = PPC::VSUBUBM;
1344      VT = MVT::v16i8;
1345    } else if (EltSize == 2) {
1346      Opc1 = PPC::VSPLTISH;
1347      Opc2 = PPC::VADDUHM;
1348      Opc3 = PPC::VSUBUHM;
1349      VT = MVT::v8i16;
1350    } else {
1351      assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!");
1352      Opc1 = PPC::VSPLTISW;
1353      Opc2 = PPC::VADDUWM;
1354      Opc3 = PPC::VSUBUWM;
1355      VT = MVT::v4i32;
1356    }
1357
1358    if ((Elt & 1) == 0) {
1359      // Elt is even, in the range [-32,-18] + [16,30].
1360      //
1361      // Convert: VADD_SPLAT elt, size
1362      // Into:    tmp = VSPLTIS[BHW] elt
1363      //          VADDU[BHW]M tmp, tmp
1364      // Where:   [BHW] = B for size = 1, H for size = 2, W for size = 4
1365      SDValue EltVal = getI32Imm(Elt >> 1);
1366      SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
1367      SDValue TmpVal = SDValue(Tmp, 0);
1368      return CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal);
1369
1370    } else if (Elt > 0) {
1371      // Elt is odd and positive, in the range [17,31].
1372      //
1373      // Convert: VADD_SPLAT elt, size
1374      // Into:    tmp1 = VSPLTIS[BHW] elt-16
1375      //          tmp2 = VSPLTIS[BHW] -16
1376      //          VSUBU[BHW]M tmp1, tmp2
1377      SDValue EltVal = getI32Imm(Elt - 16);
1378      SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
1379      EltVal = getI32Imm(-16);
1380      SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
1381      return CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0),
1382                                    SDValue(Tmp2, 0));
1383
1384    } else {
1385      // Elt is odd and negative, in the range [-31,-17].
1386      //
1387      // Convert: VADD_SPLAT elt, size
1388      // Into:    tmp1 = VSPLTIS[BHW] elt+16
1389      //          tmp2 = VSPLTIS[BHW] -16
1390      //          VADDU[BHW]M tmp1, tmp2
1391      SDValue EltVal = getI32Imm(Elt + 16);
1392      SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
1393      EltVal = getI32Imm(-16);
1394      SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
1395      return CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0),
1396                                    SDValue(Tmp2, 0));
1397    }
1398  }
1399  }
1400
1401  return SelectCode(N);
1402}
1403
1404/// PostProcessISelDAG - Perform some late peephole optimizations
1405/// on the DAG representation.
1406void PPCDAGToDAGISel::PostprocessISelDAG() {
1407
1408  // Skip peepholes at -O0.
1409  if (TM.getOptLevel() == CodeGenOpt::None)
1410    return;
1411
1412  // These optimizations are currently supported only for 64-bit SVR4.
1413  if (PPCSubTarget.isDarwin() || !PPCSubTarget.isPPC64())
1414    return;
1415
1416  SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
1417  ++Position;
1418
1419  while (Position != CurDAG->allnodes_begin()) {
1420    SDNode *N = --Position;
1421    // Skip dead nodes and any non-machine opcodes.
1422    if (N->use_empty() || !N->isMachineOpcode())
1423      continue;
1424
1425    unsigned FirstOp;
1426    unsigned StorageOpcode = N->getMachineOpcode();
1427
1428    switch (StorageOpcode) {
1429    default: continue;
1430
1431    case PPC::LBZ:
1432    case PPC::LBZ8:
1433    case PPC::LD:
1434    case PPC::LFD:
1435    case PPC::LFS:
1436    case PPC::LHA:
1437    case PPC::LHA8:
1438    case PPC::LHZ:
1439    case PPC::LHZ8:
1440    case PPC::LWA:
1441    case PPC::LWZ:
1442    case PPC::LWZ8:
1443      FirstOp = 0;
1444      break;
1445
1446    case PPC::STB:
1447    case PPC::STB8:
1448    case PPC::STD:
1449    case PPC::STFD:
1450    case PPC::STFS:
1451    case PPC::STH:
1452    case PPC::STH8:
1453    case PPC::STW:
1454    case PPC::STW8:
1455      FirstOp = 1;
1456      break;
1457    }
1458
1459    // If this is a load or store with a zero offset, we may be able to
1460    // fold an add-immediate into the memory operation.
