PPCISelDAGToDAG.cpp revision 94b9550a32d189704a8eae55505edf62662c0534
1//===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file defines a pattern matching instruction selector for PowerPC, 11// converting from a legalized dag to a PPC dag. 12// 13//===----------------------------------------------------------------------===// 14 15#define DEBUG_TYPE "ppc-codegen" 16#include "PPC.h" 17#include "PPCTargetMachine.h" 18#include "MCTargetDesc/PPCPredicates.h" 19#include "llvm/CodeGen/MachineInstrBuilder.h" 20#include "llvm/CodeGen/MachineFunction.h" 21#include "llvm/CodeGen/MachineFunctionAnalysis.h" 22#include "llvm/CodeGen/MachineRegisterInfo.h" 23#include "llvm/CodeGen/SelectionDAG.h" 24#include "llvm/CodeGen/SelectionDAGISel.h" 25#include "llvm/Target/TargetOptions.h" 26#include "llvm/Constants.h" 27#include "llvm/Function.h" 28#include "llvm/GlobalValue.h" 29#include "llvm/Intrinsics.h" 30#include "llvm/Support/Debug.h" 31#include "llvm/Support/MathExtras.h" 32#include "llvm/Support/ErrorHandling.h" 33#include "llvm/Support/raw_ostream.h" 34using namespace llvm; 35 36namespace { 37 //===--------------------------------------------------------------------===// 38 /// PPCDAGToDAGISel - PPC specific code to select PPC machine 39 /// instructions for SelectionDAG operations. 40 /// 41 class PPCDAGToDAGISel : public SelectionDAGISel { 42 const PPCTargetMachine &TM; 43 const PPCTargetLowering &PPCLowering; 44 const PPCSubtarget &PPCSubTarget; 45 unsigned GlobalBaseReg; 46 public: 47 explicit PPCDAGToDAGISel(PPCTargetMachine &tm) 48 : SelectionDAGISel(tm), TM(tm), 49 PPCLowering(*TM.getTargetLowering()), 50 PPCSubTarget(*TM.getSubtargetImpl()) {} 51 52 virtual bool runOnMachineFunction(MachineFunction &MF) { 53 // Make sure we re-emit a set of the global base reg if necessary 54 GlobalBaseReg = 0; 55 SelectionDAGISel::runOnMachineFunction(MF); 56 57 InsertVRSaveCode(MF); 58 return true; 59 } 60 61 /// getI32Imm - Return a target constant with the specified value, of type 62 /// i32. 63 inline SDValue getI32Imm(unsigned Imm) { 64 return CurDAG->getTargetConstant(Imm, MVT::i32); 65 } 66 67 /// getI64Imm - Return a target constant with the specified value, of type 68 /// i64. 69 inline SDValue getI64Imm(uint64_t Imm) { 70 return CurDAG->getTargetConstant(Imm, MVT::i64); 71 } 72 73 /// getSmallIPtrImm - Return a target constant of pointer type. 74 inline SDValue getSmallIPtrImm(unsigned Imm) { 75 return CurDAG->getTargetConstant(Imm, PPCLowering.getPointerTy()); 76 } 77 78 /// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s 79 /// with any number of 0s on either side. The 1s are allowed to wrap from 80 /// LSB to MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 81 /// 0x0F0F0000 is not, since all 1s are not contiguous. 82 static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME); 83 84 85 /// isRotateAndMask - Returns true if Mask and Shift can be folded into a 86 /// rotate and mask opcode and mask operation. 87 static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask, 88 unsigned &SH, unsigned &MB, unsigned &ME); 89 90 /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC 91 /// base register. Return the virtual register that holds this value. 92 SDNode *getGlobalBaseReg(); 93 94 // Select - Convert the specified operand from a target-independent to a 95 // target-specific node if it hasn't already been changed. 96 SDNode *Select(SDNode *N); 97 98 SDNode *SelectBitfieldInsert(SDNode *N); 99 100 /// SelectCC - Select a comparison of the specified values with the 101 /// specified condition code, returning the CR# of the expression. 102 SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, DebugLoc dl); 103 104 /// SelectAddrImm - Returns true if the address N can be represented by 105 /// a base register plus a signed 16-bit displacement [r+imm]. 106 bool SelectAddrImm(SDValue N, SDValue &Disp, 107 SDValue &Base) { 108 return PPCLowering.SelectAddressRegImm(N, Disp, Base, *CurDAG); 109 } 110 111 /// SelectAddrImmOffs - Return true if the operand is valid for a preinc 112 /// immediate field. Because preinc imms have already been validated, just 113 /// accept it. 114 bool SelectAddrImmOffs(SDValue N, SDValue &Out) const { 115 Out = N; 116 return true; 117 } 118 119 /// SelectAddrIdx - Given the specified addressed, check to see if it can be 120 /// represented as an indexed [r+r] operation. Returns false if it can 121 /// be represented by [r+imm], which are preferred. 122 bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) { 123 return PPCLowering.SelectAddressRegReg(N, Base, Index, *CurDAG); 124 } 125 126 /// SelectAddrIdxOnly - Given the specified addressed, force it to be 127 /// represented as an indexed [r+r] operation. 128 bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) { 129 return PPCLowering.SelectAddressRegRegOnly(N, Base, Index, *CurDAG); 130 } 131 132 /// SelectAddrImmShift - Returns true if the address N can be represented by 133 /// a base register plus a signed 14-bit displacement [r+imm*4]. Suitable 134 /// for use by STD and friends. 