PPCISelDAGToDAG.cpp revision bd5cafd9bbba2180e7179436fb29071201d5ea9f
1//===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file defines a pattern matching instruction selector for PowerPC, 11// converting from a legalized dag to a PPC dag. 12// 13//===----------------------------------------------------------------------===// 14 15#define DEBUG_TYPE "ppc-codegen" 16#include "PPC.h" 17#include "PPCTargetMachine.h" 18#include "MCTargetDesc/PPCPredicates.h" 19#include "llvm/CodeGen/MachineInstrBuilder.h" 20#include "llvm/CodeGen/MachineFunction.h" 21#include "llvm/CodeGen/MachineRegisterInfo.h" 22#include "llvm/CodeGen/SelectionDAG.h" 23#include "llvm/CodeGen/SelectionDAGISel.h" 24#include "llvm/Target/TargetOptions.h" 25#include "llvm/Constants.h" 26#include "llvm/Function.h" 27#include "llvm/GlobalValue.h" 28#include "llvm/Intrinsics.h" 29#include "llvm/Support/Debug.h" 30#include "llvm/Support/MathExtras.h" 31#include "llvm/Support/ErrorHandling.h" 32#include "llvm/Support/raw_ostream.h" 33using namespace llvm; 34 35namespace { 36 //===--------------------------------------------------------------------===// 37 /// PPCDAGToDAGISel - PPC specific code to select PPC machine 38 /// instructions for SelectionDAG operations. 39 /// 40 class PPCDAGToDAGISel : public SelectionDAGISel { 41 const PPCTargetMachine &TM; 42 const PPCTargetLowering &PPCLowering; 43 const PPCSubtarget &PPCSubTarget; 44 unsigned GlobalBaseReg; 45 public: 46 explicit PPCDAGToDAGISel(PPCTargetMachine &tm) 47 : SelectionDAGISel(tm), TM(tm), 48 PPCLowering(*TM.getTargetLowering()), 49 PPCSubTarget(*TM.getSubtargetImpl()) {} 50 51 virtual bool runOnMachineFunction(MachineFunction &MF) { 52 // Make sure we re-emit a set of the global base reg if necessary 53 GlobalBaseReg = 0; 54 SelectionDAGISel::runOnMachineFunction(MF); 55 56 InsertVRSaveCode(MF); 57 return true; 58 } 59 60 /// getI32Imm - Return a target constant with the specified value, of type 61 /// i32. 62 inline SDValue getI32Imm(unsigned Imm) { 63 return CurDAG->getTargetConstant(Imm, MVT::i32); 64 } 65 66 /// getI64Imm - Return a target constant with the specified value, of type 67 /// i64. 68 inline SDValue getI64Imm(uint64_t Imm) { 69 return CurDAG->getTargetConstant(Imm, MVT::i64); 70 } 71 72 /// getSmallIPtrImm - Return a target constant of pointer type. 73 inline SDValue getSmallIPtrImm(unsigned Imm) { 74 return CurDAG->getTargetConstant(Imm, PPCLowering.getPointerTy()); 75 } 76 77 /// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s 78 /// with any number of 0s on either side. The 1s are allowed to wrap from 79 /// LSB to MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 80 /// 0x0F0F0000 is not, since all 1s are not contiguous. 81 static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME); 82 83 84 /// isRotateAndMask - Returns true if Mask and Shift can be folded into a 85 /// rotate and mask opcode and mask operation. 86 static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask, 87 unsigned &SH, unsigned &MB, unsigned &ME); 88 89 /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC 90 /// base register. Return the virtual register that holds this value. 91 SDNode *getGlobalBaseReg(); 92 93 // Select - Convert the specified operand from a target-independent to a 94 // target-specific node if it hasn't already been changed. 95 SDNode *Select(SDNode *N); 96 97 SDNode *SelectBitfieldInsert(SDNode *N); 98 99 /// SelectCC - Select a comparison of the specified values with the 100 /// specified condition code, returning the CR# of the expression. 101 SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, DebugLoc dl); 102 103 /// SelectAddrImm - Returns true if the address N can be represented by 104 /// a base register plus a signed 16-bit displacement [r+imm]. 105 bool SelectAddrImm(SDValue N, SDValue &Disp, 106 SDValue &Base) { 107 return PPCLowering.SelectAddressRegImm(N, Disp, Base, *CurDAG); 108 } 109 110 /// SelectAddrImmOffs - Return true if the operand is valid for a preinc 111 /// immediate field. Because preinc imms have already been validated, just 112 /// accept it. 113 bool SelectAddrImmOffs(SDValue N, SDValue &Out) const { 114 Out = N; 115 return true; 116 } 117 118 /// SelectAddrIdx - Given the specified addressed, check to see if it can be 119 /// represented as an indexed [r+r] operation. Returns false if it can 120 /// be represented by [r+imm], which are preferred. 121 bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) { 122 return PPCLowering.SelectAddressRegReg(N, Base, Index, *CurDAG); 123 } 124 125 /// SelectAddrIdxOnly - Given the specified addressed, force it to be 126 /// represented as an indexed [r+r] operation. 127 bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) { 128 return PPCLowering.SelectAddressRegRegOnly(N, Base, Index, *CurDAG); 129 } 130 131 /// SelectAddrImmShift - Returns true if the address N can be represented by 132 /// a base register plus a signed 14-bit displacement [r+imm*4]. Suitable 133 /// for use by STD and friends. 