PPCISelDAGToDAG.cpp revision 94b9550a32d189704a8eae55505edf62662c0534
1//===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a pattern matching instruction selector for PowerPC,
11// converting from a legalized dag to a PPC dag.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "ppc-codegen"
16#include "PPC.h"
17#include "PPCTargetMachine.h"
18#include "MCTargetDesc/PPCPredicates.h"
19#include "llvm/CodeGen/MachineInstrBuilder.h"
20#include "llvm/CodeGen/MachineFunction.h"
21#include "llvm/CodeGen/MachineFunctionAnalysis.h"
22#include "llvm/CodeGen/MachineRegisterInfo.h"
23#include "llvm/CodeGen/SelectionDAG.h"
24#include "llvm/CodeGen/SelectionDAGISel.h"
25#include "llvm/Target/TargetOptions.h"
26#include "llvm/Constants.h"
27#include "llvm/Function.h"
28#include "llvm/GlobalValue.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/MathExtras.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/raw_ostream.h"
34using namespace llvm;
35
36namespace {
37  //===--------------------------------------------------------------------===//
38  /// PPCDAGToDAGISel - PPC specific code to select PPC machine
39  /// instructions for SelectionDAG operations.
40  ///
41  class PPCDAGToDAGISel : public SelectionDAGISel {
42    const PPCTargetMachine &TM;
43    const PPCTargetLowering &PPCLowering;
44    const PPCSubtarget &PPCSubTarget;
45    unsigned GlobalBaseReg;
46  public:
47    explicit PPCDAGToDAGISel(PPCTargetMachine &tm)
48      : SelectionDAGISel(tm), TM(tm),
49        PPCLowering(*TM.getTargetLowering()),
50        PPCSubTarget(*TM.getSubtargetImpl()) {}
51
52    virtual bool runOnMachineFunction(MachineFunction &MF) {
53      // Make sure we re-emit a set of the global base reg if necessary
54      GlobalBaseReg = 0;
55      SelectionDAGISel::runOnMachineFunction(MF);
56
57      InsertVRSaveCode(MF);
58      return true;
59    }
60
61    /// getI32Imm - Return a target constant with the specified value, of type
62    /// i32.
63    inline SDValue getI32Imm(unsigned Imm) {
64      return CurDAG->getTargetConstant(Imm, MVT::i32);
65    }
66
67    /// getI64Imm - Return a target constant with the specified value, of type
68    /// i64.
69    inline SDValue getI64Imm(uint64_t Imm) {
70      return CurDAG->getTargetConstant(Imm, MVT::i64);
71    }
72
73    /// getSmallIPtrImm - Return a target constant of pointer type.
74    inline SDValue getSmallIPtrImm(unsigned Imm) {
75      return CurDAG->getTargetConstant(Imm, PPCLowering.getPointerTy());
76    }
77
78    /// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s
79    /// with any number of 0s on either side.  The 1s are allowed to wrap from
80    /// LSB to MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.
81    /// 0x0F0F0000 is not, since all 1s are not contiguous.
82    static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME);
83
84
85    /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
86    /// rotate and mask opcode and mask operation.
87    static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask,
88                                unsigned &SH, unsigned &MB, unsigned &ME);
89
90    /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
91    /// base register.  Return the virtual register that holds this value.
92    SDNode *getGlobalBaseReg();
93
94    // Select - Convert the specified operand from a target-independent to a
95    // target-specific node if it hasn't already been changed.
96    SDNode *Select(SDNode *N);
97
98    SDNode *SelectBitfieldInsert(SDNode *N);
99
100    /// SelectCC - Select a comparison of the specified values with the
101    /// specified condition code, returning the CR# of the expression.
102    SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, DebugLoc dl);
103
104    /// SelectAddrImm - Returns true if the address N can be represented by
105    /// a base register plus a signed 16-bit displacement [r+imm].
106    bool SelectAddrImm(SDValue N, SDValue &Disp,
107                       SDValue &Base) {
108      return PPCLowering.SelectAddressRegImm(N, Disp, Base, *CurDAG);
109    }
110
111    /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
112    /// immediate field.  Because preinc imms have already been validated, just
113    /// accept it.
114    bool SelectAddrImmOffs(SDValue N, SDValue &Out) const {
115      Out = N;
116      return true;
117    }
118
119    /// SelectAddrIdx - Given the specified addressed, check to see if it can be
120    /// represented as an indexed [r+r] operation.  Returns false if it can
121    /// be represented by [r+imm], which are preferred.
122    bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) {
123      return PPCLowering.SelectAddressRegReg(N, Base, Index, *CurDAG);
124    }
125
126    /// SelectAddrIdxOnly - Given the specified addressed, force it to be
127    /// represented as an indexed [r+r] operation.
128    bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) {
129      return PPCLowering.SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
130    }
131
132    /// SelectAddrImmShift - Returns true if the address N can be represented by
133    /// a base register plus a signed 14-bit displacement [r+imm*4].  Suitable
134    /// for use by STD and friends.