135 bool SelectAddrImmShift(SDValue N, SDValue &Disp, SDValue &Base) { 136 return PPCLowering.SelectAddressRegImmShift(N, Disp, Base, *CurDAG); 137 } 138 139 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for 140 /// inline asm expressions. It is always correct to compute the value into 141 /// a register. The case of adding a (possibly relocatable) constant to a 142 /// register can be improved, but it is wrong to substitute Reg+Reg for 143 /// Reg in an asm, because the load or store opcode would have to change. 144 virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op, 145 char ConstraintCode, 146 std::vector<SDValue> &OutOps) { 147 OutOps.push_back(Op); 148 return false; 149 } 150 151 void InsertVRSaveCode(MachineFunction &MF); 152 153 virtual const char *getPassName() const { 154 return "PowerPC DAG->DAG Pattern Instruction Selection"; 155 } 156 157// Include the pieces autogenerated from the target description. 158#include "PPCGenDAGISel.inc" 159 160private: 161 SDNode *SelectSETCC(SDNode *N); 162 }; 163} 164 165/// InsertVRSaveCode - Once the entire function has been instruction selected, 166/// all virtual registers are created and all machine instructions are built, 167/// check to see if we need to save/restore VRSAVE. If so, do it. 168void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) { 169 // Check to see if this function uses vector registers, which means we have to 170 // save and restore the VRSAVE register and update it with the regs we use. 171 // 172 // In this case, there will be virtual registers of vector type created 173 // by the scheduler. Detect them now. 174 bool HasVectorVReg = false; 175 for (unsigned i = 0, e = RegInfo->getNumVirtRegs(); i != e; ++i) { 176 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 177 if (RegInfo->getRegClass(Reg) == &PPC::VRRCRegClass) { 178 HasVectorVReg = true; 179 break; 180 } 181 } 182 if (!HasVectorVReg) return; // nothing to do. 183 184 // If we have a vector register, we want to emit code into the entry and exit 185 // blocks to save and restore the VRSAVE register. We do this here (instead 186 // of marking all vector instructions as clobbering VRSAVE) for two reasons: 187 // 188 // 1. This (trivially) reduces the load on the register allocator, by not 189 // having to represent the live range of the VRSAVE register. 190 // 2. This (more significantly) allows us to create a temporary virtual 191 // register to hold the saved VRSAVE value, allowing this temporary to be 192 // register allocated, instead of forcing it to be spilled to the stack. 193 194 // Create two vregs - one to hold the VRSAVE register that is live-in to the 195 // function and one for the value after having bits or'd into it. 196 unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); 197 unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); 198 199 const TargetInstrInfo &TII = *TM.getInstrInfo(); 200 MachineBasicBlock &EntryBB = *Fn.begin(); 201 DebugLoc dl; 202 // Emit the following code into the entry block: 203 // InVRSAVE = MFVRSAVE 204 // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE 205 // MTVRSAVE UpdatedVRSAVE 206 MachineBasicBlock::iterator IP = EntryBB.begin(); // Insert Point 207 BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE); 208 BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE), 209 UpdatedVRSAVE).addReg(InVRSAVE); 210 BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE); 211 212 // Find all return blocks, outputting a restore in each epilog. 213 for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) { 214 if (!BB->empty() && BB->back().getDesc().isReturn()) { 215 IP = BB->end(); --IP; 216 217 // Skip over all terminator instructions, which are part of the return 218 // sequence. 219 MachineBasicBlock::iterator I2 = IP; 220 while (I2 != BB->begin() && (--I2)->getDesc().isTerminator()) 221 IP = I2; 222 223 // Emit: MTVRSAVE InVRSave 224 BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE); 225 } 226 } 227} 228 229 230/// getGlobalBaseReg - Output the instructions required to put the 231/// base address to use for accessing globals into a register. 232/// 233SDNode *PPCDAGToDAGISel::getGlobalBaseReg() { 234 if (!GlobalBaseReg) { 235 const TargetInstrInfo &TII = *TM.getInstrInfo(); 236 // Insert the set of GlobalBaseReg into the first MBB of the function 237 MachineBasicBlock &FirstMBB = MF->front(); 238 MachineBasicBlock::iterator MBBI = FirstMBB.begin(); 239 DebugLoc dl; 240 241 if (PPCLowering.getPointerTy() == MVT::i32) { 242 GlobalBaseReg = RegInfo->createVirtualRegister(PPC::GPRCRegisterClass); 243 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR)); 244 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); 245 } else { 246 GlobalBaseReg = RegInfo->createVirtualRegister(PPC::G8RCRegisterClass); 247 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8)); 248 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg); 249 } 250 } 251 return CurDAG->getRegister(GlobalBaseReg, 252 PPCLowering.getPointerTy()).getNode(); 253} 254 255/// isIntS16Immediate - This method tests to see if the node is either a 32-bit 256/// or 64-bit immediate, and if the value can be accurately represented as a 257/// sign extension from a 16-bit value. If so, this returns true and the 258/// immediate. 