PPCISelDAGToDAG.cpp revision b34c79e4bbe5accbb54d0291e8bef5d2bfef32e4
1//===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file defines a pattern matching instruction selector for PowerPC, 11// converting from a legalized dag to a PPC dag. 12// 13//===----------------------------------------------------------------------===// 14 15#define DEBUG_TYPE "ppc-codegen" 16#include "PPC.h" 17#include "MCTargetDesc/PPCPredicates.h" 18#include "PPCTargetMachine.h" 19#include "llvm/CodeGen/MachineFunction.h" 20#include "llvm/CodeGen/MachineInstrBuilder.h" 21#include "llvm/CodeGen/MachineRegisterInfo.h" 22#include "llvm/CodeGen/SelectionDAG.h" 23#include "llvm/CodeGen/SelectionDAGISel.h" 24#include "llvm/IR/Constants.h" 25#include "llvm/IR/Function.h" 26#include "llvm/IR/GlobalAlias.h" 27#include "llvm/IR/GlobalValue.h" 28#include "llvm/IR/GlobalVariable.h" 29#include "llvm/IR/Intrinsics.h" 30#include "llvm/Support/Debug.h" 31#include "llvm/Support/ErrorHandling.h" 32#include "llvm/Support/MathExtras.h" 33#include "llvm/Support/raw_ostream.h" 34#include "llvm/Target/TargetOptions.h" 35using namespace llvm; 36 37namespace llvm { 38 void initializePPCDAGToDAGISelPass(PassRegistry&); 39} 40 41namespace { 42 //===--------------------------------------------------------------------===// 43 /// PPCDAGToDAGISel - PPC specific code to select PPC machine 44 /// instructions for SelectionDAG operations. 45 /// 46 class PPCDAGToDAGISel : public SelectionDAGISel { 47 const PPCTargetMachine &TM; 48 const PPCTargetLowering &PPCLowering; 49 const PPCSubtarget &PPCSubTarget; 50 unsigned GlobalBaseReg; 51 public: 52 explicit PPCDAGToDAGISel(PPCTargetMachine &tm) 53 : SelectionDAGISel(tm), TM(tm), 54 PPCLowering(*TM.getTargetLowering()), 55 PPCSubTarget(*TM.getSubtargetImpl()) { 56 initializePPCDAGToDAGISelPass(*PassRegistry::getPassRegistry()); 57 } 58 59 virtual bool runOnMachineFunction(MachineFunction &MF) { 60 // Make sure we re-emit a set of the global base reg if necessary 61 GlobalBaseReg = 0; 62 SelectionDAGISel::runOnMachineFunction(MF); 63 64 if (!PPCSubTarget.isSVR4ABI()) 65 InsertVRSaveCode(MF); 66 67 return true; 68 } 69 70 /// getI32Imm - Return a target constant with the specified value, of type 71 /// i32. 72 inline SDValue getI32Imm(unsigned Imm) { 73 return CurDAG->getTargetConstant(Imm, MVT::i32); 74 } 75 76 /// getI64Imm - Return a target constant with the specified value, of type 77 /// i64. 78 inline SDValue getI64Imm(uint64_t Imm) { 79 return CurDAG->getTargetConstant(Imm, MVT::i64); 80 } 81 82 /// getSmallIPtrImm - Return a target constant of pointer type. 83 inline SDValue getSmallIPtrImm(unsigned Imm) { 84 return CurDAG->getTargetConstant(Imm, PPCLowering.getPointerTy()); 85 } 86 87 /// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s 88 /// with any number of 0s on either side. The 1s are allowed to wrap from 89 /// LSB to MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 90 /// 0x0F0F0000 is not, since all 1s are not contiguous. 91 static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME); 92 93 94 /// isRotateAndMask - Returns true if Mask and Shift can be folded into a 95 /// rotate and mask opcode and mask operation. 96 static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask, 97 unsigned &SH, unsigned &MB, unsigned &ME); 98 99 /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC 100 /// base register. Return the virtual register that holds this value. 101 SDNode *getGlobalBaseReg(); 102 103 // Select - Convert the specified operand from a target-independent to a 104 // target-specific node if it hasn't already been changed. 105 SDNode *Select(SDNode *N); 106 107 SDNode *SelectBitfieldInsert(SDNode *N); 108 109 /// SelectCC - Select a comparison of the specified values with the 110 /// specified condition code, returning the CR# of the expression. 111 SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, DebugLoc dl); 112 113 /// SelectAddrImm - Returns true if the address N can be represented by 114 /// a base register plus a signed 16-bit displacement [r+imm]. 115 bool SelectAddrImm(SDValue N, SDValue &Disp, 116 SDValue &Base) { 117 return PPCLowering.SelectAddressRegImm(N, Disp, Base, *CurDAG); 118 } 119 120 /// SelectAddrImmOffs - Return true if the operand is valid for a preinc 121 /// immediate field. Because preinc imms have already been validated, just 122 /// accept it. 123 bool SelectAddrImmOffs(SDValue N, SDValue &Out) const { 124 if (isa<ConstantSDNode>(N) || N.getOpcode() == PPCISD::Lo || 125 N.getOpcode() == ISD::TargetGlobalAddress) { 126 Out = N; 127 return true; 128 } 129 130 return false; 131 } 132 133 /// SelectAddrIdxOffs - Return true if the operand is valid for a preinc 134 /// index field. Because preinc imms have already been validated, just 135 /// accept it. 136 bool SelectAddrIdxOffs(SDValue N, SDValue &Out) const { 137 if (isa<ConstantSDNode>(N) || N.getOpcode() == PPCISD::Lo || 138 N.getOpcode() == ISD::TargetGlobalAddress) 139 return false; 140 141 Out = N; 142 return true; 143 } 144 145 /// SelectAddrIdx - Given the specified addressed, check to see if it can be 146 /// represented as an indexed [r+r] operation. Returns false if it can 147 /// be represented by [r+imm], which are preferred. 148 bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) { 149 return PPCLowering.SelectAddressRegReg(N, Base, Index, *CurDAG); 150 } 151 152 /// SelectAddrIdxOnly - Given the specified addressed, force it to be 153 /// represented as an indexed [r+r] operation. 154 bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) { 155 return PPCLowering.SelectAddressRegRegOnly(N, Base, Index, *CurDAG); 156 } 157 158 /// SelectAddrImmShift - Returns true if the address N can be represented by 159 /// a base register plus a signed 14-bit displacement [r+imm*4]. Suitable 160 /// for use by STD and friends. 161 bool SelectAddrImmShift(SDValue N, SDValue &Disp, SDValue &Base) { 162 return PPCLowering.SelectAddressRegImmShift(N, Disp, Base, *CurDAG); 163 } 164 165 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for 166 /// inline asm expressions. It is always correct to compute the value into 167 /// a register. The case of adding a (possibly relocatable) constant to a 168 /// register can be improved, but it is wrong to substitute Reg+Reg for 169 /// Reg in an asm, because the load or store opcode would have to change. 