PPCISelDAGToDAG.cpp revision b34c79e4bbe5accbb54d0291e8bef5d2bfef32e4
1//===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a pattern matching instruction selector for PowerPC,
11// converting from a legalized dag to a PPC dag.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "ppc-codegen"
16#include "PPC.h"
17#include "MCTargetDesc/PPCPredicates.h"
18#include "PPCTargetMachine.h"
19#include "llvm/CodeGen/MachineFunction.h"
20#include "llvm/CodeGen/MachineInstrBuilder.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/CodeGen/SelectionDAG.h"
23#include "llvm/CodeGen/SelectionDAGISel.h"
24#include "llvm/IR/Constants.h"
25#include "llvm/IR/Function.h"
26#include "llvm/IR/GlobalAlias.h"
27#include "llvm/IR/GlobalValue.h"
28#include "llvm/IR/GlobalVariable.h"
29#include "llvm/IR/Intrinsics.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/Target/TargetOptions.h"
35using namespace llvm;
36
37namespace llvm {
38  void initializePPCDAGToDAGISelPass(PassRegistry&);
39}
40
41namespace {
42  //===--------------------------------------------------------------------===//
43  /// PPCDAGToDAGISel - PPC specific code to select PPC machine
44  /// instructions for SelectionDAG operations.
45  ///
46  class PPCDAGToDAGISel : public SelectionDAGISel {
47    const PPCTargetMachine &TM;
48    const PPCTargetLowering &PPCLowering;
49    const PPCSubtarget &PPCSubTarget;
50    unsigned GlobalBaseReg;
51  public:
52    explicit PPCDAGToDAGISel(PPCTargetMachine &tm)
53      : SelectionDAGISel(tm), TM(tm),
54        PPCLowering(*TM.getTargetLowering()),
55        PPCSubTarget(*TM.getSubtargetImpl()) {
56      initializePPCDAGToDAGISelPass(*PassRegistry::getPassRegistry());
57    }
58
59    virtual bool runOnMachineFunction(MachineFunction &MF) {
60      // Make sure we re-emit a set of the global base reg if necessary
61      GlobalBaseReg = 0;
62      SelectionDAGISel::runOnMachineFunction(MF);
63
64      if (!PPCSubTarget.isSVR4ABI())
65        InsertVRSaveCode(MF);
66
67      return true;
68    }
69
70    /// getI32Imm - Return a target constant with the specified value, of type
71    /// i32.
72    inline SDValue getI32Imm(unsigned Imm) {
73      return CurDAG->getTargetConstant(Imm, MVT::i32);
74    }
75
76    /// getI64Imm - Return a target constant with the specified value, of type
77    /// i64.
78    inline SDValue getI64Imm(uint64_t Imm) {
79      return CurDAG->getTargetConstant(Imm, MVT::i64);
80    }
81
82    /// getSmallIPtrImm - Return a target constant of pointer type.
83    inline SDValue getSmallIPtrImm(unsigned Imm) {
84      return CurDAG->getTargetConstant(Imm, PPCLowering.getPointerTy());
85    }
86
87    /// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s
88    /// with any number of 0s on either side.  The 1s are allowed to wrap from
89    /// LSB to MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.
90    /// 0x0F0F0000 is not, since all 1s are not contiguous.
91    static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME);
92
93
94    /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
95    /// rotate and mask opcode and mask operation.
96    static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask,
97                                unsigned &SH, unsigned &MB, unsigned &ME);
98
99    /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
100    /// base register.  Return the virtual register that holds this value.
101    SDNode *getGlobalBaseReg();
102
103    // Select - Convert the specified operand from a target-independent to a
104    // target-specific node if it hasn't already been changed.
105    SDNode *Select(SDNode *N);
106
107    SDNode *SelectBitfieldInsert(SDNode *N);
108
109    /// SelectCC - Select a comparison of the specified values with the
110    /// specified condition code, returning the CR# of the expression.
111    SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, DebugLoc dl);
112
113    /// SelectAddrImm - Returns true if the address N can be represented by
114    /// a base register plus a signed 16-bit displacement [r+imm].
115    bool SelectAddrImm(SDValue N, SDValue &Disp,
116                       SDValue &Base) {
117      return PPCLowering.SelectAddressRegImm(N, Disp, Base, *CurDAG);
118    }
119
120    /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
121    /// immediate field.  Because preinc imms have already been validated, just
122    /// accept it.
123    bool SelectAddrImmOffs(SDValue N, SDValue &Out) const {
124      if (isa<ConstantSDNode>(N) || N.getOpcode() == PPCISD::Lo ||
125          N.getOpcode() == ISD::TargetGlobalAddress) {
126        Out = N;
127        return true;
128      }
129
130      return false;
131    }
132
133    /// SelectAddrIdxOffs - Return true if the operand is valid for a preinc
134    /// index field.  Because preinc imms have already been validated, just
135    /// accept it.
136    bool SelectAddrIdxOffs(SDValue N, SDValue &Out) const {
137      if (isa<ConstantSDNode>(N) || N.getOpcode() == PPCISD::Lo ||
138          N.getOpcode() == ISD::TargetGlobalAddress)
139        return false;
140
141      Out = N;
142      return true;
143    }
144
145    /// SelectAddrIdx - Given the specified addressed, check to see if it can be
146    /// represented as an indexed [r+r] operation.  Returns false if it can
147    /// be represented by [r+imm], which are preferred.
148    bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) {
149      return PPCLowering.SelectAddressRegReg(N, Base, Index, *CurDAG);
150    }
151
152    /// SelectAddrIdxOnly - Given the specified addressed, force it to be
153    /// represented as an indexed [r+r] operation.
154    bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) {
155      return PPCLowering.SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
156    }
157
158    /// SelectAddrImmShift - Returns true if the address N can be represented by
159    /// a base register plus a signed 14-bit displacement [r+imm*4].  Suitable
160    /// for use by STD and friends.
161    bool SelectAddrImmShift(SDValue N, SDValue &Disp, SDValue &Base) {
162      return PPCLowering.SelectAddressRegImmShift(N, Disp, Base, *CurDAG);
163    }
164
165    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
166    /// inline asm expressions.  It is always correct to compute the value into
167    /// a register.  The case of adding a (possibly relocatable) constant to a
168    /// register can be improved, but it is wrong to substitute Reg+Reg for
169    /// Reg in an asm, because the load or store opcode would have to change.
170   virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
171                                              char ConstraintCode,
172                                              std::vector<SDValue> &OutOps) {
173      OutOps.push_back(Op);
174      return false;
175    }
176
177    void InsertVRSaveCode(MachineFunction &MF);
178
179    virtual const char *getPassName() const {
180      return "PowerPC DAG->DAG Pattern Instruction Selection";
181    }
182
183// Include the pieces autogenerated from the target description.
