PPCISelDAGToDAG.cpp revision 53b0b0e75480121e4e01a7a76e17909e92b1762a
1//===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file defines a pattern matching instruction selector for PowerPC, 11// converting from a legalized dag to a PPC dag. 12// 13//===----------------------------------------------------------------------===// 14 15#define DEBUG_TYPE "ppc-codegen" 16#include "PPC.h" 17#include "MCTargetDesc/PPCPredicates.h" 18#include "PPCTargetMachine.h" 19#include "llvm/CodeGen/MachineFunction.h" 20#include "llvm/CodeGen/MachineInstrBuilder.h" 21#include "llvm/CodeGen/MachineRegisterInfo.h" 22#include "llvm/CodeGen/SelectionDAG.h" 23#include "llvm/CodeGen/SelectionDAGISel.h" 24#include "llvm/IR/Constants.h" 25#include "llvm/IR/Function.h" 26#include "llvm/IR/GlobalAlias.h" 27#include "llvm/IR/GlobalValue.h" 28#include "llvm/IR/GlobalVariable.h" 29#include "llvm/IR/Intrinsics.h" 30#include "llvm/Support/Debug.h" 31#include "llvm/Support/ErrorHandling.h" 32#include "llvm/Support/MathExtras.h" 33#include "llvm/Support/raw_ostream.h" 34#include "llvm/Target/TargetOptions.h" 35using namespace llvm; 36 37namespace llvm { 38 void initializePPCDAGToDAGISelPass(PassRegistry&); 39} 40 41namespace { 42 //===--------------------------------------------------------------------===// 43 /// PPCDAGToDAGISel - PPC specific code to select PPC machine 44 /// instructions for SelectionDAG operations. 45 /// 46 class PPCDAGToDAGISel : public SelectionDAGISel { 47 const PPCTargetMachine &TM; 48 const PPCTargetLowering &PPCLowering; 49 const PPCSubtarget &PPCSubTarget; 50 unsigned GlobalBaseReg; 51 public: 52 explicit PPCDAGToDAGISel(PPCTargetMachine &tm) 53 : SelectionDAGISel(tm), TM(tm), 54 PPCLowering(*TM.getTargetLowering()), 55 PPCSubTarget(*TM.getSubtargetImpl()) { 56 initializePPCDAGToDAGISelPass(*PassRegistry::getPassRegistry()); 57 } 58 59 virtual bool runOnMachineFunction(MachineFunction &MF) { 60 // Make sure we re-emit a set of the global base reg if necessary 61 GlobalBaseReg = 0; 62 SelectionDAGISel::runOnMachineFunction(MF); 63 64 if (!PPCSubTarget.isSVR4ABI()) 65 InsertVRSaveCode(MF); 66 67 return true; 68 } 69 70 virtual void PostprocessISelDAG(); 71 72 /// getI32Imm - Return a target constant with the specified value, of type 73 /// i32. 74 inline SDValue getI32Imm(unsigned Imm) { 75 return CurDAG->getTargetConstant(Imm, MVT::i32); 76 } 77 78 /// getI64Imm - Return a target constant with the specified value, of type 79 /// i64. 80 inline SDValue getI64Imm(uint64_t Imm) { 81 return CurDAG->getTargetConstant(Imm, MVT::i64); 82 } 83 84 /// getSmallIPtrImm - Return a target constant of pointer type. 85 inline SDValue getSmallIPtrImm(unsigned Imm) { 86 return CurDAG->getTargetConstant(Imm, PPCLowering.getPointerTy()); 87 } 88 89 /// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s 90 /// with any number of 0s on either side. The 1s are allowed to wrap from 91 /// LSB to MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 92 /// 0x0F0F0000 is not, since all 1s are not contiguous. 93 static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME); 94 95 96 /// isRotateAndMask - Returns true if Mask and Shift can be folded into a 97 /// rotate and mask opcode and mask operation. 98 static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask, 99 unsigned &SH, unsigned &MB, unsigned &ME); 100 101 /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC 102 /// base register. Return the virtual register that holds this value. 103 SDNode *getGlobalBaseReg(); 104 105 // Select - Convert the specified operand from a target-independent to a 106 // target-specific node if it hasn't already been changed. 107 SDNode *Select(SDNode *N); 108 109 SDNode *SelectBitfieldInsert(SDNode *N); 110 111 /// SelectCC - Select a comparison of the specified values with the 112 /// specified condition code, returning the CR# of the expression. 113 SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, DebugLoc dl); 114 115 /// SelectAddrImm - Returns true if the address N can be represented by 116 /// a base register plus a signed 16-bit displacement [r+imm]. 117 bool SelectAddrImm(SDValue N, SDValue &Disp, 118 SDValue &Base) { 119 return PPCLowering.SelectAddressRegImm(N, Disp, Base, *CurDAG); 120 } 121 122 /// SelectAddrImmOffs - Return true if the operand is valid for a preinc 123 /// immediate field. Because preinc imms have already been validated, just 124 /// accept it. 125 bool SelectAddrImmOffs(SDValue N, SDValue &Out) const { 126 if (isa<ConstantSDNode>(N) || N.getOpcode() == PPCISD::Lo || 127 N.getOpcode() == ISD::TargetGlobalAddress) { 128 Out = N; 129 return true; 130 } 131 132 return false; 133 } 134 135 /// SelectAddrIdxOffs - Return true if the operand is valid for a preinc 136 /// index field. Because preinc imms have already been validated, just 137 /// accept it. 138 bool SelectAddrIdxOffs(SDValue N, SDValue &Out) const { 139 if (isa<ConstantSDNode>(N) || N.getOpcode() == PPCISD::Lo || 140 N.getOpcode() == ISD::TargetGlobalAddress) 141 return false; 142 143 Out = N; 144 return true; 145 } 146 147 /// SelectAddrIdx - Given the specified addressed, check to see if it can be 148 /// represented as an indexed [r+r] operation. Returns false if it can 149 /// be represented by [r+imm], which are preferred. 150 bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) { 151 return PPCLowering.SelectAddressRegReg(N, Base, Index, *CurDAG); 152 } 153 154 /// SelectAddrIdxOnly - Given the specified addressed, force it to be 155 /// represented as an indexed [r+r] operation. 156 bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) { 157 return PPCLowering.SelectAddressRegRegOnly(N, Base, Index, *CurDAG); 158 } 159 160 /// SelectAddrImmShift - Returns true if the address N can be represented by 161 /// a base register plus a signed 14-bit displacement [r+imm*4]. Suitable 162 /// for use by STD and friends. 163 bool SelectAddrImmShift(SDValue N, SDValue &Disp, SDValue &Base) { 164 return PPCLowering.SelectAddressRegImmShift(N, Disp, Base, *CurDAG); 165 } 166 167 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for 168 /// inline asm expressions. It is always correct to compute the value into 169 /// a register. The case of adding a (possibly relocatable) constant to a 170 /// register can be improved, but it is wrong to substitute Reg+Reg for 171 /// Reg in an asm, because the load or store opcode would have to change. 172 virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op, 173 char ConstraintCode, 174 std::vector<SDValue> &OutOps) { 175 OutOps.push_back(Op); 176 return false; 177 } 178 179 void InsertVRSaveCode(MachineFunction &MF); 180 181 virtual const char *getPassName() const { 182 return "PowerPC DAG->DAG Pattern Instruction Selection"; 183 } 184 185// Include the pieces autogenerated from the target description. 