134 bool SelectAddrImmShift(SDValue N, SDValue &Disp, SDValue &Base) { 135 return PPCLowering.SelectAddressRegImmShift(N, Disp, Base, *CurDAG); 136 } 137 138 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for 139 /// inline asm expressions. It is always correct to compute the value into 140 /// a register. The case of adding a (possibly relocatable) constant to a 141 /// register can be improved, but it is wrong to substitute Reg+Reg for 142 /// Reg in an asm, because the load or store opcode would have to change. 143 virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op, 144 char ConstraintCode, 145 std::vector<SDValue> &OutOps) { 146 OutOps.push_back(Op); 147 return false; 148 } 149 150 void InsertVRSaveCode(MachineFunction &MF); 151 152 virtual const char *getPassName() const { 153 return "PowerPC DAG->DAG Pattern Instruction Selection"; 154 } 155 156// Include the pieces autogenerated from the target description. 157#include "PPCGenDAGISel.inc" 158 159private: 160 SDNode *SelectSETCC(SDNode *N); 161 }; 162} 163 164/// InsertVRSaveCode - Once the entire function has been instruction selected, 165/// all virtual registers are created and all machine instructions are built, 166/// check to see if we need to save/restore VRSAVE. If so, do it. 167void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) { 168 // Check to see if this function uses vector registers, which means we have to 169 // save and restore the VRSAVE register and update it with the regs we use. 170 // 171 // In this case, there will be virtual registers of vector type created 172 // by the scheduler. Detect them now. 173 bool HasVectorVReg = false; 174 for (unsigned i = 0, e = RegInfo->getNumVirtRegs(); i != e; ++i) { 175 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 176 if (RegInfo->getRegClass(Reg) == &PPC::VRRCRegClass) { 177 HasVectorVReg = true; 178 break; 179 } 180 } 181 if (!HasVectorVReg) return; // nothing to do. 182 183 // If we have a vector register, we want to emit code into the entry and exit 184 // blocks to save and restore the VRSAVE register. We do this here (instead 185 // of marking all vector instructions as clobbering VRSAVE) for two reasons: 186 // 187 // 1. This (trivially) reduces the load on the register allocator, by not 188 // having to represent the live range of the VRSAVE register. 189 // 2. This (more significantly) allows us to create a temporary virtual 190 // register to hold the saved VRSAVE value, allowing this temporary to be 191 // register allocated, instead of forcing it to be spilled to the stack. 192 193 // Create two vregs - one to hold the VRSAVE register that is live-in to the 194 // function and one for the value after having bits or'd into it. 195 unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); 196 unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); 197 198 const TargetInstrInfo &TII = *TM.getInstrInfo(); 199 MachineBasicBlock &EntryBB = *Fn.begin(); 200 DebugLoc dl; 201 // Emit the following code into the entry block: 202 // InVRSAVE = MFVRSAVE 203 // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE 204 // MTVRSAVE UpdatedVRSAVE 205 MachineBasicBlock::iterator IP = EntryBB.begin(); // Insert Point 206 BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE); 207 BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE), 208 UpdatedVRSAVE).addReg(InVRSAVE); 209 BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE); 210 211 // Find all return blocks, outputting a restore in each epilog. 212 for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) { 213 if (!BB->empty() && BB->back().isReturn()) { 214 IP = BB->end(); --IP; 215 216 // Skip over all terminator instructions, which are part of the return 217 // sequence. 218 MachineBasicBlock::iterator I2 = IP; 219 while (I2 != BB->begin() && (--I2)->isTerminator()) 220 IP = I2; 221 222 // Emit: MTVRSAVE InVRSave 223 BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE); 224 } 225 } 226} 227 228 229/// getGlobalBaseReg - Output the instructions required to put the 230/// base address to use for accessing globals into a register. 231/// 232SDNode *PPCDAGToDAGISel::getGlobalBaseReg() { 233 if (!GlobalBaseReg) { 234 const TargetInstrInfo &TII = *TM.getInstrInfo(); 235 // Insert the set of GlobalBaseReg into the first MBB of the function 236 MachineBasicBlock &FirstMBB = MF->front(); 237 MachineBasicBlock::iterator MBBI = FirstMBB.begin(); 238 DebugLoc dl; 239 240 if (PPCLowering.getPointerTy() == MVT::i32) { 241 GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); 242 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR)); 243 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); 244 } else { 245 GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RCRegClass); 246 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8)); 247 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg); 248 } 249 } 250 return CurDAG->getRegister(GlobalBaseReg, 251 PPCLowering.getPointerTy()).getNode(); 252} 253 254/// isIntS16Immediate - This method tests to see if the node is either a 32-bit 255/// or 64-bit immediate, and if the value can be accurately represented as a 256/// sign extension from a 16-bit value. If so, this returns true and the 257/// immediate. 