184#include "PPCGenDAGISel.inc"
185
186private:
187    SDNode *SelectSETCC(SDNode *N);
188  };
189}
190
191/// InsertVRSaveCode - Once the entire function has been instruction selected,
192/// all virtual registers are created and all machine instructions are built,
193/// check to see if we need to save/restore VRSAVE.  If so, do it.
194void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) {
195  // Check to see if this function uses vector registers, which means we have to
196  // save and restore the VRSAVE register and update it with the regs we use.
197  //
198  // In this case, there will be virtual registers of vector type created
199  // by the scheduler.  Detect them now.
200  bool HasVectorVReg = false;
201  for (unsigned i = 0, e = RegInfo->getNumVirtRegs(); i != e; ++i) {
202    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
203    if (RegInfo->getRegClass(Reg) == &PPC::VRRCRegClass) {
204      HasVectorVReg = true;
205      break;
206    }
207  }
208  if (!HasVectorVReg) return;  // nothing to do.
209
210  // If we have a vector register, we want to emit code into the entry and exit
211  // blocks to save and restore the VRSAVE register.  We do this here (instead
212  // of marking all vector instructions as clobbering VRSAVE) for two reasons:
213  //
214  // 1. This (trivially) reduces the load on the register allocator, by not
215  //    having to represent the live range of the VRSAVE register.
216  // 2. This (more significantly) allows us to create a temporary virtual
217  //    register to hold the saved VRSAVE value, allowing this temporary to be
218  //    register allocated, instead of forcing it to be spilled to the stack.
219
220  // Create two vregs - one to hold the VRSAVE register that is live-in to the
221  // function and one for the value after having bits or'd into it.
222  unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
223  unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
224
225  const TargetInstrInfo &TII = *TM.getInstrInfo();
226  MachineBasicBlock &EntryBB = *Fn.begin();
227  DebugLoc dl;
228  // Emit the following code into the entry block:
229  // InVRSAVE = MFVRSAVE
230  // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE
231  // MTVRSAVE UpdatedVRSAVE
232  MachineBasicBlock::iterator IP = EntryBB.begin();  // Insert Point
233  BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE);
234  BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE),
235          UpdatedVRSAVE).addReg(InVRSAVE);
236  BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE);
237
238  // Find all return blocks, outputting a restore in each epilog.
239  for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
240    if (!BB->empty() && BB->back().isReturn()) {
241      IP = BB->end(); --IP;
242
243      // Skip over all terminator instructions, which are part of the return
244      // sequence.
245      MachineBasicBlock::iterator I2 = IP;
246      while (I2 != BB->begin() && (--I2)->isTerminator())
247        IP = I2;
248
249      // Emit: MTVRSAVE InVRSave
250      BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE);
251    }
252  }
253}
254
255
256/// getGlobalBaseReg - Output the instructions required to put the
257/// base address to use for accessing globals into a register.
258///
259SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
260  if (!GlobalBaseReg) {
261    const TargetInstrInfo &TII = *TM.getInstrInfo();
262    // Insert the set of GlobalBaseReg into the first MBB of the function
263    MachineBasicBlock &FirstMBB = MF->front();
264    MachineBasicBlock::iterator MBBI = FirstMBB.begin();
265    DebugLoc dl;
266
267    if (PPCLowering.getPointerTy() == MVT::i32) {
268      GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
269      BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
270      BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
271    } else {
272      GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RCRegClass);
273      BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8));
274      BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg);
275    }
276  }
277  return CurDAG->getRegister(GlobalBaseReg,
278                             PPCLowering.getPointerTy()).getNode();
279}
280
281/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
282/// or 64-bit immediate, and if the value can be accurately represented as a
283/// sign extension from a 16-bit value.  If so, this returns true and the
284/// immediate.
285static bool isIntS16Immediate(SDNode *N, short &Imm) {
286  if (N->getOpcode() != ISD::Constant)
287    return false;
288
289  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
290  if (N->getValueType(0) == MVT::i32)
291    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
292  else
293    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
294}
295
296static bool isIntS16Immediate(SDValue Op, short &Imm) {
297  return isIntS16Immediate(Op.getNode(), Imm);
298}
299
300
301/// isInt32Immediate - This method tests to see if the node is a 32-bit constant
302/// operand. If so Imm will receive the 32-bit value.
303static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
304  if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
305    Imm = cast<ConstantSDNode>(N)->getZExtValue();
306    return true;
307  }
308  return false;
309}
310
311/// isInt64Immediate - This method tests to see if the node is a 64-bit constant
312/// operand.  If so Imm will receive the 64-bit value.
313static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
314  if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
315    Imm = cast<ConstantSDNode>(N)->getZExtValue();
316    return true;
317  }
318  return false;
319}
320
321// isInt32Immediate - This method tests to see if a constant operand.
322// If so Imm will receive the 32 bit value.
323static bool isInt32Immediate(SDValue N, unsigned &Imm) {
324  return isInt32Immediate(N.getNode(), Imm);
325}
326
327
328// isOpcWithIntImmediate - This method tests to see if the node is a specific
329// opcode and that it has a immediate integer right operand.
330// If so Imm will receive the 32 bit value.
331static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
332  return N->getOpcode() == Opc
333         && isInt32Immediate(N->getOperand(1).getNode(), Imm);
334}
335
336bool PPCDAGToDAGISel::isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) {
337  if (isShiftedMask_32(Val)) {
338    // look for the first non-zero bit
339    MB = CountLeadingZeros_32(Val);
340    // look for the first zero bit after the run of ones
341    ME = CountLeadingZeros_32((Val - 1) ^ Val);
342    return true;
343  } else {
344    Val = ~Val; // invert mask
345    if (isShiftedMask_32(Val)) {
346      // effectively look for the first zero bit
347      ME = CountLeadingZeros_32(Val) - 1;
348      // effectively look for the first one bit after the run of zeros
349      MB = CountLeadingZeros_32((Val - 1) ^ Val) + 1;
350      return true;
351    }
352  }
353  // no run present
354  return false;
355}
356
357bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
358                                      bool isShiftMask, unsigned &SH,
359                                      unsigned &MB, unsigned &ME) {
360  // Don't even go down this path for i64, since different logic will be
361  // necessary for rldicl/rldicr/rldimi.