186#include "PPCGenDAGISel.inc" 187 188private: 189 SDNode *SelectSETCC(SDNode *N); 190 }; 191} 192 193/// InsertVRSaveCode - Once the entire function has been instruction selected, 194/// all virtual registers are created and all machine instructions are built, 195/// check to see if we need to save/restore VRSAVE. If so, do it. 196void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) { 197 // Check to see if this function uses vector registers, which means we have to 198 // save and restore the VRSAVE register and update it with the regs we use. 199 // 200 // In this case, there will be virtual registers of vector type created 201 // by the scheduler. Detect them now. 202 bool HasVectorVReg = false; 203 for (unsigned i = 0, e = RegInfo->getNumVirtRegs(); i != e; ++i) { 204 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 205 if (RegInfo->getRegClass(Reg) == &PPC::VRRCRegClass) { 206 HasVectorVReg = true; 207 break; 208 } 209 } 210 if (!HasVectorVReg) return; // nothing to do. 211 212 // If we have a vector register, we want to emit code into the entry and exit 213 // blocks to save and restore the VRSAVE register. We do this here (instead 214 // of marking all vector instructions as clobbering VRSAVE) for two reasons: 215 // 216 // 1. This (trivially) reduces the load on the register allocator, by not 217 // having to represent the live range of the VRSAVE register. 218 // 2. This (more significantly) allows us to create a temporary virtual 219 // register to hold the saved VRSAVE value, allowing this temporary to be 220 // register allocated, instead of forcing it to be spilled to the stack. 221 222 // Create two vregs - one to hold the VRSAVE register that is live-in to the 223 // function and one for the value after having bits or'd into it. 224 unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); 225 unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); 226 227 const TargetInstrInfo &TII = *TM.getInstrInfo(); 228 MachineBasicBlock &EntryBB = *Fn.begin(); 229 DebugLoc dl; 230 // Emit the following code into the entry block: 231 // InVRSAVE = MFVRSAVE 232 // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE 233 // MTVRSAVE UpdatedVRSAVE 234 MachineBasicBlock::iterator IP = EntryBB.begin(); // Insert Point 235 BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE); 236 BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE), 237 UpdatedVRSAVE).addReg(InVRSAVE); 238 BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE); 239 240 // Find all return blocks, outputting a restore in each epilog. 241 for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) { 242 if (!BB->empty() && BB->back().isReturn()) { 243 IP = BB->end(); --IP; 244 245 // Skip over all terminator instructions, which are part of the return 246 // sequence. 247 MachineBasicBlock::iterator I2 = IP; 248 while (I2 != BB->begin() && (--I2)->isTerminator()) 249 IP = I2; 250 251 // Emit: MTVRSAVE InVRSave 252 BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE); 253 } 254 } 255} 256 257 258/// getGlobalBaseReg - Output the instructions required to put the 259/// base address to use for accessing globals into a register. 260/// 261SDNode *PPCDAGToDAGISel::getGlobalBaseReg() { 262 if (!GlobalBaseReg) { 263 const TargetInstrInfo &TII = *TM.getInstrInfo(); 264 // Insert the set of GlobalBaseReg into the first MBB of the function 265 MachineBasicBlock &FirstMBB = MF->front(); 266 MachineBasicBlock::iterator MBBI = FirstMBB.begin(); 267 DebugLoc dl; 268 269 if (PPCLowering.getPointerTy() == MVT::i32) { 270 GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); 271 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR)); 272 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); 273 } else { 274 GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RCRegClass); 275 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8)); 276 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg); 277 } 278 } 279 return CurDAG->getRegister(GlobalBaseReg, 280 PPCLowering.getPointerTy()).getNode(); 281} 282 283/// isIntS16Immediate - This method tests to see if the node is either a 32-bit 284/// or 64-bit immediate, and if the value can be accurately represented as a 285/// sign extension from a 16-bit value. If so, this returns true and the 286/// immediate. 287static bool isIntS16Immediate(SDNode *N, short &Imm) { 288 if (N->getOpcode() != ISD::Constant) 289 return false; 290 291 Imm = (short)cast<ConstantSDNode>(N)->getZExtValue(); 292 if (N->getValueType(0) == MVT::i32) 293 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 294 else 295 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 296} 297 298static bool isIntS16Immediate(SDValue Op, short &Imm) { 299 return isIntS16Immediate(Op.getNode(), Imm); 300} 301 302 303/// isInt32Immediate - This method tests to see if the node is a 32-bit constant 304/// operand. If so Imm will receive the 32-bit value. 305static bool isInt32Immediate(SDNode *N, unsigned &Imm) { 306 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) { 307 Imm = cast<ConstantSDNode>(N)->getZExtValue(); 308 return true; 309 } 310 return false; 311} 312 313/// isInt64Immediate - This method tests to see if the node is a 64-bit constant 314/// operand. If so Imm will receive the 64-bit value. 315static bool isInt64Immediate(SDNode *N, uint64_t &Imm) { 316 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) { 317 Imm = cast<ConstantSDNode>(N)->getZExtValue(); 318 return true; 319 } 320 return false; 321} 322 323// isInt32Immediate - This method tests to see if a constant operand. 324// If so Imm will receive the 32 bit value. 325static bool isInt32Immediate(SDValue N, unsigned &Imm) { 326 return isInt32Immediate(N.getNode(), Imm); 327} 328 329 330// isOpcWithIntImmediate - This method tests to see if the node is a specific 331// opcode and that it has a immediate integer right operand. 332// If so Imm will receive the 32 bit value. 333static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) { 334 return N->getOpcode() == Opc 335 && isInt32Immediate(N->getOperand(1).getNode(), Imm); 336} 337 338bool PPCDAGToDAGISel::isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) { 339 if (isShiftedMask_32(Val)) { 340 // look for the first non-zero bit 341 MB = CountLeadingZeros_32(Val); 342 // look for the first zero bit after the run of ones 343 ME = CountLeadingZeros_32((Val - 1) ^ Val); 344 return true; 345 } else { 346 Val = ~Val; // invert mask 347 if (isShiftedMask_32(Val)) { 348 // effectively look for the first zero bit 349 ME = CountLeadingZeros_32(Val) - 1; 350 // effectively look for the first one bit after the run of zeros 351 MB = CountLeadingZeros_32((Val - 1) ^ Val) + 1; 352 return true; 353 } 354 } 355 // no run present 356 return false; 357} 358 359bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask, 360 bool isShiftMask, unsigned &SH, 361 unsigned &MB, unsigned &ME) { 362 // Don't even go down this path for i64, since different logic will be 363 // necessary for rldicl/rldicr/rldimi. 364 if (N->getValueType(0) != MVT::i32) 365 return false; 366 367 unsigned Shift = 32; 368 unsigned Indeterminant = ~0; // bit mask marking indeterminant results 369 unsigned Opcode = N->getOpcode(); 370 if (N->getNumOperands() != 2 || 371 !