170 virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op, 171 char ConstraintCode, 172 std::vector<SDValue> &OutOps) { 173 OutOps.push_back(Op); 174 return false; 175 } 176 177 void InsertVRSaveCode(MachineFunction &MF); 178 179 virtual const char *getPassName() const { 180 return "PowerPC DAG->DAG Pattern Instruction Selection"; 181 } 182 183// Include the pieces autogenerated from the target description. 184#include "PPCGenDAGISel.inc" 185 186private: 187 SDNode *SelectSETCC(SDNode *N); 188 }; 189} 190 191/// InsertVRSaveCode - Once the entire function has been instruction selected, 192/// all virtual registers are created and all machine instructions are built, 193/// check to see if we need to save/restore VRSAVE. If so, do it. 194void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) { 195 // Check to see if this function uses vector registers, which means we have to 196 // save and restore the VRSAVE register and update it with the regs we use. 197 // 198 // In this case, there will be virtual registers of vector type created 199 // by the scheduler. Detect them now. 200 bool HasVectorVReg = false; 201 for (unsigned i = 0, e = RegInfo->getNumVirtRegs(); i != e; ++i) { 202 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 203 if (RegInfo->getRegClass(Reg) == &PPC::VRRCRegClass) { 204 HasVectorVReg = true; 205 break; 206 } 207 } 208 if (!HasVectorVReg) return; // nothing to do. 209 210 // If we have a vector register, we want to emit code into the entry and exit 211 // blocks to save and restore the VRSAVE register. We do this here (instead 212 // of marking all vector instructions as clobbering VRSAVE) for two reasons: 213 // 214 // 1. This (trivially) reduces the load on the register allocator, by not 215 // having to represent the live range of the VRSAVE register. 216 // 2. This (more significantly) allows us to create a temporary virtual 217 // register to hold the saved VRSAVE value, allowing this temporary to be 218 // register allocated, instead of forcing it to be spilled to the stack. 219 220 // Create two vregs - one to hold the VRSAVE register that is live-in to the 221 // function and one for the value after having bits or'd into it. 222 unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); 223 unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); 224 225 const TargetInstrInfo &TII = *TM.getInstrInfo(); 226 MachineBasicBlock &EntryBB = *Fn.begin(); 227 DebugLoc dl; 228 // Emit the following code into the entry block: 229 // InVRSAVE = MFVRSAVE 230 // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE 231 // MTVRSAVE UpdatedVRSAVE 232 MachineBasicBlock::iterator IP = EntryBB.begin(); // Insert Point 233 BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE); 234 BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE), 235 UpdatedVRSAVE).addReg(InVRSAVE); 236 BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE); 237 238 // Find all return blocks, outputting a restore in each epilog. 239 for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) { 240 if (!BB->empty() && BB->back().isReturn()) { 241 IP = BB->end(); --IP; 242 243 // Skip over all terminator instructions, which are part of the return 244 // sequence. 245 MachineBasicBlock::iterator I2 = IP; 246 while (I2 != BB->begin() && (--I2)->isTerminator()) 247 IP = I2; 248 249 // Emit: MTVRSAVE InVRSave 250 BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE); 251 } 252 } 253} 254 255 256/// getGlobalBaseReg - Output the instructions required to put the 257/// base address to use for accessing globals into a register. 258/// 259SDNode *PPCDAGToDAGISel::getGlobalBaseReg() { 260 if (!GlobalBaseReg) { 261 const TargetInstrInfo &TII = *TM.getInstrInfo(); 262 // Insert the set of GlobalBaseReg into the first MBB of the function 263 MachineBasicBlock &FirstMBB = MF->front(); 264 MachineBasicBlock::iterator MBBI = FirstMBB.begin(); 265 DebugLoc dl; 266 267 if (PPCLowering.getPointerTy() == MVT::i32) { 268 GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); 269 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR)); 270 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); 271 } else { 272 GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RCRegClass); 273 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8)); 274 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg); 275 } 276 } 277 return CurDAG->getRegister(GlobalBaseReg, 278 PPCLowering.getPointerTy()).getNode(); 279} 280 281/// isIntS16Immediate - This method tests to see if the node is either a 32-bit 282/// or 64-bit immediate, and if the value can be accurately represented as a 283/// sign extension from a 16-bit value. If so, this returns true and the 284/// immediate. 285static bool isIntS16Immediate(SDNode *N, short &Imm) { 286 if (N->getOpcode() != ISD::Constant) 287 return false; 288 289 Imm = (short)cast<ConstantSDNode>(N)->getZExtValue(); 290 if (N->getValueType(0) == MVT::i32) 291 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 292 else 293 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 294} 295 296static bool isIntS16Immediate(SDValue Op, short &Imm) { 297 return isIntS16Immediate(Op.getNode(), Imm); 298} 299 300 301/// isInt32Immediate - This method tests to see if the node is a 32-bit constant 302/// operand. If so Imm will receive the 32-bit value. 303static bool isInt32Immediate(SDNode *N, unsigned &Imm) { 304 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) { 305 Imm = cast<ConstantSDNode>(N)->getZExtValue(); 306 return true; 307 } 308 return false; 309} 310 311/// isInt64Immediate - This method tests to see if the node is a 64-bit constant 312/// operand. If so Imm will receive the 64-bit value. 313static bool isInt64Immediate(SDNode *N, uint64_t &Imm) { 314 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) { 315 Imm = cast<ConstantSDNode>(N)->getZExtValue(); 316 return true; 317 } 318 return false; 319} 320 321// isInt32Immediate - This method tests to see if a constant operand. 322// If so Imm will receive the 32 bit value. 