362  if (N->getValueType(0) != MVT::i32)
363    return false;
364
365  unsigned Shift  = 32;
366  unsigned Indeterminant = ~0;  // bit mask marking indeterminant results
367  unsigned Opcode = N->getOpcode();
368  if (N->getNumOperands() != 2 ||
369      !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31))
370    return false;
371
372  if (Opcode == ISD::SHL) {
373    // apply shift left to mask if it comes first
374    if (isShiftMask) Mask = Mask << Shift;
375    // determine which bits are made indeterminant by shift
376    Indeterminant = ~(0xFFFFFFFFu << Shift);
377  } else if (Opcode == ISD::SRL) {
378    // apply shift right to mask if it comes first
379    if (isShiftMask) Mask = Mask >> Shift;
380    // determine which bits are made indeterminant by shift
381    Indeterminant = ~(0xFFFFFFFFu >> Shift);
382    // adjust for the left rotate
383    Shift = 32 - Shift;
384  } else if (Opcode == ISD::ROTL) {
385    Indeterminant = 0;
386  } else {
387    return false;
388  }
389
390  // if the mask doesn't intersect any Indeterminant bits
391  if (Mask && !(Mask & Indeterminant)) {
392    SH = Shift & 31;
393    // make sure the mask is still a mask (wrap arounds may not be)
394    return isRunOfOnes(Mask, MB, ME);
395  }
396  return false;
397}
398
399/// SelectBitfieldInsert - turn an or of two masked values into
400/// the rotate left word immediate then mask insert (rlwimi) instruction.
401SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) {
402  SDValue Op0 = N->getOperand(0);
403  SDValue Op1 = N->getOperand(1);
404  DebugLoc dl = N->getDebugLoc();
405
406  APInt LKZ, LKO, RKZ, RKO;
407  CurDAG->ComputeMaskedBits(Op0, LKZ, LKO);
408  CurDAG->ComputeMaskedBits(Op1, RKZ, RKO);
409
410  unsigned TargetMask = LKZ.getZExtValue();
411  unsigned InsertMask = RKZ.getZExtValue();
412
413  if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
414    unsigned Op0Opc = Op0.getOpcode();
415    unsigned Op1Opc = Op1.getOpcode();
416    unsigned Value, SH = 0;
417    TargetMask = ~TargetMask;
418    InsertMask = ~InsertMask;
419
420    // If the LHS has a foldable shift and the RHS does not, then swap it to the
421    // RHS so that we can fold the shift into the insert.
422    if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
423      if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
424          Op0.getOperand(0).getOpcode() == ISD::SRL) {
425        if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
426            Op1.getOperand(0).getOpcode() != ISD::SRL) {
427          std::swap(Op0, Op1);
428          std::swap(Op0Opc, Op1Opc);
429          std::swap(TargetMask, InsertMask);
430        }
431      }
432    } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
433      if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
434          Op1.getOperand(0).getOpcode() != ISD::SRL) {
435        std::swap(Op0, Op1);
436        std::swap(Op0Opc, Op1Opc);
437        std::swap(TargetMask, InsertMask);
438      }
439    }
440
441    unsigned MB, ME;
442    if (InsertMask && isRunOfOnes(InsertMask, MB, ME)) {
443      SDValue Tmp1, Tmp2;
444
445      if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
446          isInt32Immediate(Op1.getOperand(1), Value)) {
447        Op1 = Op1.getOperand(0);
448        SH  = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
449      }
450      if (Op1Opc == ISD::AND) {
451        unsigned SHOpc = Op1.getOperand(0).getOpcode();
452        if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) &&
453            isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
454          Op1 = Op1.getOperand(0).getOperand(0);
455          SH  = (SHOpc == ISD::SHL) ? Value : 32 - Value;
456        } else {
457          Op1 = Op1.getOperand(0);
458        }
459      }
460
461      SH &= 31;
462      SDValue Ops[] = { Op0, Op1, getI32Imm(SH), getI32Imm(MB),
463                          getI32Imm(ME) };
464      return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops, 5);
465    }
466  }
467  return 0;
468}
469
470/// SelectCC - Select a comparison of the specified values with the specified
471/// condition code, returning the CR# of the expression.
472SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS,
473                                    ISD::CondCode CC, DebugLoc dl) {
474  // Always select the LHS.
475  unsigned Opc;
476
477  if (LHS.getValueType() == MVT::i32) {
478    unsigned Imm;
479    if (CC == ISD::SETEQ || CC == ISD::SETNE) {
480      if (isInt32Immediate(RHS, Imm)) {
481        // SETEQ/SETNE comparison with 16-bit immediate, fold it.
482        if (isUInt<16>(Imm))
483          return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
484                                                getI32Imm(Imm & 0xFFFF)), 0);
485        // If this is a 16-bit signed immediate, fold it.
486        if (isInt<16>((int)Imm))
487          return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
488                                                getI32Imm(Imm & 0xFFFF)), 0);
489
490        // For non-equality comparisons, the default code would materialize the
491        // constant, then compare against it, like this:
492        //   lis r2, 4660
493        //   ori r2, r2, 22136
494        //   cmpw cr0, r3, r2
495        // Since we are just comparing for equality, we can emit this instead:
496        //   xoris r0,r3,0x1234
497        //   cmplwi cr0,r0,0x5678
498        //   beq cr0,L6
499        SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS,
500                                           getI32Imm(Imm >> 16)), 0);
501        return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor,
502                                              getI32Imm(Imm & 0xFFFF)), 0);
503      }
504      Opc = PPC::CMPLW;
505    } else if (ISD::isUnsignedIntSetCC(CC)) {
506      if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm))
507        return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
508                                              getI32Imm(Imm & 0xFFFF)), 0);
509      Opc = PPC::CMPLW;
510    } else {
511      short SImm;
512      if (isIntS16Immediate(RHS, SImm))
513        return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
514                                              getI32Imm((int)SImm & 0xFFFF)),
515                         0);
516      Opc = PPC::CMPW;
517    }
518  } else if (LHS.getValueType() == MVT::i64) {
519    uint64_t Imm;
520    if (CC == ISD::SETEQ || CC == ISD::SETNE) {
521      if (isInt64Immediate(RHS.getNode(), Imm)) {
522        // SETEQ/SETNE comparison with 16-bit immediate, fold it.
523        if (isUInt<16>(Imm))
524          return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
525                                                getI32Imm(Imm & 0xFFFF)), 0);
526        // If this is a 16-bit signed immediate, fold it.