135    bool SelectAddrImmShift(SDValue N, SDValue &Disp, SDValue &Base) {
136      return PPCLowering.SelectAddressRegImmShift(N, Disp, Base, *CurDAG);
137    }
138
139    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
140    /// inline asm expressions.  It is always correct to compute the value into
141    /// a register.  The case of adding a (possibly relocatable) constant to a
142    /// register can be improved, but it is wrong to substitute Reg+Reg for
143    /// Reg in an asm, because the load or store opcode would have to change.
144   virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
145                                              char ConstraintCode,
146                                              std::vector<SDValue> &OutOps) {
147      OutOps.push_back(Op);
148      return false;
149    }
150
151    void InsertVRSaveCode(MachineFunction &MF);
152
153    virtual const char *getPassName() const {
154      return "PowerPC DAG->DAG Pattern Instruction Selection";
155    }
156
157// Include the pieces autogenerated from the target description.
158#include "PPCGenDAGISel.inc"
159
160private:
161    SDNode *SelectSETCC(SDNode *N);
162  };
163}
164
165/// InsertVRSaveCode - Once the entire function has been instruction selected,
166/// all virtual registers are created and all machine instructions are built,
167/// check to see if we need to save/restore VRSAVE.  If so, do it.
168void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) {
169  // Check to see if this function uses vector registers, which means we have to
170  // save and restore the VRSAVE register and update it with the regs we use.
171  //
172  // In this case, there will be virtual registers of vector type created
173  // by the scheduler.  Detect them now.
174  bool HasVectorVReg = false;
175  for (unsigned i = 0, e = RegInfo->getNumVirtRegs(); i != e; ++i) {
176    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
177    if (RegInfo->getRegClass(Reg) == &PPC::VRRCRegClass) {
178      HasVectorVReg = true;
179      break;
180    }
181  }
182  if (!HasVectorVReg) return;  // nothing to do.
183
184  // If we have a vector register, we want to emit code into the entry and exit
185  // blocks to save and restore the VRSAVE register.  We do this here (instead
186  // of marking all vector instructions as clobbering VRSAVE) for two reasons:
187  //
188  // 1. This (trivially) reduces the load on the register allocator, by not
189  //    having to represent the live range of the VRSAVE register.
190  // 2. This (more significantly) allows us to create a temporary virtual
191  //    register to hold the saved VRSAVE value, allowing this temporary to be
192  //    register allocated, instead of forcing it to be spilled to the stack.
193
194  // Create two vregs - one to hold the VRSAVE register that is live-in to the
195  // function and one for the value after having bits or'd into it.
196  unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
197  unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
198
199  const TargetInstrInfo &TII = *TM.getInstrInfo();
200  MachineBasicBlock &EntryBB = *Fn.begin();
201  DebugLoc dl;
202  // Emit the following code into the entry block:
203  // InVRSAVE = MFVRSAVE
204  // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE
205  // MTVRSAVE UpdatedVRSAVE
206  MachineBasicBlock::iterator IP = EntryBB.begin();  // Insert Point
207  BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE);
208  BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE),
209          UpdatedVRSAVE).addReg(InVRSAVE);
210  BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE);
211
212  // Find all return blocks, outputting a restore in each epilog.
213  for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
214    if (!BB->empty() && BB->back().getDesc().isReturn()) {
215      IP = BB->end(); --IP;
216
217      // Skip over all terminator instructions, which are part of the return
218      // sequence.
219      MachineBasicBlock::iterator I2 = IP;
220      while (I2 != BB->begin() && (--I2)->getDesc().isTerminator())
221        IP = I2;
222
223      // Emit: MTVRSAVE InVRSave
224      BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE);
225    }
226  }
227}
228
229
230/// getGlobalBaseReg - Output the instructions required to put the
231/// base address to use for accessing globals into a register.
232///
233SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
234  if (!GlobalBaseReg) {
235    const TargetInstrInfo &TII = *TM.getInstrInfo();
236    // Insert the set of GlobalBaseReg into the first MBB of the function
237    MachineBasicBlock &FirstMBB = MF->front();
238    MachineBasicBlock::iterator MBBI = FirstMBB.begin();
239    DebugLoc dl;
240
241    if (PPCLowering.getPointerTy() == MVT::i32) {
242      GlobalBaseReg = RegInfo->createVirtualRegister(PPC::GPRCRegisterClass);
243      BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
244      BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
245    } else {
246      GlobalBaseReg = RegInfo->createVirtualRegister(PPC::G8RCRegisterClass);
247      BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8));
248      BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg);
249    }
250  }
251  return CurDAG->getRegister(GlobalBaseReg,
252                             PPCLowering.getPointerTy()).getNode();
253}
254
255/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
256/// or 64-bit immediate, and if the value can be accurately represented as a
257/// sign extension from a 16-bit value.  If so, this returns true and the
258/// immediate.