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31)) 372 return false; 373 374 if (Opcode == ISD::SHL) { 375 // apply shift left to mask if it comes first 376 if (isShiftMask) Mask = Mask << Shift; 377 // determine which bits are made indeterminant by shift 378 Indeterminant = ~(0xFFFFFFFFu << Shift); 379 } else if (Opcode == ISD::SRL) { 380 // apply shift right to mask if it comes first 381 if (isShiftMask) Mask = Mask >> Shift; 382 // determine which bits are made indeterminant by shift 383 Indeterminant = ~(0xFFFFFFFFu >> Shift); 384 // adjust for the left rotate 385 Shift = 32 - Shift; 386 } else if (Opcode == ISD::ROTL) { 387 Indeterminant = 0; 388 } else { 389 return false; 390 } 391 392 // if the mask doesn't intersect any Indeterminant bits 393 if (Mask && !(Mask & Indeterminant)) { 394 SH = Shift & 31; 395 // make sure the mask is still a mask (wrap arounds may not be) 396 return isRunOfOnes(Mask, MB, ME); 397 } 398 return false; 399} 400 401/// SelectBitfieldInsert - turn an or of two masked values into 402/// the rotate left word immediate then mask insert (rlwimi) instruction. 403SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) { 404 SDValue Op0 = N->getOperand(0); 405 SDValue Op1 = N->getOperand(1); 406 DebugLoc dl = N->getDebugLoc(); 407 408 APInt LKZ, LKO, RKZ, RKO; 409 CurDAG->ComputeMaskedBits(Op0, LKZ, LKO); 410 CurDAG->ComputeMaskedBits(Op1, RKZ, RKO); 411 412 unsigned TargetMask = LKZ.getZExtValue(); 413 unsigned InsertMask = RKZ.getZExtValue(); 414 415 if ((TargetMask | InsertMask) == 0xFFFFFFFF) { 416 unsigned Op0Opc = Op0.getOpcode(); 417 unsigned Op1Opc = Op1.getOpcode(); 418 unsigned Value, SH = 0; 419 TargetMask = ~TargetMask; 420 InsertMask = ~InsertMask; 421 422 // If the LHS has a foldable shift and the RHS does not, then swap it to the 423 // RHS so that we can fold the shift into the insert. 424 if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) { 425 if (Op0.getOperand(0).getOpcode() == ISD::SHL || 426 Op0.getOperand(0).getOpcode() == ISD::SRL) { 427 if (Op1.getOperand(0).getOpcode() != ISD::SHL && 428 Op1.getOperand(0).getOpcode() != ISD::SRL) { 429 std::swap(Op0, Op1); 430 std::swap(Op0Opc, Op1Opc); 431 std::swap(TargetMask, InsertMask); 432 } 433 } 434 } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) { 435 if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL && 436 Op1.getOperand(0).getOpcode() != ISD::SRL) { 437 std::swap(Op0, Op1); 438 std::swap(Op0Opc, Op1Opc); 439 std::swap(TargetMask, InsertMask); 440 } 441 } 442 443 unsigned MB, ME; 444 if (InsertMask && isRunOfOnes(InsertMask, MB, ME)) { 445 SDValue Tmp1, Tmp2; 446 447 if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) && 448 isInt32Immediate(Op1.getOperand(1), Value)) { 449 Op1 = Op1.getOperand(0); 450 SH = (Op1Opc == ISD::SHL) ? Value : 32 - Value; 451 } 452 if (Op1Opc == ISD::AND) { 453 unsigned SHOpc = Op1.getOperand(0).getOpcode(); 454 if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && 455 isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) { 456 Op1 = Op1.getOperand(0).getOperand(0); 457 SH = (SHOpc == ISD::SHL) ? Value : 32 - Value; 458 } else { 459 Op1 = Op1.getOperand(0); 460 } 461 } 462 463 SH &= 31; 464 SDValue Ops[] = { Op0, Op1, getI32Imm(SH), getI32Imm(MB), 465 getI32Imm(ME) }; 466 return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops, 5); 467 } 468 } 469 return 0; 470} 471 472/// SelectCC - Select a comparison of the specified values with the specified 473/// condition code, returning the CR# of the expression. 474SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, 475 ISD::CondCode CC, DebugLoc dl) { 476 // Always select the LHS. 477 unsigned Opc; 478 479 if (LHS.getValueType() == MVT::i32) { 480 unsigned Imm; 481 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 482 if (isInt32Immediate(RHS, Imm)) { 483 // SETEQ/SETNE comparison with 16-bit immediate, fold it. 484 if (isUInt<16>(Imm)) 485 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS, 486 getI32Imm(Imm & 0xFFFF)), 0); 487 // If this is a 16-bit signed immediate, fold it. 488 if (isInt<16>((int)Imm)) 489 return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS, 490 getI32Imm(Imm & 0xFFFF)), 0); 491 492 // For non-equality comparisons, the default code would materialize the 493 // constant, then compare against it, like this: 494 // lis r2, 4660 495 // ori r2, r2, 22136 496 // cmpw cr0, r3, r2 497 // Since we are just comparing for equality, we can emit this instead: 498 // xoris r0,r3,0x1234 499 // cmplwi cr0,r0,0x5678 500 // beq cr0,L6 501 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS, 502 getI32Imm(Imm >> 16)), 0); 503 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor, 504 getI32Imm(Imm & 0xFFFF)), 0); 505 } 506 Opc = PPC::CMPLW; 507 } else if (ISD::isUnsignedIntSetCC(CC)) { 508 if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm)) 509 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS, 510 getI32Imm(Imm & 0xFFFF)), 0); 511 Opc = PPC::CMPLW; 512 } else { 513 short SImm; 514 if (isIntS16Immediate(RHS, SImm)) 515 return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS, 516 getI32Imm((int)SImm & 0xFFFF)), 517 0); 518 Opc = PPC::CMPW; 519 } 520 } else if (LHS.getValueType() == MVT::i64) { 521 uint64_t Imm; 522 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 523 if (isInt64Immediate(RHS.getNode(), Imm)) { 524 // SETEQ/SETNE comparison with 16-bit immediate, fold it. 525 if (isUInt<16>(Imm)) 526 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS, 527 getI32Imm(Imm & 0xFFFF)), 0); 528 // If this is a 16-bit signed immediate, fold it. 529 if (isInt<16>(Imm)) 530 return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS, 531 getI32Imm(Imm & 0xFFFF)), 0); 532 533 // For non-equality comparisons, the default code would materialize the 534 // constant, then compare against it, like this: 535 // lis r2, 4660 536 // ori r2, r2, 22136 537 // cmpd cr0, r3, r2 538 // Since we are just comparing for equality, we can emit this instead: 539 // xoris r0,r3,0x1234 540 // cmpldi cr0,r0,0x5678 541 // beq cr0,L6 542 if (isUInt<32>(Imm)) { 543 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS, 544 getI64Imm(Imm >> 16)), 0); 545 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor, 546 getI64Imm(Imm & 0xFFFF)), 0); 547 } 548 } 549 Opc = PPC::CMPLD; 550 } else if (ISD::isUnsignedIntSetCC(CC)) { 551 if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm)) 552 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS, 553 getI64Imm(Imm & 0xFFFF)), 0); 554 Opc = PPC::CMPLD; 555 } else { 556 short SImm; 557 if (isIntS16Immediate(RHS, SImm)) 558 return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS, 559 getI64Imm(SImm & 0xFFFF)), 560 0); 561 Opc = PPC::CMPD; 562 } 563 } else if (LHS.getValueType() == MVT::f32) { 564 Opc = PPC::FCMPUS; 565 } else { 566 assert(LHS.getValueType() == MVT::f64 && "Unknown vt!"); 567 Opc = PPC::FCMPUD; 568 } 569 return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0); 570} 571 572static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) { 573 