258static bool isIntS16Immediate(SDNode *N, short &Imm) { 259 if (N->getOpcode() != ISD::Constant) 260 return false; 261 262 Imm = (short)cast<ConstantSDNode>(N)->getZExtValue(); 263 if (N->getValueType(0) == MVT::i32) 264 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 265 else 266 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 267} 268 269static bool isIntS16Immediate(SDValue Op, short &Imm) { 270 return isIntS16Immediate(Op.getNode(), Imm); 271} 272 273 274/// isInt32Immediate - This method tests to see if the node is a 32-bit constant 275/// operand. If so Imm will receive the 32-bit value. 276static bool isInt32Immediate(SDNode *N, unsigned &Imm) { 277 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) { 278 Imm = cast<ConstantSDNode>(N)->getZExtValue(); 279 return true; 280 } 281 return false; 282} 283 284/// isInt64Immediate - This method tests to see if the node is a 64-bit constant 285/// operand. If so Imm will receive the 64-bit value. 286static bool isInt64Immediate(SDNode *N, uint64_t &Imm) { 287 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) { 288 Imm = cast<ConstantSDNode>(N)->getZExtValue(); 289 return true; 290 } 291 return false; 292} 293 294// isInt32Immediate - This method tests to see if a constant operand. 295// If so Imm will receive the 32 bit value. 296static bool isInt32Immediate(SDValue N, unsigned &Imm) { 297 return isInt32Immediate(N.getNode(), Imm); 298} 299 300 301// isOpcWithIntImmediate - This method tests to see if the node is a specific 302// opcode and that it has a immediate integer right operand. 303// If so Imm will receive the 32 bit value. 304static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) { 305 return N->getOpcode() == Opc 306 && isInt32Immediate(N->getOperand(1).getNode(), Imm); 307} 308 309bool PPCDAGToDAGISel::isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) { 310 if (isShiftedMask_32(Val)) { 311 // look for the first non-zero bit 312 MB = CountLeadingZeros_32(Val); 313 // look for the first zero bit after the run of ones 314 ME = CountLeadingZeros_32((Val - 1) ^ Val); 315 return true; 316 } else { 317 Val = ~Val; // invert mask 318 if (isShiftedMask_32(Val)) { 319 // effectively look for the first zero bit 320 ME = CountLeadingZeros_32(Val) - 1; 321 // effectively look for the first one bit after the run of zeros 322 MB = CountLeadingZeros_32((Val - 1) ^ Val) + 1; 323 return true; 324 } 325 } 326 // no run present 327 return false; 328} 329 330bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask, 331 bool isShiftMask, unsigned &SH, 332 unsigned &MB, unsigned &ME) { 333 // Don't even go down this path for i64, since different logic will be 334 // necessary for rldicl/rldicr/rldimi. 335 if (N->getValueType(0) != MVT::i32) 336 return false; 337 338 unsigned Shift = 32; 339 unsigned Indeterminant = ~0; // bit mask marking indeterminant results 340 unsigned Opcode = N->getOpcode(); 341 if (N->getNumOperands() != 2 || 342 !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31)) 343 return false; 344 345 if (Opcode == ISD::SHL) { 346 // apply shift left to mask if it comes first 347 if (isShiftMask) Mask = Mask << Shift; 348 // determine which bits are made indeterminant by shift 349 Indeterminant = ~(0xFFFFFFFFu << Shift); 350 } else if (Opcode == ISD::SRL) { 351 // apply shift right to mask if it comes first 352 if (isShiftMask) Mask = Mask >> Shift; 353 // determine which bits are made indeterminant by shift 354 Indeterminant = ~(0xFFFFFFFFu >> Shift); 355 // adjust for the left rotate 356 Shift = 32 - Shift; 357 } else if (Opcode == ISD::ROTL) { 358 Indeterminant = 0; 359 } else { 360 return false; 361 } 362 363 // if the mask doesn't intersect any Indeterminant bits 364 if (Mask && !(Mask & Indeterminant)) { 365 SH = Shift & 31; 366 // make sure the mask is still a mask (wrap arounds may not be) 367 return isRunOfOnes(Mask, MB, ME); 368 } 369 return false; 370} 371 372/// SelectBitfieldInsert - turn an or of two masked values into 373/// the rotate left word immediate then mask insert (rlwimi) instruction. 374SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) { 375 SDValue Op0 = N->getOperand(0); 376 SDValue Op1 = N->getOperand(1); 377 DebugLoc dl = N->getDebugLoc(); 378 379 APInt LKZ, LKO, RKZ, RKO; 380 CurDAG->ComputeMaskedBits(Op0, LKZ, LKO); 381 CurDAG->ComputeMaskedBits(Op1, RKZ, RKO); 382 383 unsigned TargetMask = LKZ.getZExtValue(); 384 unsigned InsertMask = RKZ.getZExtValue(); 385 386 if ((TargetMask | InsertMask) == 0xFFFFFFFF) { 387 unsigned Op0Opc = Op0.getOpcode(); 388 unsigned Op1Opc = Op1.getOpcode(); 389 unsigned Value, SH = 0; 390 TargetMask = ~TargetMask; 391 InsertMask = ~InsertMask; 392 393 // If the LHS has a foldable shift and the RHS does not, then swap it to the 394 // RHS so that we can fold the shift into the insert. 