323static bool isInt32Immediate(SDValue N, unsigned &Imm) { 324 return isInt32Immediate(N.getNode(), Imm); 325} 326 327 328// isOpcWithIntImmediate - This method tests to see if the node is a specific 329// opcode and that it has a immediate integer right operand. 330// If so Imm will receive the 32 bit value. 331static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) { 332 return N->getOpcode() == Opc 333 && isInt32Immediate(N->getOperand(1).getNode(), Imm); 334} 335 336bool PPCDAGToDAGISel::isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) { 337 if (isShiftedMask_32(Val)) { 338 // look for the first non-zero bit 339 MB = CountLeadingZeros_32(Val); 340 // look for the first zero bit after the run of ones 341 ME = CountLeadingZeros_32((Val - 1) ^ Val); 342 return true; 343 } else { 344 Val = ~Val; // invert mask 345 if (isShiftedMask_32(Val)) { 346 // effectively look for the first zero bit 347 ME = CountLeadingZeros_32(Val) - 1; 348 // effectively look for the first one bit after the run of zeros 349 MB = CountLeadingZeros_32((Val - 1) ^ Val) + 1; 350 return true; 351 } 352 } 353 // no run present 354 return false; 355} 356 357bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask, 358 bool isShiftMask, unsigned &SH, 359 unsigned &MB, unsigned &ME) { 360 // Don't even go down this path for i64, since different logic will be 361 // necessary for rldicl/rldicr/rldimi. 362 if (N->getValueType(0) != MVT::i32) 363 return false; 364 365 unsigned Shift = 32; 366 unsigned Indeterminant = ~0; // bit mask marking indeterminant results 367 unsigned Opcode = N->getOpcode(); 368 if (N->getNumOperands() != 2 || 369 !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31)) 370 return false; 371 372 if (Opcode == ISD::SHL) { 373 // apply shift left to mask if it comes first 374 if (isShiftMask) Mask = Mask << Shift; 375 // determine which bits are made indeterminant by shift 376 Indeterminant = ~(0xFFFFFFFFu << Shift); 377 } else if (Opcode == ISD::SRL) { 378 // apply shift right to mask if it comes first 379 if (isShiftMask) Mask = Mask >> Shift; 380 // determine which bits are made indeterminant by shift 381 Indeterminant = ~(0xFFFFFFFFu >> Shift); 382 // adjust for the left rotate 383 Shift = 32 - Shift; 384 } else if (Opcode == ISD::ROTL) { 385 Indeterminant = 0; 386 } else { 387 return false; 388 } 389 390 // if the mask doesn't intersect any Indeterminant bits 391 if (Mask && !(Mask & Indeterminant)) { 392 SH = Shift & 31; 393 // make sure the mask is still a mask (wrap arounds may not be) 394 return isRunOfOnes(Mask, MB, ME); 395 } 396 return false; 397} 398 399/// SelectBitfieldInsert - turn an or of two masked values into 400/// the rotate left word immediate then mask insert (rlwimi) instruction. 401SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) { 402 SDValue Op0 = N->getOperand(0); 403 SDValue Op1 = N->getOperand(1); 404 DebugLoc dl = N->getDebugLoc(); 405 406 APInt LKZ, LKO, RKZ, RKO; 407 CurDAG->ComputeMaskedBits(Op0, LKZ, LKO); 408 CurDAG->ComputeMaskedBits(Op1, RKZ, RKO); 409 410 unsigned TargetMask = LKZ.getZExtValue(); 411 unsigned InsertMask = RKZ.getZExtValue(); 412 413 if ((TargetMask | InsertMask) == 0xFFFFFFFF) { 414 unsigned Op0Opc = Op0.getOpcode(); 415 unsigned Op1Opc = Op1.getOpcode(); 416 unsigned Value, SH = 0; 417 TargetMask = ~TargetMask; 418 InsertMask = ~InsertMask; 419 420 // If the LHS has a foldable shift and the RHS does not, then swap it to the 421 // RHS so that we can fold the shift into the insert. 422 if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) { 423 if (Op0.getOperand(0).getOpcode() == ISD::SHL || 424 Op0.getOperand(0).getOpcode() == ISD::SRL) { 425 if (Op1.getOperand(0).getOpcode() != ISD::SHL && 426 Op1.getOperand(0).getOpcode() != ISD::SRL) { 427 std::swap(Op0, Op1); 428 std::swap(Op0Opc, Op1Opc); 429 std::swap(TargetMask, InsertMask); 430 } 431 } 432 } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) { 433 if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL && 434 Op1.getOperand(0).getOpcode() != ISD::SRL) { 435 std::swap(Op0, Op1); 436 std::swap(Op0Opc, Op1Opc); 437 std::swap(TargetMask, InsertMask); 438 } 439 } 440 441 unsigned MB, ME; 442 if (InsertMask && isRunOfOnes(InsertMask, MB, ME)) { 443 SDValue Tmp1, Tmp2; 444 445 if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) && 446 isInt32Immediate(Op1.getOperand(1), Value)) { 447 Op1 = Op1.getOperand(0); 448 SH = (Op1Opc == ISD::SHL) ? Value : 32 - Value; 449 } 450 if (Op1Opc == ISD::AND) { 451 unsigned SHOpc = Op1.getOperand(0).getOpcode(); 452 if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && 453 isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) { 454 Op1 = Op1.getOperand(0).getOperand(0); 455 SH = (SHOpc == ISD::SHL) ? Value : 32 - Value; 456 } else { 457 Op1 = Op1.getOperand(0); 458 } 459 } 460 461 SH &= 31; 462 SDValue Ops[] = { Op0, Op1, getI32Imm(SH), getI32Imm(MB), 463 getI32Imm(ME) }; 464 return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops, 5); 465 } 466 } 467 return 0; 468} 469 470/// SelectCC - Select a comparison of the specified values with the specified 471/// condition code, returning the CR# of the expression. 472SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, 473 ISD::CondCode CC, DebugLoc dl) { 474 // Always select the LHS. 475 unsigned Opc; 476 477 if (LHS.getValueType() == MVT::i32) { 478 unsigned Imm; 479 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 480 if (isInt32Immediate(RHS, Imm)) { 481 // SETEQ/SETNE comparison with 16-bit immediate, fold it. 482 if (isUInt<16>(Imm)) 483 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS, 484 getI32Imm(Imm & 0xFFFF)), 0); 485 // If this is a 16-bit signed immediate, fold it. 486 if (isInt<16>((int)Imm)) 487 return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS, 488 getI32Imm(Imm & 0xFFFF)), 0); 489 490 // For non-equality comparisons, the default code would materialize the 491 // constant, then compare against it, like this: 492 // lis r2, 4660 493 // ori r2, r2, 22136 494 // cmpw cr0, r3, r2 495 // Since we are just comparing for equality, we can emit this instead: 496 // xoris r0,r3,0x1234 497 // cmplwi cr0,r0,0x5678 498 // beq cr0,L6 499 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS, 500 getI32Imm(Imm >> 16)), 0); 501 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor, 