259static bool isIntS16Immediate(SDNode *N, short &Imm) { 260 if (N->getOpcode() != ISD::Constant) 261 return false; 262 263 Imm = (short)cast<ConstantSDNode>(N)->getZExtValue(); 264 if (N->getValueType(0) == MVT::i32) 265 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 266 else 267 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 268} 269 270static bool isIntS16Immediate(SDValue Op, short &Imm) { 271 return isIntS16Immediate(Op.getNode(), Imm); 272} 273 274 275/// isInt32Immediate - This method tests to see if the node is a 32-bit constant 276/// operand. If so Imm will receive the 32-bit value. 277static bool isInt32Immediate(SDNode *N, unsigned &Imm) { 278 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) { 279 Imm = cast<ConstantSDNode>(N)->getZExtValue(); 280 return true; 281 } 282 return false; 283} 284 285/// isInt64Immediate - This method tests to see if the node is a 64-bit constant 286/// operand. If so Imm will receive the 64-bit value. 287static bool isInt64Immediate(SDNode *N, uint64_t &Imm) { 288 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) { 289 Imm = cast<ConstantSDNode>(N)->getZExtValue(); 290 return true; 291 } 292 return false; 293} 294 295// isInt32Immediate - This method tests to see if a constant operand. 296// If so Imm will receive the 32 bit value. 297static bool isInt32Immediate(SDValue N, unsigned &Imm) { 298 return isInt32Immediate(N.getNode(), Imm); 299} 300 301 302// isOpcWithIntImmediate - This method tests to see if the node is a specific 303// opcode and that it has a immediate integer right operand. 304// If so Imm will receive the 32 bit value. 305static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) { 306 return N->getOpcode() == Opc 307 && isInt32Immediate(N->getOperand(1).getNode(), Imm); 308} 309 310bool PPCDAGToDAGISel::isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) { 311 if (isShiftedMask_32(Val)) { 312 // look for the first non-zero bit 313 MB = CountLeadingZeros_32(Val); 314 // look for the first zero bit after the run of ones 315 ME = CountLeadingZeros_32((Val - 1) ^ Val); 316 return true; 317 } else { 318 Val = ~Val; // invert mask 319 if (isShiftedMask_32(Val)) { 320 // effectively look for the first zero bit 321 ME = CountLeadingZeros_32(Val) - 1; 322 // effectively look for the first one bit after the run of zeros 323 MB = CountLeadingZeros_32((Val - 1) ^ Val) + 1; 324 return true; 325 } 326 } 327 // no run present 328 return false; 329} 330 331bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask, 332 bool isShiftMask, unsigned &SH, 333 unsigned &MB, unsigned &ME) { 334 // Don't even go down this path for i64, since different logic will be 335 // necessary for rldicl/rldicr/rldimi. 336 if (N->getValueType(0) != MVT::i32) 337 return false; 338 339 unsigned Shift = 32; 340 unsigned Indeterminant = ~0; // bit mask marking indeterminant results 341 unsigned Opcode = N->getOpcode(); 342 if (N->getNumOperands() != 2 || 343 !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31)) 344 return false; 345 346 if (Opcode == ISD::SHL) { 347 // apply shift left to mask if it comes first 348 if (isShiftMask) Mask = Mask << Shift; 349 // determine which bits are made indeterminant by shift 350 Indeterminant = ~(0xFFFFFFFFu << Shift); 351 } else if (Opcode == ISD::SRL) { 352 // apply shift right to mask if it comes first 353 if (isShiftMask) Mask = Mask >> Shift; 354 // determine which bits are made indeterminant by shift 355 Indeterminant = ~(0xFFFFFFFFu >> Shift); 356 // adjust for the left rotate 357 Shift = 32 - Shift; 358 } else if (Opcode == ISD::ROTL) { 359 Indeterminant = 0; 360 } else { 361 return false; 362 } 363 364 // if the mask doesn't intersect any Indeterminant bits 365 if (Mask && !(Mask & Indeterminant)) { 366 SH = Shift & 31; 367 // make sure the mask is still a mask (wrap arounds may not be) 368 return isRunOfOnes(Mask, MB, ME); 369 } 370 return false; 371} 372 373/// SelectBitfieldInsert - turn an or of two masked values into 374/// the rotate left word immediate then mask insert (rlwimi) instruction. 375SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) { 376 SDValue Op0 = N->getOperand(0); 377 SDValue Op1 = N->getOperand(1); 378 DebugLoc dl = N->getDebugLoc(); 379 380 APInt LKZ, LKO, RKZ, RKO; 381 CurDAG->ComputeMaskedBits(Op0, APInt::getAllOnesValue(32), LKZ, LKO); 382 CurDAG->ComputeMaskedBits(Op1, APInt::getAllOnesValue(32), RKZ, RKO); 383 384 unsigned TargetMask = LKZ.getZExtValue(); 385 unsigned InsertMask = RKZ.getZExtValue(); 386 387 if ((TargetMask | InsertMask) == 0xFFFFFFFF) { 388 unsigned Op0Opc = Op0.getOpcode(); 389 unsigned Op1Opc = Op1.getOpcode(); 390 unsigned Value, SH = 0; 391 TargetMask = ~TargetMask; 392 InsertMask = ~InsertMask; 393 394 // If the LHS has a foldable shift and the RHS does not, then swap it to the 395 // RHS so that we can fold the shift into the insert. 396 if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) { 397 if (Op0.getOperand(0).getOpcode() == ISD::SHL || 398 Op0.getOperand(0).getOpcode() == ISD::SRL) { 399 if (Op1.getOperand(0).getOpcode() != ISD::SHL && 400 Op1.getOperand(0).getOpcode() != ISD::SRL) { 401 std::swap(Op0, Op1); 402 std::swap(Op0Opc, Op1Opc); 403 std::swap(TargetMask, InsertMask); 404 } 405 } 406 } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) { 407 if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL && 408 Op1.getOperand(0).getOpcode() != ISD::SRL) { 409 std::swap(Op0, Op1); 410 std::swap(Op0Opc, Op1Opc); 411 std::swap(TargetMask, InsertMask); 412 } 413 } 414 415 unsigned MB, ME; 416 if (InsertMask && isRunOfOnes(InsertMask, MB, ME)) { 417 SDValue Tmp1, Tmp2; 418 419 if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) && 420 isInt32Immediate(Op1.getOperand(1), Value)) { 421 Op1 = Op1.getOperand(0); 422 SH = (Op1Opc == ISD::SHL) ? Value : 32 - Value; 423 } 424 if (Op1Opc == ISD::AND) { 425 unsigned SHOpc = Op1.getOperand(0).getOpcode(); 426 if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && 427 isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) { 428 Op1 = Op1.getOperand(0).getOperand(0); 429 SH = (SHOpc == ISD::SHL) ? Value : 32 - Value; 430 } else { 431 Op1 = Op1.getOperand(0); 432 } 433 } 434 435 SH &= 31; 436 SDValue Ops[] = { Op0, Op1, getI32Imm(SH), getI32Imm(MB), 437 getI32Imm(ME) }; 438 return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops, 5); 439 } 440 } 441 return 0; 442} 443 444/// SelectCC - Select a comparison of the specified values with the specified 445/// condition code, returning the CR# of the expression. 446SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, 447 ISD::CondCode CC, DebugLoc dl) { 448 // Always select the LHS. 449 unsigned Opc; 450 451 if (LHS.getValueType() == MVT::i32) { 452 unsigned Imm; 453 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 454 if (isInt32Immediate(RHS, Imm)) { 455 // SETEQ/SETNE comparison with 16-bit immediate, fold it. 456 if (isUInt<16>(Imm)) 457 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS, 458 getI32Imm(Imm & 0xFFFF)), 0); 459 // If this is a 16-bit signed immediate, fold it. 460 if (isInt<16>((int)Imm)) 461 return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS, 462 getI32Imm(Imm & 0xFFFF)), 0); 463 464 // For non-equality comparisons, the default code would materialize the 465 // constant, then compare against it, like this: 466 // lis r2, 4660 467 // ori r2, r2, 22136 468 // cmpw cr0, r3, r2 469 // Since we are just comparing for equality, we can emit this instead: 470 // xoris r0,r3,0x1234 471 // cmplwi cr0,r0,0x5678 472 // beq cr0,L6 473 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS, 474 getI32Imm(Imm >> 16)), 0); 475 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor, 476 getI32Imm(Imm & 0xFFFF)), 0); 477 } 478 Opc = PPC::CMPLW; 479 } else if (ISD::isUnsignedIntSetCC(CC)) { 480 if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm)) 481 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS, 482 getI32Imm(Imm & 0xFFFF)), 0); 483 Opc = PPC::CMPLW; 484 } else { 485 short SImm; 486 if (isIntS16Immediate(RHS, SImm)) 487 return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS, 488 getI32Imm((int)SImm & 0xFFFF)), 489 0); 490 Opc = PPC::CMPW; 491 } 492 } else if (LHS.getValueType() == MVT::i64) { 493 uint64_t Imm; 494 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 495 if (isInt64Immediate(RHS.getNode(), Imm)) { 496 // SETEQ/SETNE comparison with 16-bit immediate, fold it. 497 if (isUInt<16>(Imm)) 498 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS, 499 getI32Imm(Imm & 0xFFFF)), 0); 500 // If this is a 16-bit signed immediate, fold it. 501 if (isInt<16>(Imm)) 502 return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS, 503 getI32Imm(Imm & 0xFFFF)), 0); 504 505 // For non-equality comparisons, the default code would materialize the 506 // constant, then compare against it, like this: 507 // lis r2, 4660 508 // ori r2, r2, 22136 509 // cmpd cr0, r3, r2 510 // Since we are just comparing for equality, we can emit this instead: 511 // xoris r0,r3,0x1234 512 // cmpldi cr0,r0,0x5678 513 // beq cr0,L6 514 if (isUInt<32>(Imm)) { 515 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS, 516 getI64Imm(Imm >> 16)), 0); 517 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor, 518 getI64Imm(Imm & 0xFFFF)), 0); 519 } 520 } 521 Opc = PPC::CMPLD; 522 } else if (ISD::isUnsignedIntSetCC(CC)) { 