395 if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) { 396 if (Op0.getOperand(0).getOpcode() == ISD::SHL || 397 Op0.getOperand(0).getOpcode() == ISD::SRL) { 398 if (Op1.getOperand(0).getOpcode() != ISD::SHL && 399 Op1.getOperand(0).getOpcode() != ISD::SRL) { 400 std::swap(Op0, Op1); 401 std::swap(Op0Opc, Op1Opc); 402 std::swap(TargetMask, InsertMask); 403 } 404 } 405 } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) { 406 if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL && 407 Op1.getOperand(0).getOpcode() != ISD::SRL) { 408 std::swap(Op0, Op1); 409 std::swap(Op0Opc, Op1Opc); 410 std::swap(TargetMask, InsertMask); 411 } 412 } 413 414 unsigned MB, ME; 415 if (InsertMask && isRunOfOnes(InsertMask, MB, ME)) { 416 SDValue Tmp1, Tmp2; 417 418 if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) && 419 isInt32Immediate(Op1.getOperand(1), Value)) { 420 Op1 = Op1.getOperand(0); 421 SH = (Op1Opc == ISD::SHL) ? Value : 32 - Value; 422 } 423 if (Op1Opc == ISD::AND) { 424 unsigned SHOpc = Op1.getOperand(0).getOpcode(); 425 if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && 426 isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) { 427 Op1 = Op1.getOperand(0).getOperand(0); 428 SH = (SHOpc == ISD::SHL) ? Value : 32 - Value; 429 } else { 430 Op1 = Op1.getOperand(0); 431 } 432 } 433 434 SH &= 31; 435 SDValue Ops[] = { Op0, Op1, getI32Imm(SH), getI32Imm(MB), 436 getI32Imm(ME) }; 437 return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops, 5); 438 } 439 } 440 return 0; 441} 442 443/// SelectCC - Select a comparison of the specified values with the specified 444/// condition code, returning the CR# of the expression. 445SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, 446 ISD::CondCode CC, DebugLoc dl) { 447 // Always select the LHS. 448 unsigned Opc; 449 450 if (LHS.getValueType() == MVT::i32) { 451 unsigned Imm; 452 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 453 if (isInt32Immediate(RHS, Imm)) { 454 // SETEQ/SETNE comparison with 16-bit immediate, fold it. 455 if (isUInt<16>(Imm)) 456 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS, 457 getI32Imm(Imm & 0xFFFF)), 0); 458 // If this is a 16-bit signed immediate, fold it. 459 if (isInt<16>((int)Imm)) 460 return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS, 461 getI32Imm(Imm & 0xFFFF)), 0); 462 463 // For non-equality comparisons, the default code would materialize the 464 // constant, then compare against it, like this: 465 // lis r2, 4660 466 // ori r2, r2, 22136 467 // cmpw cr0, r3, r2 468 // Since we are just comparing for equality, we can emit this instead: 469 // xoris r0,r3,0x1234 470 // cmplwi cr0,r0,0x5678 471 // beq cr0,L6 472 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS, 473 getI32Imm(Imm >> 16)), 0); 474 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor, 475 getI32Imm(Imm & 0xFFFF)), 0); 476 } 477 Opc = PPC::CMPLW; 478 } else if (ISD::isUnsignedIntSetCC(CC)) { 479 if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm)) 480 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS, 481 getI32Imm(Imm & 0xFFFF)), 0); 482 Opc = PPC::CMPLW; 483 } else { 484 short SImm; 485 if (isIntS16Immediate(RHS, SImm)) 486 return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS, 487 getI32Imm((int)SImm & 0xFFFF)), 488 0); 489 Opc = PPC::CMPW; 490 } 491 } else if (LHS.getValueType() == MVT::i64) { 492 uint64_t Imm; 493 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 494 if (isInt64Immediate(RHS.getNode(), Imm)) { 495 // SETEQ/SETNE comparison with 16-bit immediate, fold it. 496 if (isUInt<16>(Imm)) 497 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS, 498 getI32Imm(Imm & 0xFFFF)), 0); 499 // If this is a 16-bit signed immediate, fold it. 500 if (isInt<16>(Imm)) 501 return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS, 502 getI32Imm(Imm & 0xFFFF)), 0); 503 504 // For non-equality comparisons, the default code would materialize the 505 // constant, then compare against it, like this: 506 // lis r2, 4660 507 // ori r2, r2, 22136 508 // cmpd cr0, r3, r2 509 // Since we are just comparing for equality, we can emit this instead: 510 // xoris r0,r3,0x1234 511 // cmpldi cr0,r0,0x5678 512 // beq cr0,L6 513 if (isUInt<32>(Imm)) { 514 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS, 515 getI64Imm(Imm >> 16)), 0); 516 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor, 517 getI64Imm(Imm & 0xFFFF)), 0); 518 } 519 } 520 Opc = PPC::CMPLD; 521 } else if (ISD::isUnsignedIntSetCC(CC)) { 522 if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm)) 