502 getI32Imm(Imm & 0xFFFF)), 0); 503 } 504 Opc = PPC::CMPLW; 505 } else if (ISD::isUnsignedIntSetCC(CC)) { 506 if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm)) 507 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS, 508 getI32Imm(Imm & 0xFFFF)), 0); 509 Opc = PPC::CMPLW; 510 } else { 511 short SImm; 512 if (isIntS16Immediate(RHS, SImm)) 513 return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS, 514 getI32Imm((int)SImm & 0xFFFF)), 515 0); 516 Opc = PPC::CMPW; 517 } 518 } else if (LHS.getValueType() == MVT::i64) { 519 uint64_t Imm; 520 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 521 if (isInt64Immediate(RHS.getNode(), Imm)) { 522 // SETEQ/SETNE comparison with 16-bit immediate, fold it. 523 if (isUInt<16>(Imm)) 524 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS, 525 getI32Imm(Imm & 0xFFFF)), 0); 526 // If this is a 16-bit signed immediate, fold it. 527 if (isInt<16>(Imm)) 528 return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS, 529 getI32Imm(Imm & 0xFFFF)), 0); 530 531 // For non-equality comparisons, the default code would materialize the 532 // constant, then compare against it, like this: 533 // lis r2, 4660 534 // ori r2, r2, 22136 535 // cmpd cr0, r3, r2 536 // Since we are just comparing for equality, we can emit this instead: 537 // xoris r0,r3,0x1234 538 // cmpldi cr0,r0,0x5678 539 // beq cr0,L6 540 if (isUInt<32>(Imm)) { 541 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS, 542 getI64Imm(Imm >> 16)), 0); 543 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor, 544 getI64Imm(Imm & 0xFFFF)), 0); 545 } 546 } 547 Opc = PPC::CMPLD; 548 } else if (ISD::isUnsignedIntSetCC(CC)) { 549 if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm)) 550 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS, 551 getI64Imm(Imm & 0xFFFF)), 0); 552 Opc = PPC::CMPLD; 553 } else { 554 short SImm; 555 if (isIntS16Immediate(RHS, SImm)) 556 return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS, 557 getI64Imm(SImm & 0xFFFF)), 558 0); 559 Opc = PPC::CMPD; 560 } 561 } else if (LHS.getValueType() == MVT::f32) { 562 Opc = PPC::FCMPUS; 563 } else { 564 assert(LHS.getValueType() == MVT::f64 && "Unknown vt!"); 565 Opc = PPC::FCMPUD; 566 } 567 return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0); 568} 569 570static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) { 571 switch (CC) { 572 case ISD::SETUEQ: 573 case ISD::SETONE: 574 case ISD::SETOLE: 575 case ISD::SETOGE: 576 llvm_unreachable("Should be lowered by legalize!"); 577 default: llvm_unreachable("Unknown condition!"); 578 case ISD::SETOEQ: 579 case ISD::SETEQ: return PPC::PRED_EQ; 580 case ISD::SETUNE: 581 case ISD::SETNE: return PPC::PRED_NE; 582 case ISD::SETOLT: 583 case ISD::SETLT: return PPC::PRED_LT; 584 case ISD::SETULE: 585 case ISD::SETLE: return PPC::PRED_LE; 586 case ISD::SETOGT: 587 case ISD::SETGT: return PPC::PRED_GT; 588 case ISD::SETUGE: 589 case ISD::SETGE: return PPC::PRED_GE; 590 case ISD::SETO: return PPC::PRED_NU; 591 case ISD::SETUO: return PPC::PRED_UN; 592 // These two are invalid for floating point. Assume we have int. 593 case ISD::SETULT: return PPC::PRED_LT; 594 case ISD::SETUGT: return PPC::PRED_GT; 595 } 596} 597 598/// getCRIdxForSetCC - Return the index of the condition register field 599/// associated with the SetCC condition, and whether or not the field is 600/// treated as inverted. That is, lt = 0; ge = 0 inverted. 601/// 602/// If this returns with Other != -1, then the returned comparison is an or of 603/// two simpler comparisons. In this case, Invert is guaranteed to be false. 604static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert, int &Other) { 605 Invert = false; 606 Other = -1; 607 switch (CC) { 608 default: llvm_unreachable("Unknown condition!"); 609 case ISD::SETOLT: 610 case ISD::SETLT: return 0; // Bit #0 = SETOLT 611 case ISD::SETOGT: 612 case ISD::SETGT: return 1; // Bit #1 = SETOGT 613 case ISD::SETOEQ: 614 case ISD::SETEQ: return 2; // Bit #2 = SETOEQ 615 case ISD::SETUO: return 3; // Bit #3 = SETUO 616 case ISD::SETUGE: 617 case ISD::SETGE: Invert = true; return 0; // !Bit #0 = SETUGE 618 case ISD::SETULE: 619 case ISD::SETLE: Invert = true; return 1; // !Bit #1 = SETULE 620 case ISD::SETUNE: 621 case ISD::SETNE: Invert = true; return 2; // !Bit #2 = SETUNE 622 case ISD::SETO: Invert = true; return 3; // !Bit #3 = SETO 623 case ISD::SETUEQ: 624 case ISD::SETOGE: 625 case ISD::SETOLE: 626 case ISD::SETONE: 627 llvm_unreachable("Invalid branch code: should be expanded by legalize"); 628 // These are invalid for floating point. Assume integer. 629 case ISD::SETULT: return 0; 630 case ISD::SETUGT: return 1; 631 } 632} 633 634// getVCmpInst: return the vector compare instruction for the specified 635// vector type and condition code. Since this is for altivec specific code, 636// only support the altivec types (v16i8, v8i16, v4i32, and v4f32). 637static unsigned int getVCmpInst(MVT::SimpleValueType VecVT, ISD::CondCode CC) { 638 switch (CC) { 639 case ISD::SETEQ: 640 case ISD::SETUEQ: 641 case ISD::SETNE: 642 case ISD::SETUNE: 643 if (VecVT == MVT::v16i8) 644 return PPC::VCMPEQUB; 645 else if (VecVT == MVT::v8i16) 646 return PPC::VCMPEQUH; 647 else if (VecVT == MVT::v4i32) 648 return PPC::VCMPEQUW; 649 // v4f32 != v4f32 could be translate to unordered not equal 650 else if (VecVT == MVT::v4f32) 651 return PPC::VCMPEQFP; 652 break; 653 case ISD::SETLT: 654 case ISD::SETGT: 655 case ISD::SETLE: 656 case ISD::SETGE: 657 if (VecVT == MVT::v16i8) 658 return PPC::VCMPGTSB; 659 else if (VecVT == MVT::v8i16) 660 return PPC::VCMPGTSH; 661 else if (VecVT == MVT::v4i32) 662 return PPC::VCMPGTSW; 663 else if (VecVT == MVT::v4f32) 664 return PPC::VCMPGTFP; 665 break; 666 case ISD::SETULT: 667 case ISD::SETUGT: 668 case ISD::SETUGE: 669 case ISD::SETULE: 670 if (VecVT == MVT::v16i8) 671 return PPC::VCMPGTUB; 672 else if (VecVT == MVT::v8i16) 673 return PPC::VCMPGTUH; 674 else if (VecVT == MVT::v4i32) 675 return PPC::VCMPGTUW; 676 break; 677 case ISD::SETOEQ: 678 if (VecVT == MVT::v4f32) 679 return PPC::VCMPEQFP; 680 break; 681 case ISD::SETOLT: 682 case ISD::SETOGT: 683 case ISD::SETOLE: 684 if (VecVT == MVT::v4f32) 685 return PPC::VCMPGTFP; 686 break; 687 case ISD::SETOGE: 688 if (VecVT == MVT::v4f32) 689 return PPC::VCMPGEFP; 690 break; 691 default: 692 break; 693 } 694 llvm_unreachable("Invalid integer vector compare condition"); 695} 696 697// getVCmpEQInst: return the equal compare instruction for the specified vector 698// type. Since this is for altivec specific code, only support the altivec 699// types (v16i8, v8i16, v4i32, and v4f32). 