527        if (isInt<16>(Imm))
528          return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
529                                                getI32Imm(Imm & 0xFFFF)), 0);
530
531        // For non-equality comparisons, the default code would materialize the
532        // constant, then compare against it, like this:
533        //   lis r2, 4660
534        //   ori r2, r2, 22136
535        //   cmpd cr0, r3, r2
536        // Since we are just comparing for equality, we can emit this instead:
537        //   xoris r0,r3,0x1234
538        //   cmpldi cr0,r0,0x5678
539        //   beq cr0,L6
540        if (isUInt<32>(Imm)) {
541          SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS,
542                                             getI64Imm(Imm >> 16)), 0);
543          return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor,
544                                                getI64Imm(Imm & 0xFFFF)), 0);
545        }
546      }
547      Opc = PPC::CMPLD;
548    } else if (ISD::isUnsignedIntSetCC(CC)) {
549      if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm))
550        return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
551                                              getI64Imm(Imm & 0xFFFF)), 0);
552      Opc = PPC::CMPLD;
553    } else {
554      short SImm;
555      if (isIntS16Immediate(RHS, SImm))
556        return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
557                                              getI64Imm(SImm & 0xFFFF)),
558                         0);
559      Opc = PPC::CMPD;
560    }
561  } else if (LHS.getValueType() == MVT::f32) {
562    Opc = PPC::FCMPUS;
563  } else {
564    assert(LHS.getValueType() == MVT::f64 && "Unknown vt!");
565    Opc = PPC::FCMPUD;
566  }
567  return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0);
568}
569
570static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) {
571  switch (CC) {
572  case ISD::SETUEQ:
573  case ISD::SETONE:
574  case ISD::SETOLE:
575  case ISD::SETOGE:
576    llvm_unreachable("Should be lowered by legalize!");
577  default: llvm_unreachable("Unknown condition!");
578  case ISD::SETOEQ:
579  case ISD::SETEQ:  return PPC::PRED_EQ;
580  case ISD::SETUNE:
581  case ISD::SETNE:  return PPC::PRED_NE;
582  case ISD::SETOLT:
583  case ISD::SETLT:  return PPC::PRED_LT;
584  case ISD::SETULE:
585  case ISD::SETLE:  return PPC::PRED_LE;
586  case ISD::SETOGT:
587  case ISD::SETGT:  return PPC::PRED_GT;
588  case ISD::SETUGE:
589  case ISD::SETGE:  return PPC::PRED_GE;
590  case ISD::SETO:   return PPC::PRED_NU;
591  case ISD::SETUO:  return PPC::PRED_UN;
592    // These two are invalid for floating point.  Assume we have int.
593  case ISD::SETULT: return PPC::PRED_LT;
594  case ISD::SETUGT: return PPC::PRED_GT;
595  }
596}
597
598/// getCRIdxForSetCC - Return the index of the condition register field
599/// associated with the SetCC condition, and whether or not the field is
600/// treated as inverted.  That is, lt = 0; ge = 0 inverted.
601///
602/// If this returns with Other != -1, then the returned comparison is an or of
603/// two simpler comparisons.  In this case, Invert is guaranteed to be false.
604static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert, int &Other) {
605  Invert = false;
606  Other = -1;
607  switch (CC) {
608  default: llvm_unreachable("Unknown condition!");
609  case ISD::SETOLT:
610  case ISD::SETLT:  return 0;                  // Bit #0 = SETOLT
611  case ISD::SETOGT:
612  case ISD::SETGT:  return 1;                  // Bit #1 = SETOGT
613  case ISD::SETOEQ:
614  case ISD::SETEQ:  return 2;                  // Bit #2 = SETOEQ
615  case ISD::SETUO:  return 3;                  // Bit #3 = SETUO
616  case ISD::SETUGE:
617  case ISD::SETGE:  Invert = true; return 0;   // !Bit #0 = SETUGE
618  case ISD::SETULE:
619  case ISD::SETLE:  Invert = true; return 1;   // !Bit #1 = SETULE
620  case ISD::SETUNE:
621  case ISD::SETNE:  Invert = true; return 2;   // !Bit #2 = SETUNE
622  case ISD::SETO:   Invert = true; return 3;   // !Bit #3 = SETO
623  case ISD::SETUEQ:
624  case ISD::SETOGE:
625  case ISD::SETOLE:
626  case ISD::SETONE:
627    llvm_unreachable("Invalid branch code: should be expanded by legalize");
628  // These are invalid for floating point.  Assume integer.
629  case ISD::SETULT: return 0;
630  case ISD::SETUGT: return 1;
631  }
632}
633
634// getVCmpInst: return the vector compare instruction for the specified
635// vector type and condition code. Since this is for altivec specific code,
636// only support the altivec types (v16i8, v8i16, v4i32, and v4f32).
637static unsigned int getVCmpInst(MVT::SimpleValueType VecVT, ISD::CondCode CC) {
638  switch (CC) {
639    case ISD::SETEQ:
640    case ISD::SETUEQ:
641    case ISD::SETNE:
642    case ISD::SETUNE:
643      if (VecVT == MVT::v16i8)
644        return PPC::VCMPEQUB;
645      else if (VecVT == MVT::v8i16)
646        return PPC::VCMPEQUH;
647      else if (VecVT == MVT::v4i32)
648        return PPC::VCMPEQUW;
649      // v4f32 != v4f32 could be translate to unordered not equal
650      else if (VecVT == MVT::v4f32)
651        return PPC::VCMPEQFP;
652      break;
653    case ISD::SETLT:
654    case ISD::SETGT:
655    case ISD::SETLE:
656    case ISD::SETGE:
657      if (VecVT == MVT::v16i8)
658        return PPC::VCMPGTSB;
659      else if (VecVT == MVT::v8i16)
660        return PPC::VCMPGTSH;
661      else if (VecVT == MVT::v4i32)
662        return PPC::VCMPGTSW;
663      else if (VecVT == MVT::v4f32)
664        return PPC::VCMPGTFP;
665      break;
666    case ISD::SETULT:
667    case ISD::SETUGT:
668    case ISD::SETUGE:
669    case ISD::SETULE:
670      if (VecVT == MVT::v16i8)
671        return PPC::VCMPGTUB;
672      else if (VecVT == MVT::v8i16)
673        return PPC::VCMPGTUH;
674      else if (VecVT == MVT::v4i32)
675        return PPC::VCMPGTUW;
676      break;
677    case ISD::SETOEQ:
678      if (VecVT == MVT::v4f32)
679        return PPC::VCMPEQFP;
680      break;
681    case ISD::SETOLT:
682    case ISD::SETOGT:
683    case ISD::SETOLE:
684      if (VecVT == MVT::v4f32)
685        return PPC::VCMPGTFP;
686      break;
687    case ISD::SETOGE:
688      if (VecVT == MVT::v4f32)
689        return PPC::VCMPGEFP;
690      break;
691    default:
692      break;
693  }
694  llvm_unreachable("Invalid integer vector compare condition");
695}
696
697// getVCmpEQInst: return the equal compare instruction for the specified vector
698// type. Since this is for altivec specific code, only support the altivec
699// types (v16i8, v8i16, v4i32, and v4f32).