switch (CC) { 574 case ISD::SETUEQ: 575 case ISD::SETONE: 576 case ISD::SETOLE: 577 case ISD::SETOGE: 578 llvm_unreachable("Should be lowered by legalize!"); 579 default: llvm_unreachable("Unknown condition!"); 580 case ISD::SETOEQ: 581 case ISD::SETEQ: return PPC::PRED_EQ; 582 case ISD::SETUNE: 583 case ISD::SETNE: return PPC::PRED_NE; 584 case ISD::SETOLT: 585 case ISD::SETLT: return PPC::PRED_LT; 586 case ISD::SETULE: 587 case ISD::SETLE: return PPC::PRED_LE; 588 case ISD::SETOGT: 589 case ISD::SETGT: return PPC::PRED_GT; 590 case ISD::SETUGE: 591 case ISD::SETGE: return PPC::PRED_GE; 592 case ISD::SETO: return PPC::PRED_NU; 593 case ISD::SETUO: return PPC::PRED_UN; 594 // These two are invalid for floating point. Assume we have int. 595 case ISD::SETULT: return PPC::PRED_LT; 596 case ISD::SETUGT: return PPC::PRED_GT; 597 } 598} 599 600/// getCRIdxForSetCC - Return the index of the condition register field 601/// associated with the SetCC condition, and whether or not the field is 602/// treated as inverted. That is, lt = 0; ge = 0 inverted. 603/// 604/// If this returns with Other != -1, then the returned comparison is an or of 605/// two simpler comparisons. In this case, Invert is guaranteed to be false. 606static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert, int &Other) { 607 Invert = false; 608 Other = -1; 609 switch (CC) { 610 default: llvm_unreachable("Unknown condition!"); 611 case ISD::SETOLT: 612 case ISD::SETLT: return 0; // Bit #0 = SETOLT 613 case ISD::SETOGT: 614 case ISD::SETGT: return 1; // Bit #1 = SETOGT 615 case ISD::SETOEQ: 616 case ISD::SETEQ: return 2; // Bit #2 = SETOEQ 617 case ISD::SETUO: return 3; // Bit #3 = SETUO 618 case ISD::SETUGE: 619 case ISD::SETGE: Invert = true; return 0; // !Bit #0 = SETUGE 620 case ISD::SETULE: 621 case ISD::SETLE: Invert = true; return 1; // !Bit #1 = SETULE 622 case ISD::SETUNE: 623 case ISD::SETNE: Invert = true; return 2; // !Bit #2 = SETUNE 624 case ISD::SETO: Invert = true; return 3; // !Bit #3 = SETO 625 case ISD::SETUEQ: 626 case ISD::SETOGE: 627 case ISD::SETOLE: 628 case ISD::SETONE: 629 llvm_unreachable("Invalid branch code: should be expanded by legalize"); 630 // These are invalid for floating point. Assume integer. 631 case ISD::SETULT: return 0; 632 case ISD::SETUGT: return 1; 633 } 634} 635 636// getVCmpInst: return the vector compare instruction for the specified 637// vector type and condition code. Since this is for altivec specific code, 638// only support the altivec types (v16i8, v8i16, v4i32, and v4f32). 639static unsigned int getVCmpInst(MVT::SimpleValueType VecVT, ISD::CondCode CC) { 640 switch (CC) { 641 case ISD::SETEQ: 642 case ISD::SETUEQ: 643 case ISD::SETNE: 644 case ISD::SETUNE: 645 if (VecVT == MVT::v16i8) 646 return PPC::VCMPEQUB; 647 else if (VecVT == MVT::v8i16) 648 return PPC::VCMPEQUH; 649 else if (VecVT == MVT::v4i32) 650 return PPC::VCMPEQUW; 651 // v4f32 != v4f32 could be translate to unordered not equal 652 else if (VecVT == MVT::v4f32) 653 return PPC::VCMPEQFP; 654 break; 655 case ISD::SETLT: 656 case ISD::SETGT: 657 case ISD::SETLE: 658 case ISD::SETGE: 659 if (VecVT == MVT::v16i8) 660 return PPC::VCMPGTSB; 661 else if (VecVT == MVT::v8i16) 662 return PPC::VCMPGTSH; 663 else if (VecVT == MVT::v4i32) 664 return PPC::VCMPGTSW; 665 else if (VecVT == MVT::v4f32) 666 return PPC::VCMPGTFP; 667 break; 668 case ISD::SETULT: 669 case ISD::SETUGT: 670 case ISD::SETUGE: 671 case ISD::SETULE: 672 if (VecVT == MVT::v16i8) 673 return PPC::VCMPGTUB; 674 else if (VecVT == MVT::v8i16) 675 return PPC::VCMPGTUH; 676 else if (VecVT == MVT::v4i32) 677 return PPC::VCMPGTUW; 678 break; 679 case ISD::SETOEQ: 680 if (VecVT == MVT::v4f32) 681 return PPC::VCMPEQFP; 682 break; 683 case ISD::SETOLT: 684 case ISD::SETOGT: 685 case ISD::SETOLE: 686 if (VecVT == MVT::v4f32) 687 return PPC::VCMPGTFP; 688 break; 689 case ISD::SETOGE: 690 if (VecVT == MVT::v4f32) 691 return PPC::VCMPGEFP; 692 break; 693 default: 694 break; 695 } 696 llvm_unreachable("Invalid integer vector compare condition"); 697} 698 699// getVCmpEQInst: return the equal compare instruction for the specified vector 700// type. Since this is for altivec specific code, only support the altivec 701// types (v16i8, v8i16, v4i32, and v4f32). 702static unsigned int getVCmpEQInst(MVT::SimpleValueType VecVT) { 703 switch (VecVT) { 704 case MVT::v16i8: 705 return PPC::VCMPEQUB; 706 case MVT::v8i16: 707 return PPC::VCMPEQUH; 708 case MVT::v4i32: 709 return PPC::VCMPEQUW; 710 case MVT::v4f32: 711 return PPC::VCMPEQFP; 712 default: 713 llvm_unreachable("Invalid integer vector compare condition"); 714 } 715} 716 717 718SDNode *PPCDAGToDAGISel::SelectSETCC(SDNode *N) { 719 DebugLoc dl = N->getDebugLoc(); 720 unsigned Imm; 721 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 722 EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy(); 723 bool isPPC64 = (PtrVT == MVT::i64); 724 725 if (isInt32Immediate(N->getOperand(1), Imm)) { 726 // We can codegen setcc op, imm very efficiently compared to a brcond. 727 // Check for those cases here. 728 // setcc op, 0 729 if (Imm == 0) { 730 SDValue Op = N->getOperand(0); 731 switch (CC) { 732 default: break; 733 case ISD::SETEQ: { 734 Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0); 735 SDValue Ops[] = { Op, getI32Imm(27), getI32Imm(5), getI32Imm(31) }; 736 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); 737 } 738 case ISD::SETNE: { 739 if (isPPC64) break; 740 SDValue AD = 741 SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 742 Op, getI32Imm(~0U)), 0); 743 return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, 744 AD.getValue(1)); 745 } 746 case ISD::SETLT: { 747 SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) }; 748 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); 749 } 750 case ISD::SETGT: { 751 SDValue T = 752 SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0); 753 T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0); 754 SDValue Ops[] = { T, getI32Imm(1), getI32Imm(31), getI32Imm(31) }; 755 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); 756 } 757 } 758 } else if (Imm == ~0U) { // setcc op, -1 759 SDValue Op = N->getOperand(0); 760 switch (CC) { 761 default: break; 762 case ISD::SETEQ: 763 if (isPPC64) break; 764 Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 765 Op, getI32Imm(1)), 0); 766 return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, 767 SDValue(CurDAG->getMachineNode(PPC::LI, dl, 768 MVT::i32, 769 getI32Imm(0)), 0), 770 Op.getValue(1)); 771 case ISD::SETNE: { 772 if (isPPC64) break; 773 Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0); 774 SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 775 Op, getI32Imm(~0U)); 776 return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0), 777 Op, SDValue(AD, 1)); 778 } 779 case ISD::SETLT: { 780 SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op, 781 getI32Imm(1)), 0); 782 SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD, 783 Op), 0); 784 SDValue Ops[] = { AN, getI32Imm(1), getI32Imm(31), getI32Imm(31) }; 785 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); 786 } 787 case ISD::SETGT: { 788 SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) }; 789 Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops, 4), 790 0); 791 return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, 792 getI32Imm(1)); 793 } 794 } 795 } 796 } 797 798 SDValue LHS = N->getOperand(0); 799 SDValue RHS = N->getOperand(1); 800 801 // Altivec Vector compare instructions do not set any CR register by default and 802 // vector compare operations return the same type as the operands. 