700static unsigned int getVCmpEQInst(MVT::SimpleValueType VecVT) { 701 switch (VecVT) { 702 case MVT::v16i8: 703 return PPC::VCMPEQUB; 704 case MVT::v8i16: 705 return PPC::VCMPEQUH; 706 case MVT::v4i32: 707 return PPC::VCMPEQUW; 708 case MVT::v4f32: 709 return PPC::VCMPEQFP; 710 default: 711 llvm_unreachable("Invalid integer vector compare condition"); 712 } 713} 714 715 716SDNode *PPCDAGToDAGISel::SelectSETCC(SDNode *N) { 717 DebugLoc dl = N->getDebugLoc(); 718 unsigned Imm; 719 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 720 EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy(); 721 bool isPPC64 = (PtrVT == MVT::i64); 722 723 if (isInt32Immediate(N->getOperand(1), Imm)) { 724 // We can codegen setcc op, imm very efficiently compared to a brcond. 725 // Check for those cases here. 726 // setcc op, 0 727 if (Imm == 0) { 728 SDValue Op = N->getOperand(0); 729 switch (CC) { 730 default: break; 731 case ISD::SETEQ: { 732 Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0); 733 SDValue Ops[] = { Op, getI32Imm(27), getI32Imm(5), getI32Imm(31) }; 734 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); 735 } 736 case ISD::SETNE: { 737 if (isPPC64) break; 738 SDValue AD = 739 SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 740 Op, getI32Imm(~0U)), 0); 741 return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, 742 AD.getValue(1)); 743 } 744 case ISD::SETLT: { 745 SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) }; 746 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); 747 } 748 case ISD::SETGT: { 749 SDValue T = 750 SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0); 751 T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0); 752 SDValue Ops[] = { T, getI32Imm(1), getI32Imm(31), getI32Imm(31) }; 753 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); 754 } 755 } 756 } else if (Imm == ~0U) { // setcc op, -1 757 SDValue Op = N->getOperand(0); 758 switch (CC) { 759 default: break; 760 case ISD::SETEQ: 761 if (isPPC64) break; 762 Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 763 Op, getI32Imm(1)), 0); 764 return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, 765 SDValue(CurDAG->getMachineNode(PPC::LI, dl, 766 MVT::i32, 767 getI32Imm(0)), 0), 768 Op.getValue(1)); 769 case ISD::SETNE: { 770 if (isPPC64) break; 771 Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0); 772 SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 773 Op, getI32Imm(~0U)); 774 return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0), 775 Op, SDValue(AD, 1)); 776 } 777 case ISD::SETLT: { 778 SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op, 779 getI32Imm(1)), 0); 780 SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD, 781 Op), 0); 782 SDValue Ops[] = { AN, getI32Imm(1), getI32Imm(31), getI32Imm(31) }; 783 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); 784 } 785 case ISD::SETGT: { 786 SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) }; 787 Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops, 4), 788 0); 789 return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, 790 getI32Imm(1)); 791 } 792 } 793 } 794 } 795 796 SDValue LHS = N->getOperand(0); 797 SDValue RHS = N->getOperand(1); 798 799 // Altivec Vector compare instructions do not set any CR register by default and 800 // vector compare operations return the same type as the operands. 801 if (LHS.getValueType().isVector()) { 802 EVT VecVT = LHS.getValueType(); 803 MVT::SimpleValueType VT = VecVT.getSimpleVT().SimpleTy; 804 unsigned int VCmpInst = getVCmpInst(VT, CC); 805 806 switch (CC) { 807 case ISD::SETEQ: 808 case ISD::SETOEQ: 809 case ISD::SETUEQ: 810 return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, LHS, RHS); 811 case ISD::SETNE: 812 case ISD::SETONE: 813 case ISD::SETUNE: { 814 SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, VecVT, LHS, RHS), 0); 815 return CurDAG->SelectNodeTo(N, PPC::VNOR, VecVT, VCmp, VCmp); 816 } 817 case ISD::SETLT: 818 case ISD::SETOLT: 819 case ISD::SETULT: 820 return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, RHS, LHS); 821 case ISD::SETGT: 822 case ISD::SETOGT: 823 case ISD::SETUGT: 824 return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, LHS, RHS); 825 case ISD::SETGE: 826 case ISD::SETOGE: 827 case ISD::SETUGE: { 828 // Small optimization: Altivec provides a 'Vector Compare Greater Than 829 // or Equal To' instruction (vcmpgefp), so in this case there is no 830 // need for extra logic for the equal compare. 831 if (VecVT.getSimpleVT().isFloatingPoint()) { 832 return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, LHS, RHS); 833 } else { 834 SDValue VCmpGT(CurDAG->getMachineNode(VCmpInst, dl, VecVT, LHS, RHS), 0); 835 unsigned int VCmpEQInst = getVCmpEQInst(VT); 836 SDValue VCmpEQ(CurDAG->getMachineNode(VCmpEQInst, dl, VecVT, LHS, RHS), 0); 837 return CurDAG->SelectNodeTo(N, PPC::VOR, VecVT, VCmpGT, VCmpEQ); 838 } 839 } 840 case ISD::SETLE: 841 case ISD::SETOLE: 842 case ISD::SETULE: { 843 SDValue VCmpLE(CurDAG->getMachineNode(VCmpInst, dl, VecVT, RHS, LHS), 0); 844 unsigned int VCmpEQInst = getVCmpEQInst(VT); 845 SDValue VCmpEQ(CurDAG->getMachineNode(VCmpEQInst, dl, VecVT, LHS, RHS), 0); 846 return CurDAG->SelectNodeTo(N, PPC::VOR, VecVT, VCmpLE, VCmpEQ); 847 } 848 default: 849 llvm_unreachable("Invalid vector compare type: should be expanded by legalize"); 850 } 851 } 852 853 bool Inv; 854 int OtherCondIdx; 855 unsigned Idx = getCRIdxForSetCC(CC, Inv, OtherCondIdx); 856 SDValue CCReg = SelectCC(LHS, RHS, CC, dl); 857 SDValue IntCR; 858 859 // Force the ccreg into CR7. 860 SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32); 861 862 SDValue InFlag(0, 0); // Null incoming flag value. 