523 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS, 524 getI64Imm(Imm & 0xFFFF)), 0); 525 Opc = PPC::CMPLD; 526 } else { 527 short SImm; 528 if (isIntS16Immediate(RHS, SImm)) 529 return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS, 530 getI64Imm(SImm & 0xFFFF)), 531 0); 532 Opc = PPC::CMPD; 533 } 534 } else if (LHS.getValueType() == MVT::f32) { 535 Opc = PPC::FCMPUS; 536 } else { 537 assert(LHS.getValueType() == MVT::f64 && "Unknown vt!"); 538 Opc = PPC::FCMPUD; 539 } 540 return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0); 541} 542 543static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) { 544 switch (CC) { 545 case ISD::SETUEQ: 546 case ISD::SETONE: 547 case ISD::SETOLE: 548 case ISD::SETOGE: 549 llvm_unreachable("Should be lowered by legalize!"); 550 default: llvm_unreachable("Unknown condition!"); 551 case ISD::SETOEQ: 552 case ISD::SETEQ: return PPC::PRED_EQ; 553 case ISD::SETUNE: 554 case ISD::SETNE: return PPC::PRED_NE; 555 case ISD::SETOLT: 556 case ISD::SETLT: return PPC::PRED_LT; 557 case ISD::SETULE: 558 case ISD::SETLE: return PPC::PRED_LE; 559 case ISD::SETOGT: 560 case ISD::SETGT: return PPC::PRED_GT; 561 case ISD::SETUGE: 562 case ISD::SETGE: return PPC::PRED_GE; 563 case ISD::SETO: return PPC::PRED_NU; 564 case ISD::SETUO: return PPC::PRED_UN; 565 // These two are invalid for floating point. Assume we have int. 566 case ISD::SETULT: return PPC::PRED_LT; 567 case ISD::SETUGT: return PPC::PRED_GT; 568 } 569} 570 571/// getCRIdxForSetCC - Return the index of the condition register field 572/// associated with the SetCC condition, and whether or not the field is 573/// treated as inverted. That is, lt = 0; ge = 0 inverted. 574/// 575/// If this returns with Other != -1, then the returned comparison is an or of 576/// two simpler comparisons. In this case, Invert is guaranteed to be false. 577static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert, int &Other) { 578 Invert = false; 579 Other = -1; 580 switch (CC) { 581 default: llvm_unreachable("Unknown condition!"); 582 case ISD::SETOLT: 583 case ISD::SETLT: return 0; // Bit #0 = SETOLT 584 case ISD::SETOGT: 585 case ISD::SETGT: return 1; // Bit #1 = SETOGT 586 case ISD::SETOEQ: 587 case ISD::SETEQ: return 2; // Bit #2 = SETOEQ 588 case ISD::SETUO: return 3; // Bit #3 = SETUO 589 case ISD::SETUGE: 590 case ISD::SETGE: Invert = true; return 0; // !Bit #0 = SETUGE 591 case ISD::SETULE: 592 case ISD::SETLE: Invert = true; return 1; // !Bit #1 = SETULE 593 case ISD::SETUNE: 594 case ISD::SETNE: Invert = true; return 2; // !Bit #2 = SETUNE 595 case ISD::SETO: Invert = true; return 3; // !Bit #3 = SETO 596 case ISD::SETUEQ: 597 case ISD::SETOGE: 598 case ISD::SETOLE: 599 case ISD::SETONE: 600 llvm_unreachable("Invalid branch code: should be expanded by legalize"); 601 // These are invalid for floating point. Assume integer. 602 case ISD::SETULT: return 0; 603 case ISD::SETUGT: return 1; 604 } 605} 606 607SDNode *PPCDAGToDAGISel::SelectSETCC(SDNode *N) { 608 DebugLoc dl = N->getDebugLoc(); 609 unsigned Imm; 610 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 611 EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy(); 612 bool isPPC64 = (PtrVT == MVT::i64); 613 614 if (isInt32Immediate(N->getOperand(1), Imm)) { 615 // We can codegen setcc op, imm very efficiently compared to a brcond. 616 // Check for those cases here. 617 // setcc op, 0 618 if (Imm == 0) { 619 SDValue Op = N->getOperand(0); 620 switch (CC) { 621 default: break; 622 case ISD::SETEQ: { 623 Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0); 624 SDValue Ops[] = { Op, getI32Imm(27), getI32Imm(5), getI32Imm(31) }; 625 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); 626 } 627 case ISD::SETNE: { 628 if (isPPC64) break; 629 SDValue AD = 630 SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 631 Op, getI32Imm(~0U)), 0); 632 return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, 633 AD.getValue(1)); 634 } 635 case ISD::SETLT: { 636 SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) }; 637 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); 638 } 639 case ISD::SETGT: { 640 SDValue T = 641 SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0); 642 T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0); 643 SDValue Ops[] = { T, getI32Imm(1), getI32Imm(31), getI32Imm(31) }; 644 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); 645 } 646 } 647 } else if (Imm == ~0U) { // setcc op, -1 648 SDValue Op = N->getOperand(0); 649 switch (CC) { 650 default: break; 651 case ISD::SETEQ: 652 if (isPPC64) break; 653 Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 654 Op, getI32Imm(1)), 0); 655 return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, 656 SDValue(CurDAG->getMachineNode(PPC::LI, dl, 657 MVT::i32, 658 getI32Imm(0)), 0), 659 Op.getValue(1)); 660 case ISD::SETNE: { 661 if (isPPC64) break; 662 Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0); 663 SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 664 Op, getI32Imm(~0U)); 665 return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0), 666 Op, SDValue(AD, 1)); 667 } 668 case ISD::SETLT: { 669 SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op, 670 getI32Imm(1)), 0); 671 SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD, 672 Op), 0); 673 SDValue Ops[] = { AN, getI32Imm(1), getI32Imm(31), getI32Imm(31) }; 674 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); 675 } 676 case ISD::SETGT: { 677 SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) }; 678 Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops, 4), 679 0); 680 return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, 681 getI32Imm(1)); 682 } 683 } 684 } 685 } 686 687 bool Inv; 688 int OtherCondIdx; 689 unsigned Idx = getCRIdxForSetCC(CC, Inv, OtherCondIdx); 690 SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl); 691 SDValue IntCR; 692 693 // Force the ccreg into CR7. 694 SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32); 695 696 SDValue InFlag(0, 0); // Null incoming flag value. 697 CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg, 698 InFlag).getValue(1); 699 700 if (PPCSubTarget.hasMFOCRF() && OtherCondIdx == -1) 701 IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg, 702 CCReg), 0); 703 else 704 IntCR = SDValue(CurDAG->getMachineNode(PPC::MFCRpseud, dl, MVT::i32, 705 CR7Reg, CCReg), 0); 706 707 SDValue Ops[] = { IntCR, getI32Imm((32-(3-Idx)) & 31), 708 getI32Imm(31), getI32Imm(31) }; 709 if (OtherCondIdx == -1 && !Inv) 710 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); 711 712 // Get the specified bit. 713 SDValue Tmp = 714 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops, 4), 0); 715 if (Inv) { 716 assert(OtherCondIdx == -1 && "Can't have split plus negation"); 717 return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1)); 718 } 719 720 // Otherwise, we have to turn an operation like SETONE -> SETOLT | SETOGT. 721 // We already got the bit for the first part of the comparison (e.g. SETULE). 722 723 // Get the other bit of the comparison. 724 Ops[1] = getI32Imm((32-(3-OtherCondIdx)) & 31); 725 SDValue OtherCond = 726 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops, 4), 0); 727 728 return CurDAG->SelectNodeTo(N, PPC::OR, MVT::i32, Tmp, OtherCond); 729} 730 731 732// Select - Convert the specified operand from a target-independent to a 733// target-specific node if it hasn't already been changed. 734SDNode *PPCDAGToDAGISel::Select(SDNode *N) { 735 DebugLoc dl = N->getDebugLoc(); 736 if (N->isMachineOpcode()) 737 return NULL; // Already selected. 738 739 switch (N->getOpcode()) { 740 default: break; 741 742 case ISD::Constant: { 743 if (N->getValueType(0) == MVT::i64) { 744 // Get 64 bit value. 745 int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue(); 746 // Assume no remaining bits. 747 unsigned Remainder = 0; 748 // Assume no shift required. 749 unsigned Shift = 0; 750 751 // If it can't be represented as a 32 bit value. 752 if (!isInt<32>(Imm)) { 753 Shift = CountTrailingZeros_64(Imm); 754 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift; 755 756 // If the shifted value fits 32 bits. 757 if (isInt<32>(ImmSh)) { 758 // Go with the shifted value. 759 Imm = ImmSh; 760 } else { 761 // Still stuck with a 64 bit value. 762 Remainder = Imm; 763 Shift = 32; 764 Imm >>= 32; 765 } 766 } 767 768 // Intermediate operand. 769 SDNode *Result; 770 771 // Handle first 32 bits. 772 unsigned Lo = Imm & 0xFFFF; 773 unsigned Hi = (Imm >> 16) & 0xFFFF; 774 775 // Simple value. 776 if (isInt<16>(Imm)) { 777 // Just the Lo bits. 778 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, getI32Imm(Lo)); 779 } else if (Lo) { 780 // Handle the Hi bits. 781 unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8; 782 Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi)); 783 // And Lo bits. 784 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, 785 SDValue(Result, 0), getI32Imm(Lo)); 786 } else { 787 // Just the Hi bits. 788 Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi)); 789 } 790 791 // If no shift, we're done. 792 if (!Shift) return Result; 793 794 // Shift for next step if the upper 32-bits were not zero. 795 if (Imm) { 796 Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, 797 SDValue(Result, 0), 798 getI32Imm(Shift), 799 getI32Imm(63 - Shift)); 800 } 801 802 // Add in the last bits as required. 