803 if (LHS.getValueType().isVector()) { 804 EVT VecVT = LHS.getValueType(); 805 MVT::SimpleValueType VT = VecVT.getSimpleVT().SimpleTy; 806 unsigned int VCmpInst = getVCmpInst(VT, CC); 807 808 switch (CC) { 809 case ISD::SETEQ: 810 case ISD::SETOEQ: 811 case ISD::SETUEQ: 812 return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, LHS, RHS); 813 case ISD::SETNE: 814 case ISD::SETONE: 815 case ISD::SETUNE: { 816 SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, VecVT, LHS, RHS), 0); 817 return CurDAG->SelectNodeTo(N, PPC::VNOR, VecVT, VCmp, VCmp); 818 } 819 case ISD::SETLT: 820 case ISD::SETOLT: 821 case ISD::SETULT: 822 return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, RHS, LHS); 823 case ISD::SETGT: 824 case ISD::SETOGT: 825 case ISD::SETUGT: 826 return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, LHS, RHS); 827 case ISD::SETGE: 828 case ISD::SETOGE: 829 case ISD::SETUGE: { 830 // Small optimization: Altivec provides a 'Vector Compare Greater Than 831 // or Equal To' instruction (vcmpgefp), so in this case there is no 832 // need for extra logic for the equal compare. 833 if (VecVT.getSimpleVT().isFloatingPoint()) { 834 return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, LHS, RHS); 835 } else { 836 SDValue VCmpGT(CurDAG->getMachineNode(VCmpInst, dl, VecVT, LHS, RHS), 0); 837 unsigned int VCmpEQInst = getVCmpEQInst(VT); 838 SDValue VCmpEQ(CurDAG->getMachineNode(VCmpEQInst, dl, VecVT, LHS, RHS), 0); 839 return CurDAG->SelectNodeTo(N, PPC::VOR, VecVT, VCmpGT, VCmpEQ); 840 } 841 } 842 case ISD::SETLE: 843 case ISD::SETOLE: 844 case ISD::SETULE: { 845 SDValue VCmpLE(CurDAG->getMachineNode(VCmpInst, dl, VecVT, RHS, LHS), 0); 846 unsigned int VCmpEQInst = getVCmpEQInst(VT); 847 SDValue VCmpEQ(CurDAG->getMachineNode(VCmpEQInst, dl, VecVT, LHS, RHS), 0); 848 return CurDAG->SelectNodeTo(N, PPC::VOR, VecVT, VCmpLE, VCmpEQ); 849 } 850 default: 851 llvm_unreachable("Invalid vector compare type: should be expanded by legalize"); 852 } 853 } 854 855 bool Inv; 856 int OtherCondIdx; 857 unsigned Idx = getCRIdxForSetCC(CC, Inv, OtherCondIdx); 858 SDValue CCReg = SelectCC(LHS, RHS, CC, dl); 859 SDValue IntCR; 860 861 // Force the ccreg into CR7. 862 SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32); 863 864 SDValue InFlag(0, 0); // Null incoming flag value. 865 CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg, 866 InFlag).getValue(1); 867 868 if (PPCSubTarget.hasMFOCRF() && OtherCondIdx == -1) 869 IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg, 870 CCReg), 0); 871 else 872 IntCR = SDValue(CurDAG->getMachineNode(PPC::MFCRpseud, dl, MVT::i32, 873 CR7Reg, CCReg), 0); 874 875 SDValue Ops[] = { IntCR, getI32Imm((32-(3-Idx)) & 31), 876 getI32Imm(31), getI32Imm(31) }; 877 if (OtherCondIdx == -1 && !Inv) 878 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); 879 880 // Get the specified bit. 881 SDValue Tmp = 882 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops, 4), 0); 883 if (Inv) { 884 assert(OtherCondIdx == -1 && "Can't have split plus negation"); 885 return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1)); 886 } 887 888 // Otherwise, we have to turn an operation like SETONE -> SETOLT | SETOGT. 889 // We already got the bit for the first part of the comparison (e.g. SETULE). 890 891 // Get the other bit of the comparison. 892 Ops[1] = getI32Imm((32-(3-OtherCondIdx)) & 31); 893 SDValue OtherCond = 894 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops, 4), 0); 895 896 return CurDAG->SelectNodeTo(N, PPC::OR, MVT::i32, Tmp, OtherCond); 897} 898 899 900// Select - Convert the specified operand from a target-independent to a 901// target-specific node if it hasn't already been changed. 902SDNode *PPCDAGToDAGISel::Select(SDNode *N) { 903 DebugLoc dl = N->getDebugLoc(); 904 if (N->isMachineOpcode()) 905 return NULL; // Already selected. 906 907 switch (N->getOpcode()) { 908 default: break; 909 910 case ISD::Constant: { 911 if (N->getValueType(0) == MVT::i64) { 912 // Get 64 bit value. 913 int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue(); 914 // Assume no remaining bits. 915 unsigned Remainder = 0; 916 // Assume no shift required. 917 unsigned Shift = 0; 918 919 // If it can't be represented as a 32 bit value. 920 if (!isInt<32>(Imm)) { 921 Shift = CountTrailingZeros_64(Imm); 922 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift; 923 924 // If the shifted value fits 32 bits. 925 if (isInt<32>(ImmSh)) { 926 // Go with the shifted value. 927 Imm = ImmSh; 928 } else { 929 // Still stuck with a 64 bit value. 930 Remainder = Imm; 931 Shift = 32; 932 Imm >>= 32; 933 } 934 } 935 936 // Intermediate operand. 937 SDNode *Result; 938 939 // Handle first 32 bits. 940 unsigned Lo = Imm & 0xFFFF; 941 unsigned Hi = (Imm >> 16) & 0xFFFF; 942 943 // Simple value. 944 if (isInt<16>(Imm)) { 945 // Just the Lo bits. 946 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, getI32Imm(Lo)); 947 } else if (Lo) { 948 // Handle the Hi bits. 949 unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8; 950 Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi)); 951 // And Lo bits. 952 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, 953 SDValue(Result, 0), getI32Imm(Lo)); 954 } else { 955 // Just the Hi bits. 956 Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi)); 957 } 958 959 // If no shift, we're done. 960 if (!Shift) return Result; 961 962 // Shift for next step if the upper 32-bits were not zero. 963 if (Imm) { 964 Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, 965 SDValue(Result, 0), 966 getI32Imm(Shift), 967 getI32Imm(63 - Shift)); 968 } 969 970 // Add in the last bits as required. 971 if ((Hi = (Remainder >> 16) & 0xFFFF)) { 972 Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64, 973 SDValue(Result, 0), getI32Imm(Hi)); 974 } 975 if ((Lo = Remainder & 0xFFFF)) { 976 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, 977 SDValue(Result, 0), getI32Imm(Lo)); 978 } 979 980 return Result; 981 } 982 break; 983 } 984 985 case ISD::SETCC: 986 return SelectSETCC(N); 987 case PPCISD::GlobalBaseReg: 988 return getGlobalBaseReg(); 989 990 case ISD::FrameIndex: { 991 int FI = cast<FrameIndexSDNode>(N)->getIndex(); 992 SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0)); 993 unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8; 994 if (N->hasOneUse()) 995 return CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), TFI, 996 getSmallIPtrImm(0)); 997 return CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI, 998 getSmallIPtrImm(0)); 999 } 1000 1001 case PPCISD::MFCR: { 1002 SDValue InFlag = N->getOperand(1); 1003 // Use MFOCRF if supported. 