863 CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg, 864 InFlag).getValue(1); 865 866 if (PPCSubTarget.hasMFOCRF() && OtherCondIdx == -1) 867 IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg, 868 CCReg), 0); 869 else 870 IntCR = SDValue(CurDAG->getMachineNode(PPC::MFCRpseud, dl, MVT::i32, 871 CR7Reg, CCReg), 0); 872 873 SDValue Ops[] = { IntCR, getI32Imm((32-(3-Idx)) & 31), 874 getI32Imm(31), getI32Imm(31) }; 875 if (OtherCondIdx == -1 && !Inv) 876 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); 877 878 // Get the specified bit. 879 SDValue Tmp = 880 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops, 4), 0); 881 if (Inv) { 882 assert(OtherCondIdx == -1 && "Can't have split plus negation"); 883 return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1)); 884 } 885 886 // Otherwise, we have to turn an operation like SETONE -> SETOLT | SETOGT. 887 // We already got the bit for the first part of the comparison (e.g. SETULE). 888 889 // Get the other bit of the comparison. 890 Ops[1] = getI32Imm((32-(3-OtherCondIdx)) & 31); 891 SDValue OtherCond = 892 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops, 4), 0); 893 894 return CurDAG->SelectNodeTo(N, PPC::OR, MVT::i32, Tmp, OtherCond); 895} 896 897 898// Select - Convert the specified operand from a target-independent to a 899// target-specific node if it hasn't already been changed. 900SDNode *PPCDAGToDAGISel::Select(SDNode *N) { 901 DebugLoc dl = N->getDebugLoc(); 902 if (N->isMachineOpcode()) 903 return NULL; // Already selected. 904 905 switch (N->getOpcode()) { 906 default: break; 907 908 case ISD::Constant: { 909 if (N->getValueType(0) == MVT::i64) { 910 // Get 64 bit value. 911 int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue(); 912 // Assume no remaining bits. 913 unsigned Remainder = 0; 914 // Assume no shift required. 915 unsigned Shift = 0; 916 917 // If it can't be represented as a 32 bit value. 918 if (!isInt<32>(Imm)) { 919 Shift = CountTrailingZeros_64(Imm); 920 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift; 921 922 // If the shifted value fits 32 bits. 923 if (isInt<32>(ImmSh)) { 924 // Go with the shifted value. 925 Imm = ImmSh; 926 } else { 927 // Still stuck with a 64 bit value. 928 Remainder = Imm; 929 Shift = 32; 930 Imm >>= 32; 931 } 932 } 933 934 // Intermediate operand. 935 SDNode *Result; 936 937 // Handle first 32 bits. 938 unsigned Lo = Imm & 0xFFFF; 939 unsigned Hi = (Imm >> 16) & 0xFFFF; 940 941 // Simple value. 942 if (isInt<16>(Imm)) { 943 // Just the Lo bits. 944 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, getI32Imm(Lo)); 945 } else if (Lo) { 946 // Handle the Hi bits. 947 unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8; 948 Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi)); 949 // And Lo bits. 950 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, 951 SDValue(Result, 0), getI32Imm(Lo)); 952 } else { 953 // Just the Hi bits. 954 Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi)); 955 } 956 957 // If no shift, we're done. 958 if (!Shift) return Result; 959 960 // Shift for next step if the upper 32-bits were not zero. 961 if (Imm) { 962 Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, 963 SDValue(Result, 0), 964 getI32Imm(Shift), 965 getI32Imm(63 - Shift)); 966 } 967 968 // Add in the last bits as required. 969 if ((Hi = (Remainder >> 16) & 0xFFFF)) { 970 Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64, 971 SDValue(Result, 0), getI32Imm(Hi)); 972 } 973 if ((Lo = Remainder & 0xFFFF)) { 974 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, 975 SDValue(Result, 0), getI32Imm(Lo)); 976 } 977 978 return Result; 979 } 980 break; 981 } 982 983 case ISD::SETCC: 984 return SelectSETCC(N); 985 case PPCISD::GlobalBaseReg: 986 return getGlobalBaseReg(); 987 988 case ISD::FrameIndex: { 989 int FI = cast<FrameIndexSDNode>(N)->getIndex(); 990 SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0)); 991 unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8; 992 if (N->hasOneUse()) 993 return CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), TFI, 994 getSmallIPtrImm(0)); 995 return CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI, 996 getSmallIPtrImm(0)); 997 } 998 999 case PPCISD::MFCR: { 1000 SDValue InFlag = N->getOperand(1); 1001 // Use MFOCRF if supported. 1002 if (PPCSubTarget.hasMFOCRF()) 1003 return CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, 1004 N->getOperand(0), InFlag); 1005 else 1006 return CurDAG->getMachineNode(PPC::MFCRpseud, dl, MVT::i32, 1007 N->getOperand(0), InFlag); 1008 } 1009 1010 case ISD::SDIV: { 1011 // FIXME: since this depends on the setting of the carry flag from the srawi 1012 // we should really be making notes about that for the scheduler. 1013 // FIXME: It sure would be nice if we could cheaply recognize the 1014 // srl/add/sra pattern the dag combiner will generate for this as 1015 // sra/addze rather than having to handle sdiv ourselves. oh well. 1016 unsigned Imm; 1017 if (isInt32Immediate(N->getOperand(1), Imm)) { 1018 SDValue N0 = N->getOperand(0); 1019 if ((signed)Imm > 0 && isPowerOf2_32(Imm)) { 1020 SDNode *Op = 1021 CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue, 1022 N0, getI32Imm(Log2_32(Imm))); 1023 return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, 1024 SDValue(Op, 0), SDValue(Op, 1)); 1025 } else if ((signed)Imm < 0 && isPowerOf2_32(-Imm)) { 1026 SDNode *Op = 1027 CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue, 1028 N0, getI32Imm(Log2_32(-Imm))); 1029 SDValue PT = 1030 SDValue(CurDAG->getMachineNode(PPC::ADDZE, dl, MVT::i32, 1031 SDValue(Op, 0), SDValue(Op, 1)), 1032 0); 1033 return CurDAG->SelectNodeTo(N, PPC::NEG, MVT::i32, PT); 1034 } 1035 } 1036 1037 // Other cases are autogenerated. 1038 break; 1039 } 1040 1041 case ISD::LOAD: { 1042 // Handle preincrement loads. 1043 LoadSDNode *LD = cast<LoadSDNode>(N); 1044 EVT LoadedVT = LD->getMemoryVT(); 1045 1046 // Normal loads are handled by code generated from the .td file. 1047 if (LD->getAddressingMode() != ISD::PRE_INC) 1048 break; 1049 1050 SDValue Offset = LD->getOffset(); 1051 if (isa<ConstantSDNode>(Offset) || 1052 Offset.getOpcode() == ISD::TargetGlobalAddress) { 1053 1054 unsigned Opcode; 1055 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD; 1056 if (LD->getValueType(0) != MVT::i64) { 1057 // Handle PPC32 integer and normal FP loads. 