259static bool isIntS16Immediate(SDNode *N, short &Imm) {
260  if (N->getOpcode() != ISD::Constant)
261    return false;
262
263  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
264  if (N->getValueType(0) == MVT::i32)
265    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
266  else
267    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
268}
269
270static bool isIntS16Immediate(SDValue Op, short &Imm) {
271  return isIntS16Immediate(Op.getNode(), Imm);
272}
273
274
275/// isInt32Immediate - This method tests to see if the node is a 32-bit constant
276/// operand. If so Imm will receive the 32-bit value.
277static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
278  if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
279    Imm = cast<ConstantSDNode>(N)->getZExtValue();
280    return true;
281  }
282  return false;
283}
284
285/// isInt64Immediate - This method tests to see if the node is a 64-bit constant
286/// operand.  If so Imm will receive the 64-bit value.
287static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
288  if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
289    Imm = cast<ConstantSDNode>(N)->getZExtValue();
290    return true;
291  }
292  return false;
293}
294
295// isInt32Immediate - This method tests to see if a constant operand.
296// If so Imm will receive the 32 bit value.
297static bool isInt32Immediate(SDValue N, unsigned &Imm) {
298  return isInt32Immediate(N.getNode(), Imm);
299}
300
301
302// isOpcWithIntImmediate - This method tests to see if the node is a specific
303// opcode and that it has a immediate integer right operand.
304// If so Imm will receive the 32 bit value.
305static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
306  return N->getOpcode() == Opc
307         && isInt32Immediate(N->getOperand(1).getNode(), Imm);
308}
309
310bool PPCDAGToDAGISel::isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) {
311  if (isShiftedMask_32(Val)) {
312    // look for the first non-zero bit
313    MB = CountLeadingZeros_32(Val);
314    // look for the first zero bit after the run of ones
315    ME = CountLeadingZeros_32((Val - 1) ^ Val);
316    return true;
317  } else {
318    Val = ~Val; // invert mask
319    if (isShiftedMask_32(Val)) {
320      // effectively look for the first zero bit
321      ME = CountLeadingZeros_32(Val) - 1;
322      // effectively look for the first one bit after the run of zeros
323      MB = CountLeadingZeros_32((Val - 1) ^ Val) + 1;
324      return true;
325    }
326  }
327  // no run present
328  return false;
329}
330
331bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
332                                      bool isShiftMask, unsigned &SH,
333                                      unsigned &MB, unsigned &ME) {
334  // Don't even go down this path for i64, since different logic will be
335  // necessary for rldicl/rldicr/rldimi.
336  if (N->getValueType(0) != MVT::i32)
337    return false;
338
339  unsigned Shift  = 32;
340  unsigned Indeterminant = ~0;  // bit mask marking indeterminant results
341  unsigned Opcode = N->getOpcode();
342  if (N->getNumOperands() != 2 ||
343      !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31))
344    return false;
345
346  if (Opcode == ISD::SHL) {
347    // apply shift left to mask if it comes first
348    if (isShiftMask) Mask = Mask << Shift;
349    // determine which bits are made indeterminant by shift
350    Indeterminant = ~(0xFFFFFFFFu << Shift);
351  } else if (Opcode == ISD::SRL) {
352    // apply shift right to mask if it comes first
353    if (isShiftMask) Mask = Mask >> Shift;
354    // determine which bits are made indeterminant by shift
355    Indeterminant = ~(0xFFFFFFFFu >> Shift);
356    // adjust for the left rotate
357    Shift = 32 - Shift;
358  } else if (Opcode == ISD::ROTL) {
359    Indeterminant = 0;
360  } else {
361    return false;
362  }
363
364  // if the mask doesn't intersect any Indeterminant bits
365  if (Mask && !(Mask & Indeterminant)) {
366    SH = Shift & 31;
367    // make sure the mask is still a mask (wrap arounds may not be)
368    return isRunOfOnes(Mask, MB, ME);
369  }
370  return false;
371}
372
373/// SelectBitfieldInsert - turn an or of two masked values into
374/// the rotate left word immediate then mask insert (rlwimi) instruction.
375SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) {
376  SDValue Op0 = N->getOperand(0);
377  SDValue Op1 = N->getOperand(1);
378  DebugLoc dl = N->getDebugLoc();
379
380  APInt LKZ, LKO, RKZ, RKO;
381  CurDAG->ComputeMaskedBits(Op0, APInt::getAllOnesValue(32), LKZ, LKO);
382  CurDAG->ComputeMaskedBits(Op1, APInt::getAllOnesValue(32), RKZ, RKO);
383
384  unsigned TargetMask = LKZ.getZExtValue();
385  unsigned InsertMask = RKZ.getZExtValue();
386
387  if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
388    unsigned Op0Opc = Op0.getOpcode();
389    unsigned Op1Opc = Op1.getOpcode();
390    unsigned Value, SH = 0;
391    TargetMask = ~TargetMask;
392    InsertMask = ~InsertMask;
393
394    // If the LHS has a foldable shift and the RHS does not, then swap it to the
395    // RHS so that we can fold the shift into the insert.