523 if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm)) 524 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS, 525 getI64Imm(Imm & 0xFFFF)), 0); 526 Opc = PPC::CMPLD; 527 } else { 528 short SImm; 529 if (isIntS16Immediate(RHS, SImm)) 530 return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS, 531 getI64Imm(SImm & 0xFFFF)), 532 0); 533 Opc = PPC::CMPD; 534 } 535 } else if (LHS.getValueType() == MVT::f32) { 536 Opc = PPC::FCMPUS; 537 } else { 538 assert(LHS.getValueType() == MVT::f64 && "Unknown vt!"); 539 Opc = PPC::FCMPUD; 540 } 541 return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0); 542} 543 544static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) { 545 switch (CC) { 546 case ISD::SETUEQ: 547 case ISD::SETONE: 548 case ISD::SETOLE: 549 case ISD::SETOGE: 550 llvm_unreachable("Should be lowered by legalize!"); 551 default: llvm_unreachable("Unknown condition!"); 552 case ISD::SETOEQ: 553 case ISD::SETEQ: return PPC::PRED_EQ; 554 case ISD::SETUNE: 555 case ISD::SETNE: return PPC::PRED_NE; 556 case ISD::SETOLT: 557 case ISD::SETLT: return PPC::PRED_LT; 558 case ISD::SETULE: 559 case ISD::SETLE: return PPC::PRED_LE; 560 case ISD::SETOGT: 561 case ISD::SETGT: return PPC::PRED_GT; 562 case ISD::SETUGE: 563 case ISD::SETGE: return PPC::PRED_GE; 564 case ISD::SETO: return PPC::PRED_NU; 565 case ISD::SETUO: return PPC::PRED_UN; 566 // These two are invalid for floating point. Assume we have int. 567 case ISD::SETULT: return PPC::PRED_LT; 568 case ISD::SETUGT: return PPC::PRED_GT; 569 } 570} 571 572/// getCRIdxForSetCC - Return the index of the condition register field 573/// associated with the SetCC condition, and whether or not the field is 574/// treated as inverted. That is, lt = 0; ge = 0 inverted. 575/// 576/// If this returns with Other != -1, then the returned comparison is an or of 577/// two simpler comparisons. In this case, Invert is guaranteed to be false. 578static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert, int &Other) { 579 Invert = false; 580 Other = -1; 581 switch (CC) { 582 default: llvm_unreachable("Unknown condition!"); 583 case ISD::SETOLT: 584 case ISD::SETLT: return 0; // Bit #0 = SETOLT 585 case ISD::SETOGT: 586 case ISD::SETGT: return 1; // Bit #1 = SETOGT 587 case ISD::SETOEQ: 588 case ISD::SETEQ: return 2; // Bit #2 = SETOEQ 589 case ISD::SETUO: return 3; // Bit #3 = SETUO 590 case ISD::SETUGE: 591 case ISD::SETGE: Invert = true; return 0; // !Bit #0 = SETUGE 592 case ISD::SETULE: 593 case ISD::SETLE: Invert = true; return 1; // !Bit #1 = SETULE 594 case ISD::SETUNE: 595 case ISD::SETNE: Invert = true; return 2; // !Bit #2 = SETUNE 596 case ISD::SETO: Invert = true; return 3; // !Bit #3 = SETO 597 case ISD::SETUEQ: 598 case ISD::SETOGE: 599 case ISD::SETOLE: 600 case ISD::SETONE: 601 llvm_unreachable("Invalid branch code: should be expanded by legalize"); 602 // These are invalid for floating point. Assume integer. 603 case ISD::SETULT: return 0; 604 case ISD::SETUGT: return 1; 605 } 606 return 0; 607} 608 609SDNode *PPCDAGToDAGISel::SelectSETCC(SDNode *N) { 610 DebugLoc dl = N->getDebugLoc(); 611 unsigned Imm; 612 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 613 EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy(); 614 bool isPPC64 = (PtrVT == MVT::i64); 615 616 if (isInt32Immediate(N->getOperand(1), Imm)) { 617 // We can codegen setcc op, imm very efficiently compared to a brcond. 618 // Check for those cases here. 619 // setcc op, 0 620 if (Imm == 0) { 621 SDValue Op = N->getOperand(0); 622 switch (CC) { 623 default: break; 624 case ISD::SETEQ: { 625 Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0); 626 SDValue Ops[] = { Op, getI32Imm(27), getI32Imm(5), getI32Imm(31) }; 627 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); 628 } 629 case ISD::SETNE: { 630 if (isPPC64) break; 631 SDValue AD = 632 SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 633 Op, getI32Imm(~0U)), 0); 634 return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, 635 AD.getValue(1)); 636 } 637 case ISD::SETLT: { 638 SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) }; 639 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); 640 } 641 case ISD::SETGT: { 642 SDValue T = 643 SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0); 644 T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0); 645 SDValue Ops[] = { T, getI32Imm(1), getI32Imm(31), getI32Imm(31) }; 646 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); 647 } 648 } 649 } else if (Imm == ~0U) { // setcc op, -1 650 SDValue Op = N->getOperand(0); 651 switch (CC) { 652 default: break; 653 case ISD::SETEQ: 654 if (isPPC64) break; 655 Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 656 Op, getI32Imm(1)), 0); 657 return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, 658 SDValue(CurDAG->getMachineNode(PPC::LI, dl, 659 MVT::i32, 660 getI32Imm(0)), 0), 661 Op.getValue(1)); 662 case