700static unsigned int getVCmpEQInst(MVT::SimpleValueType VecVT) {
701  switch (VecVT) {
702    case MVT::v16i8:
703      return PPC::VCMPEQUB;
704    case MVT::v8i16:
705      return PPC::VCMPEQUH;
706    case MVT::v4i32:
707      return PPC::VCMPEQUW;
708    case MVT::v4f32:
709      return PPC::VCMPEQFP;
710    default:
711      llvm_unreachable("Invalid integer vector compare condition");
712  }
713}
714
715
716SDNode *PPCDAGToDAGISel::SelectSETCC(SDNode *N) {
717  DebugLoc dl = N->getDebugLoc();
718  unsigned Imm;
719  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
720  EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy();
721  bool isPPC64 = (PtrVT == MVT::i64);
722
723  if (isInt32Immediate(N->getOperand(1), Imm)) {
724    // We can codegen setcc op, imm very efficiently compared to a brcond.
725    // Check for those cases here.
726    // setcc op, 0
727    if (Imm == 0) {
728      SDValue Op = N->getOperand(0);
729      switch (CC) {
730      default: break;
731      case ISD::SETEQ: {
732        Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0);
733        SDValue Ops[] = { Op, getI32Imm(27), getI32Imm(5), getI32Imm(31) };
734        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
735      }
736      case ISD::SETNE: {
737        if (isPPC64) break;
738        SDValue AD =
739          SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
740                                         Op, getI32Imm(~0U)), 0);
741        return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op,
742                                    AD.getValue(1));
743      }
744      case ISD::SETLT: {
745        SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
746        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
747      }
748      case ISD::SETGT: {
749        SDValue T =
750          SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0);
751        T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0);
752        SDValue Ops[] = { T, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
753        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
754      }
755      }
756    } else if (Imm == ~0U) {        // setcc op, -1
757      SDValue Op = N->getOperand(0);
758      switch (CC) {
759      default: break;
760      case ISD::SETEQ:
761        if (isPPC64) break;
762        Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
763                                            Op, getI32Imm(1)), 0);
764        return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
765                              SDValue(CurDAG->getMachineNode(PPC::LI, dl,
766                                                             MVT::i32,
767                                                             getI32Imm(0)), 0),
768                                      Op.getValue(1));
769      case ISD::SETNE: {
770        if (isPPC64) break;
771        Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0);
772        SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
773                                            Op, getI32Imm(~0U));
774        return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0),
775                                    Op, SDValue(AD, 1));
776      }
777      case ISD::SETLT: {
778        SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op,
779                                                    getI32Imm(1)), 0);
780        SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD,
781                                                    Op), 0);
782        SDValue Ops[] = { AN, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
783        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
784      }
785      case ISD::SETGT: {
786        SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
787        Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops, 4),
788                     0);
789        return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op,
790                                    getI32Imm(1));
791      }
792      }
793    }
794  }
795
796  SDValue LHS = N->getOperand(0);
797  SDValue RHS = N->getOperand(1);
798
799  // Altivec Vector compare instructions do not set any CR register by default and
800  // vector compare operations return the same type as the operands.
801  if (LHS.getValueType().isVector()) {
802    EVT VecVT = LHS.getValueType();
803    MVT::SimpleValueType VT = VecVT.getSimpleVT().SimpleTy;
804    unsigned int VCmpInst = getVCmpInst(VT, CC);
805
806    switch (CC) {
807      case ISD::SETEQ:
808      case ISD::SETOEQ:
809      case ISD::SETUEQ:
810        return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, LHS, RHS);
811      case ISD::SETNE:
812      case ISD::SETONE:
813      case ISD::SETUNE: {
814        SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, VecVT, LHS, RHS), 0);
815        return CurDAG->SelectNodeTo(N, PPC::VNOR, VecVT, VCmp, VCmp);
816      }
817      case ISD::SETLT:
818      case ISD::SETOLT:
819      case ISD::SETULT:
820        return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, RHS, LHS);
821      case ISD::SETGT:
822      case ISD::SETOGT:
823      case ISD::SETUGT:
824        return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, LHS, RHS);
825      case ISD::SETGE:
826      case ISD::SETOGE:
827      case ISD::SETUGE: {
828        // Small optimization: Altivec provides a 'Vector Compare Greater Than
829        // or Equal To' instruction (vcmpgefp), so in this case there is no
830        // need for extra logic for the equal compare.
831        if (VecVT.getSimpleVT().isFloatingPoint()) {
832          return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, LHS, RHS);
833        } else {
834          SDValue VCmpGT(CurDAG->getMachineNode(VCmpInst, dl, VecVT, LHS, RHS), 0);
835          unsigned int VCmpEQInst = getVCmpEQInst(VT);
836          SDValue VCmpEQ(CurDAG->getMachineNode(VCmpEQInst, dl, VecVT, LHS, RHS), 0);
837          return CurDAG->SelectNodeTo(N, PPC::VOR, VecVT, VCmpGT, VCmpEQ);
838        }
839      }
840      case ISD::SETLE:
841      case ISD::SETOLE:
842      case ISD::SETULE: {
843        SDValue VCmpLE(CurDAG->getMachineNode(VCmpInst, dl, VecVT, RHS, LHS), 0);
844        unsigned int VCmpEQInst = getVCmpEQInst(VT);
845        SDValue VCmpEQ(CurDAG->getMachineNode(VCmpEQInst, dl, VecVT, LHS, RHS), 0);
846        return CurDAG->SelectNodeTo(N, PPC::VOR, VecVT, VCmpLE, VCmpEQ);
847      }
848      default:
849        llvm_unreachable("Invalid vector compare type: should be expanded by legalize");
850    }
851  }
852
853  bool Inv;
854  int OtherCondIdx;
855  unsigned Idx = getCRIdxForSetCC(CC, Inv, OtherCondIdx);
856  SDValue CCReg = SelectCC(LHS, RHS, CC, dl);
857  SDValue IntCR;
858
859  // Force the ccreg into CR7.
860  SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
861
862  SDValue InFlag(0, 0);  // Null incoming flag value.
863  CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg,
864                               InFlag).getValue(1);
865
866  if (PPCSubTarget.hasMFOCRF() && OtherCondIdx == -1)
867    IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg,
868                                           CCReg), 0);
869  else
870    IntCR = SDValue(CurDAG->getMachineNode(PPC::MFCRpseud, dl, MVT::i32,
871                                           CR7Reg, CCReg), 0);
872
873  SDValue Ops[] = { IntCR, getI32Imm((32-(3-Idx)) & 31),
874                      getI32Imm(31), getI32Imm(31) };
875  if (OtherCondIdx == -1 && !Inv)
876    return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
877
878  // Get the specified bit.