396    if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
397      if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
398          Op0.getOperand(0).getOpcode() == ISD::SRL) {
399        if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
400            Op1.getOperand(0).getOpcode() != ISD::SRL) {
401          std::swap(Op0, Op1);
402          std::swap(Op0Opc, Op1Opc);
403          std::swap(TargetMask, InsertMask);
404        }
405      }
406    } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
407      if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
408          Op1.getOperand(0).getOpcode() != ISD::SRL) {
409        std::swap(Op0, Op1);
410        std::swap(Op0Opc, Op1Opc);
411        std::swap(TargetMask, InsertMask);
412      }
413    }
414
415    unsigned MB, ME;
416    if (InsertMask && isRunOfOnes(InsertMask, MB, ME)) {
417      SDValue Tmp1, Tmp2;
418
419      if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
420          isInt32Immediate(Op1.getOperand(1), Value)) {
421        Op1 = Op1.getOperand(0);
422        SH  = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
423      }
424      if (Op1Opc == ISD::AND) {
425        unsigned SHOpc = Op1.getOperand(0).getOpcode();
426        if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) &&
427            isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
428          Op1 = Op1.getOperand(0).getOperand(0);
429          SH  = (SHOpc == ISD::SHL) ? Value : 32 - Value;
430        } else {
431          Op1 = Op1.getOperand(0);
432        }
433      }
434
435      SH &= 31;
436      SDValue Ops[] = { Op0, Op1, getI32Imm(SH), getI32Imm(MB),
437                          getI32Imm(ME) };
438      return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops, 5);
439    }
440  }
441  return 0;
442}
443
444/// SelectCC - Select a comparison of the specified values with the specified
445/// condition code, returning the CR# of the expression.
446SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS,
447                                    ISD::CondCode CC, DebugLoc dl) {
448  // Always select the LHS.
449  unsigned Opc;
450
451  if (LHS.getValueType() == MVT::i32) {
452    unsigned Imm;
453    if (CC == ISD::SETEQ || CC == ISD::SETNE) {
454      if (isInt32Immediate(RHS, Imm)) {
455        // SETEQ/SETNE comparison with 16-bit immediate, fold it.
456        if (isUInt<16>(Imm))
457          return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
458                                                getI32Imm(Imm & 0xFFFF)), 0);
459        // If this is a 16-bit signed immediate, fold it.
460        if (isInt<16>((int)Imm))
461          return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
462                                                getI32Imm(Imm & 0xFFFF)), 0);
463
464        // For non-equality comparisons, the default code would materialize the
465        // constant, then compare against it, like this:
466        //   lis r2, 4660
467        //   ori r2, r2, 22136
468        //   cmpw cr0, r3, r2
469        // Since we are just comparing for equality, we can emit this instead:
470        //   xoris r0,r3,0x1234
471        //   cmplwi cr0,r0,0x5678
472        //   beq cr0,L6
473        SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS,
474                                           getI32Imm(Imm >> 16)), 0);
475        return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor,
476                                              getI32Imm(Imm & 0xFFFF)), 0);
477      }
478      Opc = PPC::CMPLW;
479    } else if (ISD::isUnsignedIntSetCC(CC)) {
480      if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm))
481        return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
482                                              getI32Imm(Imm & 0xFFFF)), 0);
483      Opc = PPC::CMPLW;
484    } else {
485      short SImm;
486      if (isIntS16Immediate(RHS, SImm))
487        return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
488                                              getI32Imm((int)SImm & 0xFFFF)),
489                         0);
490      Opc = PPC::CMPW;
491    }
492  } else if (LHS.getValueType() == MVT::i64) {
493    uint64_t Imm;
494    if (CC == ISD::SETEQ || CC == ISD::SETNE) {
495      if (isInt64Immediate(RHS.getNode(), Imm)) {
496        // SETEQ/SETNE comparison with 16-bit immediate, fold it.
497        if (isUInt<16>(Imm))
498          return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
499                                                getI32Imm(Imm & 0xFFFF)), 0);
500        // If this is a 16-bit signed immediate, fold it.