ISD::SETNE: { 663 if (isPPC64) break; 664 Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0); 665 SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 666 Op, getI32Imm(~0U)); 667 return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0), 668 Op, SDValue(AD, 1)); 669 } 670 case ISD::SETLT: { 671 SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op, 672 getI32Imm(1)), 0); 673 SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD, 674 Op), 0); 675 SDValue Ops[] = { AN, getI32Imm(1), getI32Imm(31), getI32Imm(31) }; 676 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); 677 } 678 case ISD::SETGT: { 679 SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) }; 680 Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops, 4), 681 0); 682 return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, 683 getI32Imm(1)); 684 } 685 } 686 } 687 } 688 689 bool Inv; 690 int OtherCondIdx; 691 unsigned Idx = getCRIdxForSetCC(CC, Inv, OtherCondIdx); 692 SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl); 693 SDValue IntCR; 694 695 // Force the ccreg into CR7. 696 SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32); 697 698 SDValue InFlag(0, 0); // Null incoming flag value. 699 CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg, 700 InFlag).getValue(1); 701 702 if (PPCSubTarget.isGigaProcessor() && OtherCondIdx == -1) 703 IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg, 704 CCReg), 0); 705 else 706 IntCR = SDValue(CurDAG->getMachineNode(PPC::MFCRpseud, dl, MVT::i32, 707 CR7Reg, CCReg), 0); 708 709 SDValue Ops[] = { IntCR, getI32Imm((32-(3-Idx)) & 31), 710 getI32Imm(31), getI32Imm(31) }; 711 if (OtherCondIdx == -1 && !Inv) 712 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); 713 714 // Get the specified bit. 715 SDValue Tmp = 716 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops, 4), 0); 717 if (Inv) { 718 assert(OtherCondIdx == -1 && "Can't have split plus negation"); 719 return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1)); 720 } 721 722 // Otherwise, we have to turn an operation like SETONE -> SETOLT | SETOGT. 723 // We already got the bit for the first part of the comparison (e.g. SETULE). 724 725 // Get the other bit of the comparison. 726 Ops[1] = getI32Imm((32-(3-OtherCondIdx)) & 31); 727 SDValue OtherCond = 728 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops, 4), 0); 729 730 return CurDAG->SelectNodeTo(N, PPC::OR, MVT::i32, Tmp, OtherCond); 731} 732 733 734// Select - Convert the specified operand from a target-independent to a 735// target-specific node if it hasn't already been changed. 736SDNode *PPCDAGToDAGISel::Select(SDNode *N) { 737 DebugLoc dl = N->getDebugLoc(); 738 if (N->isMachineOpcode()) 739 return NULL; // Already selected. 740 741 switch (N->getOpcode()) { 742 default: break; 743 744 case ISD::Constant: { 745 if (N->getValueType(0) == MVT::i64) { 746 // Get 64 bit value. 747 int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue(); 748 // Assume no remaining bits. 749 unsigned Remainder = 0; 750 // Assume no shift required. 751 unsigned Shift = 0; 752 753 // If it can't be represented as a 32 bit value. 754 if (!isInt<32>(Imm)) { 755 Shift = CountTrailingZeros_64(Imm); 756 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift; 757 758 // If the shifted value fits 32 bits. 759 if (isInt<32>(ImmSh)) { 760 // Go with the shifted value. 761 Imm = ImmSh; 762 } else { 763 // Still stuck with a 64 bit value. 764 Remainder = Imm; 765 Shift = 32; 766 Imm >>= 32; 767 } 768 } 769 770 // Intermediate operand. 771 SDNode *Result; 772 773 // Handle first 32 bits. 774 unsigned Lo = Imm & 0xFFFF; 775 unsigned Hi = (Imm >> 16) & 0xFFFF; 776 777 // Simple value. 778 if (isInt<16>(Imm)) { 779 // Just the Lo bits. 780 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, getI32Imm(Lo)); 781 } else if (Lo) { 782 // Handle the Hi bits. 783 unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8; 784 Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi)); 785 // And Lo bits. 786 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, 787 SDValue(Result, 0), getI32Imm(Lo)); 788 } else { 789 // Just the Hi bits. 790 Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi)); 791 } 792 793 // If no shift, we're done. 794 if (!Shift) return Result; 795 796 // Shift for next step if the upper 32-bits were not zero. 797 if (Imm) { 798 Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, 799 SDValue(Result, 0), 800 getI32Imm(Shift), 801 getI32Imm(63 - Shift)); 802 } 803 804 // Add in the last bits as required. 