1004 if (PPCSubTarget.hasMFOCRF()) 1005 return CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, 1006 N->getOperand(0), InFlag); 1007 else 1008 return CurDAG->getMachineNode(PPC::MFCRpseud, dl, MVT::i32, 1009 N->getOperand(0), InFlag); 1010 } 1011 1012 case ISD::SDIV: { 1013 // FIXME: since this depends on the setting of the carry flag from the srawi 1014 // we should really be making notes about that for the scheduler. 1015 // FIXME: It sure would be nice if we could cheaply recognize the 1016 // srl/add/sra pattern the dag combiner will generate for this as 1017 // sra/addze rather than having to handle sdiv ourselves. oh well. 1018 unsigned Imm; 1019 if (isInt32Immediate(N->getOperand(1), Imm)) { 1020 SDValue N0 = N->getOperand(0); 1021 if ((signed)Imm > 0 && isPowerOf2_32(Imm)) { 1022 SDNode *Op = 1023 CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue, 1024 N0, getI32Imm(Log2_32(Imm))); 1025 return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, 1026 SDValue(Op, 0), SDValue(Op, 1)); 1027 } else if ((signed)Imm < 0 && isPowerOf2_32(-Imm)) { 1028 SDNode *Op = 1029 CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue, 1030 N0, getI32Imm(Log2_32(-Imm))); 1031 SDValue PT = 1032 SDValue(CurDAG->getMachineNode(PPC::ADDZE, dl, MVT::i32, 1033 SDValue(Op, 0), SDValue(Op, 1)), 1034 0); 1035 return CurDAG->SelectNodeTo(N, PPC::NEG, MVT::i32, PT); 1036 } 1037 } 1038 1039 // Other cases are autogenerated. 1040 break; 1041 } 1042 1043 case ISD::LOAD: { 1044 // Handle preincrement loads. 1045 LoadSDNode *LD = cast<LoadSDNode>(N); 1046 EVT LoadedVT = LD->getMemoryVT(); 1047 1048 // Normal loads are handled by code generated from the .td file. 1049 if (LD->getAddressingMode() != ISD::PRE_INC) 1050 break; 1051 1052 SDValue Offset = LD->getOffset(); 1053 if (isa<ConstantSDNode>(Offset) || 1054 Offset.getOpcode() == ISD::TargetGlobalAddress) { 1055 1056 unsigned Opcode; 1057 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD; 1058 if (LD->getValueType(0) != MVT::i64) { 1059 // Handle PPC32 integer and normal FP loads. 1060 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); 1061 switch (LoadedVT.getSimpleVT().SimpleTy) { 1062 default: llvm_unreachable("Invalid PPC load type!"); 1063 case MVT::f64: Opcode = PPC::LFDU; break; 1064 case MVT::f32: Opcode = PPC::LFSU; break; 1065 case MVT::i32: Opcode = PPC::LWZU; break; 1066 case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break; 1067 case MVT::i1: 1068 case MVT::i8: Opcode = PPC::LBZU; break; 1069 } 1070 } else { 1071 assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!"); 1072 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); 1073 switch (LoadedVT.getSimpleVT().SimpleTy) { 1074 default: llvm_unreachable("Invalid PPC load type!"); 1075 case MVT::i64: Opcode = PPC::LDU; break; 1076 case MVT::i32: Opcode = PPC::LWZU8; break; 1077 case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break; 1078 case MVT::i1: 1079 case MVT::i8: Opcode = PPC::LBZU8; break; 1080 } 1081 } 1082 1083 SDValue Chain = LD->getChain(); 1084 SDValue Base = LD->getBasePtr(); 1085 SDValue Ops[] = { Offset, Base, Chain }; 1086 return CurDAG->getMachineNode(Opcode, dl, LD->getValueType(0), 1087 PPCLowering.getPointerTy(), 1088 MVT::Other, Ops, 3); 1089 } else { 1090 unsigned Opcode; 1091 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD; 1092 if (LD->getValueType(0) != MVT::i64) { 1093 // Handle PPC32 integer and normal FP loads. 1094 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); 1095 switch (LoadedVT.getSimpleVT().SimpleTy) { 1096 default: llvm_unreachable("Invalid PPC load type!"); 1097 case MVT::f64: Opcode = PPC::LFDUX; break; 1098 case MVT::f32: Opcode = PPC::LFSUX; break; 1099 case MVT::i32: Opcode = PPC::LWZUX; break; 1100 case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break; 1101 case MVT::i1: 1102 case MVT::i8: Opcode = PPC::LBZUX; break; 1103 } 1104 } else { 1105 assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!"); 1106 assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) && 1107 "Invalid sext update load"); 1108 switch (LoadedVT.getSimpleVT().SimpleTy) { 1109 default: llvm_unreachable("Invalid PPC load type!"); 1110 case MVT::i64: Opcode = PPC::LDUX; break; 1111 case MVT::i32: Opcode = isSExt ? PPC::LWAUX : PPC::LWZUX8; break; 1112 case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break; 1113 case MVT::i1: 1114 case MVT::i8: Opcode = PPC::LBZUX8; break; 1115 } 1116 } 1117 1118 SDValue Chain = LD->getChain(); 1119 SDValue Base = LD->getBasePtr(); 1120 SDValue Ops[] = { Offset, Base, Chain }; 1121 return CurDAG->getMachineNode(Opcode, dl, LD->getValueType(0), 1122 PPCLowering.getPointerTy(), 1123 MVT::Other, Ops, 3); 1124 } 1125 } 1126 1127 case ISD::AND: { 1128 unsigned Imm, Imm2, SH, MB, ME; 1129 uint64_t Imm64; 1130 1131 // If this is an and of a value rotated between 0 and 31 bits and then and'd 1132 // with a mask, emit rlwinm 1133 if (isInt32Immediate(N->getOperand(1), Imm) && 1134 isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) { 1135 SDValue Val = N->getOperand(0).getOperand(0); 1136 SDValue Ops[] = { Val, getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) }; 1137 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); 1138 } 1139 // If this is just a masked value where the input is not handled above, and 1140 // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm 1141 if (isInt32Immediate(N->getOperand(1), Imm) && 1142 isRunOfOnes(Imm, MB, ME) && 1143 N->getOperand(0).getOpcode() != ISD::ROTL) { 1144 SDValue Val = N->getOperand(0); 1145 SDValue Ops[] = { Val, getI32Imm(0), getI32Imm(MB), getI32Imm(ME) }; 1146 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); 1147 } 1148 // If this is a 64-bit zero-extension mask, emit rldicl. 1149 if (isInt64Immediate(N->getOperand(1).getNode(), Imm64) && 1150 isMask_64(Imm64)) { 1151 SDValue Val = N->getOperand(0); 1152 MB = 64 - CountTrailingOnes_64(Imm64); 1153 SDValue Ops[] = { Val, getI32Imm(0), getI32Imm(MB) }; 1154 return CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops, 3); 1155 } 1156 // AND X, 0 -> 0, not "rlwinm 32". 1157 if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) { 1158 ReplaceUses(SDValue(N, 0), N->getOperand(1)); 1159 return NULL; 1160 } 1161 // ISD::OR doesn't get all the bitfield insertion fun. 1162 // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) is a bitfield insert 1163 if (isInt32Immediate(N->getOperand(1), Imm) && 1164 N->getOperand(0).getOpcode() == ISD::OR && 1165 isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) { 1166 unsigned MB, ME; 1167 Imm = ~(Imm^Imm2); 1168 if (isRunOfOnes(Imm, MB, ME)) { 1169 SDValue Ops[] = { N->getOperand(0).getOperand(0), 1170 N->getOperand(0).getOperand(1), 1171 getI32Imm(0), getI32Imm(MB),getI32Imm(ME) }; 1172 return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops, 5); 1173 } 1174 } 1175 1176 // Other cases are autogenerated. 