501        if (isInt<16>(Imm))
502          return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
503                                                getI32Imm(Imm & 0xFFFF)), 0);
504
505        // For non-equality comparisons, the default code would materialize the
506        // constant, then compare against it, like this:
507        //   lis r2, 4660
508        //   ori r2, r2, 22136
509        //   cmpd cr0, r3, r2
510        // Since we are just comparing for equality, we can emit this instead:
511        //   xoris r0,r3,0x1234
512        //   cmpldi cr0,r0,0x5678
513        //   beq cr0,L6
514        if (isUInt<32>(Imm)) {
515          SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS,
516                                             getI64Imm(Imm >> 16)), 0);
517          return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor,
518                                                getI64Imm(Imm & 0xFFFF)), 0);
519        }
520      }
521      Opc = PPC::CMPLD;
522    } else if (ISD::isUnsignedIntSetCC(CC)) {
523      if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm))
524        return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
525                                              getI64Imm(Imm & 0xFFFF)), 0);
526      Opc = PPC::CMPLD;
527    } else {
528      short SImm;
529      if (isIntS16Immediate(RHS, SImm))
530        return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
531                                              getI64Imm(SImm & 0xFFFF)),
532                         0);
533      Opc = PPC::CMPD;
534    }
535  } else if (LHS.getValueType() == MVT::f32) {
536    Opc = PPC::FCMPUS;
537  } else {
538    assert(LHS.getValueType() == MVT::f64 && "Unknown vt!");
539    Opc = PPC::FCMPUD;
540  }
541  return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0);
542}
543
544static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) {
545  switch (CC) {
546  case ISD::SETUEQ:
547  case ISD::SETONE:
548  case ISD::SETOLE:
549  case ISD::SETOGE:
550    llvm_unreachable("Should be lowered by legalize!");
551  default: llvm_unreachable("Unknown condition!");
552  case ISD::SETOEQ:
553  case ISD::SETEQ:  return PPC::PRED_EQ;
554  case ISD::SETUNE:
555  case ISD::SETNE:  return PPC::PRED_NE;
556  case ISD::SETOLT:
557  case ISD::SETLT:  return PPC::PRED_LT;
558  case ISD::SETULE:
559  case ISD::SETLE:  return PPC::PRED_LE;
560  case ISD::SETOGT:
561  case ISD::SETGT:  return PPC::PRED_GT;
562  case ISD::SETUGE:
563  case ISD::SETGE:  return PPC::PRED_GE;
564  case ISD::SETO:   return PPC::PRED_NU;
565  case ISD::SETUO:  return PPC::PRED_UN;
566    // These two are invalid for floating point.  Assume we have int.
567  case ISD::SETULT: return PPC::PRED_LT;
568  case ISD::SETUGT: return PPC::PRED_GT;
569  }
570}
571
572/// getCRIdxForSetCC - Return the index of the condition register field
573/// associated with the SetCC condition, and whether or not the field is
574/// treated as inverted.  That is, lt = 0; ge = 0 inverted.
575///
576/// If this returns with Other != -1, then the returned comparison is an or of
577/// two simpler comparisons.  In this case, Invert is guaranteed to be false.
578static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert, int &Other) {
579  Invert = false;
580  Other = -1;
581  switch (CC) {
582  default: llvm_unreachable("Unknown condition!");
583  case ISD::SETOLT:
584  case ISD::SETLT:  return 0;                  // Bit #0 = SETOLT
585  case ISD::SETOGT:
586  case ISD::SETGT:  return 1;                  // Bit #1 = SETOGT
587  case ISD::SETOEQ:
588  case ISD::SETEQ:  return 2;                  // Bit #2 = SETOEQ
589  case ISD::SETUO:  return 3;                  // Bit #3 = SETUO
590  case ISD::SETUGE:
591  case ISD::SETGE:  Invert = true; return 0;   // !Bit #0 = SETUGE
592  case ISD::SETULE:
593  case ISD::SETLE:  Invert = true; return 1;   // !Bit #1 = SETULE
594  case ISD::SETUNE:
595  case ISD::SETNE:  Invert = true; return 2;   // !Bit #2 = SETUNE
596  case ISD::SETO:   Invert = true; return 3;   // !Bit #3 = SETO
597  case ISD::SETUEQ:
598  case ISD::SETOGE:
599  case ISD::SETOLE:
600  case ISD::SETONE:
601    llvm_unreachable("Invalid branch code: should be expanded by legalize");
602  // These are invalid for floating point.  Assume integer.
603  case ISD::SETULT: return 0;
604  case ISD::SETUGT: return 1;
605  }
606  return 0;
607}
608
609SDNode *PPCDAGToDAGISel::SelectSETCC(SDNode *N) {
610  DebugLoc dl = N->getDebugLoc();
611  unsigned Imm;
612  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
613  EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy();
614  bool isPPC64 = (PtrVT == MVT::i64);
615
616  if (isInt32Immediate(N->getOperand(1), Imm)) {
617    // We can codegen setcc op, imm very efficiently compared to a brcond.
618    // Check for those cases here.
619    // setcc op, 0
620    if (Imm == 0) {
621      SDValue Op = N->getOperand(0);
622      switch (CC) {
623      default: break;
624      case ISD::SETEQ: {
625        Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0);
626        SDValue Ops[] = { Op, getI32Imm(27), getI32Imm(5), getI32Imm(31) };
627        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
628      }
629      case ISD::SETNE: {
630        if (isPPC64) break;
631        SDValue AD =
632          SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
633                                         Op, getI32Imm(~0U)), 0);
634        return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op,
635                                    AD.getValue(1));
636      }
637      case ISD::SETLT: {
638        SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
639        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
640      }
641      case ISD::SETGT: {
642        SDValue T =
643          SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0);
644        T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0);
645        SDValue Ops[] = { T, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
646        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
647      }
648      }
649    } else if (Imm == ~0U) {        // setcc op, -1
650      SDValue Op = N->getOperand(0);
651      switch (CC) {
652      default: break;
653      case ISD::SETEQ:
654        if (isPPC64) break;
655        Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
656                                            Op, getI32Imm(1)), 0);
657        return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
658                              SDValue(CurDAG->getMachineNode(PPC::LI, dl,
659                                                             MVT::i32,
660                                                             getI32Imm(0)), 0),
661                                      Op.getValue(1));
662      case ISD::SETNE: {
663        if (isPPC64) break;
664        Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0);
665        SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
666                                            Op, getI32Imm(~0U));
667        return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0),
668                                    Op, SDValue(AD, 1));
669      }
670      case ISD::SETLT: {
671        SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op,
672                                                    getI32Imm(1)), 0);
673        SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD,
674                                                    Op), 0);
675        SDValue Ops[] = { AN, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
676        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
677      }
678      case ISD::SETGT: {
679        SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
680        Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops, 4),
681                     0);
682        return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op,
683                                    getI32Imm(1));
684      }
685      }
686    }
687  }
688
689  bool Inv;
690  int OtherCondIdx;
691  unsigned Idx = getCRIdxForSetCC(CC, Inv, OtherCondIdx);
692  SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
693  SDValue IntCR;
694
695  // Force the ccreg into CR7.