803 if ((Hi = (Remainder >> 16) & 0xFFFF)) { 804 Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64, 805 SDValue(Result, 0), getI32Imm(Hi)); 806 } 807 if ((Lo = Remainder & 0xFFFF)) { 808 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, 809 SDValue(Result, 0), getI32Imm(Lo)); 810 } 811 812 return Result; 813 } 814 break; 815 } 816 817 case ISD::SETCC: 818 return SelectSETCC(N); 819 case PPCISD::GlobalBaseReg: 820 return getGlobalBaseReg(); 821 822 case ISD::FrameIndex: { 823 int FI = cast<FrameIndexSDNode>(N)->getIndex(); 824 SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0)); 825 unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8; 826 if (N->hasOneUse()) 827 return CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), TFI, 828 getSmallIPtrImm(0)); 829 return CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI, 830 getSmallIPtrImm(0)); 831 } 832 833 case PPCISD::MFCR: { 834 SDValue InFlag = N->getOperand(1); 835 // Use MFOCRF if supported. 836 if (PPCSubTarget.hasMFOCRF()) 837 return CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, 838 N->getOperand(0), InFlag); 839 else 840 return CurDAG->getMachineNode(PPC::MFCRpseud, dl, MVT::i32, 841 N->getOperand(0), InFlag); 842 } 843 844 case ISD::SDIV: { 845 // FIXME: since this depends on the setting of the carry flag from the srawi 846 // we should really be making notes about that for the scheduler. 847 // FIXME: It sure would be nice if we could cheaply recognize the 848 // srl/add/sra pattern the dag combiner will generate for this as 849 // sra/addze rather than having to handle sdiv ourselves. oh well. 850 unsigned Imm; 851 if (isInt32Immediate(N->getOperand(1), Imm)) { 852 SDValue N0 = N->getOperand(0); 853 if ((signed)Imm > 0 && isPowerOf2_32(Imm)) { 854 SDNode *Op = 855 CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue, 856 N0, getI32Imm(Log2_32(Imm))); 857 return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, 858 SDValue(Op, 0), SDValue(Op, 1)); 859 } else if ((signed)Imm < 0 && isPowerOf2_32(-Imm)) { 860 SDNode *Op = 861 CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue, 862 N0, getI32Imm(Log2_32(-Imm))); 863 SDValue PT = 864 SDValue(CurDAG->getMachineNode(PPC::ADDZE, dl, MVT::i32, 865 SDValue(Op, 0), SDValue(Op, 1)), 866 0); 867 return CurDAG->SelectNodeTo(N, PPC::NEG, MVT::i32, PT); 868 } 869 } 870 871 // Other cases are autogenerated. 872 break; 873 } 874 875 case ISD::LOAD: { 876 // Handle preincrement loads. 877 LoadSDNode *LD = cast<LoadSDNode>(N); 878 EVT LoadedVT = LD->getMemoryVT(); 879 880 // Normal loads are handled by code generated from the .td file. 881 if (LD->getAddressingMode() != ISD::PRE_INC) 882 break; 883 884 SDValue Offset = LD->getOffset(); 885 if (isa<ConstantSDNode>(Offset) || 886 Offset.getOpcode() == ISD::TargetGlobalAddress) { 887 888 unsigned Opcode; 889 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD; 890 if (LD->getValueType(0) != MVT::i64) { 891 // Handle PPC32 integer and normal FP loads. 892 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); 893 switch (LoadedVT.getSimpleVT().SimpleTy) { 894 default: llvm_unreachable("Invalid PPC load type!"); 895 case MVT::f64: Opcode = PPC::LFDU; break; 896 case MVT::f32: Opcode = PPC::LFSU; break; 897 case MVT::i32: Opcode = PPC::LWZU; break; 898 case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break; 899 case MVT::i1: 900 case MVT::i8: Opcode = PPC::LBZU; break; 901 } 902 } else { 903 assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!"); 904 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); 905 switch (LoadedVT.getSimpleVT().SimpleTy) { 906 default: llvm_unreachable("Invalid PPC load type!"); 907 case MVT::i64: Opcode = PPC::LDU; break; 908 case MVT::i32: Opcode = PPC::LWZU8; break; 909 case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break; 910 case MVT::i1: 911 case MVT::i8: Opcode = PPC::LBZU8; break; 912 } 913 } 914 915 SDValue Chain = LD->getChain(); 916 SDValue Base = LD->getBasePtr(); 917 SDValue Ops[] = { Offset, Base, Chain }; 918 // FIXME: PPC64 919 return CurDAG->getMachineNode(Opcode, dl, LD->getValueType(0), 920 PPCLowering.getPointerTy(), 921 MVT::Other, Ops, 3); 922 } else { 923 llvm_unreachable("R+R preindex loads not supported yet!"); 924 } 925 } 926 927 case ISD::AND: { 928 unsigned Imm, Imm2, SH, MB, ME; 929 930 // If this is an and of a value rotated between 0 and 31 bits and then and'd 931 // with a mask, emit rlwinm 932 if (isInt32Immediate(N->getOperand(1), Imm) && 933 isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) { 934 SDValue Val = N->getOperand(0).getOperand(0); 935 SDValue Ops[] = { Val, getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) }; 936 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); 937 } 938 // If this is just a masked value where the input is not handled above, and 939 // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm 940 if (isInt32Immediate(N->getOperand(1), Imm) && 941 isRunOfOnes(Imm, MB, ME) && 942 N->getOperand(0).getOpcode() != ISD::ROTL) { 943 SDValue Val = N->getOperand(0); 944 SDValue Ops[] = { Val, getI32Imm(0), getI32Imm(MB), getI32Imm(ME) }; 945 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); 946 } 947 // AND X, 0 -> 0, not "rlwinm 32". 