1177 break; 1178 } 1179 case ISD::OR: 1180 if (N->getValueType(0) == MVT::i32) 1181 if (SDNode *I = SelectBitfieldInsert(N)) 1182 return I; 1183 1184 // Other cases are autogenerated. 1185 break; 1186 case ISD::SHL: { 1187 unsigned Imm, SH, MB, ME; 1188 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) && 1189 isRotateAndMask(N, Imm, true, SH, MB, ME)) { 1190 SDValue Ops[] = { N->getOperand(0).getOperand(0), 1191 getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) }; 1192 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); 1193 } 1194 1195 // Other cases are autogenerated. 1196 break; 1197 } 1198 case ISD::SRL: { 1199 unsigned Imm, SH, MB, ME; 1200 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) && 1201 isRotateAndMask(N, Imm, true, SH, MB, ME)) { 1202 SDValue Ops[] = { N->getOperand(0).getOperand(0), 1203 getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) }; 1204 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); 1205 } 1206 1207 // Other cases are autogenerated. 1208 break; 1209 } 1210 case ISD::SELECT_CC: { 1211 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get(); 1212 EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy(); 1213 bool isPPC64 = (PtrVT == MVT::i64); 1214 1215 // Handle the setcc cases here. select_cc lhs, 0, 1, 0, cc 1216 if (!isPPC64) 1217 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1))) 1218 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2))) 1219 if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3))) 1220 if (N1C->isNullValue() && N3C->isNullValue() && 1221 N2C->getZExtValue() == 1ULL && CC == ISD::SETNE && 1222 // FIXME: Implement this optzn for PPC64. 1223 N->getValueType(0) == MVT::i32) { 1224 SDNode *Tmp = 1225 CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 1226 N->getOperand(0), getI32Imm(~0U)); 1227 return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, 1228 SDValue(Tmp, 0), N->getOperand(0), 1229 SDValue(Tmp, 1)); 1230 } 1231 1232 SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl); 1233 unsigned BROpc = getPredicateForSetCC(CC); 1234 1235 unsigned SelectCCOp; 1236 if (N->getValueType(0) == MVT::i32) 1237 SelectCCOp = PPC::SELECT_CC_I4; 1238 else if (N->getValueType(0) == MVT::i64) 1239 SelectCCOp = PPC::SELECT_CC_I8; 1240 else if (N->getValueType(0) == MVT::f32) 1241 SelectCCOp = PPC::SELECT_CC_F4; 1242 else if (N->getValueType(0) == MVT::f64) 1243 SelectCCOp = PPC::SELECT_CC_F8; 1244 else 1245 SelectCCOp = PPC::SELECT_CC_VRRC; 1246 1247 SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3), 1248 getI32Imm(BROpc) }; 1249 return CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops, 4); 1250 } 1251 case PPCISD::COND_BRANCH: { 1252 // Op #0 is the Chain. 1253 // Op #1 is the PPC::PRED_* number. 1254 // Op #2 is the CR# 1255 // Op #3 is the Dest MBB 1256 // Op #4 is the Flag. 1257 // Prevent PPC::PRED_* from being selected into LI. 1258 SDValue Pred = 1259 getI32Imm(cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()); 1260 SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3), 1261 N->getOperand(0), N->getOperand(4) }; 1262 return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 5); 1263 } 1264 case ISD::BR_CC: { 1265 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 1266 SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl); 1267 SDValue Ops[] = { getI32Imm(getPredicateForSetCC(CC)), CondCode, 1268 N->getOperand(4), N->getOperand(0) }; 1269 return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 4); 1270 } 1271 case ISD::BRIND: { 1272 // FIXME: Should custom lower this. 1273 SDValue Chain = N->getOperand(0); 1274 SDValue Target = N->getOperand(1); 1275 unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8; 1276 unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8; 1277 Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target, 1278 Chain), 0); 1279 return CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain); 1280 } 1281 case PPCISD::TOC_ENTRY: { 1282 assert (PPCSubTarget.isPPC64() && "Only supported for 64-bit ABI"); 1283 1284 // For medium and large code model, we generate two instructions as 1285 // described below. Otherwise we allow SelectCodeCommon to handle this, 1286 // selecting one of LDtoc, LDtocJTI, and LDtocCPT. 1287 CodeModel::Model CModel = TM.getCodeModel(); 1288 if (CModel != CodeModel::Medium && CModel != CodeModel::Large) 1289 break; 1290 1291 // The first source operand is a TargetGlobalAddress or a 1292 // TargetJumpTable. If it is an externally defined symbol, a symbol 1293 // with common linkage, a function address, or a jump table address, 1294 // or if we are generating code for large code model, we generate: 1295 // LDtocL(<ga:@sym>, ADDIStocHA(%X2, <ga:@sym>)) 1296 // Otherwise we generate: 1297 // ADDItocL(ADDIStocHA(%X2, <ga:@sym>), <ga:@sym>) 1298 SDValue GA = N->getOperand(0); 1299 SDValue TOCbase = N->getOperand(1); 1300 SDNode *Tmp = CurDAG->getMachineNode(PPC::ADDIStocHA, dl, MVT::i64, 1301 TOCbase, GA); 1302 1303 if (isa<JumpTableSDNode>(GA) || CModel == CodeModel::Large) 1304 return CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA, 1305 SDValue(Tmp, 0)); 1306 1307 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) { 1308 const GlobalValue *GValue = G->getGlobal(); 1309 const GlobalAlias *GAlias = dyn_cast<GlobalAlias>(GValue); 1310 const GlobalValue *RealGValue = GAlias ? 1311 GAlias->resolveAliasedGlobal(false) : GValue; 1312 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(RealGValue); 1313 assert((GVar || isa<Function>(RealGValue)) && 1314 "Unexpected global value subclass!"); 1315 1316 // An external variable is one without an initializer. For these, 1317 // for variables with common linkage, and for Functions, generate 1318 // the LDtocL form. 1319 if (!GVar || !GVar->hasInitializer() || RealGValue->hasCommonLinkage() || 1320 RealGValue->hasAvailableExternallyLinkage()) 1321 return CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA, 1322 SDValue(Tmp, 0)); 1323 } 1324 1325 return CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64, 1326 SDValue(Tmp, 0), GA); 1327 } 1328 case PPCISD::VADD_SPLAT: { 1329 // This expands into one of three sequences, depending on whether 1330 // the first operand is odd or even, positive or negative. 1331 assert(isa<ConstantSDNode>(N->getOperand(0)) && 1332 isa<ConstantSDNode>(N->getOperand(1)) && 1333 "Invalid operand on VADD_SPLAT!"); 1334 1335 int Elt = N->getConstantOperandVal(0); 1336 int EltSize = N->getConstantOperandVal(1); 1337 unsigned Opc1, Opc2, Opc3; 1338 EVT VT; 1339 1340 if (EltSize == 1) { 1341 Opc1 = PPC::VSPLTISB; 1342 Opc2 = PPC::VADDUBM; 1343 Opc3 = PPC::VSUBUBM; 1344 VT = MVT::v16i8; 1345 } else if (EltSize == 2) { 1346 Opc1 = PPC::VSPLTISH; 1347 Opc2 = PPC::VADDUHM; 1348 Opc3 = PPC::VSUBUHM; 1349 VT = MVT::v8i16; 1350 } else { 1351 assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!"); 1352 Opc1 = PPC::VSPLTISW; 1353 Opc2 = PPC::VADDUWM; 1354 Opc3 = PPC::VSUBUWM; 1355 VT = MVT::v4i32; 1356 } 1357 1358 if ((Elt & 1) == 0) { 1359 // Elt is even, in the range [-32,-18] + [16,30]. 