879  SDValue Tmp =
880    SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops, 4), 0);
881  if (Inv) {
882    assert(OtherCondIdx == -1 && "Can't have split plus negation");
883    return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1));
884  }
885
886  // Otherwise, we have to turn an operation like SETONE -> SETOLT | SETOGT.
887  // We already got the bit for the first part of the comparison (e.g. SETULE).
888
889  // Get the other bit of the comparison.
890  Ops[1] = getI32Imm((32-(3-OtherCondIdx)) & 31);
891  SDValue OtherCond =
892    SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops, 4), 0);
893
894  return CurDAG->SelectNodeTo(N, PPC::OR, MVT::i32, Tmp, OtherCond);
895}
896
897
898// Select - Convert the specified operand from a target-independent to a
899// target-specific node if it hasn't already been changed.
900SDNode *PPCDAGToDAGISel::Select(SDNode *N) {
901  DebugLoc dl = N->getDebugLoc();
902  if (N->isMachineOpcode())
903    return NULL;   // Already selected.
904
905  switch (N->getOpcode()) {
906  default: break;
907
908  case ISD::Constant: {
909    if (N->getValueType(0) == MVT::i64) {
910      // Get 64 bit value.
911      int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue();
912      // Assume no remaining bits.
913      unsigned Remainder = 0;
914      // Assume no shift required.
915      unsigned Shift = 0;
916
917      // If it can't be represented as a 32 bit value.
918      if (!isInt<32>(Imm)) {
919        Shift = CountTrailingZeros_64(Imm);
920        int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
921
922        // If the shifted value fits 32 bits.
923        if (isInt<32>(ImmSh)) {
924          // Go with the shifted value.
925          Imm = ImmSh;
926        } else {
927          // Still stuck with a 64 bit value.
928          Remainder = Imm;
929          Shift = 32;
930          Imm >>= 32;
931        }
932      }
933
934      // Intermediate operand.
935      SDNode *Result;
936
937      // Handle first 32 bits.
938      unsigned Lo = Imm & 0xFFFF;
939      unsigned Hi = (Imm >> 16) & 0xFFFF;
940
941      // Simple value.
942      if (isInt<16>(Imm)) {
943       // Just the Lo bits.
944        Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, getI32Imm(Lo));
945      } else if (Lo) {
946        // Handle the Hi bits.
947        unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8;
948        Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi));
949        // And Lo bits.
950        Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
951                                        SDValue(Result, 0), getI32Imm(Lo));
952      } else {
953       // Just the Hi bits.
954        Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi));
955      }
956
957      // If no shift, we're done.
958      if (!Shift) return Result;
959
960      // Shift for next step if the upper 32-bits were not zero.
961      if (Imm) {
962        Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64,
963                                        SDValue(Result, 0),
964                                        getI32Imm(Shift),
965                                        getI32Imm(63 - Shift));
966      }
967
968      // Add in the last bits as required.
969      if ((Hi = (Remainder >> 16) & 0xFFFF)) {
970        Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64,
971                                        SDValue(Result, 0), getI32Imm(Hi));
972      }
973      if ((Lo = Remainder & 0xFFFF)) {
974        Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
975                                        SDValue(Result, 0), getI32Imm(Lo));
976      }
977
978      return Result;
979    }
980    break;
981  }
982
983  case ISD::SETCC:
984    return SelectSETCC(N);
985  case PPCISD::GlobalBaseReg:
986    return getGlobalBaseReg();
987
988  case ISD::FrameIndex: {
989    int FI = cast<FrameIndexSDNode>(N)->getIndex();
990    SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
991    unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
992    if (N->hasOneUse())
993      return CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), TFI,
994                                  getSmallIPtrImm(0));
995    return CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI,
996                                  getSmallIPtrImm(0));
997  }
998
999  case PPCISD::MFCR: {
1000    SDValue InFlag = N->getOperand(1);
1001    // Use MFOCRF if supported.
1002    if (PPCSubTarget.hasMFOCRF())
1003      return CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32,
1004                                    N->getOperand(0), InFlag);
1005    else
1006      return CurDAG->getMachineNode(PPC::MFCRpseud, dl, MVT::i32,
1007                                    N->getOperand(0), InFlag);
1008  }
1009
1010  case ISD::SDIV: {
1011    // FIXME: since this depends on the setting of the carry flag from the srawi
1012    //        we should really be making notes about that for the scheduler.
1013    // FIXME: It sure would be nice if we could cheaply recognize the
1014    //        srl/add/sra pattern the dag combiner will generate for this as
1015    //        sra/addze rather than having to handle sdiv ourselves.  oh well.
1016    unsigned Imm;
1017    if (isInt32Immediate(N->getOperand(1), Imm)) {
1018      SDValue N0 = N->getOperand(0);
1019      if ((signed)Imm > 0 && isPowerOf2_32(Imm)) {
1020        SDNode *Op =
1021          CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
1022                                 N0, getI32Imm(Log2_32(Imm)));
1023        return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
1024                                    SDValue(Op, 0), SDValue(Op, 1));
1025      } else if ((signed)Imm < 0 && isPowerOf2_32(-Imm)) {
1026        SDNode *Op =
1027          CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
1028                                 N0, getI32Imm(Log2_32(-Imm)));
1029        SDValue PT =
1030          SDValue(CurDAG->getMachineNode(PPC::ADDZE, dl, MVT::i32,
1031                                         SDValue(Op, 0), SDValue(Op, 1)),
1032                    0);
1033        return CurDAG->SelectNodeTo(N, PPC::NEG, MVT::i32, PT);
1034      }
1035    }
1036
1037    // Other cases are autogenerated.
1038    break;
1039  }
1040
1041  case ISD::LOAD: {
1042    // Handle preincrement loads.
1043    LoadSDNode *LD = cast<LoadSDNode>(N);
1044    EVT LoadedVT = LD->getMemoryVT();
1045
1046    // Normal loads are handled by code generated from the .td file.
1047    if (LD->getAddressingMode() != ISD::PRE_INC)
1048      break;
1049
1050    SDValue Offset = LD->getOffset();
1051    if (isa<ConstantSDNode>(Offset) ||
1052        Offset.getOpcode() == ISD::TargetGlobalAddress) {
1053
1054      unsigned Opcode;
1055      bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
1056      if (LD->getValueType(0) != MVT::i64) {
1057        // Handle PPC32 integer and normal FP loads.