948 if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) { 949 ReplaceUses(SDValue(N, 0), N->getOperand(1)); 950 return NULL; 951 } 952 // ISD::OR doesn't get all the bitfield insertion fun. 953 // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) is a bitfield insert 954 if (isInt32Immediate(N->getOperand(1), Imm) && 955 N->getOperand(0).getOpcode() == ISD::OR && 956 isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) { 957 unsigned MB, ME; 958 Imm = ~(Imm^Imm2); 959 if (isRunOfOnes(Imm, MB, ME)) { 960 SDValue Ops[] = { N->getOperand(0).getOperand(0), 961 N->getOperand(0).getOperand(1), 962 getI32Imm(0), getI32Imm(MB),getI32Imm(ME) }; 963 return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops, 5); 964 } 965 } 966 967 // Other cases are autogenerated. 968 break; 969 } 970 case ISD::OR: 971 if (N->getValueType(0) == MVT::i32) 972 if (SDNode *I = SelectBitfieldInsert(N)) 973 return I; 974 975 // Other cases are autogenerated. 976 break; 977 case ISD::SHL: { 978 unsigned Imm, SH, MB, ME; 979 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) && 980 isRotateAndMask(N, Imm, true, SH, MB, ME)) { 981 SDValue Ops[] = { N->getOperand(0).getOperand(0), 982 getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) }; 983 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); 984 } 985 986 // Other cases are autogenerated. 987 break; 988 } 989 case ISD::SRL: { 990 unsigned Imm, SH, MB, ME; 991 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) && 992 isRotateAndMask(N, Imm, true, SH, MB, ME)) { 993 SDValue Ops[] = { N->getOperand(0).getOperand(0), 994 getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) }; 995 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4); 996 } 997 998 // Other cases are autogenerated. 999 break; 1000 } 1001 case ISD::SELECT_CC: { 1002 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get(); 1003 EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy(); 1004 bool isPPC64 = (PtrVT == MVT::i64); 1005 1006 // Handle the setcc cases here. select_cc lhs, 0, 1, 0, cc 1007 if (!isPPC64) 1008 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1))) 1009 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2))) 1010 if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3))) 1011 if (N1C->isNullValue() && N3C->isNullValue() && 1012 N2C->getZExtValue() == 1ULL && CC == ISD::SETNE && 1013 // FIXME: Implement this optzn for PPC64. 1014 N->getValueType(0) == MVT::i32) { 1015 SDNode *Tmp = 1016 CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 1017 N->getOperand(0), getI32Imm(~0U)); 1018 return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, 1019 SDValue(Tmp, 0), N->getOperand(0), 1020 SDValue(Tmp, 1)); 1021 } 1022 1023 SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl); 1024 unsigned BROpc = getPredicateForSetCC(CC); 1025 1026 unsigned SelectCCOp; 1027 if (N->getValueType(0) == MVT::i32) 1028 SelectCCOp = PPC::SELECT_CC_I4; 1029 else if (N->getValueType(0) == MVT::i64) 1030 SelectCCOp = PPC::SELECT_CC_I8; 1031 else if (N->getValueType(0) == MVT::f32) 1032 SelectCCOp = PPC::SELECT_CC_F4; 1033 else if (N->getValueType(0) == MVT::f64) 1034 SelectCCOp = PPC::SELECT_CC_F8; 1035 else 1036 SelectCCOp = PPC::SELECT_CC_VRRC; 1037 1038 SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3), 1039 getI32Imm(BROpc) }; 1040 return CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops, 4); 1041 } 1042 case PPCISD::COND_BRANCH: { 1043 // Op #0 is the Chain. 1044 // Op #1 is the PPC::PRED_* number. 1045 // Op #2 is the CR# 1046 // Op #3 is the Dest MBB 1047 // Op #4 is the Flag. 1048 // Prevent PPC::PRED_* from being selected into LI. 1049 SDValue Pred = 1050 getI32Imm(cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()); 1051 SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3), 1052 N->getOperand(0), N->getOperand(4) }; 1053 return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 5); 1054 } 1055 case ISD::BR_CC: { 1056 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 1057 SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl); 1058 SDValue Ops[] = { getI32Imm(getPredicateForSetCC(CC)), CondCode, 1059 N->getOperand(4), N->getOperand(0) }; 1060 return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 4); 1061 } 1062 case ISD::BRIND: { 1063 // FIXME: Should custom lower this. 1064 SDValue Chain = N->getOperand(0); 1065 SDValue Target = N->getOperand(1); 1066 unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8; 1067 unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8; 1068 Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target, 1069 Chain), 0); 1070 return CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain); 1071 } 1072 } 1073 1074 return SelectCode(N); 1075} 1076 1077 1078 1079/// createPPCISelDag - This pass converts a legalized DAG into a 1080/// PowerPC-specific DAG, ready for instruction scheduling. 1081/// 1082FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) { 1083 return new PPCDAGToDAGISel(TM); 1084} 1085 1086