1360 // 1361 // Convert: VADD_SPLAT elt, size 1362 // Into: tmp = VSPLTIS[BHW] elt 1363 // VADDU[BHW]M tmp, tmp 1364 // Where: [BHW] = B for size = 1, H for size = 2, W for size = 4 1365 SDValue EltVal = getI32Imm(Elt >> 1); 1366 SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 1367 SDValue TmpVal = SDValue(Tmp, 0); 1368 return CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal); 1369 1370 } else if (Elt > 0) { 1371 // Elt is odd and positive, in the range [17,31]. 1372 // 1373 // Convert: VADD_SPLAT elt, size 1374 // Into: tmp1 = VSPLTIS[BHW] elt-16 1375 // tmp2 = VSPLTIS[BHW] -16 1376 // VSUBU[BHW]M tmp1, tmp2 1377 SDValue EltVal = getI32Imm(Elt - 16); 1378 SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 1379 EltVal = getI32Imm(-16); 1380 SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 1381 return CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0), 1382 SDValue(Tmp2, 0)); 1383 1384 } else { 1385 // Elt is odd and negative, in the range [-31,-17]. 1386 // 1387 // Convert: VADD_SPLAT elt, size 1388 // Into: tmp1 = VSPLTIS[BHW] elt+16 1389 // tmp2 = VSPLTIS[BHW] -16 1390 // VADDU[BHW]M tmp1, tmp2 1391 SDValue EltVal = getI32Imm(Elt + 16); 1392 SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 1393 EltVal = getI32Imm(-16); 1394 SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 1395 return CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0), 1396 SDValue(Tmp2, 0)); 1397 } 1398 } 1399 } 1400 1401 return SelectCode(N); 1402} 1403 1404/// PostProcessISelDAG - Perform some late peephole optimizations 1405/// on the DAG representation. 1406void PPCDAGToDAGISel::PostprocessISelDAG() { 1407 1408 // Skip peepholes at -O0. 1409 if (TM.getOptLevel() == CodeGenOpt::None) 1410 return; 1411 1412 // These optimizations are currently supported only for 64-bit SVR4. 1413 if (PPCSubTarget.isDarwin() || !PPCSubTarget.isPPC64()) 1414 return; 1415 1416 SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode()); 1417 ++Position; 1418 1419 while (Position != CurDAG->allnodes_begin()) { 1420 SDNode *N = --Position; 1421 // Skip dead nodes and any non-machine opcodes. 1422 if (N->use_empty() || !N->isMachineOpcode()) 1423 continue; 1424 1425 unsigned FirstOp; 1426 unsigned StorageOpcode = N->getMachineOpcode(); 1427 1428 switch (StorageOpcode) { 1429 default: continue; 1430 1431 case PPC::LBZ: 1432 case PPC::LBZ8: 1433 case PPC::LD: 1434 case PPC::LFD: 1435 case PPC::LFS: 1436 case PPC::LHA: 1437 case PPC::LHA8: 1438 case PPC::LHZ: 1439 case PPC::LHZ8: 1440 case PPC::LWA: 1441 case PPC::LWZ: 1442 case PPC::LWZ8: 1443 FirstOp = 0; 1444 break; 1445 1446 case PPC::STB: 1447 case PPC::STB8: 1448 case PPC::STD: 1449 case PPC::STFD: 1450 case PPC::STFS: 1451 case PPC::STH: 1452 case PPC::STH8: 1453 case PPC::STW: 1454 case PPC::STW8: 1455 FirstOp = 1; 1456 break; 1457 } 1458 1459 // If this is a load or store with a zero offset, we may be able to 1460 // fold an add-immediate into the memory operation. 1461 if (!isa<ConstantSDNode>(N->getOperand(FirstOp)) || 1462 N->getConstantOperandVal(FirstOp) != 0) 1463 continue; 1464 1465 SDValue Base = N->getOperand(FirstOp + 1); 1466 if (!Base.isMachineOpcode()) 1467 continue; 1468 1469 unsigned Flags = 0; 1470 bool ReplaceFlags = true; 1471 1472 // When the feeding operation is an add-immediate of some sort, 1473 // determine whether we need to add relocation information to the 1474 // target flags on the immediate operand when we fold it into the 1475 // load instruction. 1476 // 1477 // For something like ADDItocL, the relocation information is 1478 // inferred from the opcode; when we process it in the AsmPrinter, 1479 // we add the necessary relocation there. A load, though, can receive 1480 // relocation from various flavors of ADDIxxx, so we need to carry 1481 // the relocation information in the target flags. 1482 switch (Base.getMachineOpcode()) { 1483 default: continue; 1484 1485 case PPC::ADDI8: 1486 case PPC::ADDI8L: 1487 case PPC::ADDIL: 1488 // In some cases (such as TLS) the relocation information 1489 // is already in place on the operand, so copying the operand 1490 // is sufficient. 1491 ReplaceFlags = false; 1492 // For these cases, the immediate may not be divisible by 4, in 1493 // which case the fold is illegal for DS-form instructions. (The 1494 // other cases provide aligned addresses and are always safe.) 1495 if ((StorageOpcode == PPC::LWA || 1496 StorageOpcode == PPC::LD || 1497 StorageOpcode == PPC::STD) && 1498 (!isa<ConstantSDNode>(Base.getOperand(1)) || 1499 Base.getConstantOperandVal(1) % 4 != 0)) 1500 continue; 1501 break; 1502 case PPC::ADDIdtprelL: 1503 Flags = PPCII::MO_DTPREL16_LO; 1504 break; 1505 case PPC::ADDItlsldL: 1506 Flags = PPCII::MO_TLSLD16_LO; 1507 break; 1508 case PPC::ADDItocL: 1509 Flags = PPCII::MO_TOC16_LO; 1510 break; 1511 } 1512 1513 // We found an opportunity. Reverse the operands from the add 1514 // immediate and substitute them into the load or store. If 1515 // needed, update the target flags for the immediate operand to 1516 // reflect the necessary relocation information. 1517 DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase: "); 1518 DEBUG(Base->dump(CurDAG)); 1519 DEBUG(dbgs() << "\nN: "); 1520 DEBUG(N->dump(CurDAG)); 1521 DEBUG(dbgs() << "\n"); 1522 1523 SDValue ImmOpnd = Base.getOperand(1); 1524 1525 // If the relocation information isn't already present on the 1526 // immediate operand, add it now. 1527 if (ReplaceFlags) { 1528 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) { 1529 DebugLoc dl = GA->getDebugLoc(); 1530 const GlobalValue *GV = GA->getGlobal(); 1531 ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, 0, Flags); 1532 } 1533 else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(ImmOpnd)) { 1534 const Constant *C = CP->getConstVal(); 1535 ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64, 1536 CP->getAlignment(), 1537 0, Flags); 1538 } 1539 } 1540 1541 if (FirstOp == 1) // Store 1542 (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd, 1543 Base.getOperand(0), N->getOperand(3)); 1544 else // Load 1545 (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0), 1546 N->getOperand(2)); 1547 1548 // The add-immediate may now be dead, in which case remove it. 1549 if (Base.getNode()->use_empty()) 1550 CurDAG->RemoveDeadNode(Base.getNode()); 1551 } 1552} 1553 1554 1555/// createPPCISelDag - This pass converts a legalized DAG into a 1556/// PowerPC-specific DAG, ready for instruction scheduling. 1557/// 1558FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) { 1559 return new PPCDAGToDAGISel(TM); 1560} 1561 1562static void initializePassOnce(PassRegistry &Registry) { 1563 const char *Name = "PowerPC DAG->DAG Pattern Instruction Selection"; 1564 PassInfo *PI = new PassInfo(Name, "ppc-codegen", &SelectionDAGISel::ID, 0, 1565 false, false); 1566 Registry.registerPass(*PI, true); 1567} 1568 1569void llvm::initializePPCDAGToDAGISelPass(PassRegistry &Registry) { 1570 CALL_ONCE_INITIALIZATION(initializePassOnce); 1571} 1572 1573