1058 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); 1059 switch (LoadedVT.getSimpleVT().SimpleTy) { 1060 default: llvm_unreachable("Invalid PPC load type!"); 1061 case MVT::f64: Opcode = PPC::LFDU; break; 1062 case MVT::f32: Opcode = PPC::LFSU; break; 1063 case MVT::i32: Opcode = PPC::LWZU; break; 1064 case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break; 1065 case MVT::i1: 1066 case MVT::i8: Opcode = PPC::LBZU; break; 1067 } 1068 } else { 1069 assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!"); 1070 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); 1071 switch (LoadedVT.getSimpleVT().SimpleTy) { 1072 default: llvm_unreachable("Invalid PPC load type!"); 1073 case MVT::i64: Opcode = PPC::LDU; break; 1074 case MVT::i32: Opcode = PPC::LWZU8; break; 1075 case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break; 1076 case MVT::i1: 1077 case MVT::i8: Opcode = PPC::LBZU8; break; 1078 } 1079 } 1080 1081 SDValue Chain = LD->getChain(); 1082 SDValue Base = LD->getBasePtr(); 1083 SDValue Ops[] = { Offset, Base, Chain }; 1084 return CurDAG->getMachineNode(Opcode, dl, LD->getValueType(0), 1085 PPCLowering.getPointerTy(), 1086 MVT::Other, Ops, 3); 1087 } else { 1088 unsigned Opcode; 1089 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD; 1090 if (LD->getValueType(0) != MVT::i64) { 1091 // Handle PPC32 integer and normal FP loads. 1092 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); 1093 switch (LoadedVT.getSimpleVT().SimpleTy) { 1094 default: llvm_unreachable("Invalid PPC load type!"); 1095 case MVT::f64: Opcode = PPC::LFDUX; break; 1096 case MVT::f32: Opcode = PPC::LFSUX; break; 1097 case MVT::i32: Opcode = PPC::LWZUX; break; 1098 case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break; 1099 case MVT::i1: 1100 case MVT::i8: Opcode = PPC::LBZUX; break; 1101 } 1102 } else { 1103 assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!"); 1104 assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) && 1105 "Invalid sext update load"); 1106 switch (LoadedVT.getSimpleVT().SimpleTy) { 1107 default: llvm_unreachable("Invalid PPC load type!"); 1108 case MVT::i64: Opcode = PPC::LDUX; break; 1109 case MVT::i32: Opcode = isSExt ? PPC::LWAUX : PPC::LWZUX8; break; 1110 case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break; 1111 case MVT::i1: 1112 case MVT::i8: Opcode = PPC::LBZUX8; break; 1113 } 1114 } 1115 1116 SDValue Chain = LD->getChain(); 1117 SDValue Base = LD->getBasePtr(); 1118 SDValue Ops[] = { Offset, Base, Chain }; 1119 return CurDAG->getMachineNode(Opcode, dl, LD->getValueType(0), 1120 PPCLowering.getPointerTy(), 1121 MVT::Other, Ops, 3); 1122 } 1123 } 1124 1125 case ISD::AND: { 1126 unsigned Imm, Imm2, SH, MB, ME; 1127 uint64_t Imm64; 1128 1129 // If this is an and of a value rotated between 0 and 31 bits and then and'd 1130 // with a mask, emit rlwinm 1131 if (isInt32Immediate(N->getOperand(1), Imm) && 1132 isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) { 1133 SDValue Val = N->getOperand(0).getOperand(0); 1134 SDValue Ops[] = { Val, getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) }; 1135 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); 1136 } 1137 // If this is just a masked value where the input is not handled above, and 1138 // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm 1139 if (isInt32Immediate(N->getOperand(1), Imm) && 1140 isRunOfOnes(Imm, MB, ME) && 1141 N->getOperand(0).getOpcode() != ISD::ROTL) { 1142 SDValue Val = N->getOperand(0); 1143 SDValue Ops[] = { Val, getI32Imm(0), getI32Imm(MB), getI32Imm(ME) }; 1144 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); 1145 } 1146 // If this is a 64-bit zero-extension mask, emit rldicl. 1147 if (isInt64Immediate(N->getOperand(1).getNode(), Imm64) && 1148 isMask_64(Imm64)) { 1149 SDValue Val = N->getOperand(0); 1150 MB = 64 - CountTrailingOnes_64(Imm64); 1151 SDValue Ops[] = { Val, getI32Imm(0), getI32Imm(MB) }; 1152 return CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops, 3); 1153 } 1154 // AND X, 0 -> 0, not "rlwinm 32". 1155 if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) { 1156 ReplaceUses(SDValue(N, 0), N->getOperand(1)); 1157 return NULL; 1158 } 1159 // ISD::OR doesn't get all the bitfield insertion fun. 1160 // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) is a bitfield insert 1161 if (isInt32Immediate(N->getOperand(1), Imm) && 1162 N->getOperand(0).getOpcode() == ISD::OR && 1163 isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) { 1164 unsigned MB, ME; 1165 Imm = ~(Imm^Imm2); 1166 if (isRunOfOnes(Imm, MB, ME)) { 1167 SDValue Ops[] = { N->getOperand(0).getOperand(0), 1168 N->getOperand(0).getOperand(1), 1169 getI32Imm(0), getI32Imm(MB),getI32Imm(ME) }; 1170 return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops, 5); 1171 } 1172 } 1173 1174 // Other cases are autogenerated. 1175 break; 1176 } 1177 case ISD::OR: 1178 if (N->getValueType(0) == MVT::i32) 1179 if (SDNode *I = SelectBitfieldInsert(N)) 1180 return I; 1181 1182 // Other cases are autogenerated. 1183 break; 1184 case ISD::SHL: { 1185 unsigned Imm, SH, MB, ME; 1186 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) && 1187 isRotateAndMask(N, Imm, true, SH, MB, ME)) { 1188 SDValue Ops[] = { N->getOperand(0).getOperand(0), 1189 getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) }; 1190 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); 1191 } 1192 1193 // Other cases are autogenerated. 1194 break; 1195 } 1196 case ISD::SRL: { 1197 unsigned Imm, SH, MB, ME; 1198 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) && 1199 isRotateAndMask(N, Imm, true, SH, MB, ME)) { 1200 SDValue Ops[] = { N->getOperand(0).getOperand(0), 1201 getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) }; 1202 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); 1203 } 1204 1205 // Other cases are autogenerated. 1206 break; 1207 } 1208 case ISD::SELECT_CC: { 1209 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get(); 1210 EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy(); 1211 bool isPPC64 = (PtrVT == MVT::i64); 1212 1213 // Handle the setcc cases here. select_cc lhs, 0, 1, 0, cc 1214 if (!isPPC64) 1215 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1))) 1216 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2))) 1217 if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3))) 1218 if (N1C->isNullValue() && N3C->isNullValue() && 1219 N2C->getZExtValue() == 1ULL && CC == ISD::SETNE && 1220 // FIXME: Implement this optzn for PPC64. 