696  SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
697
698  SDValue InFlag(0, 0);  // Null incoming flag value.
699  CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg,
700                               InFlag).getValue(1);
701
702  if (PPCSubTarget.isGigaProcessor() && OtherCondIdx == -1)
703    IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg,
704                                           CCReg), 0);
705 else
706    IntCR = SDValue(CurDAG->getMachineNode(PPC::MFCRpseud, dl, MVT::i32,
707                                           CR7Reg, CCReg), 0);
708
709  SDValue Ops[] = { IntCR, getI32Imm((32-(3-Idx)) & 31),
710                      getI32Imm(31), getI32Imm(31) };
711  if (OtherCondIdx == -1 && !Inv)
712    return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
713
714  // Get the specified bit.
715  SDValue Tmp =
716    SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops, 4), 0);
717  if (Inv) {
718    assert(OtherCondIdx == -1 && "Can't have split plus negation");
719    return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1));
720  }
721
722  // Otherwise, we have to turn an operation like SETONE -> SETOLT | SETOGT.
723  // We already got the bit for the first part of the comparison (e.g. SETULE).
724
725  // Get the other bit of the comparison.
726  Ops[1] = getI32Imm((32-(3-OtherCondIdx)) & 31);
727  SDValue OtherCond =
728    SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops, 4), 0);
729
730  return CurDAG->SelectNodeTo(N, PPC::OR, MVT::i32, Tmp, OtherCond);
731}
732
733
734// Select - Convert the specified operand from a target-independent to a
735// target-specific node if it hasn't already been changed.
736SDNode *PPCDAGToDAGISel::Select(SDNode *N) {
737  DebugLoc dl = N->getDebugLoc();
738  if (N->isMachineOpcode())
739    return NULL;   // Already selected.
740
741  switch (N->getOpcode()) {
742  default: break;
743
744  case ISD::Constant: {
745    if (N->getValueType(0) == MVT::i64) {
746      // Get 64 bit value.
747      int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue();
748      // Assume no remaining bits.
749      unsigned Remainder = 0;
750      // Assume no shift required.
751      unsigned Shift = 0;
752
753      // If it can't be represented as a 32 bit value.
754      if (!isInt<32>(Imm)) {
755        Shift = CountTrailingZeros_64(Imm);
756        int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
757
758        // If the shifted value fits 32 bits.
759        if (isInt<32>(ImmSh)) {
760          // Go with the shifted value.
761          Imm = ImmSh;
762        } else {
763          // Still stuck with a 64 bit value.
764          Remainder = Imm;
765          Shift = 32;
766          Imm >>= 32;
767        }
768      }
769
770      // Intermediate operand.
771      SDNode *Result;
772
773      // Handle first 32 bits.
774      unsigned Lo = Imm & 0xFFFF;
775      unsigned Hi = (Imm >> 16) & 0xFFFF;
776
777      // Simple value.
778      if (isInt<16>(Imm)) {
779       // Just the Lo bits.
780        Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, getI32Imm(Lo));
781      } else if (Lo) {
782        // Handle the Hi bits.
783        unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8;
784        Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi));
785        // And Lo bits.
786        Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
787                                        SDValue(Result, 0), getI32Imm(Lo));
788      } else {
789       // Just the Hi bits.
790        Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi));
791      }
792
793      // If no shift, we're done.
794      if (!Shift) return Result;
795
796      // Shift for next step if the upper 32-bits were not zero.
797      if (Imm) {
798        Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64,
799                                        SDValue(Result, 0),
800                                        getI32Imm(Shift),
801                                        getI32Imm(63 - Shift));
802      }
803
804      // Add in the last bits as required.
805      if ((Hi = (Remainder >> 16) & 0xFFFF)) {
806        Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64,
807                                        SDValue(Result, 0), getI32Imm(Hi));
808      }
809      if ((Lo = Remainder & 0xFFFF)) {
810        Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
811                                        SDValue(Result, 0), getI32Imm(Lo));
812      }
813
814      return Result;
815    }
816    break;
817  }
818
819  case ISD::SETCC:
820    return SelectSETCC(N);
821  case PPCISD::GlobalBaseReg:
822    return getGlobalBaseReg();
823
824  case ISD::FrameIndex: {
825    int FI = cast<FrameIndexSDNode>(N)->getIndex();
826    SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
827    unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
828    if (N->hasOneUse())
829      return CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), TFI,
830                                  getSmallIPtrImm(0));
831    return CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI,
832                                  getSmallIPtrImm(0));
833  }
834
835  case PPCISD::MFCR: {
836    SDValue InFlag = N->getOperand(1);
837    // Use MFOCRF if supported.