805 if ((Hi = (Remainder >> 16) & 0xFFFF)) { 806 Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64, 807 SDValue(Result, 0), getI32Imm(Hi)); 808 } 809 if ((Lo = Remainder & 0xFFFF)) { 810 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, 811 SDValue(Result, 0), getI32Imm(Lo)); 812 } 813 814 return Result; 815 } 816 break; 817 } 818 819 case ISD::SETCC: 820 return SelectSETCC(N); 821 case PPCISD::GlobalBaseReg: 822 return getGlobalBaseReg(); 823 824 case ISD::FrameIndex: { 825 int FI = cast<FrameIndexSDNode>(N)->getIndex(); 826 SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0)); 827 unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8; 828 if (N->hasOneUse()) 829 return CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), TFI, 830 getSmallIPtrImm(0)); 831 return CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI, 832 getSmallIPtrImm(0)); 833 } 834 835 case PPCISD::MFCR: { 836 SDValue InFlag = N->getOperand(1); 837 // Use MFOCRF if supported. 838 if (PPCSubTarget.isGigaProcessor()) 839 return CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, 840 N->getOperand(0), InFlag); 841 else 842 return CurDAG->getMachineNode(PPC::MFCRpseud, dl, MVT::i32, 843 N->getOperand(0), InFlag); 844 } 845 846 case ISD::SDIV: { 847 // FIXME: since this depends on the setting of the carry flag from the srawi 848 // we should really be making notes about that for the scheduler. 849 // FIXME: It sure would be nice if we could cheaply recognize the 850 // srl/add/sra pattern the dag combiner will generate for this as 851 // sra/addze rather than having to handle sdiv ourselves. oh well. 852 unsigned Imm; 853 if (isInt32Immediate(N->getOperand(1), Imm)) { 854 SDValue N0 = N->getOperand(0); 855 if ((signed)Imm > 0 && isPowerOf2_32(Imm)) { 856 SDNode *Op = 857 CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue, 858 N0, getI32Imm(Log2_32(Imm))); 859 return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, 860 SDValue(Op, 0), SDValue(Op, 1)); 861 } else if ((signed)Imm < 0 && isPowerOf2_32(-Imm)) { 862 SDNode *Op = 863 CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue, 864 N0, getI32Imm(Log2_32(-Imm))); 865 SDValue PT = 866 SDValue(CurDAG->getMachineNode(PPC::ADDZE, dl, MVT::i32, 867 SDValue(Op, 0), SDValue(Op, 1)), 868 0); 869 return CurDAG->SelectNodeTo(N, PPC::NEG, MVT::i32, PT); 870 } 871 } 872 873 // Other cases are autogenerated. 874 break; 875 } 876 877 case ISD::LOAD: { 878 // Handle preincrement loads. 879 LoadSDNode *LD = cast<LoadSDNode>(N); 880 EVT LoadedVT = LD->getMemoryVT(); 881 882 // Normal loads are handled by code generated from the .td file. 883 if (LD->getAddressingMode() != ISD::PRE_INC) 884 break; 885 886 SDValue Offset = LD->getOffset(); 887 if (isa<ConstantSDNode>(Offset) || 888 Offset.getOpcode() == ISD::TargetGlobalAddress) { 889 890 unsigned Opcode; 891 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD; 892 if (LD->getValueType(0) != MVT::i64) { 893 // Handle PPC32 integer and normal FP loads. 894 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); 895 switch (LoadedVT.getSimpleVT().SimpleTy) { 896 default: llvm_unreachable("Invalid PPC load type!"); 897 case MVT::f64: Opcode = PPC::LFDU; break; 898 case MVT::f32: Opcode = PPC::LFSU; break; 899 case MVT::i32: Opcode = PPC::LWZU; break; 900 case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break; 901 case MVT::i1: 902 case MVT::i8: Opcode = PPC::LBZU; break; 903 } 904 } else { 905 assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!"); 906 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); 907 switch (LoadedVT.getSimpleVT().SimpleTy) { 908 default: llvm_unreachable("Invalid PPC load type!"); 909 case MVT::i64: Opcode = PPC::LDU; break; 910 case MVT::i32: Opcode = PPC::LWZU8; break; 911 case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break; 912 case MVT::i1: 913 case MVT::i8: Opcode = PPC::LBZU8; break; 914 } 915 } 916 917 SDValue Chain = LD->getChain(); 918 SDValue Base = LD->getBasePtr(); 919 SDValue Ops[] = { Offset, Base, Chain }; 920 // FIXME: PPC64 921 return CurDAG->getMachineNode(Opcode, dl, LD->getValueType(0), 922 PPCLowering.getPointerTy(), 923 MVT::Other, Ops, 3); 924 } else { 925 llvm_unreachable("R+R preindex loads not supported yet!"); 926 } 927 } 928 929 case ISD::AND: { 930 unsigned Imm, Imm2, SH, MB, ME; 931 932 // If this is an and of a value rotated between 0 and 31 bits and then and'd 933 // with a mask, emit rlwinm 934 if (isInt32Immediate(N->getOperand(1), Imm) && 935 isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) { 936 SDValue Val = N->getOperand(0).getOperand(0); 937 SDValue Ops[] = { Val, getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) }; 938 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); 939 } 940 // If this is just a masked value where the input is not handled above, and 941 // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm 942 if (isInt32Immediate(N->getOperand(1), Imm) && 943 isRunOfOnes(Imm, MB, ME) && 944 N->getOperand(0).getOpcode() != ISD::ROTL) { 945 SDValue Val = N->getOperand(0); 946 SDValue Ops[] = { Val, getI32Imm(0), getI32Imm(MB), getI32Imm(ME) }; 947 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); 948 } 949 // AND X, 0 -> 0, not "rlwinm 32". 