1058        assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
1059        switch (LoadedVT.getSimpleVT().SimpleTy) {
1060          default: llvm_unreachable("Invalid PPC load type!");
1061          case MVT::f64: Opcode = PPC::LFDU; break;
1062          case MVT::f32: Opcode = PPC::LFSU; break;
1063          case MVT::i32: Opcode = PPC::LWZU; break;
1064          case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
1065          case MVT::i1:
1066          case MVT::i8:  Opcode = PPC::LBZU; break;
1067        }
1068      } else {
1069        assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
1070        assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
1071        switch (LoadedVT.getSimpleVT().SimpleTy) {
1072          default: llvm_unreachable("Invalid PPC load type!");
1073          case MVT::i64: Opcode = PPC::LDU; break;
1074          case MVT::i32: Opcode = PPC::LWZU8; break;
1075          case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
1076          case MVT::i1:
1077          case MVT::i8:  Opcode = PPC::LBZU8; break;
1078        }
1079      }
1080
1081      SDValue Chain = LD->getChain();
1082      SDValue Base = LD->getBasePtr();
1083      SDValue Ops[] = { Offset, Base, Chain };
1084      return CurDAG->getMachineNode(Opcode, dl, LD->getValueType(0),
1085                                    PPCLowering.getPointerTy(),
1086                                    MVT::Other, Ops, 3);
1087    } else {
1088      unsigned Opcode;
1089      bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
1090      if (LD->getValueType(0) != MVT::i64) {
1091        // Handle PPC32 integer and normal FP loads.
1092        assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
1093        switch (LoadedVT.getSimpleVT().SimpleTy) {
1094          default: llvm_unreachable("Invalid PPC load type!");
1095          case MVT::f64: Opcode = PPC::LFDUX; break;
1096          case MVT::f32: Opcode = PPC::LFSUX; break;
1097          case MVT::i32: Opcode = PPC::LWZUX; break;
1098          case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break;
1099          case MVT::i1:
1100          case MVT::i8:  Opcode = PPC::LBZUX; break;
1101        }
1102      } else {
1103        assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
1104        assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) &&
1105               "Invalid sext update load");
1106        switch (LoadedVT.getSimpleVT().SimpleTy) {
1107          default: llvm_unreachable("Invalid PPC load type!");
1108          case MVT::i64: Opcode = PPC::LDUX; break;
1109          case MVT::i32: Opcode = isSExt ? PPC::LWAUX  : PPC::LWZUX8; break;
1110          case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break;
1111          case MVT::i1:
1112          case MVT::i8:  Opcode = PPC::LBZUX8; break;
1113        }
1114      }
1115
1116      SDValue Chain = LD->getChain();
1117      SDValue Base = LD->getBasePtr();
1118      SDValue Ops[] = { Offset, Base, Chain };
1119      return CurDAG->getMachineNode(Opcode, dl, LD->getValueType(0),
1120                                    PPCLowering.getPointerTy(),
1121                                    MVT::Other, Ops, 3);
1122    }
1123  }
1124
1125  case ISD::AND: {
1126    unsigned Imm, Imm2, SH, MB, ME;
1127    uint64_t Imm64;
1128
1129    // If this is an and of a value rotated between 0 and 31 bits and then and'd
1130    // with a mask, emit rlwinm
1131    if (isInt32Immediate(N->getOperand(1), Imm) &&
1132        isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) {
1133      SDValue Val = N->getOperand(0).getOperand(0);
1134      SDValue Ops[] = { Val, getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
1135      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
1136    }
1137    // If this is just a masked value where the input is not handled above, and
1138    // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
1139    if (isInt32Immediate(N->getOperand(1), Imm) &&
1140        isRunOfOnes(Imm, MB, ME) &&
1141        N->getOperand(0).getOpcode() != ISD::ROTL) {
1142      SDValue Val = N->getOperand(0);
1143      SDValue Ops[] = { Val, getI32Imm(0), getI32Imm(MB), getI32Imm(ME) };
1144      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
1145    }
1146    // If this is a 64-bit zero-extension mask, emit rldicl.
1147    if (isInt64Immediate(N->getOperand(1).getNode(), Imm64) &&
1148        isMask_64(Imm64)) {
1149      SDValue Val = N->getOperand(0);
1150      MB = 64 - CountTrailingOnes_64(Imm64);
1151      SDValue Ops[] = { Val, getI32Imm(0), getI32Imm(MB) };
1152      return CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops, 3);
1153    }
1154    // AND X, 0 -> 0, not "rlwinm 32".
1155    if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) {
1156      ReplaceUses(SDValue(N, 0), N->getOperand(1));
1157      return NULL;
1158    }
1159    // ISD::OR doesn't get all the bitfield insertion fun.
1160    // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) is a bitfield insert
1161    if (isInt32Immediate(N->getOperand(1), Imm) &&
1162        N->getOperand(0).getOpcode() == ISD::OR &&
1163        isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) {
1164      unsigned MB, ME;
1165      Imm = ~(Imm^Imm2);
1166      if (isRunOfOnes(Imm, MB, ME)) {
1167        SDValue Ops[] = { N->getOperand(0).getOperand(0),
1168                            N->getOperand(0).getOperand(1),
1169                            getI32Imm(0), getI32Imm(MB),getI32Imm(ME) };
1170        return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops, 5);
1171      }
1172    }
1173
1174    // Other cases are autogenerated.
1175    break;
1176  }
1177  case ISD::OR:
1178    if (N->getValueType(0) == MVT::i32)
1179      if (SDNode *I = SelectBitfieldInsert(N))
1180        return I;
1181
1182    // Other cases are autogenerated.
1183    break;
1184  case ISD::SHL: {
1185    unsigned Imm, SH, MB, ME;
1186    if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
1187        isRotateAndMask(N, Imm, true, SH, MB, ME)) {
1188      SDValue Ops[] = { N->getOperand(0).getOperand(0),
1189                          getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
1190      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
1191    }
1192
1193    // Other cases are autogenerated.
1194    break;
1195  }
1196  case ISD::SRL: {
1197    unsigned Imm, SH, MB, ME;
1198    if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
1199        isRotateAndMask(N, Imm, true, SH, MB, ME)) {
1200      SDValue Ops[] = { N->getOperand(0).getOperand(0),
1201                          getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
1202      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
1203    }
1204
1205    // Other cases are autogenerated.
1206    break;
1207  }
1208  case ISD::SELECT_CC: {
1209    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
1210    EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy();
1211    bool isPPC64 = (PtrVT == MVT::i64);
1212
1213    // Handle the setcc cases here.  select_cc lhs, 0, 1, 0, cc
1214    if (!isPPC64)
1215      if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
1216        if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
1217          if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
1218            if (N1C->isNullValue() && N3C->isNullValue() &&
1219                N2C->getZExtValue() == 1ULL && CC == ISD::SETNE &&
1220                // FIXME: Implement this optzn for PPC64.