838    if (PPCSubTarget.isGigaProcessor())
839      return CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32,
840                                    N->getOperand(0), InFlag);
841    else
842      return CurDAG->getMachineNode(PPC::MFCRpseud, dl, MVT::i32,
843                                    N->getOperand(0), InFlag);
844  }
845
846  case ISD::SDIV: {
847    // FIXME: since this depends on the setting of the carry flag from the srawi
848    //        we should really be making notes about that for the scheduler.
849    // FIXME: It sure would be nice if we could cheaply recognize the
850    //        srl/add/sra pattern the dag combiner will generate for this as
851    //        sra/addze rather than having to handle sdiv ourselves.  oh well.
852    unsigned Imm;
853    if (isInt32Immediate(N->getOperand(1), Imm)) {
854      SDValue N0 = N->getOperand(0);
855      if ((signed)Imm > 0 && isPowerOf2_32(Imm)) {
856        SDNode *Op =
857          CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
858                                 N0, getI32Imm(Log2_32(Imm)));
859        return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
860                                    SDValue(Op, 0), SDValue(Op, 1));
861      } else if ((signed)Imm < 0 && isPowerOf2_32(-Imm)) {
862        SDNode *Op =
863          CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
864                                 N0, getI32Imm(Log2_32(-Imm)));
865        SDValue PT =
866          SDValue(CurDAG->getMachineNode(PPC::ADDZE, dl, MVT::i32,
867                                         SDValue(Op, 0), SDValue(Op, 1)),
868                    0);
869        return CurDAG->SelectNodeTo(N, PPC::NEG, MVT::i32, PT);
870      }
871    }
872
873    // Other cases are autogenerated.
874    break;
875  }
876
877  case ISD::LOAD: {
878    // Handle preincrement loads.
879    LoadSDNode *LD = cast<LoadSDNode>(N);
880    EVT LoadedVT = LD->getMemoryVT();
881
882    // Normal loads are handled by code generated from the .td file.
883    if (LD->getAddressingMode() != ISD::PRE_INC)
884      break;
885
886    SDValue Offset = LD->getOffset();
887    if (isa<ConstantSDNode>(Offset) ||
888        Offset.getOpcode() == ISD::TargetGlobalAddress) {
889
890      unsigned Opcode;
891      bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
892      if (LD->getValueType(0) != MVT::i64) {
893        // Handle PPC32 integer and normal FP loads.
894        assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
895        switch (LoadedVT.getSimpleVT().SimpleTy) {
896          default: llvm_unreachable("Invalid PPC load type!");
897          case MVT::f64: Opcode = PPC::LFDU; break;
898          case MVT::f32: Opcode = PPC::LFSU; break;
899          case MVT::i32: Opcode = PPC::LWZU; break;
900          case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
901          case MVT::i1:
902          case MVT::i8:  Opcode = PPC::LBZU; break;
903        }
904      } else {
905        assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
906        assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
907        switch (LoadedVT.getSimpleVT().SimpleTy) {
908          default: llvm_unreachable("Invalid PPC load type!");
909          case MVT::i64: Opcode = PPC::LDU; break;
910          case MVT::i32: Opcode = PPC::LWZU8; break;
911          case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
912          case MVT::i1:
913          case MVT::i8:  Opcode = PPC::LBZU8; break;
914        }
915      }
916
917      SDValue Chain = LD->getChain();
918      SDValue Base = LD->getBasePtr();
919      SDValue Ops[] = { Offset, Base, Chain };
920      // FIXME: PPC64
921      return CurDAG->getMachineNode(Opcode, dl, LD->getValueType(0),
922                                    PPCLowering.getPointerTy(),
923                                    MVT::Other, Ops, 3);
924    } else {
925      llvm_unreachable("R+R preindex loads not supported yet!");
926    }
927  }
928
929  case ISD::AND: {
930    unsigned Imm, Imm2, SH, MB, ME;
931
932    // If this is an and of a value rotated between 0 and 31 bits and then and'd
933    // with a mask, emit rlwinm
934    if (isInt32Immediate(N->getOperand(1), Imm) &&
935        isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) {
936      SDValue Val = N->getOperand(0).getOperand(0);
937      SDValue Ops[] = { Val, getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
938      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
939    }
940    // If this is just a masked value where the input is not handled above, and
941    // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
942    if (isInt32Immediate(N->getOperand(1), Imm) &&
943        isRunOfOnes(Imm, MB, ME) &&
944        N->getOperand(0).getOpcode() != ISD::ROTL) {
945      SDValue Val = N->getOperand(0);
946      SDValue Ops[] = { Val, getI32Imm(0), getI32Imm(MB), getI32Imm(ME) };
947      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
948    }
949    // AND X, 0 -> 0, not "rlwinm 32".