1461    if (!isa<ConstantSDNode>(N->getOperand(FirstOp)) ||
1462        N->getConstantOperandVal(FirstOp) != 0)
1463      continue;
1464
1465    SDValue Base = N->getOperand(FirstOp + 1);
1466    if (!Base.isMachineOpcode())
1467      continue;
1468
1469    unsigned Flags = 0;
1470    bool ReplaceFlags = true;
1471
1472    // When the feeding operation is an add-immediate of some sort,
1473    // determine whether we need to add relocation information to the
1474    // target flags on the immediate operand when we fold it into the
1475    // load instruction.
1476    //
1477    // For something like ADDItocL, the relocation information is
1478    // inferred from the opcode; when we process it in the AsmPrinter,
1479    // we add the necessary relocation there.  A load, though, can receive
1480    // relocation from various flavors of ADDIxxx, so we need to carry
1481    // the relocation information in the target flags.
1482    switch (Base.getMachineOpcode()) {
1483    default: continue;
1484
1485    case PPC::ADDI8:
1486    case PPC::ADDI8L:
1487    case PPC::ADDIL:
1488      // In some cases (such as TLS) the relocation information
1489      // is already in place on the operand, so copying the operand
1490      // is sufficient.
1491      ReplaceFlags = false;
1492      // For these cases, the immediate may not be divisible by 4, in
1493      // which case the fold is illegal for DS-form instructions.  (The
1494      // other cases provide aligned addresses and are always safe.)
1495      if ((StorageOpcode == PPC::LWA ||
1496           StorageOpcode == PPC::LD  ||
1497           StorageOpcode == PPC::STD) &&
1498          (!isa<ConstantSDNode>(Base.getOperand(1)) ||
1499           Base.getConstantOperandVal(1) % 4 != 0))
1500        continue;
1501      break;
1502    case PPC::ADDIdtprelL:
1503      Flags = PPCII::MO_DTPREL16_LO;
1504      break;
1505    case PPC::ADDItlsldL:
1506      Flags = PPCII::MO_TLSLD16_LO;
1507      break;
1508    case PPC::ADDItocL:
1509      Flags = PPCII::MO_TOC16_LO;
1510      break;
1511    }
1512
1513    // We found an opportunity.  Reverse the operands from the add
1514    // immediate and substitute them into the load or store.  If
1515    // needed, update the target flags for the immediate operand to
1516    // reflect the necessary relocation information.
1517    DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase:    ");
1518    DEBUG(Base->dump(CurDAG));
1519    DEBUG(dbgs() << "\nN: ");
1520    DEBUG(N->dump(CurDAG));
1521    DEBUG(dbgs() << "\n");
1522
1523    SDValue ImmOpnd = Base.getOperand(1);
1524
1525    // If the relocation information isn't already present on the
1526    // immediate operand, add it now.
1527    if (ReplaceFlags) {
1528      if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
1529        DebugLoc dl = GA->getDebugLoc();
1530        const GlobalValue *GV = GA->getGlobal();
1531        ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, 0, Flags);
1532      }
1533      else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(ImmOpnd)) {
1534        const Constant *C = CP->getConstVal();
1535        ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64,
1536                                                CP->getAlignment(),
1537                                                0, Flags);
1538      }
1539    }
1540
1541    if (FirstOp == 1) // Store
1542      (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd,
1543                                       Base.getOperand(0), N->getOperand(3));
1544    else // Load
1545      (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0),
1546                                       N->getOperand(2));
1547
1548    // The add-immediate may now be dead, in which case remove it.
1549    if (Base.getNode()->use_empty())
1550      CurDAG->RemoveDeadNode(Base.getNode());
1551  }
1552}
1553
1554
1555/// createPPCISelDag - This pass converts a legalized DAG into a
1556/// PowerPC-specific DAG, ready for instruction scheduling.
1557///
1558FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) {
1559  return new PPCDAGToDAGISel(TM);
1560}
1561
1562static void initializePassOnce(PassRegistry &Registry) {
1563  const char *Name = "PowerPC DAG->DAG Pattern Instruction Selection";
1564  PassInfo *PI = new PassInfo(Name, "ppc-codegen", &SelectionDAGISel::ID, 0,
1565                              false, false);
1566  Registry.registerPass(*PI, true);
1567}
1568
1569void llvm::initializePPCDAGToDAGISelPass(PassRegistry &Registry) {
1570  CALL_ONCE_INITIALIZATION(initializePassOnce);
1571}
1572
1573