1221                N->getValueType(0) == MVT::i32) {
1222              SDNode *Tmp =
1223                CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
1224                                       N->getOperand(0), getI32Imm(~0U));
1225              return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32,
1226                                          SDValue(Tmp, 0), N->getOperand(0),
1227                                          SDValue(Tmp, 1));
1228            }
1229
1230    SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
1231    unsigned BROpc = getPredicateForSetCC(CC);
1232
1233    unsigned SelectCCOp;
1234    if (N->getValueType(0) == MVT::i32)
1235      SelectCCOp = PPC::SELECT_CC_I4;
1236    else if (N->getValueType(0) == MVT::i64)
1237      SelectCCOp = PPC::SELECT_CC_I8;
1238    else if (N->getValueType(0) == MVT::f32)
1239      SelectCCOp = PPC::SELECT_CC_F4;
1240    else if (N->getValueType(0) == MVT::f64)
1241      SelectCCOp = PPC::SELECT_CC_F8;
1242    else
1243      SelectCCOp = PPC::SELECT_CC_VRRC;
1244
1245    SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
1246                        getI32Imm(BROpc) };
1247    return CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops, 4);
1248  }
1249  case PPCISD::COND_BRANCH: {
1250    // Op #0 is the Chain.
1251    // Op #1 is the PPC::PRED_* number.
1252    // Op #2 is the CR#
1253    // Op #3 is the Dest MBB
1254    // Op #4 is the Flag.
1255    // Prevent PPC::PRED_* from being selected into LI.
1256    SDValue Pred =
1257      getI32Imm(cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
1258    SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
1259      N->getOperand(0), N->getOperand(4) };
1260    return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 5);
1261  }
1262  case ISD::BR_CC: {
1263    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
1264    SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl);
1265    SDValue Ops[] = { getI32Imm(getPredicateForSetCC(CC)), CondCode,
1266                        N->getOperand(4), N->getOperand(0) };
1267    return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 4);
1268  }
1269  case ISD::BRIND: {
1270    // FIXME: Should custom lower this.
1271    SDValue Chain = N->getOperand(0);
1272    SDValue Target = N->getOperand(1);
1273    unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
1274    unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8;
1275    Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target,
1276                                           Chain), 0);
1277    return CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain);
1278  }
1279  case PPCISD::TOC_ENTRY: {
1280    assert (PPCSubTarget.isPPC64() && "Only supported for 64-bit ABI");
1281
1282    // For medium code model, we generate two instructions as described
1283    // below.  Otherwise we allow SelectCodeCommon to handle this, selecting
1284    // one of LDtoc, LDtocJTI, and LDtocCPT.
1285    if (TM.getCodeModel() != CodeModel::Medium)
1286      break;
1287
1288    // The first source operand is a TargetGlobalAddress or a
1289    // TargetJumpTable.  If it is an externally defined symbol, a symbol
1290    // with common linkage, a function address, or a jump table address,
1291    // we generate:
1292    //   LDtocL(<ga:@sym>, ADDIStocHA(%X2, <ga:@sym>))
1293    // Otherwise we generate:
1294    //   ADDItocL(ADDIStocHA(%X2, <ga:@sym>), <ga:@sym>)
1295    SDValue GA = N->getOperand(0);
1296    SDValue TOCbase = N->getOperand(1);
1297    SDNode *Tmp = CurDAG->getMachineNode(PPC::ADDIStocHA, dl, MVT::i64,
1298                                        TOCbase, GA);
1299
1300    if (isa<JumpTableSDNode>(GA))
1301      return CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA,
1302                                    SDValue(Tmp, 0));
1303
1304    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) {
1305      const GlobalValue *GValue = G->getGlobal();
1306      const GlobalAlias *GAlias = dyn_cast<GlobalAlias>(GValue);
1307      const GlobalValue *RealGValue = GAlias ?
1308        GAlias->resolveAliasedGlobal(false) : GValue;
1309      const GlobalVariable *GVar = dyn_cast<GlobalVariable>(RealGValue);
1310      assert((GVar || isa<Function>(RealGValue)) &&
1311             "Unexpected global value subclass!");
1312
1313      // An external variable is one without an initializer.  For these,
1314      // for variables with common linkage, and for Functions, generate
1315      // the LDtocL form.
1316      if (!GVar || !GVar->hasInitializer() || RealGValue->hasCommonLinkage() ||
1317          RealGValue->hasAvailableExternallyLinkage())
1318        return CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA,
1319                                      SDValue(Tmp, 0));
1320    }
1321
1322    return CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64,
1323                                  SDValue(Tmp, 0), GA);
1324  }
1325  case PPCISD::VADD_SPLAT: {
1326    // Convert: VADD_SPLAT elt, size
1327    // Into:    tmp = VSPLTIS[BHW] elt
1328    //          VADDU[BHW]M tmp, tmp
1329    // Where:   [BHW] = B for size = 1, H for size = 2, W for size = 4
1330    assert(isa<ConstantSDNode>(N->getOperand(0)) &&
1331           isa<ConstantSDNode>(N->getOperand(1)) &&
1332           "Invalid operand on VADD_SPLAT!");
1333    int EltSize = N->getConstantOperandVal(1);
1334    unsigned Opc1, Opc2;
1335    EVT VT;
1336    if (EltSize == 1) {
1337      Opc1 = PPC::VSPLTISB;
1338      Opc2 = PPC::VADDUBM;
1339      VT = MVT::v16i8;
1340    } else if (EltSize == 2) {
1341      Opc1 = PPC::VSPLTISH;
1342      Opc2 = PPC::VADDUHM;
1343      VT = MVT::v8i16;
1344    } else {
1345      assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!");
1346      Opc1 = PPC::VSPLTISW;
1347      Opc2 = PPC::VADDUWM;
1348      VT = MVT::v4i32;
1349    }
1350    SDValue Elt = getI32Imm(N->getConstantOperandVal(0));
1351    SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, Elt);
1352    SDValue TmpVal = SDValue(Tmp, 0);
1353    return CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal);
1354  }
1355  }
1356
1357  return SelectCode(N);
1358}
1359
1360
1361
1362/// createPPCISelDag - This pass converts a legalized DAG into a
1363/// PowerPC-specific DAG, ready for instruction scheduling.
1364///
1365FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) {
1366  return new PPCDAGToDAGISel(TM);
1367}
1368
1369static void initializePassOnce(PassRegistry &Registry) {
1370  const char *Name = "PowerPC DAG->DAG Pattern Instruction Selection";
1371  PassInfo *PI = new PassInfo(Name, "ppc-codegen", &SelectionDAGISel::ID, 0,
1372                              false, false);
1373  Registry.registerPass(*PI, true);
1374}
1375
1376void llvm::initializePPCDAGToDAGISelPass(PassRegistry &Registry) {
1377  CALL_ONCE_INITIALIZATION(initializePassOnce);
1378}
1379
1380