950    if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) {
951      ReplaceUses(SDValue(N, 0), N->getOperand(1));
952      return NULL;
953    }
954    // ISD::OR doesn't get all the bitfield insertion fun.
955    // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) is a bitfield insert
956    if (isInt32Immediate(N->getOperand(1), Imm) &&
957        N->getOperand(0).getOpcode() == ISD::OR &&
958        isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) {
959      unsigned MB, ME;
960      Imm = ~(Imm^Imm2);
961      if (isRunOfOnes(Imm, MB, ME)) {
962        SDValue Ops[] = { N->getOperand(0).getOperand(0),
963                            N->getOperand(0).getOperand(1),
964                            getI32Imm(0), getI32Imm(MB),getI32Imm(ME) };
965        return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops, 5);
966      }
967    }
968
969    // Other cases are autogenerated.
970    break;
971  }
972  case ISD::OR:
973    if (N->getValueType(0) == MVT::i32)
974      if (SDNode *I = SelectBitfieldInsert(N))
975        return I;
976
977    // Other cases are autogenerated.
978    break;
979  case ISD::SHL: {
980    unsigned Imm, SH, MB, ME;
981    if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
982        isRotateAndMask(N, Imm, true, SH, MB, ME)) {
983      SDValue Ops[] = { N->getOperand(0).getOperand(0),
984                          getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
985      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
986    }
987
988    // Other cases are autogenerated.
989    break;
990  }
991  case ISD::SRL: {
992    unsigned Imm, SH, MB, ME;
993    if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
994        isRotateAndMask(N, Imm, true, SH, MB, ME)) {
995      SDValue Ops[] = { N->getOperand(0).getOperand(0),
996                          getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
997      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
998    }
999
1000    // Other cases are autogenerated.
1001    break;
1002  }
1003  case ISD::SELECT_CC: {
1004    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
1005    EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy();
1006    bool isPPC64 = (PtrVT == MVT::i64);
1007
1008    // Handle the setcc cases here.  select_cc lhs, 0, 1, 0, cc
1009    if (!isPPC64)
1010      if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
1011        if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
1012          if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
1013            if (N1C->isNullValue() && N3C->isNullValue() &&
1014                N2C->getZExtValue() == 1ULL && CC == ISD::SETNE &&
1015                // FIXME: Implement this optzn for PPC64.
1016                N->getValueType(0) == MVT::i32) {
1017              SDNode *Tmp =
1018                CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
1019                                       N->getOperand(0), getI32Imm(~0U));
1020              return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32,
1021                                          SDValue(Tmp, 0), N->getOperand(0),
1022                                          SDValue(Tmp, 1));
1023            }
1024
1025    SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
1026    unsigned BROpc = getPredicateForSetCC(CC);
1027
1028    unsigned SelectCCOp;
1029    if (N->getValueType(0) == MVT::i32)
1030      SelectCCOp = PPC::SELECT_CC_I4;
1031    else if (N->getValueType(0) == MVT::i64)
1032      SelectCCOp = PPC::SELECT_CC_I8;
1033    else if (N->getValueType(0) == MVT::f32)
1034      SelectCCOp = PPC::SELECT_CC_F4;
1035    else if (N->getValueType(0) == MVT::f64)
1036      SelectCCOp = PPC::SELECT_CC_F8;
1037    else
1038      SelectCCOp = PPC::SELECT_CC_VRRC;
1039
1040    SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
1041                        getI32Imm(BROpc) };
1042    return CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops, 4);
1043  }
1044  case PPCISD::COND_BRANCH: {
1045    // Op #0 is the Chain.
1046    // Op #1 is the PPC::PRED_* number.
1047    // Op #2 is the CR#
1048    // Op #3 is the Dest MBB
1049    // Op #4 is the Flag.
1050    // Prevent PPC::PRED_* from being selected into LI.
1051    SDValue Pred =
1052      getI32Imm(cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
1053    SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
1054      N->getOperand(0), N->getOperand(4) };
1055    return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 5);
1056  }
1057  case ISD::BR_CC: {
1058    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
1059    SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl);
1060    SDValue Ops[] = { getI32Imm(getPredicateForSetCC(CC)), CondCode,
1061                        N->getOperand(4), N->getOperand(0) };
1062    return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 4);
1063  }
1064  case ISD::BRIND: {
1065    // FIXME: Should custom lower this.
1066    SDValue Chain = N->getOperand(0);
1067    SDValue Target = N->getOperand(1);
1068    unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
1069    unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8;
1070    Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Target,
1071                                           Chain), 0);
1072    return CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain);
1073  }
1074  }
1075
1076  return SelectCode(N);
1077}
1078
1079
1080
1081/// createPPCISelDag - This pass converts a legalized DAG into a
1082/// PowerPC-specific DAG, ready for instruction scheduling.
1083///
1084FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) {
1085  return new PPCDAGToDAGISel(TM);
1086}
1087
1088