1221 N->getValueType(0) == MVT::i32) { 1222 SDNode *Tmp = 1223 CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 1224 N->getOperand(0), getI32Imm(~0U)); 1225 return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, 1226 SDValue(Tmp, 0), N->getOperand(0), 1227 SDValue(Tmp, 1)); 1228 } 1229 1230 SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl); 1231 unsigned BROpc = getPredicateForSetCC(CC); 1232 1233 unsigned SelectCCOp; 1234 if (N->getValueType(0) == MVT::i32) 1235 SelectCCOp = PPC::SELECT_CC_I4; 1236 else if (N->getValueType(0) == MVT::i64) 1237 SelectCCOp = PPC::SELECT_CC_I8; 1238 else if (N->getValueType(0) == MVT::f32) 1239 SelectCCOp = PPC::SELECT_CC_F4; 1240 else if (N->getValueType(0) == MVT::f64) 1241 SelectCCOp = PPC::SELECT_CC_F8; 1242 else 1243 SelectCCOp = PPC::SELECT_CC_VRRC; 1244 1245 SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3), 1246 getI32Imm(BROpc) }; 1247 return CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops, 4); 1248 } 1249 case PPCISD::COND_BRANCH: { 1250 // Op #0 is the Chain. 1251 // Op #1 is the PPC::PRED_* number. 1252 // Op #2 is the CR# 1253 // Op #3 is the Dest MBB 1254 // Op #4 is the Flag. 1255 // Prevent PPC::PRED_* from being selected into LI. 1256 SDValue Pred = 1257 getI32Imm(cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()); 1258 SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3), 1259 N->getOperand(0), N->getOperand(4) }; 1260 return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 5); 1261 } 1262 case ISD::BR_CC: { 1263 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 1264 SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl); 1265 SDValue Ops[] = { getI32Imm(getPredicateForSetCC(CC)), CondCode, 1266 N->getOperand(4), N->getOperand(0) }; 1267 return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 4); 1268 } 1269 case ISD::BRIND: { 1270 // FIXME: Should custom lower this. 1271 SDValue Chain = N->getOperand(0); 1272 SDValue Target = N->getOperand(1); 1273 unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8; 1274 unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8; 1275 Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target, 1276 Chain), 0); 1277 return CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain); 1278 } 1279 case PPCISD::TOC_ENTRY: { 1280 assert (PPCSubTarget.isPPC64() && "Only supported for 64-bit ABI"); 1281 1282 // For medium code model, we generate two instructions as described 1283 // below. Otherwise we allow SelectCodeCommon to handle this, selecting 1284 // one of LDtoc, LDtocJTI, and LDtocCPT. 1285 if (TM.getCodeModel() != CodeModel::Medium) 1286 break; 1287 1288 // The first source operand is a TargetGlobalAddress or a 1289 // TargetJumpTable. If it is an externally defined symbol, a symbol 1290 // with common linkage, a function address, or a jump table address, 1291 // we generate: 1292 // LDtocL(<ga:@sym>, ADDIStocHA(%X2, <ga:@sym>)) 1293 // Otherwise we generate: 1294 // ADDItocL(ADDIStocHA(%X2, <ga:@sym>), <ga:@sym>) 1295 SDValue GA = N->getOperand(0); 1296 SDValue TOCbase = N->getOperand(1); 1297 SDNode *Tmp = CurDAG->getMachineNode(PPC::ADDIStocHA, dl, MVT::i64, 1298 TOCbase, GA); 1299 1300 if (isa<JumpTableSDNode>(GA)) 1301 return CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA, 1302 SDValue(Tmp, 0)); 1303 1304 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) { 1305 const GlobalValue *GValue = G->getGlobal(); 1306 const GlobalAlias *GAlias = dyn_cast<GlobalAlias>(GValue); 1307 const GlobalValue *RealGValue = GAlias ? 1308 GAlias->resolveAliasedGlobal(false) : GValue; 1309 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(RealGValue); 1310 assert((GVar || isa<Function>(RealGValue)) && 1311 "Unexpected global value subclass!"); 1312 1313 // An external variable is one without an initializer. For these, 1314 // for variables with common linkage, and for Functions, generate 1315 // the LDtocL form. 1316 if (!GVar || !GVar->hasInitializer() || RealGValue->hasCommonLinkage() || 1317 RealGValue->hasAvailableExternallyLinkage()) 1318 return CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA, 1319 SDValue(Tmp, 0)); 1320 } 1321 1322 return CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64, 1323 SDValue(Tmp, 0), GA); 1324 } 1325 case PPCISD::VADD_SPLAT: { 1326 // Convert: VADD_SPLAT elt, size 1327 // Into: tmp = VSPLTIS[BHW] elt 1328 // VADDU[BHW]M tmp, tmp 1329 // Where: [BHW] = B for size = 1, H for size = 2, W for size = 4 1330 assert(isa<ConstantSDNode>(N->getOperand(0)) && 1331 isa<ConstantSDNode>(N->getOperand(1)) && 1332 "Invalid operand on VADD_SPLAT!"); 1333 int EltSize = N->getConstantOperandVal(1); 1334 unsigned Opc1, Opc2; 1335 EVT VT; 1336 if (EltSize == 1) { 1337 Opc1 = PPC::VSPLTISB; 1338 Opc2 = PPC::VADDUBM; 1339 VT = MVT::v16i8; 1340 } else if (EltSize == 2) { 1341 Opc1 = PPC::VSPLTISH; 1342 Opc2 = PPC::VADDUHM; 1343 VT = MVT::v8i16; 1344 } else { 1345 assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!"); 1346 Opc1 = PPC::VSPLTISW; 1347 Opc2 = PPC::VADDUWM; 1348 VT = MVT::v4i32; 1349 } 1350 SDValue Elt = getI32Imm(N->getConstantOperandVal(0)); 1351 SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, Elt); 1352 SDValue TmpVal = SDValue(Tmp, 0); 1353 return CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal); 1354 } 1355 } 1356 1357 return SelectCode(N); 1358} 1359 1360 1361 1362/// createPPCISelDag - This pass converts a legalized DAG into a 1363/// PowerPC-specific DAG, ready for instruction scheduling. 1364/// 1365FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) { 1366 return new PPCDAGToDAGISel(TM); 1367} 1368 1369static void initializePassOnce(PassRegistry &Registry) { 1370 const char *Name = "PowerPC DAG->DAG Pattern Instruction Selection"; 1371 PassInfo *PI = new PassInfo(Name, "ppc-codegen", &SelectionDAGISel::ID, 0, 1372 false, false); 1373 Registry.registerPass(*PI, true); 1374} 1375 1376void llvm::initializePPCDAGToDAGISelPass(PassRegistry &Registry) { 1377 CALL_ONCE_INITIALIZATION(initializePassOnce); 1378} 1379 1380