950 if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) { 951 ReplaceUses(SDValue(N, 0), N->getOperand(1)); 952 return NULL; 953 } 954 // ISD::OR doesn't get all the bitfield insertion fun. 955 // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) is a bitfield insert 956 if (isInt32Immediate(N->getOperand(1), Imm) && 957 N->getOperand(0).getOpcode() == ISD::OR && 958 isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) { 959 unsigned MB, ME; 960 Imm = ~(Imm^Imm2); 961 if (isRunOfOnes(Imm, MB, ME)) { 962 SDValue Ops[] = { N->getOperand(0).getOperand(0), 963 N->getOperand(0).getOperand(1), 964 getI32Imm(0), getI32Imm(MB),getI32Imm(ME) }; 965 return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops, 5); 966 } 967 } 968 969 // Other cases are autogenerated. 970 break; 971 } 972 case ISD::OR: 973 if (N->getValueType(0) == MVT::i32) 974 if (SDNode *I = SelectBitfieldInsert(N)) 975 return I; 976 977 // Other cases are autogenerated. 978 break; 979 case ISD::SHL: { 980 unsigned Imm, SH, MB, ME; 981 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) && 982 isRotateAndMask(N, Imm, true, SH, MB, ME)) { 983 SDValue Ops[] = { N->getOperand(0).getOperand(0), 984 getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) }; 985 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); 986 } 987 988 // Other cases are autogenerated. 989 break; 990 } 991 case ISD::SRL: { 992 unsigned Imm, SH, MB, ME; 993 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) && 994 isRotateAndMask(N, Imm, true, SH, MB, ME)) { 995 SDValue Ops[] = { N->getOperand(0).getOperand(0), 996 getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) }; 997 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); 998 } 999 1000 // Other cases are autogenerated. 1001 break; 1002 } 1003 case ISD::SELECT_CC: { 1004 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get(); 1005 EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy(); 1006 bool isPPC64 = (PtrVT == MVT::i64); 1007 1008 // Handle the setcc cases here. select_cc lhs, 0, 1, 0, cc 1009 if (!isPPC64) 1010 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1))) 1011 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2))) 1012 if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3))) 1013 if (N1C->isNullValue() && N3C->isNullValue() && 1014 N2C->getZExtValue() == 1ULL && CC == ISD::SETNE && 1015 // FIXME: Implement this optzn for PPC64. 1016 N->getValueType(0) == MVT::i32) { 1017 SDNode *Tmp = 1018 CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 1019 N->getOperand(0), getI32Imm(~0U)); 1020 return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, 1021 SDValue(Tmp, 0), N->getOperand(0), 1022 SDValue(Tmp, 1)); 1023 } 1024 1025 SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl); 1026 unsigned BROpc = getPredicateForSetCC(CC); 1027 1028 unsigned SelectCCOp; 1029 if (N->getValueType(0) == MVT::i32) 1030 SelectCCOp = PPC::SELECT_CC_I4; 1031 else if (N->getValueType(0) == MVT::i64) 1032 SelectCCOp = PPC::SELECT_CC_I8; 1033 else if (N->getValueType(0) == MVT::f32) 1034 SelectCCOp = PPC::SELECT_CC_F4; 1035 else if (N->getValueType(0) == MVT::f64) 1036 SelectCCOp = PPC::SELECT_CC_F8; 1037 else 1038 SelectCCOp = PPC::SELECT_CC_VRRC; 1039 1040 SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3), 1041 getI32Imm(BROpc) }; 1042 return CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops, 4); 1043 } 1044 case PPCISD::COND_BRANCH: { 1045 // Op #0 is the Chain. 1046 // Op #1 is the PPC::PRED_* number. 1047 // Op #2 is the CR# 1048 // Op #3 is the Dest MBB 1049 // Op #4 is the Flag. 1050 // Prevent PPC::PRED_* from being selected into LI. 1051 SDValue Pred = 1052 getI32Imm(cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()); 1053 SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3), 1054 N->getOperand(0), N->getOperand(4) }; 1055 return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 5); 1056 } 1057 case ISD::BR_CC: { 1058 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 1059 SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl); 1060 SDValue Ops[] = { getI32Imm(getPredicateForSetCC(CC)), CondCode, 1061 N->getOperand(4), N->getOperand(0) }; 1062 return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 4); 1063 } 1064 case ISD::BRIND: { 1065 // FIXME: Should custom lower this. 1066 SDValue Chain = N->getOperand(0); 1067 SDValue Target = N->getOperand(1); 1068 unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8; 1069 unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8; 1070 Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Target, 1071 Chain), 0); 1072 return CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain); 1073 } 1074 } 1075 1076 return SelectCode(N); 1077} 1078 1079 1080 1081/// createPPCISelDag - This pass converts a legalized DAG into a 1082/// PowerPC-specific DAG, ready for instruction scheduling. 1083/// 1084FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) { 1085 return new PPCDAGToDAGISel(TM); 1086} 1087 1088